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�It is one of the �rst duties of a professor,
in any subject, to exaggerate a little both
the importance of his subject and his own
importance in it� [A Mathematician's
Apology, G. H. Hardy]

This talk: https://github.com/patrikja/ProfLect
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My best results over the years (part 1)

Among my best results I count

early work on Generic Programming [Backhouse et al., 1999, Jansson
and Jeuring, 1997] (well cited)

Polytypic Data Conversion Programs [Jansson and Jeuring, 2002]

the Bologna structure (3y BSc + 2y MSc) at cse.chalmers.se in my
role as Vice Head of Department

self-evaluation reports for the CSE degrees (in my role as Head of the
CSE programme). The BSc got �very high quality�.

Global Systems Science work [Jaeger et al., 2013]
leading to the FETPROACT1 call, the GRACeFUL
project and the CoEGSS project.
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My best results over the years (part 2)

. . . continued

my PhD graduates: Norell, Danielsson, and Bernardy

Fast and Loose Reasoning [Danielsson et al., 2006]

Parametricity and dependent types [Bernardy et al., 2010]

Algebra of Programming in Agda [Mu et al., 2009]

Feat: functional enumeration of algebraic types [Duregård et al., 2012]
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Functional Polytypic Programming (1995�2000)

What is a �polytypic function�?
Start from the normal sum function on lists:

sum :: Num a ⇒ [a ] → a

sum [ ] = 0

sum (x : xs) = x + sum xs

then generalise to other datatypes like these

data [a ] = [ ] | a : [a ]
data Tree a = Leaf a | Bin (Tree a) (Tree a)
data Maybe a = Nothing | Just a
data Rose a = Fork a [Rose a ]
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The Haskell language extension PolyP (POPL'97)

We obtain

psum :: (Regular d , Num a) ⇒ d a → a

psum = cata fsum

where fsum is de�ned by induction over the pattern functor f of the regular
datatype d a.

polytypic fsum :: Num a ⇒ f a a → a

= case f of

g + h → either fsum fsum

g ∗ h → λ (x , y) → fsum x + fsum y

Empty → \x → 0

Par → id

Rec → id

d @g → psum ◦ pmap fsum

Const t → \x → 0
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Polytypic  Generic Programming

Summer schools lecture notes (> 150 citations each):

Polytypic Programming [Jeuring & Jansson, 1996]

Generic Programming - An Introduction [Backhouse, Jansson, Jeuring
& Meertens, 1999]

F µF µF

F A A

inn

F ([α]) ([α])

α

Notation:

([α]) = cata α
F h = fmap h

P. Jansson (Chalmers&GU) Strongly Typed Programs and Proofs 2015-08-21 6 / 23



Theoretical tools

Categories, functors and algebras

Category C , (endo-)functor F : C → C , F -algebra (A, α : F A → A),

Homomorphisms between algebras

h : (A, α) → (B, β) with

F A A

F B B

α

F h h

β

Catamorphisms

([ ]) : (F A → A) → (µF → A) with

F µF µF

F A A

inn

F ([α]) ([α])

α
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Implementing the theory (cata = ([·]) in Haskell)

Catamorphisms towards implementation

F µF µF

F A A

F ([α])

inn

([α])

α

data Mu f where -- Notation: Mu f = µF
Inn :: f (Mu f ) → Mu f

out :: Mu f → f (Mu f ) -- The inverse of Inn
out (Inn x) = x

cata :: Functor f ⇒ (f a → a) → (Mu f → a)
cata α = α ◦ fmap (cata α) ◦ out
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Implementing the theory (cata = ([·]) in Haskell)

data Mu f where

Inn :: f (Mu f ) → Mu f

out :: Mu f → f (Mu f )
out (Inn x) = x

cata :: Functor f ⇒ (f a → a) → (Mu f → A)
cata α = α ◦ fmap (cata α) ◦ out

Example: Mu FTree is the datatype of binary trees with Int leaves.

data FTree subtree where

Leaf :: Int → FTree subtree

Bin :: subtree → subtree → FTree subtree
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Implementing the theory (arrows in Haskell)

class Category cat where -- In the Haskell library Control .Category
id :: cat a a -- the identity arrow
(◦) :: cat b c → cat a b → cat a c -- arrow composition
-- Identity laws: id ◦ p = p = p ◦ id = p

-- Associativity: (p ◦ q) ◦ r = p ◦ (q ◦ r)

instance Category (→) where id x = x ; (f ◦ g) x = f (g x)
instance Category (SA s) where -- ...
data SA s a b = SA ((a, s) → (b, s)) -- �Stateful functions�

and many other instances.
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Polytypic Data Conversion Programs

While John Hughes wrote �Generalising Monads to Arrows� [SCP'00] we
used them for data conversion [SCP'02].
Motivation:

save / load documents in editors should preserve the meaning

but the source code for saving is not connected to that for loading

proofs of pretty-print / parse round-trip properties are rare

Observations / contributions:

we can describe both the saving and the loading using arrows

we formalize the properties required

we provide generic proofs of the round-trip properties
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Polytypic Data Conversion Programs (cont.)

The starting point was separation of a datastructure (of type d a) into its
shape (d ()) and contents ([a ]).

separate :: Regular d ⇒ SA [a ] (d a) (d ())
separate = pmapAr put

combine :: Regular d ⇒ SA [a ] (d ()) (d a)
combine = pmapAl get

put :: SA [a ] a ()
get :: SA [a ] () a

put = SA (λ (a, xs ) → ((), a : xs))
get = SA (λ ((), a : xs) → (a, xs ))
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Pedagogical development and leadership (2002�)

2002: Director of studies

2005: Vice Head of Department for education

2008: Deputy project leader of �Pedagogical development of Master's
Programmes for the Bologna Structure at Chalmers�

2011: Head of the 5-year education programme in Computer Science
and Engineering (Civilingenjör Datateknik, Chalmers).

2013: Head of the Division of Software Technology
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My PhD graduates: Norell, Danielsson, and Bernardy

I worked on

generic programs and proofs with Norell

⇒ Agda,

on program correctness through types with Danielsson
⇒ Fast'n Loose Reasoning, Chasing Bottoms, . . .

parametricity for dependent types & testing with Bernardy
Proofs for free:

J_K : PTS → PTS

Γ ` A : B ⇒ J Γ K ` JAK : JBK A
where

JAK is the free proof and

JBK A is the free theorem

and PTS = Pure Type System (Barendregt, et al.)
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Global Systems Science (GSS)
with the Potsdam institute for Climate Impact Research (PIK)

Collaboration from 2007 onwards (main contact: Cezar Ionescu)

Aim: correct software models for simulating global systems

Algebra of Programming [PhD course and two papers]

Global Systems Dynamics and Policy (GSDP) [FET-Open 2010�13]

Workshops including �Domain Speci�c Languages for Economical and
Environmental Modelling�, 2011

The call FETPROACT1 (Future and Emerging Technology,
Proactive support for GSS) in Horizon 2020 is concrete evidence on
the success of this line of work.

Project GRACeFUL: �Global systems Rapid Assessment tools through
Constraint FUnctional Languages� granted 2015�2018 by the
FETPROACT1 call.

Upcoming project CoEGSS: �Center of Excellence
for Global Systems Science�, start 2015-10-01, 3y.

P. Jansson (Chalmers&GU) Strongly Typed Programs and Proofs 2015-08-21 15 / 23

http://ec.europa.eu/research/participants/portal/desktop/en/opportunities/h2020/topics/2074-fetproact-1-2014.html


Global Systems Science (GSS)
with the Potsdam institute for Climate Impact Research (PIK)

Collaboration from 2007 onwards (main contact: Cezar Ionescu)

Aim: correct software models for simulating global systems

Algebra of Programming [PhD course and two papers]

Global Systems Dynamics and Policy (GSDP) [FET-Open 2010�13]

Workshops including �Domain Speci�c Languages for Economical and
Environmental Modelling�, 2011

The call FETPROACT1 (Future and Emerging Technology,
Proactive support for GSS) in Horizon 2020 is concrete evidence on
the success of this line of work.

Project GRACeFUL: �Global systems Rapid Assessment tools through
Constraint FUnctional Languages� granted 2015�2018 by the
FETPROACT1 call.

Upcoming project CoEGSS: �Center of Excellence
for Global Systems Science�, start 2015-10-01, 3y.

P. Jansson (Chalmers&GU) Strongly Typed Programs and Proofs 2015-08-21 15 / 23

http://ec.europa.eu/research/participants/portal/desktop/en/opportunities/h2020/topics/2074-fetproact-1-2014.html


Global Systems Science (GSS)
with the Potsdam institute for Climate Impact Research (PIK)

Collaboration from 2007 onwards (main contact: Cezar Ionescu)

Aim: correct software models for simulating global systems

Algebra of Programming [PhD course and two papers]

Global Systems Dynamics and Policy (GSDP) [FET-Open 2010�13]

Workshops including �Domain Speci�c Languages for Economical and
Environmental Modelling�, 2011

The call FETPROACT1 (Future and Emerging Technology,
Proactive support for GSS) in Horizon 2020 is concrete evidence on
the success of this line of work.

Project GRACeFUL: �Global systems Rapid Assessment tools through
Constraint FUnctional Languages� granted 2015�2018 by the
FETPROACT1 call.

Upcoming project CoEGSS: �Center of Excellence
for Global Systems Science�, start 2015-10-01, 3y.

P. Jansson (Chalmers&GU) Strongly Typed Programs and Proofs 2015-08-21 15 / 23

http://ec.europa.eu/research/participants/portal/desktop/en/opportunities/h2020/topics/2074-fetproact-1-2014.html


Global Systems Science (GSS)
with the Potsdam institute for Climate Impact Research (PIK)

Collaboration from 2007 onwards (main contact: Cezar Ionescu)

Aim: correct software models for simulating global systems

Algebra of Programming [PhD course and two papers]

Global Systems Dynamics and Policy (GSDP) [FET-Open 2010�13]

Workshops including �Domain Speci�c Languages for Economical and
Environmental Modelling�, 2011

The call FETPROACT1 (Future and Emerging Technology,
Proactive support for GSS) in Horizon 2020 is concrete evidence on
the success of this line of work.

Project GRACeFUL: �Global systems Rapid Assessment tools through
Constraint FUnctional Languages� granted 2015�2018 by the
FETPROACT1 call.

Upcoming project CoEGSS: �Center of Excellence
for Global Systems Science�, start 2015-10-01, 3y.

P. Jansson (Chalmers&GU) Strongly Typed Programs and Proofs 2015-08-21 15 / 23

http://ec.europa.eu/research/participants/portal/desktop/en/opportunities/h2020/topics/2074-fetproact-1-2014.html


Algebra of Programming in Agda

While Agda was implemented by Norell, Danielsson et al. we used it for the
Algebra of Programming.
One highlight is the notation for equality proofs

begin

term1

≡ 〈 step1 〉 -- step1 : term1 ≡ term2

term2

≡ 〈 step2 〉 -- step2 : term2 ≡ term3

term3

�

Roughly equivalent to trans step1 step2 but often
more readable (at least in more complicated cases).
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An example proof in Agda, part 1

expLemma : (x : R) → (m n : N) → (x ˆm ∗R x ˆn ≡ x ˆ(m + n))
baseCase : (x : R) → (n : N) → (x ˆZ ∗R x ˆn ≡ x ˆ(Z + n))
stepCase : (x : R) → (m n : N) →

(ih : x ˆm ∗R x ˆn ≡ x ˆ(m + n)) →
( x ˆ(S m) ∗R x ˆn ≡ x ˆ((S m) + n))

expLemma x Z n = baseCase x n

expLemma x (S m) n = stepCase x m n (expLemma x m n)
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An example proof in Agda, part 2

baseCase : (x : R) → (n : N) → (x ˆZ ∗R x ˆn ≡ x ˆ(Z + n))
baseCase x n =
begin

x ˆZ ∗R x ˆn
≡ 〈 re� 〉 -- By de�nition of _̂_
one ∗R x ˆn
≡ 〈 unitMult (x ˆn) 〉 -- Use one ∗R y = y for y = x ˆn
x ˆn
≡ 〈 re� 〉 -- By de�nition of _+_
x ˆ(Z + n)
�
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Feat: functional enumeration of algebraic types
[with Duregård and Wang, Haskell Symposium 2012]

An e�ciently computable bijective function indexa :: N → a, much like
toEnum in the Enum class.

Example: enumerate �raw abstract syntax trees� for Haskell.

*Main> index (10^5) :: Exp

AppE (LitE (StringL ""))

(CondE (ListE []) (ListE []) (LitE (IntegerL 1)))

*Main> index (10^100) :: Exp

ArithSeqE (FromR (AppE (AppE (ArithSeqE (FromR (ListE [])))

... -- and 20 more lines!
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Ongoing work

DSLM: Presenting Math. Analysis Using Functional Programming

∀ ε ∈ R. (ε > 0) ⇒ ∃ a ∈ A. (|a − sup A| < ε)

Sequential Decision Problems

�Sequential Decision Problems, dependent types and generic solutions�
�A computational theory of policy advice and avoidability�

AUTOSAR calculus

�A semantics of core AUTOSAR�
(AUTOSAR = AUTomotive Open System ARchitecture)

ValiantAgda

Certi�ed Context-Free Parsing: A form. of Valiant's Algorithm in Agda
Solve C = W + C ∗ C for matrices of sets of non-terminals!
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ValiantAgda

Solve C = W + C ∗ C for strictly upper triangular matrices of something.
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ValiantAgda (the chocolate part;-)

Solve C = W + C ∗ C for strictly upper triangular matrices of something.
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ValiantAgda (a part in the middle)

[Valiant, 1975] provides a rather awkward interated def. for all bracketings:

C = W + W ·W + W · (W ·W ) + (W ·W ) ·W +
(W ·W ) · (W ·W ) + ...

We use the smallest solution to the following equation:

C ≡ W + C ·C
(for strictly upper triangular W ). Or more precisely

Clo : U → U → Set

Clo W C = C ≡ W + C ·C
LowerBound : {A : Set } → (A → Set) → A → Set

LowerBound P x = ∀ z → (P z → x 6 z)

Minimal : {A : Set } → (A → Set) → A → Set

Minimal P x = P x /\ LowerBound P x

Spec = ∀ (W : U)→ ∃ λ (C : U) →
Minimal (Clo W ) C
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Summary

PolyP DataConv AoPAgda ValiantAgda

Norell Danielsson Bernardy Duregård

Agda Fast ′nLoose ParaDep Feat
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