
J. Hughes, 580715�2110, PFP 1

A Parallel Functional Programming

Introduction

At the beginning of the millenium, microprocessor designs lay on a number of exponential
curves, with exponentially increasing transistor counts, exponentially rising clock frequen-
cies, exponentially improving performance�and exponentially rising power consumption.
Intel's CTO Patrick Gelsinger remarked �By mid-decade, that Pentium PC may need the
power of a nuclear reactor. . . Soon after 2010, PC chips could feel like the bubbly hot
surface of the sun itself.� Of course, this never happened�while transistor counts have
continued to follow Moore's law, clock frequencies have stagnated, with the result that
power consumption per chip has fallen slightly from its peak. Instead of delivering higher
performance through faster clocks and microarchitectural improvements, processor manu-
facturers are delivering it through multiple processor cores. We can expect to see Moore's
law translate into an exponentially growing number of cores, for at least the next decade�
already Intel and AMD are delivering chips with 10�16 x86 cores, and other manufacturers
are supplying chips with even more. Plans for exa�op super-computers (performing 1018

�oating-point operations per second) call for over a million cores working together�and for
further dramatic improvements in power consumption per core, since otherwise an exa�op
computer will consume an entirely unrealistic gigawatt of power.

In constrast to previous hardware performance improvements, which bene�ted virtually all
programs, multi- and many-core chips can only be exploited by parallel programs. Thus,
parallel programming has acquired dramatically increased signi�cance; having once been
the purview only of a few specialists, it is now a fundamental skill which is essential even
to take full advantage of the hardware in our laptops. Unfortunately, parallel programming
has traditionally been regarded as di�cult�beyond the capabilities of most software de-
velopers. Finding easy ways to construct parallel software has thus become one of our most
urgent research tasks.

Many of the di�culties of parallel programming arise from mutable shared data, the race
conditions that result when it is not properly protected, and the concurrency bugs and
bottlenecks that result when it is. One way to avoid these di�culties is to use functional

programming, in which most data-structures are not mutable at all. Parallel functional
programming is attracting increasing attention from industry as a result. To quote Intel's
CTO, Justin Rattner, �Functional programming looks to be one of the foundations for par-
allel programming going forward with higher levels of abstraction and more automation of
parallelism�. Functional programming ideas underlie, among others, Google's Map-Reduce,
Intel's Concurrent Collections, Ericsson's Erlang and Scala's Akka concurrency framework,
which delivers scalable parallel performance for Twitter's back-end processing.

Parallel functional programming is an active research area (see the next section), but
nevertheless much more research is needed to make it into a widely applicable technique.
We believe it behooves functional programming researchers to focus on parallelism in the
coming years, and our goal in this proposal is to retarget our own research in precisely this
direction.

2 Appendix A

Our goal is not to develop programming methods for the kind of small-scale parallel sys-
tems already found in all but the smallest computers. We are speci�cally aiming some
years ahead, at machines with at least tens, more likely hundreds of cores. We expect such
systems to be heterogenous, with a mixture of general purpose cores and specialised, data-
parallel cores, and a mixture of shared and distributed memories. Already, virtually every
laptop or desktop contains both multiple CPU cores, and a GPU. Today's super-computers
are similar: for example, Los Alamos Lab's peta�op RoadRunner combines 12,000 x86 cores
with 100,000 simple cell processors for data parallelism. We aim to develop functional pro-
gramming methods to make use of such diverse architectures: a good example application
would be a Barnes-Hut N -body simulation, running on a cluster of multicore computing
nodes, and using a GPU at each node to accelerate the computation.

To a large extent we intend to focus on deterministic parallelism, as in this example�
the result of a gravitational simulation should, of course, depend deterministically on its
inputs. Indeed, part of the strength of parallel functional programming is that it avoids the
unwanted non-determinism that so easily arises in other paradigms. However, we also plan
to consider some parallel applications that are inherently non-deterministic�for example,
a database in the cloud which must react to requests from many concurrent sources, where
the results will obviously depend on the order in which requests are served.

The larger the number of processors, the greater the risk that at least one of them fails
during a long computation�and indeed, as voltages are further reduced to save power, then
individual processors are likely to become less, not more, reliable. Therefore, a convincing
approach to highly parallel computation must provide a degree of fault tolerance, so that
computations can recover from individual errors without restarting from scratch.

Parallel Functional Programming Research in parallel functional programming has
a long history. In the 1980s, here at Chalmers, Johnsson and Augustsson developed the
νG-machine with encouraging results [1]. They compiled Lazy ML for a shared memory
multiprocessor, and benchmarked against the sequential LML compiler, at that time the
best compiler for a lazy functional language, and observed speed-ups of up to 3.3x on
four processors. They used sparks to start parallel computations, which were ignored, and
thus cheap, unless a processor was actually available. The style of programming that this
encourages�in which the programmer indicates possible tasks for parallelisation�is today
typically called semi-explicit, forming an attractive middle ground between fully implicit
parallelism (which is not promising in general [12]) and explicit threading (which overbur-
dens the programmer).

In the late 1980s and early 1990s, Blelloch developed NESL, a nested data parallel pro-
gramming language, and demonstrated its utility, both for expressing complex algorithms
sweetly [4] and for implementing them e�ciently on the parallel machines of the day, such
as the Connection Machine. NESL's performance was competitive with machine-speci�c
code for regular dense data, and often superior for irregular data. Nested data parallelism
allows the easy expression of less regular computations, and so encourages a style of paral-
lel programming in which the user expresses algorithms (and in particular recursive divide

J. Hughes, 580715�2110, PFP 3

and conquer algorithms) in a functional programming style that is familiar from sequen-
tial programming. NESL in turn in�uenced languages like Cilk, now an important part of
Intel's push towards multicore programming. Yet NESL itself has not developed further
in the last 15 years; it was well-suited to wide-vector parallel machines, but today's mul-
ticores are very di�erent. It was a minimal programming language, lacking many features
of modern functional languages (such as user-de�ned types and higher-order functions).

At Chalmers, we have introduced a Parallel Functional Programming course for Masters
students [22]. The development of the course has entailed a thorough study of the current
state of the art, and also much interaction with leading researchers in the community.
The �rst part of the course concerns deterministic parallel programming in Haskell. Here,
there is a clear sequence of research results that bring useful tools for practical parallel
programming to ordinary Haskell programmers. The par combinator allows the user to
indicate sparks, that is to indicate potential parallelism; pseq allows the user to control
order of evaluation, which is necessary in the presence of lazy evaluation. Parallel strate-
gies build upon this idea, allowing an elegant separation of algorithmic code from code
indicating how parallelisation should happen [24]. Overall, the semi-explicit approach to
parallelising Haskell programs has proven very e�ective [16]. The semantics of the program
remains completely deterministic, and the programmer is not required to identify threads,
communication, or synchronisation. She simply annotates subcomputations that might be
evaluated in parallel, leaving the choice of whether to actually do so to the runtime system.
These sparks are created and scheduled dynamically, and their grain size varies widely. A
recent update of the strategies idea improves the API, broadens its applicability and �xes
a space leak in the older approach [17].

The sequence has continued with the introduction of the Par monad, in which the user
creates data �ow graphs to indicate the shape of the computation, and the runtime system
may choose to evaluate parts of the graph in parallel [18]. This seems to �nd a sweet spot
in which the programmer can concentrate on algorithm design and get just enough control
over the resulting parallel computation.

NESL has strongly in�uenced developments in parallel programming in Haskell as well. It
is the inspiration for work on Data Parallel Haskell (DPH) [5], which provides a parallel
array data type. Also based on the work on DPH, the Repa array library provides �at data
parallelism [14].

Domain Speci�c Languages Embedded Domain Speci�c Languages (DSLs) and li-
braries are a recurring theme of the above review. This topic has been an important focus
in our research group. With Ericsson funding, we have developed Feldspar, an embedded
language for DSP algorithm design, generating C code [2]. In doing this, we have built
a generic DSL toolkit called Syntactic, which can represent a wide range of typed lan-
guages, including Feldspar [3]. As a result it is now very much easier for us to experiment
with new (purely functional) DSLs. In a further Ericsson funded project, Feldspar itself is
currently being evaluated in the development of a parallel implementation of part of the
uplink of the LTE telecoms standard on a Tilera multicore machine.

4 Appendix A

Obsidian, developed in our group is an embedded domain speci�c language that generates
CUDA kernels from functional descriptions [23]. A symbolic array construction allows us
to guarantee that intermediate arrays are fused away. Claessen has proposed a new form of
symbolic arrays called Push arrays that remove some restrictions imposed by the original
arrays. This extension to Obsidian has demonstrated on a sequence of sorting kernels,
with good results [9]. We have only just begun to explore the possibilities of these more
sophisticated symbolic array representations, and we view this as a particularly promising
line of research in data parallel programming.

Concurrency in Haskell Although our inclination is to remain with deterministic par-
allel programming, we recognise that we will need concurrency when dealing with reactive
systems, and with distribution in heterogeneous systems. In keeping with its strategy of
allowing users to mix and match many approaches to parallelism and concurrency, Haskell
provides explicitly threaded concurrent programming [20]. An interesting recent develop-
ment is Cloud Haskell, which provides Erlang style message passing communication as a
shallow embedded DSL [11]. We are also interested in exploring Erlang style concurrency
in Haskell, but we would like to avoid non-determinism to a greater degree than is proposed
in Cloud Haskell.

Why more needs to be done The above summary of the state of the art indicates the
promise of purely functional programming for parallelism and concurrency. There are many
promising �rst steps here, particularly in the Haskell community. But there is fragmentation
too, and much remains to be done! The existing libraries, discussed above, provide the
means to express and control parallelism, but often at too low a level of abstraction. We
surely need to provide users with better abstractions, built upon the existing work.

The long (and continuing) gestation of Data Parallel Haskell points to the di�culty of tak-
ing Blelloch's �attening transformation (which converts nested into �at data parallelism
automatically) and making it work in the setting of a complex, modern functional pro-
gramming language. Peyton Jones' analogy in a talk at the DAMP'12 workshop was apt:
he said that it was as though Blelloch had left a $10,000 note on the ground, just waiting to
be picked up, only for those who came after to �nd that it was �rmly stuck to the ground!
We are interested in answering the question: �Is nested data parallelism really necessary,
or can we get away with �at data parallelism and sophisticated array representations?�.

The International Workshop on Declarative Aspects and Applications of Multicore Pro-
gramming, associated with the top conference POPL in 2012, had a total of only 10 submis-
sions, in a �eld that we think is extremely important, both academically and industrially.
Of course there are other places to publish work in this area, and there is much going on
in mainstream programming for parallelism, but still, we feel that the pressing nature of
the problem of how to program future massively parallel architectures is being ignored by
too many researchers. Our plan is to focus the work of our group on exactly this problem.

J. Hughes, 580715�2110, PFP 5

Project description

Our overall goal is to develop methods and libraries to enable Haskell programmers to
solve computationally intensive parallel programming problems easily and e�ciently on
heterogenous computing systems, namely clusters of computing nodes, each with a multi-
core CPU, disk, and GPGPU. Typical problems include N -body gravitational simulations,
�rst-order logic theorem proving, data mining, and large scale key-value storage. We aim to
exploit Haskell's power of abstraction to capture reusable ideas in easy-to-deploy libraries
and domain speci�c languages.

Cache Sensitive Functional Programming. The purpose of parallelism is perfor-
mance; therefore it is important to ensure that single-processor performance is good. On
today's architectures, making e�ective use of the cache is critical in high-performance code.
While data can be retrieved from the L1 cache in only a few processor cycles, retrieving
data from external RAM can take closer to 100 cycles. This has led to a discipline of �cache
sensitive programming�, in which data-structures and access patterns are designed to min-
imize the number of cache misses. Techniques used include factoring data-structures into
�hot� and �cold� parts, so that the frequently-referenced (�hot�) components are gathered
together into small structures likely to �t into one cache line; prefetching data so it is avail-
able in the cache by the time it is needed; cache-aware algorithms that use intermediate
data carefully designed to �t into the cache at a particular level of the hierarchy; cache-
oblivious algorithms that aim to access memory in an e�ective way regardless of the size of
the cache�thus performing well at all levels of the memory hierarchy. Divide-and-conquer
algorithms are an important technique for improving cache behaviour: for example, a ma-
trix transpose implemented as a pair of nested loops will encounter a cache miss for each
matrix element, while a divide-and-conquer cache-oblivious version can reduce this by a
factor proportional to the size of a cache line, by transposing submatrices at a time. Blel-
loch has studied ways to develop divide and conquer algorithms with provably good cache
performance [6].

It is clear that some of the most popular data-structures in functional programs, such as
linked lists, do not play particularly well with the cache. Moreover, common higher-order
functions such as map, filter and foldr, do not traverse data in a cache-e�cient manner.
Our goal in this part of the project is to investigate more cache-e�cient alternatives. We
intend to implement a variety of cache-sensitive algorithms from the literature in Haskell,
measure their performance, and then extract reusable ideas into a library of cache-e�cient
data-structures and higher-order functions, thus making e�cient Haskell programs easier
to develop in the future.

Programming a cluster. Many parallel applications today�for example, no-SQL databases
such as Riak�run on a cluster of commodity processing nodes connected by a fast network.
Today's supercomputers are built in a similar manner (albeit from higher-performance com-
ponents). A cluster is also a good model of future highly parallel computers, because as the

6 Appendix A

number of cores rises it will no longer be practical to support the shared memory abstrac-
tion between more than a small set of cores. Thus, we plan to develop methods to distribute
a parallel functional computation across a cluster of distributed memory machines.

Erlang, with its share-no-memory model, is already well suited to this kind of problem;
Haskell's recently developed �Cloud Haskell� extension borrows heavily from Erlang to
address the same problems [11]. However, these o�er only low-level mechanisms such as
the ability to monitor a process running on another node; orchestrating the nodes to work
together to solve a common problem is still left to the Erlang or Cloud Haskell programmer.

Google's Map-Reduce framework is designed to run on hardware of this sort, and in a sense
o�ers a higher-level approach to the problem; the programmer instantiates the framework
with mapping functions and reducing functions, and the framework takes care of orches-
trating the execution, monitoring for faults, and so on. As a starting point, we plan to
investigate Map-Reduce implementations in Cloud Haskell, and later to exploit Haskell's
power of abstraction to de�ne other generic patterns of computation.

Algebra of parallel programs. Algebraic laws o�er a powerful mechanism to develop
and optimise functional programs; in particular the elegant Bird/Meertens approach to al-
gorithm synthesis is based on starting from simple, obviously correct algorithms, and apply-
ing a succession of algebraic transformations (each of which can be tested with QuickCheck)
to obtain the �nal, e�cient result. Associative operators play an important rôle in the
Bird/Meertens method, especially in their �theory of lists�. Associative operators are also
at the heart of parallel algorithms such as reduce and scan. While Bird/Meertens focussed
on sequential algorithms, we plan to develop a similar approach to parallel algorithms.

We are already making interesting discoveries in the area of parallel parsing, using an
associative operator which combines partial parses of substrings in an associative way.
While this operator is prohibitively expensive in the worst case, we have discovered that�
for inputs and grammars in the right form�this worst case never arises in practice. Thus,
by expressing the grammar appropriately�among other things, using a built-in repetition
operator rather than representing repetition via recursion�it seems that we can develop
a highly e�cient parallel parsing method. Moreover, this method is naturally incremental,
because a local change to the input need only result in reparsing the local context and
then recombining its parse result with the rest of the input via our associative operator.
The method can thus naturally be applied in editors which parse code in order to highlight
syntax, indicate parse errors, and so on.

Property-driven development. Parallel functional programs need testing as much as
any other kind of program; our approach is based on property-based testing using our
testing tool QuickCheck [7, 10]. QuickCheck de�nes a domain-speci�c property language,
embedded in Haskell or Erlang, whose properties are tested in (randomly) generated test
cases. When a property fails, the failing case is reduced to a minimal failing example via
�shrinking�, which usually results in a failure that is easy to debug.

J. Hughes, 580715�2110, PFP 7

While property-based testing can be applied e�ectively to either new or existing code,
we are particularly interested in property driven development (by analogy with test driven

development), in which properties and code are developed together, and each reveals weak-
nesses in the other. We intend to develop a PDD methodology for parallel functional pro-
grams. One important question is what properties should hold of non-deterministic, parallel
systems? We have enjoyed considerable success using serializability as a property-to-test
[8]; last year this property enabled us to track down long-standing race conditions in the
database delivered with Erlang, �xing bugs which caused crashes in production every week
or two at large industrial users [13].

Yet it is not clear that the best way to test for correct parallel systems is by provoking
actual race conditions in the real system itself�real races may be rare and hard to provoke,
while their e�ects may be much easier to model. For example, last year we helped to �nd
eventual consistency bugs in Riak, a well-known no-SQL key-value database implemented
in Erlang. The bugs are manifested by a particular (unlikely) sequence of node failures
and restarts, but testing for them by taking nodes up and down during each test would be
unlikely to reveal them, because such tests are so slow that only a few can be run. Instead,
we extracted the purely functional logic from the database, and tested it in a simulated
setting in which the node failures could be directly and easily modelled. This enabled us
to run a large number of generated tests in a short time, and led to rapid discovery of the
faults (a paper is in preparation).

In this case, we used an ad-hoc approach to solve a particular testing problem for a parallel
functional system. In this subproject, we plan to develop systematic methods for developing
such systems, together with property-based tests in simulated settings to ensure correct
behaviour in the presence of non-determinism and node failures. We expect our inductive
testing approach (the subject of Claessen's individual proposal), which draws on proof-
by-induction to formulate appropriate properties to test, to be very useful here. Likewise,
parallel programs that depend on algebraic properties can be developed in parallel with
tests of those properties.

DSLs for parallel Haskell programming Although this project concerns programming
in Haskell, it can still build upon our previous strong research in code-generating embed-
ded DSLs. Building on the Haskell Foreign Function Interface, Persson (a doctoral student
in our group) has developed a system where generated code from the Feldspar embedded
language can be seamlessly compiled, linked and introduced into a running Haskell pro-
gram, including the Haskell interpreter. The prototype uses Template Haskell to synthesize
a harness automating (re-)compilation, linking and marshaling of arguments and results.
Marshalling is enabled by the Feldspar size-propagation. This removes the need to rely on
external tools and frameworks for testing the functionality of code generated from embed-
ded DSLs, making tools like Haskell QuickCheck available for this purpose. However, it
also opens interesting new possiblities. Code-generating embedded DSLs now become an
immediately usable tool for Haskell programmers. We plan to generalise and extend the
plugin tool to work with other embedded languages. We will explore the e�ects of storing a

8 Appendix A

richer set of decorations on the AST. This approach will permit users of parallel Haskell to
use embedded DSLs to gain the �ner control over memory use or parallelism. It is here we
forge the link between our DSL expertise and our new ambitions to in�uence how parallel
Haskell programming is done. Using DSLs in this way will provide a possible approach to
heterogeneity � di�erent DSLs for di�erent platforms, used together in Haskell. It will also
enable us to explore combinators for fault tolerance.

Securing parallel systems. Security and con�dentiality are of increasing importance,
yet particularly awkward to address in parallel systems�the standard information-�ow
languages Jif [19] and FlowCaml [21] ignore concurrency altogether. We propose a library
that mitigates and eliminates termination and timing channels arising in concurrent sys-
tems, while allowing timing and termination of loops and recursion to depend on secret
values. Because the signi�cance of these covert channels depends on concurrency, we �ght

�re with �re by leveraging concurrency to mitigate these channels : we place potentially
nonterminating actions, or actions whose timing may depend on secret values, in separate
threads. Although we do not address leakage of information produced by the underlying
hardware (e.g., exploiting cache timing behavior), our proposed solution can be combined
with hardware-level mechanisms as needed to provide comprehensive defenses against such
vulnerabilities. More speci�cally, we plan to extend the Haskell LIO security library [?]
(designed for a sequential language) as follows.

I Termination covert channel : we propose to decouple the execution of public events from
computations that manipulate secret data. Using the primitives forkLIO and waitLIO,
computation depending on secret data proceeds in a new thread. If a thread needs to
observe the termination behavior of a newly spawned thread, it �rstly enters a state where
public events are no longer allowed, thus avoiding leaks due to termination.

I Internal timing channel : we close this covert channel using the same approach as
termination leaks: we decouple the execution of public events from computations that
manipulate secret data. As a result, the number of instructions executed before producing
public events does not depend on secrets. A possible race to a shared public resource cannot
be a�ected by secret data, which eliminates internal timing leaks.

I External timing channel : Our contribution to mitigate external timing channels in
concurrent systems is to bring the mitigation techniques from the OS community into
programming languages. Zhang et al. [25] describe a black-box mitigation technique in
which the source of observable events is wrapped by a timing mitigator that delays output
events so that they reveal only a bounded amount of information. Leveraging Haskell monad
transformers [15], we propose to modularly extend LIO, or any other library performing
side-e�ects in Haskell, to provide a suitable form of Zhang et al.'s mitigator.

Applications driving the research An important part of our research will be the
implementation of a wide variety of parallel algorithms, in the search for programming
idioms, and for the design of an abstraction layer above the exisiting libraries like the Par

J. Hughes, 580715�2110, PFP 9

monad. We will study algorithms from �Big Data�, which is an important topic in the
Chalmers Algorithms group, from �nance (where we have a strong link to the Hiper�t
Centre at Copenhagen University) and from Digital Signal Processing (via the group at
our sister department, Signals and Systems). We have already had considerable success
in parallelizing our �rst order theorem prover Equinox, achieving a speed-up of 2.5 on a
4-core machine. (One of the two alternating phases of the prover is very hard to parallelize,
but cheap, while the other is expensive but easily parallelizable.) Parallelizing automated
reasoning tools will provide us with demanding case studies.

Group Description, Grants and Collaboration

The Functional Programming group at Chalmers is one of the strongest in the �eld. It
consists of four professors, one visiting professor, �ve assistant professors (forskarassisten-
ter), one post-doc, and ten doctoral students. We are the originators of the award-winning
QuickCheck testing tool, the foundation of a recently-completed top-rated EU FP7 project,
ProTest. We focus strongly on domain-speci�c languages embedded in Haskell, including
the in�uential Lava hardware design language. We hold a �ve-year strategic grant of 25
million SEK from the Strategic Research Foundation, in Resource Aware Functional Pro-
gramming, targetting signal processing and automotive applications via domain speci�c
languages that generate low-level target code. As well as Ericsson, we collaborate actively
with Quviq (a start-up that arose from our group marketing a version of QuickCheck),
Stanford, and with Microsoft Research in Cambridge.

Signi�cance

Pure functional programming provides the best hope of solving the multicore programming
challenge. Haskell is thus the obvious starting point for our work, as it has a rich set of
libraries, a type system that tracks uses of mutation, very good sequential performance and
existing support for a variety of approaches to concurrent and parallel programming. In
this project, we will develop the necessary methods and tools to allow Haskell programmers
to develop parallel programs that provide decent speed-ups on present and future hetero-
geneous machines with ease. This is, without doubt, a highly ambitious goal - broader in
scope than our previous VR frame project. Frightened by the fact that a relatively small
number of researchers in functional programming are working on enabling practical paral-
lel programming, we have decided to focus the e�orts of our group on this key challenge.
Should we succeed, we will have a palpable e�ect on how programming is done in a wide
variety of industries and application areas, from �nance to big data. We relish the prospect
of helping to solve a key question in computer science by applying our talent for �nding
simple elegant solutions to pressing practical problems.

Bibliography

[1] L. Augustsson and T. Johnsson. Parallel graph reduction with the (v,g)-machine. In FPCA '89: Proc. on
Functional programming languages and computer architecture, pages 202�213. ACM Press, 1989.

[2] E. Axelsson, K. Claessen, et al. Feldspar: A domain speci�c language for digital signal processing algorithms.
In Formal Methods and Models for Codesign (MEMOCODE), pages 169�178. IEEE, 2010.

[3] E. Axelsson and M. Sheeran. Feldspar: Application and implementation. In Central European Functional
Programming School, Revised Selected Lectures, volume 7214 of LNCS. Springer, 2012.

[4] G. Blelloch. Programming Parallel Algorithms. Communications of the ACM, 39(3), 1996.
[5] M. M. T. Chakravarty, R. Leshchinskiy, S. Peyton-Jones, G. Keller, and S. Marlow. Data Parallel Haskell: A

status report. In Proc. Int. Workshop on Declarative Aspects of Multicore Prog. (DAMP). ACM Press, 2007.
[6] R. A. Chowdhury, V. Ramachandran, G. E. Blelloch, P. B. Gibbons, S. Chen, and M. Kozuch. Provably Good

Multicore Cache Performance for Divide-and-Conquer Algorithms. In SIAM/ACM Symposium on Discrete
Algorithms (SODA), 2008.

[7] K. Claessen and J. Hughes. QuickCheck: a lightweight tool for random testing of Haskell programs. ACM
SIGPLAN notices, 35(9):268�279, 2000.

[8] K. Claessen, M. Palka, N. Smallbone, J. Hughes, H. Svensson, T. Arts, and U. Wiger. Finding race conditions
in Erlang with QuickCheck and PULSE. ACM Sigplan Notices, 44(9):149�160, 2009.

[9] K. Claessen, M. Sheeran, and B. Svensson. Expressive array constructs in an embedded GPU kernel program-
ming language. In DAMP, pages 21�30. ACM, 2012.

[10] J. Derrick, N. Walkinshaw, T. Arts, C. Benac Earle, F. Cesarini, L. Fredlund, V. Gulias, J. Hughes, and
S. Thompson. Property-based testing-the protest project. Formal Methods for Components and Objects,
pages 250�271, 2010.

[11] J. Epstein, A. Black, and S. Peyton-Jones. Towards Haskell in the cloud. In Haskell Symposium. ACM, 2011.
[12] T. Harris and S. Singh. Feedback Directed Implicit Parallelism. In Proceedings of the 12th ACM SIGPLAN

international conference on Functional Programming (ICFP). ACM Press, 2007.
[13] J. Hughes and H. Bolinder. Testing a database for race conditions with quickcheck. In Erlang Workshop.

ACM SIGPLAN, 2011.
[14] G. Keller, M. M. T. Chakravarty, R. Leshchinskiy, S. Peyton-Jones, and B. Lippmeier. Regular, Shape-

polymorphic, Parallel Arrays in Haskell. In Proceedings of the 15th ACM SIGPLAN international conference
on Functional Programming (ICFP). ACM Press, 2010.

[15] S. Liang, P. Hudak, and M. Jones. Monad transformers and modular interpreters. In In Proceedings of the
22nd ACM Symposium on Principles of Programming Languages. ACMPress, 1995.

[16] H.-W. Loidl, F. Rubio, et al. Comparing parallel functional languages: Programming and performance. Higher
Order Symbol. Comput., 16(3):203�251, 2003.

[17] S. Marlow, P. Maier, H.-W. Loidl, M. K. Aswad, and P. W. Trinder. Seq no more: Better Strategies for Parallel
Haskell. In Proceedings of the Haskell Symposium. ACM Press, 2010.

[18] S. Marlow, R. Newton, and S. Peyton-Jones. A monad for deterministic parallelism. In Proceedings of the
Haskell Symposium. ACM SIGPLAN, 2011.

[19] A. C. Myers. JFlow: Practical mostly-static information �ow control. In Proc. ACM Symp. on Principles of
Programming Languages, pages 228�241, Jan. 1999.

[20] S. Peyton-Jones, A. Gordon, and S. Finne. Concurrent Haskell. In Proc. Int. Conf. on Principles of Program-
ming Languages (POPL). ACM Press, 1996.

[21] F. Pottier and V. Simonet. Information �ow inference for ML. In Proc. ACM Symp. on Principles of
Programming Languages, pages 319�330, Jan. 2002.

[22] M. Sheeran and J. Hughes. Parallel Functional Programming, an MSc and doctoral course given by the
Functional Programming Group at Chalmers, 2012.

[23] J. Svensson, K. Claessen, and M. Sheeran. GPGPU kernel implementation and re�nement using Obsidian.
Procedia Computer Science, 1(1):2065�2074, 2010.

[24] P. W. Trinder, K. Hammond, H.-W. Loidl, and S. L. Peyton-Jones. Algorithm + strategy = parallelism. J.
Funct. Program., 8:23�60, 1998.

[25] D. Zhang, A. Askarov, and A. C. Myers. Predictive mitigation of timing channels in interactive systems. In
Proc. of the 18th ACM CCS. ACM, 2011.

