QuviQ

Testing automotive software

What is AUTOSAR? Q

» Standard for the operating system running in
your car.

* A modern car contains lots of computers that
need to communicate with each other.

* Much of the standard defines the numerous
network protocols used.



(Some) AUTOSAR components ~S...

Highly configurable

ComIPdu:ComPduRTx02/
int ComIPduRxHandleId =0
enum ComIPduSignalProcessing = 'IMMEDIATE'
enum ComIpduDirection = "SEND'
int ComIPduSize =8
ref ComIPduGroupRef = "/configl/Com/ComConf il
ref PduIldRef = "/Configl/EcuC/PduColl
ref ComIPduSignalRef = "/configl/Com/ComConfil
ref ComIPduSignalGroupRef = "/Configl/Com/ComConf il
ComTxIPdu/
int ComTxIPduMinimumbDelayTimeFactor = 3
int ComTxIPduUnusedAreasDefault = 170
ComTxModeTrue/
ComTxMode/
enum ComTxModeMode = '"DIRECT'
int ComTxModeNumberOfRepetitions =1
int ComTxModeRepetitionPericdFactor = 2
int ComTxModeTimeOffsetFactor =0
int ComTxModeTimePeriodFactor =0




Clusters Q

* |f a developer is implementing several
components they may choose to violate
internal interfaces

* Sometimes this might even be necessary to
get acceptable performance

e Testing nightmare!

Clusters Q

e Solution 1: Write a test model for the cluster

 Problems:

— A different developer might not have
implemented all components in the cluster

— Hard figure out what the specification is
— Models get big and clunky



Clusters Q

e Solution 2: Write composable models for the
components
* Problems:

— QuickCheck state machine models aren’t
composable

Testing a single component Q

Interface
functions

» Test case: sequence of commands
— a call to an interface function
— return values for the callouts

e The model

A

e

— keeps track of the state of the system
— predicts which callouts will be called




Testing a single component Q

Interface
functions

* Running a test: for each command
— tell the callout functions what to return
— call the interface function

— check that the callouts were called with
the right arguments

— check that the function returned the
right result l l

Callouts

Component model Q

Generators for
results

callouts(Call) -> Callouts

precondition(Call, Callouts) =>Bool

next_state(S, Res, Call, Callouts)> S

postcondition(S, Call, Res, Callouts) -> Bool

Actual results



Testing a cluster Q

A B C

e —

‘ | Not observable

Return value callback Q

* We need return values for internal function
calls

— return_value(S, Call, Callouts) -> Result



Specifying a cluster Q

* components() -> list(Component)

* classify callout(Call) ->
external | {internal, Component}

* interface_functions() -> list(Call)

Current state Q

* |'ve got this running on a toy example

* I'm currently adapting one of our AUTOSAR
cluster models with encouraging results



