
Strongly Typed Programs and Proofs

Patrik Jansson, fp.st.cse.chalmers.se

Chalmers University of Technology and University of Gothenburg

2015-08-21

�It is one of the �rst duties of a professor,
in any subject, to exaggerate a little both
the importance of his subject and his own
importance in it� [A Mathematician's
Apology, G. H. Hardy]

This talk: https://github.com/patrikja/ProfLect

P. Jansson (Chalmers&GU) Strongly Typed Programs and Proofs 2015-08-21 1 / 23

https://github.com/patrikja/ProfLect

My best results over the years (part 1)

Among my best results I count

early work on Generic Programming [Backhouse et al., 1999, Jansson
and Jeuring, 1997] (well cited)

Polytypic Data Conversion Programs [Jansson and Jeuring, 2002]

the Bologna structure (3y BSc + 2y MSc) at cse.chalmers.se in my
role as Vice Head of Department

self-evaluation reports for the CSE degrees (in my role as Head of the
CSE programme). The BSc got �very high quality�.

Global Systems Science work [Jaeger et al., 2013]
leading to the FETPROACT1 call, the GRACeFUL
project and the CoEGSS project.

P. Jansson (Chalmers&GU) Strongly Typed Programs and Proofs 2015-08-21 2 / 23

My best results over the years (part 2)

. . . continued

my PhD graduates: Norell, Danielsson, and Bernardy

Fast and Loose Reasoning [Danielsson et al., 2006]

Parametricity and dependent types [Bernardy et al., 2010]

Algebra of Programming in Agda [Mu et al., 2009]

Feat: functional enumeration of algebraic types [Duregård et al., 2012]

P. Jansson (Chalmers&GU) Strongly Typed Programs and Proofs 2015-08-21 3 / 23

Functional Polytypic Programming (1995�2000)

What is a �polytypic function�?
Start from the normal sum function on lists:

sum :: Num a ⇒ [a] → a

sum [] = 0

sum (x : xs) = x + sum xs

then generalise to other datatypes like these

data [a] = [] | a : [a]
data Tree a = Leaf a | Bin (Tree a) (Tree a)
data Maybe a = Nothing | Just a
data Rose a = Fork a [Rose a]

P. Jansson (Chalmers&GU) Strongly Typed Programs and Proofs 2015-08-21 4 / 23

The Haskell language extension PolyP (POPL'97)

We obtain

psum :: (Regular d , Num a) ⇒ d a → a

psum = cata fsum

where fsum is de�ned by induction over the pattern functor f of the regular
datatype d a.

polytypic fsum :: Num a ⇒ f a a → a

= case f of

g + h → either fsum fsum

g ∗ h → λ (x , y) → fsum x + fsum y

Empty → \x → 0

Par → id

Rec → id

d @g → psum ◦ pmap fsum

Const t → \x → 0

P. Jansson (Chalmers&GU) Strongly Typed Programs and Proofs 2015-08-21 5 / 23

Polytypic Generic Programming

Summer schools lecture notes (> 150 citations each):

Polytypic Programming [Jeuring & Jansson, 1996]

Generic Programming - An Introduction [Backhouse, Jansson, Jeuring
& Meertens, 1999]

F µF µF

F A A

inn

F ([α]) ([α])

α

Notation:

([α]) = cata α
F h = fmap h

P. Jansson (Chalmers&GU) Strongly Typed Programs and Proofs 2015-08-21 6 / 23

Theoretical tools

Categories, functors and algebras

Category C , (endo-)functor F : C → C , F -algebra (A, α : F A → A),

Homomorphisms between algebras

h : (A, α) → (B, β) with

F A A

F B B

α

F h h

β

Catamorphisms

([]) : (F A → A) → (µF → A) with

F µF µF

F A A

inn

F ([α]) ([α])

α

P. Jansson (Chalmers&GU) Strongly Typed Programs and Proofs 2015-08-21 7 / 23

Theoretical tools

Categories, functors and algebras

Category C , (endo-)functor F : C → C , F -algebra (A, α : F A → A),

Homomorphisms between algebras

h : (A, α) → (B, β) with

F A A

F B B

α

F h h

β

Catamorphisms

([]) : (F A → A) → (µF → A) with

F µF µF

F A A

inn

F ([α]) ([α])

α

P. Jansson (Chalmers&GU) Strongly Typed Programs and Proofs 2015-08-21 7 / 23

Theoretical tools

Categories, functors and algebras

Category C , (endo-)functor F : C → C , F -algebra (A, α : F A → A),

Homomorphisms between algebras

h : (A, α) → (B, β) with

F A A

F B B

α

F h h

β

Catamorphisms

([]) : (F A → A) → (µF → A) with

F µF µF

F A A

inn

F ([α]) ([α])

α

P. Jansson (Chalmers&GU) Strongly Typed Programs and Proofs 2015-08-21 7 / 23

Implementing the theory (cata = ([·]) in Haskell)

Catamorphisms towards implementation

F µF µF

F A A

F ([α])

inn

([α])

α

data Mu f where -- Notation: Mu f = µF
Inn :: f (Mu f) → Mu f

out :: Mu f → f (Mu f) -- The inverse of Inn
out (Inn x) = x

cata :: Functor f ⇒ (f a → a) → (Mu f → a)
cata α = α ◦ fmap (cata α) ◦ out

P. Jansson (Chalmers&GU) Strongly Typed Programs and Proofs 2015-08-21 8 / 23

Implementing the theory (cata = ([·]) in Haskell)

Catamorphisms towards implementation

F µF µF

F A A

F ([α])

out

([α])

α

data Mu f where -- Notation: Mu f = µF
Inn :: f (Mu f) → Mu f

out :: Mu f → f (Mu f) -- The inverse of Inn
out (Inn x) = x

cata :: Functor f ⇒ (f a → a) → (Mu f → a)
cata α = α ◦ fmap (cata α) ◦ out

P. Jansson (Chalmers&GU) Strongly Typed Programs and Proofs 2015-08-21 8 / 23

Implementing the theory (cata = ([·]) in Haskell)

Catamorphisms towards implementation

F (F µF) F µF µF

F (F A) F A A

F (F ([α])) F ([α])

F out out

([α])

F α α

data Mu f where -- Notation: Mu f = µF
Inn :: f (Mu f) → Mu f

out :: Mu f → f (Mu f) -- The inverse of Inn
out (Inn x) = x

cata :: Functor f ⇒ (f a → a) → (Mu f → a)
cata α = α ◦ fmap (cata α) ◦ out

P. Jansson (Chalmers&GU) Strongly Typed Programs and Proofs 2015-08-21 8 / 23

Implementing the theory (cata = ([·]) in Haskell)

data Mu f where

Inn :: f (Mu f) → Mu f

out :: Mu f → f (Mu f)
out (Inn x) = x

cata :: Functor f ⇒ (f a → a) → (Mu f → A)
cata α = α ◦ fmap (cata α) ◦ out

Example: Mu FTree is the datatype of binary trees with Int leaves.

data FTree subtree where

Leaf :: Int → FTree subtree

Bin :: subtree → subtree → FTree subtree

P. Jansson (Chalmers&GU) Strongly Typed Programs and Proofs 2015-08-21 9 / 23

Implementing the theory (arrows in Haskell)

class Category cat where -- In the Haskell library Control .Category
id :: cat a a -- the identity arrow
(◦) :: cat b c → cat a b → cat a c -- arrow composition
-- Identity laws: id ◦ p = p = p ◦ id = p

-- Associativity: (p ◦ q) ◦ r = p ◦ (q ◦ r)

instance Category (→) where id x = x ; (f ◦ g) x = f (g x)
instance Category (SA s) where -- ...
data SA s a b = SA ((a, s) → (b, s)) -- �Stateful functions�

and many other instances.

P. Jansson (Chalmers&GU) Strongly Typed Programs and Proofs 2015-08-21 10 / 23

Implementing the theory (arrows in Haskell)

class Category cat where -- In the Haskell library Control .Category
id :: cat a a -- the identity arrow
(◦) :: cat b c → cat a b → cat a c -- arrow composition
-- Identity laws: id ◦ p = p = p ◦ id = p

-- Associativity: (p ◦ q) ◦ r = p ◦ (q ◦ r)

instance Category (→) where id x = x ; (f ◦ g) x = f (g x)
instance Category (SA s) where -- ...
data SA s a b = SA ((a, s) → (b, s)) -- �Stateful functions�

and many other instances.

P. Jansson (Chalmers&GU) Strongly Typed Programs and Proofs 2015-08-21 10 / 23

Polytypic Data Conversion Programs

While John Hughes wrote �Generalising Monads to Arrows� [SCP'00] we
used them for data conversion [SCP'02].
Motivation:

save / load documents in editors should preserve the meaning

but the source code for saving is not connected to that for loading

proofs of pretty-print / parse round-trip properties are rare

Observations / contributions:

we can describe both the saving and the loading using arrows

we formalize the properties required

we provide generic proofs of the round-trip properties

P. Jansson (Chalmers&GU) Strongly Typed Programs and Proofs 2015-08-21 11 / 23

Polytypic Data Conversion Programs (cont.)

The starting point was separation of a datastructure (of type d a) into its
shape (d ()) and contents ([a]).

separate :: Regular d ⇒ SA [a] (d a) (d ())
separate = pmapAr put

combine :: Regular d ⇒ SA [a] (d ()) (d a)
combine = pmapAl get

put :: SA [a] a ()
get :: SA [a] () a

put = SA (λ (a, xs) → ((), a : xs))
get = SA (λ ((), a : xs) → (a, xs))

P. Jansson (Chalmers&GU) Strongly Typed Programs and Proofs 2015-08-21 12 / 23

Pedagogical development and leadership (2002�)

2002: Director of studies

2005: Vice Head of Department for education

2008: Deputy project leader of �Pedagogical development of Master's
Programmes for the Bologna Structure at Chalmers�

2011: Head of the 5-year education programme in Computer Science
and Engineering (Civilingenjör Datateknik, Chalmers).

2013: Head of the Division of Software Technology

P. Jansson (Chalmers&GU) Strongly Typed Programs and Proofs 2015-08-21 13 / 23

My PhD graduates: Norell, Danielsson, and Bernardy

I worked on

generic programs and proofs with Norell

⇒ Agda,

on program correctness through types with Danielsson
⇒ Fast'n Loose Reasoning, Chasing Bottoms, . . .

parametricity for dependent types & testing with Bernardy
Proofs for free:

J_K : PTS → PTS

Γ ` A : B ⇒ J Γ K ` JAK : JBK A
where

JAK is the free proof and

JBK A is the free theorem

and PTS = Pure Type System (Barendregt, et al.)

P. Jansson (Chalmers&GU) Strongly Typed Programs and Proofs 2015-08-21 14 / 23

My PhD graduates: Norell, Danielsson, and Bernardy

I worked on

generic programs and proofs with Norell

⇒ Agda,

on program correctness through types with Danielsson
⇒ Fast'n Loose Reasoning, Chasing Bottoms, . . .

parametricity for dependent types & testing with Bernardy
Proofs for free:

J_K : PTS → PTS

Γ ` A : B ⇒ J Γ K ` JAK : JBK A
where

JAK is the free proof and

JBK A is the free theorem

and PTS = Pure Type System (Barendregt, et al.)

P. Jansson (Chalmers&GU) Strongly Typed Programs and Proofs 2015-08-21 14 / 23

My PhD graduates: Norell, Danielsson, and Bernardy

I worked on

generic programs and proofs with Norell

⇒ Agda,

on program correctness through types with Danielsson

⇒ Fast'n Loose Reasoning, Chasing Bottoms, . . .

parametricity for dependent types & testing with Bernardy
Proofs for free:

J_K : PTS → PTS

Γ ` A : B ⇒ J Γ K ` JAK : JBK A
where

JAK is the free proof and

JBK A is the free theorem

and PTS = Pure Type System (Barendregt, et al.)

P. Jansson (Chalmers&GU) Strongly Typed Programs and Proofs 2015-08-21 14 / 23

My PhD graduates: Norell, Danielsson, and Bernardy

I worked on

generic programs and proofs with Norell

⇒ Agda,

on program correctness through types with Danielsson
⇒ Fast'n Loose Reasoning,

Chasing Bottoms, . . .

parametricity for dependent types & testing with Bernardy
Proofs for free:

J_K : PTS → PTS

Γ ` A : B ⇒ J Γ K ` JAK : JBK A
where

JAK is the free proof and

JBK A is the free theorem

and PTS = Pure Type System (Barendregt, et al.)

P. Jansson (Chalmers&GU) Strongly Typed Programs and Proofs 2015-08-21 14 / 23

My PhD graduates: Norell, Danielsson, and Bernardy

I worked on

generic programs and proofs with Norell

⇒ Agda,

on program correctness through types with Danielsson
⇒ Fast'n Loose Reasoning, Chasing Bottoms, . . .

parametricity for dependent types & testing with Bernardy
Proofs for free:

J_K : PTS → PTS

Γ ` A : B ⇒ J Γ K ` JAK : JBK A
where

JAK is the free proof and

JBK A is the free theorem

and PTS = Pure Type System (Barendregt, et al.)

P. Jansson (Chalmers&GU) Strongly Typed Programs and Proofs 2015-08-21 14 / 23

My PhD graduates: Norell, Danielsson, and Bernardy

I worked on

generic programs and proofs with Norell

⇒ Agda,

on program correctness through types with Danielsson
⇒ Fast'n Loose Reasoning, Chasing Bottoms, . . .

parametricity for dependent types & testing with Bernardy

Proofs for free:

J_K : PTS → PTS

Γ ` A : B ⇒ J Γ K ` JAK : JBK A
where

JAK is the free proof and

JBK A is the free theorem

and PTS = Pure Type System (Barendregt, et al.)

P. Jansson (Chalmers&GU) Strongly Typed Programs and Proofs 2015-08-21 14 / 23

My PhD graduates: Norell, Danielsson, and Bernardy

I worked on

generic programs and proofs with Norell

⇒ Agda,

on program correctness through types with Danielsson
⇒ Fast'n Loose Reasoning, Chasing Bottoms, . . .

parametricity for dependent types & testing with Bernardy
Proofs for free:

J_K : PTS → PTS

Γ ` A : B ⇒ J Γ K ` JAK : JBK A
where

JAK is the free proof and

JBK A is the free theorem

and PTS = Pure Type System (Barendregt, et al.)

P. Jansson (Chalmers&GU) Strongly Typed Programs and Proofs 2015-08-21 14 / 23

Global Systems Science (GSS)
with the Potsdam institute for Climate Impact Research (PIK)

Collaboration from 2007 onwards (main contact: Cezar Ionescu)

Aim: correct software models for simulating global systems

Algebra of Programming [PhD course and two papers]

Global Systems Dynamics and Policy (GSDP) [FET-Open 2010�13]

Workshops including �Domain Speci�c Languages for Economical and
Environmental Modelling�, 2011

The call FETPROACT1 (Future and Emerging Technology,
Proactive support for GSS) in Horizon 2020 is concrete evidence on
the success of this line of work.

Project GRACeFUL: �Global systems Rapid Assessment tools through
Constraint FUnctional Languages� granted 2015�2018 by the
FETPROACT1 call.

Upcoming project CoEGSS: �Center of Excellence
for Global Systems Science�, start 2015-10-01, 3y.

P. Jansson (Chalmers&GU) Strongly Typed Programs and Proofs 2015-08-21 15 / 23

http://ec.europa.eu/research/participants/portal/desktop/en/opportunities/h2020/topics/2074-fetproact-1-2014.html

Global Systems Science (GSS)
with the Potsdam institute for Climate Impact Research (PIK)

Collaboration from 2007 onwards (main contact: Cezar Ionescu)

Aim: correct software models for simulating global systems

Algebra of Programming [PhD course and two papers]

Global Systems Dynamics and Policy (GSDP) [FET-Open 2010�13]

Workshops including �Domain Speci�c Languages for Economical and
Environmental Modelling�, 2011

The call FETPROACT1 (Future and Emerging Technology,
Proactive support for GSS) in Horizon 2020 is concrete evidence on
the success of this line of work.

Project GRACeFUL: �Global systems Rapid Assessment tools through
Constraint FUnctional Languages� granted 2015�2018 by the
FETPROACT1 call.

Upcoming project CoEGSS: �Center of Excellence
for Global Systems Science�, start 2015-10-01, 3y.

P. Jansson (Chalmers&GU) Strongly Typed Programs and Proofs 2015-08-21 15 / 23

http://ec.europa.eu/research/participants/portal/desktop/en/opportunities/h2020/topics/2074-fetproact-1-2014.html

Global Systems Science (GSS)
with the Potsdam institute for Climate Impact Research (PIK)

Collaboration from 2007 onwards (main contact: Cezar Ionescu)

Aim: correct software models for simulating global systems

Algebra of Programming [PhD course and two papers]

Global Systems Dynamics and Policy (GSDP) [FET-Open 2010�13]

Workshops including �Domain Speci�c Languages for Economical and
Environmental Modelling�, 2011

The call FETPROACT1 (Future and Emerging Technology,
Proactive support for GSS) in Horizon 2020 is concrete evidence on
the success of this line of work.

Project GRACeFUL: �Global systems Rapid Assessment tools through
Constraint FUnctional Languages� granted 2015�2018 by the
FETPROACT1 call.

Upcoming project CoEGSS: �Center of Excellence
for Global Systems Science�, start 2015-10-01, 3y.

P. Jansson (Chalmers&GU) Strongly Typed Programs and Proofs 2015-08-21 15 / 23

http://ec.europa.eu/research/participants/portal/desktop/en/opportunities/h2020/topics/2074-fetproact-1-2014.html

Global Systems Science (GSS)
with the Potsdam institute for Climate Impact Research (PIK)

Collaboration from 2007 onwards (main contact: Cezar Ionescu)

Aim: correct software models for simulating global systems

Algebra of Programming [PhD course and two papers]

Global Systems Dynamics and Policy (GSDP) [FET-Open 2010�13]

Workshops including �Domain Speci�c Languages for Economical and
Environmental Modelling�, 2011

The call FETPROACT1 (Future and Emerging Technology,
Proactive support for GSS) in Horizon 2020 is concrete evidence on
the success of this line of work.

Project GRACeFUL: �Global systems Rapid Assessment tools through
Constraint FUnctional Languages� granted 2015�2018 by the
FETPROACT1 call.

Upcoming project CoEGSS: �Center of Excellence
for Global Systems Science�, start 2015-10-01, 3y.

P. Jansson (Chalmers&GU) Strongly Typed Programs and Proofs 2015-08-21 15 / 23

http://ec.europa.eu/research/participants/portal/desktop/en/opportunities/h2020/topics/2074-fetproact-1-2014.html

Algebra of Programming in Agda

While Agda was implemented by Norell, Danielsson et al. we used it for the
Algebra of Programming.
One highlight is the notation for equality proofs

begin

term1

≡ 〈 step1 〉 -- step1 : term1 ≡ term2

term2

≡ 〈 step2 〉 -- step2 : term2 ≡ term3

term3

�

Roughly equivalent to trans step1 step2 but often
more readable (at least in more complicated cases).

P. Jansson (Chalmers&GU) Strongly Typed Programs and Proofs 2015-08-21 16 / 23

An example proof in Agda, part 1

expLemma : (x : R) → (m n : N) → (x ˆm ∗R x ˆn ≡ x ˆ(m + n))
baseCase : (x : R) → (n : N) → (x ˆZ ∗R x ˆn ≡ x ˆ(Z + n))
stepCase : (x : R) → (m n : N) →

(ih : x ˆm ∗R x ˆn ≡ x ˆ(m + n)) →
(x ˆ(S m) ∗R x ˆn ≡ x ˆ((S m) + n))

expLemma x Z n = baseCase x n

expLemma x (S m) n = stepCase x m n (expLemma x m n)

P. Jansson (Chalmers&GU) Strongly Typed Programs and Proofs 2015-08-21 17 / 23

An example proof in Agda, part 2

baseCase : (x : R) → (n : N) → (x ˆZ ∗R x ˆn ≡ x ˆ(Z + n))
baseCase x n =
begin

x ˆZ ∗R x ˆn
≡ 〈 re� 〉 -- By de�nition of _̂_
one ∗R x ˆn
≡ 〈 unitMult (x ˆn) 〉 -- Use one ∗R y = y for y = x ˆn
x ˆn
≡ 〈 re� 〉 -- By de�nition of _+_
x ˆ(Z + n)
�

P. Jansson (Chalmers&GU) Strongly Typed Programs and Proofs 2015-08-21 18 / 23

Feat: functional enumeration of algebraic types
[with Duregård and Wang, Haskell Symposium 2012]

An e�ciently computable bijective function indexa :: N → a, much like
toEnum in the Enum class.

Example: enumerate �raw abstract syntax trees� for Haskell.

*Main> index (10^5) :: Exp

AppE (LitE (StringL ""))

(CondE (ListE []) (ListE []) (LitE (IntegerL 1)))

*Main> index (10^100) :: Exp

ArithSeqE (FromR (AppE (AppE (ArithSeqE (FromR (ListE [])))

... -- and 20 more lines!

P. Jansson (Chalmers&GU) Strongly Typed Programs and Proofs 2015-08-21 19 / 23

Feat: functional enumeration of algebraic types
[with Duregård and Wang, Haskell Symposium 2012]

An e�ciently computable bijective function indexa :: N → a, much like
toEnum in the Enum class.

Example: enumerate �raw abstract syntax trees� for Haskell.

*Main> index (10^5) :: Exp

AppE (LitE (StringL ""))

(CondE (ListE []) (ListE []) (LitE (IntegerL 1)))

*Main> index (10^100) :: Exp

ArithSeqE (FromR (AppE (AppE (ArithSeqE (FromR (ListE [])))

... -- and 20 more lines!

P. Jansson (Chalmers&GU) Strongly Typed Programs and Proofs 2015-08-21 19 / 23

Ongoing work

DSLM: Presenting Math. Analysis Using Functional Programming

∀ ε ∈ R. (ε > 0) ⇒ ∃ a ∈ A. (|a − sup A| < ε)

Sequential Decision Problems

�Sequential Decision Problems, dependent types and generic solutions�
�A computational theory of policy advice and avoidability�

AUTOSAR calculus

�A semantics of core AUTOSAR�
(AUTOSAR = AUTomotive Open System ARchitecture)

ValiantAgda

Certi�ed Context-Free Parsing: A form. of Valiant's Algorithm in Agda
Solve C = W + C ∗ C for matrices of sets of non-terminals!

P. Jansson (Chalmers&GU) Strongly Typed Programs and Proofs 2015-08-21 20 / 23

ValiantAgda

Solve C = W + C ∗ C for strictly upper triangular matrices of something.

P. Jansson (Chalmers&GU) Strongly Typed Programs and Proofs 2015-08-21 21 / 23

ValiantAgda (the chocolate part;-)

Solve C = W + C ∗ C for strictly upper triangular matrices of something.

P. Jansson (Chalmers&GU) Strongly Typed Programs and Proofs 2015-08-21 21 / 23

ValiantAgda (a part in the middle)

[Valiant, 1975] provides a rather awkward interated def. for all bracketings:

C = W + W ·W + W · (W ·W) + (W ·W) ·W +
(W ·W) · (W ·W) + ...

We use the smallest solution to the following equation:

C ≡ W + C ·C
(for strictly upper triangular W). Or more precisely

Clo : U → U → Set

Clo W C = C ≡ W + C ·C
LowerBound : {A : Set } → (A → Set) → A → Set

LowerBound P x = ∀ z → (P z → x 6 z)

Minimal : {A : Set } → (A → Set) → A → Set

Minimal P x = P x /\ LowerBound P x

Spec = ∀ (W : U)→ ∃ λ (C : U) →
Minimal (Clo W) C

P. Jansson (Chalmers&GU) Strongly Typed Programs and Proofs 2015-08-21 22 / 23

Summary

PolyP DataConv AoPAgda ValiantAgda

Norell Danielsson Bernardy Duregård

Agda Fast ′nLoose ParaDep Feat

P. Jansson (Chalmers&GU) Strongly Typed Programs and Proofs 2015-08-21 23 / 23

Summary

PolyP DataConv AoPAgda ValiantAgda

Norell Danielsson Bernardy Duregård

Agda Fast ′nLoose ParaDep Feat

DoS VPref .Gru PA@D DivHead
Bologna

P. Jansson (Chalmers&GU) Strongly Typed Programs and Proofs 2015-08-21 23 / 23

Summary

PolyP DataConv AoPAgda ValiantAgda

Norell Danielsson Bernardy Duregård

Agda Fast ′nLoose ParaDep Feat

DoS VPref .Gru PA@D DivHead

PIK GSDP GRACeFUL CoEGSS

Ionescu DSLsofMath

Bologna

P. Jansson (Chalmers&GU) Strongly Typed Programs and Proofs 2015-08-21 23 / 23

R. Backhouse, P. Jansson, J. Jeuring, and L. Meertens. Generic programming: An introduction. In
Advanced Functional Programming, volume 1608 of LNCS, pages 28�115. Springer, 1999. URL
http://www.cse.chalmers.se/~patrikj/poly/afp98/.

J.-P. Bernardy, P. Jansson, and R. Paterson. Parametricity and dependent types. In Proc. of the 15th ACM

SIGPLAN international conference on Funct. programming, pages 345�356, Baltimore, Maryland, 2010.
ACM. doi: 10.1145/1863543.1863592.

N. A. Danielsson, J. Hughes, P. Jansson, and J. Gibbons. Fast and loose reasoning is morally correct. In
POPL'06, pages 206�217. ACM Press, 2006. doi: 10.1145/1111037.1111056.

J. Duregård, P. Jansson, and M. Wang. Feat: Functional enumeration of algebraic types. In Haskell'12,
pages 61�72. ACM, 2012. doi: 10.1145/2364506.2364515.

C. Jaeger, P. Jansson, S. van der Leeuw, M. Resch, and J. D. Tabara. GSS: Towards a research program for
Global Systems Science. http://blog.global-systems-science.eu/?p=1512, 2013. ISBN
978.3.94.1663-12-1. Conference Version, prepared for the Second Open Global Systems Science
Conference June 10-12, 2013, Brussels.

P. Jansson and J. Jeuring. PolyP � a polytypic programming language extension. In Proc. POPL'97:

Principles of Programming Languages, pages 470�482. ACM Press, 1997. doi: 10.1145/263699.263763.

P. Jansson and J. Jeuring. Polytypic data conversion programs. Science of Computer Programming, 43(1):
35�75, 2002. doi: 10.1016/S0167-6423(01)00020-X.

S.-C. Mu, H.-S. Ko, and P. Jansson. Algebra of programming in Agda: dependent types for relational
program derivation. J. Funct. Program., 19:545�579, 2009. doi: 10.1017/S0956796809007345.

P. Jansson (Chalmers&GU) Strongly Typed Programs and Proofs 2015-08-21 24 / 23

http://www.cse.chalmers.se/~patrikj/poly/afp98/
http://blog.global-systems-science.eu/?p=1512

	Best results
	Tools and methods
	Bibliography

