
Scientific Computing with Dependent Types for Reliability
SciDeR (version: 2018-04-10 09:04)

1 Purpose and aims

Dependently-typed programming systems, such as Agda [20], Idris [5], and Coq [25], are among
the most important recent advances in computer science.1 They provide an environment in
which the programmer can both formulate the requirements that the code must satisfy and im-
plement the code. Moreover, the implementation can be guided by the requirements, and parts
of it can be automatically “filled in” by the system. The environment then checks that the imple-
mentation really does satisfy the requirements. Thus, the result is a provably correct program,
with a machine-checked proof. At the moment, this is the highest standard of correctness that
we have.

Contrast this method of “correct by construction” programming with the standard practice in
today’s software industry (and academia). In standard practice, the requirements are usually
formulated in natural language, requiring an effort of interpretation from the programmer. Often,
the results of this effort are not made explicit, making it difficult to see whether they are the in-
tended ones or not. Based on their interpretation, the programmers produce an implementation.
Finally, this implementation is tested. The invention of adequate tests is somewhat of an art,
and their correctness and completeness can be difficult to ensure [12].

That dependently-typed programming environments are now mature enough to improve the
current situation can be seen by their success in, e.g., producing a verified C compiler, CompCert
[15]; developing database access libraries which statically guarantee that queries are consistent
with the schema of the underlying database [21]; implementing secure distributed programming
[24]; implementing resource-safe programs [18, 6]; and many others.

However, there are so far almost no dependently-typed libraries for scientific computing,
machine learning or artificial intelligence algorithms such as deep learning, clustering, self-
organising maps, etc. What characterises these applications is that they model aspects of the
“real” world, not just the world of digital systems (as in the above examples). Such applications
comprise the bulk of software used in science and engineering. Typical examples are: models
of the climate, the economy, the energy system, public health, weather forecasting, autonomous
systems, and so on. They are used on a daily basis in industry, decision making, health care,
traffic control, etc. It is clear that ensuring their correctness would be greatly desirable.

The only substantial example of dependently-typed programming in the context of scientific
computing is IdrisLibs, a collection of application-independent components developed at the
Potsdam Institute for Climate Impact Research together with Chalmers in order to solve sequen-
tial decision problems arising in climate impact policy analysis and advice [2].

We aim to use the results and the experience gained in the course of this activity in order
to develop a software infrastructure for reliable scientific computing and machine learn-
ing. The infrastructure will consist of a collection of open source software components in the
dependently-typed programming language Idris, methods for developing and maintaining large
dependently-typed libraries, and tools and techniques for integrating existing high-quality li-
braries in a dependently-typed environment. This infrastructure should contribute to the creation
of a community of users, both from industry and from the academic world, producing reliable

1It is perhaps interesting to note that this is mostly a European, and, in particular, a Swedish achievement. All the
main environments for dependently-typed programming are developed in Europe (Agda in Sweden, Idris in the UK,
Coq in France) and they are all based on the intuitionistic type theory developed by the Swedish mathematician and
philosopher Per Martin-Löf [16].

1

https://gitlab.pik-potsdam.de/botta/IdrisLibs


Appendix A P. Jansson, 720311–7515, SciDeR

applications in engineering and scientific fields such as autonomous vehicles, medical research,
climate impact research, modelling financial markets, Big Data analysis, etc.

The availability of such a software stack will not just actively promote improved software
applications, but will also enable new fundamental research, especially in fields where com-
puter models are used to replace laboratory experiments. These fields include the social
sciences, climate research, parts of medical research, etc., where such experiments are not
possible either for practical or ethical considerations. Such computer models often embody the-
ories that are only partially specified (and of which the scientists themselves are not necessarily
aware). By making the assumptions in the code explicit in the form of properties, high-level
types, and postulates, a dependently-typed programming language makes it possible to formu-
late new theories about the domain of the code. For an example, see the formalisation of the
notion of vulnerability in the context of climate change [14].

What we call “software” or “program” in this proposal is not just “a sequence of instructions,
written to perform a specified task with a computer” [Wikipedia, Computer Program]. In SciDeR
terminology, a “program” is both a high-level description of a problem or task and a proven
correct procedure for solving that task. Thus, a library for a specific application domain will be
viewed, on one hand, as a collection of building-blocks for describing problems in that domain,
and on the other hand as a toolkit of methods for computing within that domain. From this
perspective, the iterative process of devising a “program” to match a “specification” becomes
a way of exploring and understanding a domain from a computational point of view. We rely
on languages with dependent types to express specifications, implementations and proofs in a
common framework.

2 State-of-the-art

As mentioned in the introduction, there are, with the exception of IdrisLibs, no substantial ex-
amples of libraries for scientific computing and machine learning in the main dependently-typed
programming environments. The closest-related efforts so far have concentrated on using these
environments in order to formalise mathematical theories relevant for computing (this is espe-
cially the case in Coq, e.g. [7]), or in computations with exact real numbers [17]. Neither of these
developments provides access to existing high-quality libraries, nor have we found attempts to
formulate the properties of such library functions. Isolated implementations of linear algebra
methods [9] or neural networks [8] are of limited usability, in terms of efficiency and features.

The project that most closely resembles our intentions is SciPy, which represents, according
to its homepage, several related but distinct entities:

• the SciPy ecosystem, a stack of open source software for scientific computing in Python,
• the community of people who use and develop this stack,
• some conferences dedicated to scientific computing in Python (SciPy, EuroSciPy, SciPy.in),
• the SciPy library, one component of the SciPy stack, providing many numerical routines.

SciPy provides access to excellent numerical libraries in order to enable the users to glue them
together using the Python programming language for rapid prototyping. In a sense, Python is
the ideal vehicle for such an environment, due to the ease with which external programs can be
integrated. However, this is achieved by removing even the limited guarantees that the libraries
come with. In the square root example, the Python interface gives a function for which even type
errors are only recognised at run-time, increasing the difficulty of building reliable applications.

We conclude this section with two examples of how SciDeR can foster new research in the
area of dependently-typed programming languages.

In critical applications, recognising type errors at run-time is not enough. In these cases, the
developers will be required to provide evidence for the correctness of the postulates. One of

2

https://www.scipy.org/about.html


Appendix A P. Jansson, 720311–7515, SciDeR

the ways in which this can be achieved, besides re-implementing the code in Idris, is by using
tools for program verification, such as K[22]. Program verification is a complementary method
to dependently-typed programming, allowing the (in general more difficult and expensive) a-
posteriori proof of correctness, instead of building the code in a provably correct way from the
very beginning. One of the research directions we hope to trigger is that of integrating the results
of such program verification in dependently-typed programming environments.

In section 5.1, problem 1 explains how the entanglement between proofs and algorithms
can simplify the development effort, while, at the same time, it can lead to brittle code that is
very difficult to maintain and change. There is a possibility to carry over at least some of the
advantages of the “tangled” approach in the context of incremental development we argue for
here. This requires language support for reflection: the ability to access the program text as
a data structure within the program itself. While Idris has some support for reflection, both the
technology and the “best practices” are in need of further research. This is one direction in which
our project might “nudge” the developers of dependently-typed programming languages.

3 Significance and scientific novelty

The proposed project SciDeR aims to provide a novel instrument in the form of a software
stack for reliable scientific computing and machine learning, new methods for developing
and maintaining large dependently-typed libraries, and tools and techniques for integrating
existing high-quality libraries into a dependently-typed environment. Through this infrastructure,
we hope to contribute to the industry-science dialogue by the creation of a community of users
from both sides. Given the ubiquity of scientific computing and machine learning in both industry
and the academic world, we believe that we are targeting an area of current and future growth
for both the private and the public sector.

The road to wisdom?
— Well, it’s plain
and simple to express:

Err
and err
and err again,
but less
and less
and less.

— Piet Hein

Finally, the availability of what is, in essence, an instrument for
mathematical formalisation will lead to new and exciting fundamen-
tal research, especially (but not exclusively) in the social sciences.
By forcing the scientists to express their assumptions explicitly and
formally, dependently-typed programming languages can aid them in
developing mathematical theories about the domain of the code. As
examples, see the formalisation of the notion of “vulnerability” in the
context of climate change [14], and the notion of “avoidability” in policy
advice [2].

We hope to foster new research in dependently-typed program-
ming languages, making it easier to use the “increasingly correct com-
puting” methodology [11].

4 Preliminary and previous results

Early work in the direction of SciDeR was published by the PI already in 2009 (Dependent
types for relation program derivation, [19]). This lead to the related VR project “Strongly Typed
Libraries for Programs and Proofs” (StrongLib, 2011–2014). As part of StrongLib we wrote a
“proof-of-concept” paper on “Dependently-typed programming in scientific computing” [11]. That
paper can be said to be the starting point of the SciDeR project. At around the same time, we
also published a paper describing cases where proving is actually more effective than testing,
also here in the context of dependently typed programming, [12].

After StrongLib we worked on a mathematical theory for, and practical implementation of,
parallel parsing [1]. It turns out that the dependently typed formalisation of parsing is also more
generally useful as a correct-by-construction implementation of block matrices [23].

3



Appendix A P. Jansson, 720311–7515, SciDeR

In parallel, Botta, Jansson and Ionescu initiated a more ambitious case study: formalising
sequential decision problems and their solutions (using Bellman’s backward induction) for use
in policy advice. This lead to three joint journal papers so far: in Logical Methods of Computer
Science (LMCS), in the Journal of Functional Programming (JFP) and in Earth System Dynam-
ics (ESD). The first paper describes the theory and Idris implementation of generic, monadic,
Sequential Decision Problems [4]. The following journal paper is a extension of the previous
paper on SeqDecProbs in the direction of policy advice and avoidability. The underlying Idris
implementation was refactored and extended to handle the new application [2]. Finally, the third
journal paper is a very recent (2018) application of the results of the two previous papers to the
problem of optimal emission policies in the context of climate impact research [3].

The application-independent components that were needed to implement the framework for
sequential decision problems form the basis of IdrisLibs. The experience gained in the develop-
ment of IdrisLibs has led to the realisation of the difficulties involved in using dependently-typed
programming environments in the context of scientific computing, and of the most promising
ways in which to tackle them. In a sense, IdrisLibs represents the best argument both for the
feasibility, and for the necessity of the research programme outlined here.

Last but not least, the applicants worked on developing a BSc level course on “Domain
Specific Languages of Mathematics” which has now been taught three times at Chalmers [13].
The development of this course, and the associated course material, has helped prepare the
SciDeR project. The course itself will serve as a source of talented students for BSc, MSc and
PhD thesis work on our software infrastructure for reliable scientific computing.

5 Project description

In order to understand the problems that arise when attempting to build such an infrastructure, it
is important to have an elementary understanding of dependently-typed programming. Perhaps
the simplest example is that of a function that computes the square root of its argument. Virtually
all mainstream languages provide a square root function that accepts as argument a floating
point number. Most compilers will prevent the programmer from passing a list or a character to
the square root function, which would constitute a type error, but they will not prevent passing a
negative number, which will generally result in a run-time crash of the system (this kind of error is
responsible for many of the famous software systems failures, such as the destruction of Ariane
5 in 1996). In a dependently-typed programming language, by contrast, one can define the type
of non-negative number, and the square root function will only accept arguments of this type.
The type checker (part of the compiler) can now also flag as an error a programmer’s attempt to
pass a negative value to the square root function, and no such run-time errors are possible.

The types that can be formulated in such languages are not limited to “low-level” data
(like numbers). For example, we can formulate types for “resource-safe operation”, “privacy-
ensuring protocol”, but also for “avoidable state” [2] or even “measure of vulnerability to climate
change” [10]. For such high-level types, establishing the correctness of a program via testing is
often not a realistic option [12].

Note that, even in the simple example of the square root, the analysis of the types can be
further carried out. One can generalise the input type, from floating-point numbers to more inclu-
sive notions, but one can also formulate the conditions fulfilled by the output of the square root
algorithm: squaring the output should, within limits imposed by the precision of operations, give
back the argument. This kind of analysis leads to a mathematical formalisation of the compu-
tational content, and can form the basis of new theories underlying computational models. This
can be very useful in areas where theories are lacking, such as policy analysis, cf. [2, 3].

4



Appendix A P. Jansson, 720311–7515, SciDeR

5.1 Major problems

With this understanding, we can now explain the most important obstacles in creating a software
infrastructure for reliable scientific computing and machine learning.

1. Difficulties in maintaining large dependently-typed libraries. Dependently typed li-
braries are collections of data structures and algorithms, and of their machine checkable
properties. It is often the case that the properties of an algorithm are formulated in a way
that crucially depends on the implementation, in order to simplify the proofs of correct-
ness. However, if the implementation is modified, for example in order to make it more
efficient, all corresponding properties have to be reformulated (and all proofs of correct-
ness need to be redone). Because of this, collections of properties that depend on specific
implementations are essentially non-maintainable.

Similarly, the richness of dependently-typed programming languages allows the creation of
data structures with properties. For example, where standard programming languages
are only able to offer a list data structure, a dependently-typed one gives the programmers
datatypes for sorted list, lists of non-zero elements, lists of a given length, lists of permu-
tations, etc. In turn, this can lead to a proliferation of functions operating on these data
structures. For example, a sorted list is not just a list, but a list with additional information
certifying to its being sorted, and so cannot be passed as an argument to a library function
such as length, which expects a plain list. There are known ways to cope with these diffi-
culties, but they require considerable effort and discipline on the part of the programmers.

2. Difficulties in integrating existing libraries. A huge amount of effort has been spent
on high-quality libraries for scientific computing, such as BLAS, LAPACK, NAG, and many
others. Usually, the errors in scientific computing applications are not due to the library
functions themselves, but to their (mis-)use by the users. In the example of the square root
function, the quality, efficiency or precision of the square root algorithm is not the problem:
the error comes from making an unintended use of it.

Integrating high-quality existing libraries is an important part of creating an infrastructure
for reliable scientific computing, but it also one of the most challenging tasks. The main
problem is that, by virtue of their being external to the dependently-typed programming
environment, the functions provided by these libraries are “black boxes” and, as such,
their properties cannot be proved within the system. For example, we can be certain that
the square root function provided by an external library really does deliver the requisite
approximation to the square root of its (non-negative) argument, but we cannot have a
machine-checked proof of this fact.

3. Lack of precise specifications for scientific computing. In contrast to the libraries
mentioned above, algorithms for scientific computing come with an additional problem: it
is very difficult to pinpoint the properties that these algorithms have. For example, when
using a genetic algorithm to maximise a fitness function, it is very difficult to be precise
about the quality of the solution. In general, it will not be optimal, but how far it is from
the optimum is something that the current theory cannot tell us. Similarly, we can expect a
deep learning network to interpolate the training set and to extrapolate beyond it, but how
good the interpolation or extrapolation is cannot currently be determined a-priori.

At present, whether a machine learning algorithm will be effective on a given problem is
largely a matter of experimentation, of trial and error. That means that integrating them will
require a different kind of postulate than the more traditional and constrained algorithms:
namely, via a classification and formalisation of the kinds of problem that the various
algorithms are useful for. This will at least guide the users in the selection of the most
appropriate algorithm for their tasks. It is important to ensure that this formalisation is
open-ended, and that newer theoretical results can be incorporated as they appear.

5



Appendix A P. Jansson, 720311–7515, SciDeR

5.2 Theory and methodology

The methodology used to address these problems is that of taking an incremental approach
towards software correctness, that we call increasingly correct computing [11].

We highlight three distinct features of this approach:

1. Separation between specification and implementation

A crucial element is the separation between specification and implementation. This allows
us to address problem 1 described above, that of building maintainable dependently-typed
libraries, by disentangling the algorithms and data structures from their properties.

This separation of concerns has a number of interesting consequences: first, it allows us
a faster development of computational content, since the proofs of correctness can be
“filled in” after the implementation.

In our square root function example, we would be able to implement a square root algo-
rithm, declaring its return type to be simply floating-point. The property that the returned
value, when squared, is equal to the argument to the function (up to numerical precision),
will be stated and proved separately. Note that the input type to the square root function
must still be “non-negative floating-point value” (or similar). Otherwise, the type checker
could not prevent the programmer from passing a negative value, thus generating a run-
time error. In other words, the separation proposed here does not mean that functions can
keep the types they would have in non-dependently typed languages.

Second, since properties are formulated independently from the implementation, we can
now build libraries of properties. In this way, it becomes possible to organise community
efforts in a clear and unambiguous way by publishing collections of specifications to be
implemented in an efficient manner.

2. Conditional correctness

The integration of existing libraries into the dependently-typed environments is generally
accompanied by a lowering of the standard of correctness described above. Since to the
type-checker a foreign function is effectively a black box, the properties attributed to it
cannot be verified: we cannot have machine-checkable proofs of correctness. The only
way to make use of knowledge about foreign functions is to enter it into the environment
in the form of a postulate or axiom: a property that is accepted by the environment on
the “authority” of the expert. Once entered into the system, these postulates represent a
logical interface to the foreign functions that allow us to use them in a provably reliable way.
Provided, of course, that the postulated properties really hold!

Conditional correctness (correctness up to a collection of postulates) is our method of
choice for solving the difficulty of integrating existing libraries, problem 2 above. The se-
lection and formulation of properties to be postulated is a non-trivial task. On the one
hand, given that an erroneous postulate can endanger the whole system, one is tempted
to postulate only weak properties. In the example of the external square root function, this
would correspond to postulating only that the result will be of type floating-point number.
While accurate, this is too weak to be useful in reasoning about applications that then use
the square root function. The opposite temptation is to make the postulate very strong, in
order to simplify the reasoning. This would correspond to postulating that the result of the
square root function is the exact square root of its argument, omitting the limited precision
of floating-point numbers.

Striking the right balance between (too) weak and (too) strong specifications will be one of
the main research challenges in SciDeR.

6



Appendix A P. Jansson, 720311–7515, SciDeR

3. Incremental development

The ideal of machine-checkable proof of correctness may sometimes be extremely difficult
to achieve, even in cases in which the computational content is entirely implemented in the
dependently-typed environment. This is often the case in proving properties of algorithms
for scientific computing and machine learning, which rely on theorems from mathematical
analysis. In such cases, the programmer might treat the available mathematical knowl-
edge as the “foreign functions” above, and simply postulate the properties. Again, this
represents a lowering of the maximal standard of correctness, in the interest of reasonable
development time.

We can think of conditional correctness as the minimum level that one can accept in a
dependently-typed system. Not all the properties have a (machine-checkable) proof, but
they are all explicit, and, if satisfied, guarantee the correctness of the application.

Once conditional correctness is established, we can, when necessary, begin to raise
the correctness level by incrementally replacing postulates with actual machine-
checkable proofs. For scientific computing libraries one will accept that, in many cases,
machine-checkable correctness cannot be achieved. This is particularly true for libraries
that rely on efficient floating point approximations of real numbers. Conditional correctness
is likely the best that we can realistically think of achieving for software to assist decision
making under uncertainty, pattern recognition and, by and large, engineering applications.

Incremental development (increasingly correct computing) is our proposed cure for prob-
lem 3 above, the lack of precise specifications for scientific computing.

The methodology of increasingly correct computing allows us to accelerate the development
time at the expense of weakening the standard of correctness, from full proof of correctness
to conditional correctness. This is a pragmatic choice, that allows the rapid integration of
high-quality external libraries, where the highest standard of correctness would require their
reimplementation. Having access to such external libraries means that one can immediately
develop applications, rather than being bogged down in infrastructure. Therefore, the chances
of attracting users from both industry and the academic world will be correspondingly higher.

Spearheading a community effort is a key part of our methodology. The development of
IdrisLibs would not have been possible without a close collaboration with the developers of the
language. With SciDeR, we will strengthen this collaboration.

In order to ensure the contribution of the community, we will, from the beginning of the project,
publish specifications to be taken up by implementors on a popular platform for collaborative
development like GitHub or GitLab, together with examples of using foreign function interfaces to
popular libraries. At the same time, we will present the project results to the community through
contributions to high-level conferences and the standard social media tools (blogs, Twitter, etc.).
We will also organise a summer-school with training sessions for external students and users.

In this enterprise, Chalmers will play an essential role at the interface between research,
education and scientific applications. We will exploit existing collaborations with research and
industry through the LiVe4CS consortium2 in order to train the next generation of highly skilled,
entrepreneurial researchers and apply novel, reliable scientific computing and machine learning
libraries for sustainable solutions.

2Lightweight Verification for Complex Systems (LiVe4CS) is a European consortium for PhD education in Com-
puter Science with academic sites (HWU, USTAN, USTR, UGOT, LMU, UU), large companies (Intel, Microsoft,
Mozilla, Siemens, JetBrains), SMEs/Start-ups/R&D labs (BTL, ESL, Quviq, WT, SCCH, Stat-Up), and specialised
research centres (MPI, PIK, ECR).

7

https://patrikja.github.io/LiVe4CS/


Appendix A P. Jansson, 720311–7515, SciDeR

5.3 Time plan and implementation

We aim to make the results of the project available as soon as possible, in order to maximise the
chances of creating a community of users to apply, improve, and extend them. The milestones
are:

1. End of month 9: Collections of specifications and verified properties for the most basic
Idris libraries: Prelude, Data, etc.

2. End of month 18: Idris binding to essential external numerical libraries, together
with a tools and techniques for integrating external libraries in a dependently-typed
ecosystem. This is an essential goal of the project, and we aim to have it completed early.

3. End of month 24: Creation of example applications using the new functionality, in particular
of reliable infinite horizon decision problems. These will help improvements in tools and
techniques created in the first project year, and attract new users, as such problems are
frequently encountered in game theory, economics and financial models. Applications are
also essential for testing the usability and maintainability of the software stack.

4. End of month 36: Idris bindings to a machine learning library, such as TensorFlow. The
integration of machine learning libraries poses new challenges, due to the lack of formal
understanding of most of the algorithms. Dealing with the associated imprecision is an
important test of the tools and techniques for external libraries.

5. End of month 48 (end of the project): Creation of one or more reliable reinforcement
learning application, such as AlphaZero, and release of a method for the development
and maintaining of a dependently-typed infrastructure. By this time, we hope to see the
first-year results used in industry and the academic world. Their existence would indicate
a successful run of the project.

5.4 Project organisation

The present research and development group consists of the following three participants, whose
collaboration is more than a decade old.

1. Main applicant: Prof. Patrik Jansson is Full Professor of Computer Science and Deputy
Head of the department of Computer Science and Engineering at Chalmers. His research
focuses on systems for constructing correct and reusable software with the goal of de-
veloping the programming languages of the future. He is actively promoting technology
transfer through open source software at GitHub. He has published 43 papers (h-index
20), has been PI on 3 EU projects, has successfully supervised 4 PhD students and is
currently examiner of 3.

2. Co-applicant: Dr. Cezar Ionescu is Associate Professor of Data Science at the Oxford Uni-
versity Department for Continuing Education, and guest researcher at Chalmers. His main
interests include functional programming with dependent types, program calculi, domain-
specific languages, and the role of computing science in education. His recent work fo-
cuses on correctness of scientific computing and machine learning algorithms.

3. External collaborator: Dr. Nicola Botta is senior scientist at Potsdam Institute for Climate
Impact Research. He has been working on sequential decision problems in the context
of greenhouse gas emissions, on agent based models of exchange economies and on
numerical methods for partial differential equations.

8



Appendix A P. Jansson, 720311–7515, SciDeR

In addition, the project resources will allow us to extend the group with a PhD student:

• For the first two years, her main responsibilities will be the development of theories, tools
and techniques for integrating functionality from existing numerical libraries into a depen-
dently typed software stack. This will be done in collaboration with academic users of
the stack with the aim of preparing a licentiate thesis on “Increasingly correct scientific
computing”.

• For the last two years, her main contributions will be in the development of applications
using the software stack, identifying and solving important research problems, contributing
to, and documenting, the resulting methodology for large dependently-typed programs and
proofs. This will be done in collaboration with external users of the stack to help technology
transfer in one direction and to provide a steady stream of relevant problems to serve as
challenging test cases.

After the SciDeR project is done, her fifth and final year will be mainly devoted to writing up the
PhD thesis on “Increasingly correct scientific computing”.

5.5 Local host

The Department of Computer Science and Engineering (CSE) is strongly international, with
about 70 faculty and 100 PhD students from about 30 countries. CSE has a leading role in the
fields of functional programming, type theory, domain-specific languages, generic programming,
machine learning, and more.

The division of Functional Programming has six professors and 20 other researchers and
PhD students. The focus of the division is the application of programming technology, and
functional programming techniques in particular, to solve practical problems. As a result, there is
a strong emphasis in the division in writing programs that solve real world problems. In addition,
there is a strong culture of valuing general and “elegant” solutions.

The size and focus of the division, as well as its history, make it unique in the world and
it enjoys a very strong international reputation, as evident both in the number of highly cited
publications, the number of memberships in premier conference program committees, as well
as in the number of invited lectures given by members of the division. A strength of the division
is the close contact it enjoys with industry, both through startup companies spun off from the
division as well as through regular joint projects with industry or industrial research laboratories.
These interactions provide a steady stream of relevant problems that both influence much of the
long-term research as well as provide challenging and relevant test cases. The researchers in
the division share to a very large extent a common vision for what constitutes a good research
problem, what constitutes a good solution, and how a research result should be evaluated.

6 Other applications or grants

In March 2018 a supporting project application called “RISC” (with Jansson as PI) was handed
in to the SSF ITM17 call “Instrument, Technique, and Method Development Projects 2017 ”.
That project is more applied and would mainly fund two PostDocs, but the underlying theme of
Increasingly Correct Scientific Computing is the same.

In January 2018 the LiVe4CS consortium handed in an application for a European Joint
Doctorate (EJD) school on “Lightweight Verification for Complex Systems (LiVe4CS)” which has
some overlap with SciDeR (one of 15 PhD projects is similar to SciDeR). Jansson is a co-
applicant in LiVe4CS.

In March 2018, Jansson (as coordinator) handed in an application (EDGE - Exascale, Data,
and Global Evolutions) for a large European HPC project with 19 partners and a budget of

9



Appendix A P. Jansson, 720311–7515, SciDeR

around 80M SEK. The EDGE project would provide a very strong network for scaling up the
SciDeR work to large scale computing resources.

References

[1] J.-P. Bernardy and P. Jansson. Certified context-free parsing: A formalisation of Valiant’s algorithm
in Agda. Logical Methods in Computer Science, 12, 2016.

[2] N. Botta, P. Jansson, and C. Ionescu. Contributions to a computational theory of policy advice and
avoidability. Journal of Functional Programming, 27:1–52, 2017.

[3] N. Botta, P. Jansson, and C. Ionescu. The impact of uncertainty on optimal emission policies. Earth
System Dynamics Discussions, 2018:1–24, 2018.

[4] N. Botta, P. Jansson, C. Ionescu, D. R. Christiansen, and E. Brady. Sequential decision problems,
dependent types and generic solutions. Logical Methods in Computer Science, 13(1), 2017.

[5] E. Brady. Idris, a general-purpose dependently typed programming language: Design and imple-
mentation. Journal of Functional Programming, 23(05):552–593, 2013.

[6] E. Brady and K. Hammond. Resource-safe systems programming with embedded domain specific
languages. In Practical Aspects of Declarative Languages, pages 242–257. Springer, 2012.

[7] G. Cano, C. Cohen, M. Dénès, A. Mörtberg, and V. Siles. Formalized linear algebra over elementary
divisor rings in Coq. Logical Methods in Computer Science, 12(2), 2016.

[8] S. Chowdhury. A quick Idris implementation of @mstksg’s “dependent Haskell” neural networks.
Available from https://gist.github.com/mrkgnao/a45059869590d59f05100f4120595623.

[9] G. Gonthier. Point-free, set-free concrete linear algebra. In Proceedings of the Second International
Conference on Interactive Theorem Proving. Springer, Berlin, Heidelberg, 2011.

[10] C. Ionescu. Vulnerability modelling and monadic dynamical systems. PhD thesis, Freie Universität
Berlin, 2009.

[11] C. Ionescu and P. Jansson. Dependently-typed programming in scientific computing: Examples
from economic modelling. In R. Hinze, editor, 24th Symposium on Implementation and Application
of Functional Languages (IFL 2012), volume 8241 of LNCS, pages 140–156. Springer, 2013.

[12] C. Ionescu and P. Jansson. Testing versus proving in climate impact research. In Proc. TYPES 2011,
volume 19 of Leibniz Int. Proc. in Informatics (LIPIcs), pages 41–54, Dagstuhl, Germany, 2013.

[13] C. Ionescu and P. Jansson. Domain-specific languages of mathematics: Presenting mathematical
analysis using functional programming. In Proc. 4th Int. Workshop on Trends in Functional Program-
ming in Education, EPTCS. Open Publishing Association, 2015.

[14] C. Ionescu, R. J. T. Klein, J. Hinkel, K. S. Kavi Kumar, and R. Klein. Towards a formal framework of
vulnerability to climate change. Environmental Modelling and Assessment, 14(1):1–16, 2009.

[15] X. Leroy. Formal verification of a realistic compiler. Communications of the ACM, 52(7):107–115,
2009.

[16] P. Martin-Löf. Intuitionistic type theory. Bibliopolis, 1984.
[17] C. Ming Chuang. Extraction of Programs for Exact Real Number Computation Using Agda. PhD

thesis, Swansea University, 2011.
[18] J. Morgenstern and D. Licata. Security-typed programming within dependently-typed programming.

In International Conference on Functional Programming. ACM, 2010.
[19] S.-C. Mu, H.-S. Ko, and P. Jansson. Algebra of programming in Agda: dependent types for relational

program derivation. J. Funct. Program., 19:545–579, 2009.
[20] U. Norell. Towards a practical programming language based on dependent type theory. PhD thesis,

Chalmers Tekniska Högskola, 2007.
[21] N. Oury and W. Swierstra. The power of Pi. In Proc. of ICFP 2008, pages 39–50. ACM, 2008.
[22] D. Park. Program verification in the K framework. Available from https://github.com/kframework/

k-legacy/wiki/Program-Verification.
[23] A. Sandberg Eriksson and P. Jansson. An Agda formalisation of the transitive closure of block

matrices (extended abstract). In Proceedings of the 1st International Workshop on Type-Driven
Development, TyDe 2016, pages 60–61. ACM, 2016.

[24] N. Swamy, J. Chen, C. Fournet, P.-Y. Strub, K. Bhargavan, and J. Yang. Secure distributed program-
ming with value-dependent types. In Proc. of ICFP 2011, pages 266–278, 2011.

[25] The Coq development team. The Coq proof assistant reference manual, 2009.

10

https://gist.github.com/mrkgnao/a45059869590d59f05100f4120595623
https://github.com/kframework/k-legacy/wiki/Program-Verification
https://github.com/kframework/k-legacy/wiki/Program-Verification

	Purpose and aims
	State-of-the-art
	Significance and scientific novelty
	Preliminary and previous results
	Project description
	Major problems
	Theory and methodology
	Time plan and implementation
	Project organisation
	Local host

	Other applications or grants

