
J. Hughes, 580715�2110, Putting FP to work using DSLs 1

A Putting Functional Programming to Work
Software Design and Veri�cation using Domain Speci�c Languages

Introduction

Telecommunications systems have grown enormously in complexity since the bygone days
of electromechanical exchanges. Today, telecoms networks consist of a wide variety of
products�radio base stations, media gateways, radio network controllers, and so on�each
a powerful computer system in its own right. These products communicate with each other
via a plethora of complex protocols. Developing the software that controls these products,
correctly and in time, is a challenging task indeed.

The signal processing that will soon be needed to provide ever-higher bandwidth to mo-
bile broadband users is extremely computationally demanding. The constantly changing
technology and continuous investments by operators mean that time-to-market is critically
important for telecoms products�but at the same time the quality demands are dizzying:
telecoms systems are expected to be running and available at least 99.999% of the time!
Meeting all these requirements simultaneously is di�cult. Thus, telecoms software is a
fruitful source of interesting problems for researchers to address�problems whose solu-
tions are of considerably wider interest. Ericsson's keen interest in software research has
led to fruitful joint projects with our group, which form a key foundation for this proposal.

For example, consider the digital signal processing in a Radio Base Station. The task of the
uplink signal processing is to take the radio signal from the air (echoes, interference and all),
convert it from an analogue signal to a stream of digital measurements, and then transform
it digitally into hundreds of data streams coming from the individual user equipment
(telephones, laptops, etc). The data streams are of many di�erent types, of di�erent
bandwidth�and the con�guration of data streams is recomputed every millisecond! The
signal processing algorithms are programmed in C, but this is not C as we know it�the
code is sprinkled with pragmas that control compiler optimisations, and loop bodies are
written taking into account things such as that the intended target processor can perform
four multiplications in one cycle. This makes the code very hardware dependent�changing
to the next generation processor, or worse still, a di�erent processor vendor, may ruin its
performance.

The signal processing is so computationally demanding that it cannot be performed on just
one DSP processor�it must be partitioned across many processing cores, each of which
implements a composition of stream-to-stream functions. This partitioning is done early
in the software development process, and the software for each core may even be developed
by di�erent teams. If one core turns out to be overloaded when the software is complete,
then moving a part of its task to another is extremely di�cult. Although in principle one
need only move a few of the composed functions from one core to the other, in practice
the individual functions are not apparent in the optimised code�so the code for each core
must be rewritten and reoptimised. Since tests are performed at the interfaces between
cores, even the test suite must be recreated to support this kind of change.



2 Appendix A

How might software development of this kind be eased? Evidently, the signal processing
algorithms should be programmed at a higher level of abstraction�one that permits the
kind of low-level control needed to obtain the necessary performance, but preserves the
structure of the algorithms as compositions of stream functions, so that recon�guration
onto di�erent hardware is possible from the same source code. Manual benchmarking
and exploration of coding alternatives should be automated. Test cases should not be
constructed by hand, but generated from a speci�cation, in a way that can cope with
recon�guration. These are the goals of the DSL4DSP project, a part of this application.

Goals Our overall goal, in this project, is to develop methods and tools that can ease
the speci�cation, design, implementation, and veri�cation of such challenging software.
Our chief weapons for this task are functional programming in general, and domain-speci�c

embedded languages in particular.

Domain speci�c languages (DSLs) are languages tailored to solving a speci�c task well,
but without needing to be applicable outside the domain�such as make-�les, for exam-
ple. DSLs have seen very many applications in recent years, and o�er the potential to
provide automatic generation of optimised code, with �ne control over low-level details
where necessary, combined with a high-level and compositional overall approach. DSLs
are particularly easy to experiment with when embedded in a host language�the DSL is
provided as a library API, and reuses the host language's parser, type-checker, and other
tools, thus dramatically reducing the implementation e�ort needed, and enabling more
design exploration. Functional programming languages, such as Haskell and Erlang, have
proven to be particularly suitable as host languages, and our group has used them to
develop in�uential DSLs for software speci�cation and testing (QuickCheck [8], hardware
description and veri�cation (Lava [7]), and generic functional programming (PolyP [22]).

Our concrete goals for this project are to improve the DSL-based technology we have
developed, to use it to address new and important problems, and to combine exciting
science with actual industrial impact. Speci�cally, we plan to focus our e�orts in two
research themes: DSL design, and Testing and veri�cation.

Research area overview

Functional programming Functional programming�programming (mostly) without
side-e�ects, and with powerful features such as �rst-class functions�dates back almost
as far as high-level languages themselves. Academic interest soared after John Backus
devoted his Turing Award lecture to a functional programming manifesto [6], and the area
has remained active ever since. We have contributed throughout this long history, with
for example an early seminal paper [19], and an important rôle in the design of Haskell,
perhaps the most in�uential functional programming language today [18, 26].

In recent years, functional programming can truly be said to have come of age; it has
become a �disruptive technology� in telecoms [1], �nance [4], and many other areas. A
good overview of the industrial applications of functional programming can be obtained



J. Hughes, 580715�2110, Putting FP to work using DSLs 3

from the Commercial Users of Functional Programming workshop series, now part of the
ICFP Developer Conference. With the Erlang web site serving over two million requests
per month, and Microsoft's decision to market their functional language F# actively [28],
the growth of �real world� functional programming seems certain to continue.

Domain speci�c languages Many applications of functional languages use them to
de�ne domain speci�c languages for particular problems. DSLs have become popular tools
for solving many software development problems [29], but they �t particularly well with
functional programming. The key idea is to embed the domain speci�c language within a
host language as a library, so that the syntax of the DSL consists of function calls to the
library in the host language, resulting in a domain speci�c embedded language (DSEL), a
term coined by Hudak [17]. This simple idea enables the DSL to inherit the infrastructure
of the host language, and dramatically simpli�es the implementation. The idea �ts well
with functional programming because binding constructs in the DSL can be implemented
via higher-order functions in the host language; the availability of λ-expressions in the host
language is critical.

While many DSELs are essentially interpreted by the host language, this is by no means
essential�DSELs can be compiled to another target language by constructing the library
so that the evaluation of a DSEL program in the host language actually generates code in
another. This idea was introduced by Leijen and Meijer [23], who coined the name domain

speci�c embedded compiler, and further re�ned by Elliott et al [13].

Our own work on DSELs has followed these lines as well. Lava [7], our tool for hardware
design, is a domain-speci�c embedded compiler with several back-ends�including for ex-
ample VHDL for FPGA generation and SMV for automated model checking. Two more
recent examples are Wired [5], a hardware description language with �ne-grained control
over layout, and Obsidian [27], a GPU programming language that provides �ne-grained
control over threads and memory layout. Both are high-level programming languages, but
o�er control over important low-level details. We have also developed a DSEL for climate
impact modelling [24]. At present it is a speci�cation language that can be used to manu-
ally create high-performance climate-impact models in C++ from high-level speci�cations.

Random testing Our random testing tool QuickCheck [8] is another example of a
DSEL�in this case, the embedded language is a subset of predicate calculus used to de�ne
properties of a program, and the e�ect of executing the DSEL is to test the properties
in randomly generated cases. Thus we test code directly against a formal speci�cation.
Originally developed in Haskell, the idea is so attractive that it has been emulated in many
other languages. A reimplementation in Erlang is the basis for Hughes' start-up Quviq AB,
whose product is used in particular in the telecoms industry [2].

Random testing in general has enjoyed a renaissance in recent years, with a dedicated
workshop founded in 2006 [21]. Particularly in�uential is Godefroid et al's DART [15],
which combines random testing with constraint solving to reach parts of the code that
would otherwise be hard to cover. The combination of random testing with model-checking



4 Appendix A

techniques is found in many recent tools, such as CUTE, EXE, SMART and PEX. However,
these are of necessity �white box� methods�they take the structure of the code under test
into account�while our focus is rather on �black box� testing in which the structure of
the code under test is unknown. (Telecoms systems are often built using a combination of
programming languages, making language-speci�c white box methods di�cult to apply).

One of QuickCheck's most valuable features is shrinking, which automatically reduces
failed test cases to a minimal failing example. This separates the �signal� (that causes a
test to fail) from the �noise� in random test data, and is crucial to speedy fault diagnosis.
Shrinking is related to Hildebrandt and Zeller's delta-debugging, a simpli�cation method
for failing cases which has been successfully applied in many di�erent contexts [16].

Our EU FP7 project ProTest is based to a large extent on QuickCheck; under its auspices
we are developing property-based testing methods for concurrent programs.

Speci�cation Property-based testing inherently requires a formal speci�cation of the
code under test: the properties that we test themselves comprise a (usually partial) spec-
i�cation. One of the di�culties of applying the idea is that speci�cations of real software
are almost always informal, often ambiguous, and real software developers do not always
�nd it easy to formalize them. This motivates speci�cation mining from existing code�the
dynamic discovery of speci�cations from test results. For object-oriented code Daikon [14]
discovers invariants which appear to hold at internal program points�for example, that
a pointer is non-null, or a linear relationship between index variables. Much less attention
has been devoted to discovering the external speci�cation of an API.

Automated Reasoning Tools A DSEL is often equipped with multiple back ends,
some of which perform analyses whose results are fed back to the source level. Particularly
useful are analyses based on automated reasoning, that answer questions about the domain
speci�c code posed in a particular logic�for example propositional, temporal, or �rst-order
logic. Therefore, such reasoning tools are an important element of our work on DSELs.

Our SAT-solver MiniSAT [12] is a multiple winner of the yearly world-wide SAT competi-
tion, and is today the �standard� open-source SAT-solver that researchers in the �eld either
base their work on or compare themselves with. MiniSAT is also the basis of many of our
other automated reasoning tools; notably Tip, a symbolic model checker that recently won
the BMC part of the model checking competition HWMCC, and Paradox [10], a �nite
model �nder for �rst-order logic, that has won the relevant category of CASC, the World
Championship on Theorem Proving, every year since its inception in 2003.

Project description

Our proposal falls into two related parts: DSL Design and Testing and Veri�cation.



J. Hughes, 580715�2110, Putting FP to work using DSLs 5

DSL design Our e�orts in this area comprise the design of speci�c DSLs for particular
problem areas on the one hand, and the development of a DSL toolkit on the other.

We have already begun developing a DSL for digital signal processing (DSL4DSP), with
support from Ericsson, which directly addresses the problems discussed in the introduction.
This particular DSL has several apparently con�icting purposes. It must �rst of all be a
speci�cation language, enabling communication and algorithm design exploration�one of
Ericsson's major aims is to produce algorithm descriptions that are independent of their
�nal hardware-dependent implementations. To support this, we need analysis methods and
cost models that work on DSL descriptions, enabling the rapid exploration of choices such
as data layouts in memory or the use of tables. Users will later likely generate and examine
C for a particular platform, but it is important also to support higher level analyses, to
encourage a true raising of abstraction level. We aim to make this speci�cation language
look very like a subset of native Haskell�but generate optimised C from it, which will
demand very clever implementation strategies! We must, in addition, develop methods
that assist the user in thinking about and controlling the e�ects of caches, while bearing
in mind that the language should later be extended for use in multicore programming.

The second purpose is to enable generation of optimised implementations for particular
hardware, while supporting later re-partitioning. We will develop a battery of DSL com-
pilation techniques, including new fusion methods enabling high quality code generation
(IFA project application, Axelsson). We will explore the use of dynamic programming
and search in mapping kernel algorithms to a DSP that provides particular opportuni-
ties for parallelism (multiple ALUs or other accelerators, VLIW) (VR project application,
Sheeran). This includes developing ways to model the DSP itself, and thus builds on our
previous experience in hardware description. It is vital, also, to develop new methods of
relaying information from code generation back to the DSL source, so that the user can
understand the relationship between the generated C and the higher level description.

The key to success in developing this kind of DSL is understanding what is best automated,
and what the user should control explicitly. Instead of relying on an increasingly clever
compiler to optimise a �xed language, we aim to extend the DSL to capture the critical
design decisions a�ecting performance of the �nal code, combining high and low levels in
one description. Case studies and real-world examples must guide us here�capturing and
elucidating the necessary abstractions is an important aspect of DSL design.

We are also developing DSLs in other application areas: GPU programming (Obsidian),
high level hardware modelling (with Intel), and climate impact modelling [24]. The latter is
just a speci�cation language at present; there is as yet no automated connection to the C++
codes that climate impact researchers use to evaluate their hypotheses. We aim to make
this connection, extending the DSL with a back-end which can generate high-performance
climate-impact models from high-level speci�cations.

Our experience of designing many di�erent DSLs has shown us that similar problems
arise in many DSL designs. We believe it is now time to generalise their solutions into
usable libraries for building DSLs. Our previous work on Observable Sharing [9], which
enables a DSL-compiler to detect the internal structure of programs, and Arrows [20], a



6 Appendix A

powerful generalization of monads, can be seen as examples of such libraries. Currently, we
are capturing other common patterns we see in our DSLs as general libraries, such as: the
concept of abstract �boxes� with typed inputs and outputs that can be connected (to model
modular programs); the concept of �virtual� data structures (such as arrays) that only exist
conceptually to the programmer, but are simpli�ed away during program generation; and
handling variable binding, with the aim of inspecting functions as �rst-class values. We
would also like to tackle the perennial problem of generating meaningful error messages
from embedded DSLs. The aim is to make a toolkit for building DSLs, as a collection of
libraries that each solves a challenging problem in DSL design and implementation.

One important feature of many DSLs is that they permit more far-reaching analysis of
domain-speci�c programs, than a general purpose language can support. Here, we will
continue to use automated reasoning tools to reason about functional correctness properties
of programs. Tools we are continuously developing for this are MiniSAT (for propositional
logic), Tip (which lifts MiniSAT to temporal logic), and Paradox and Equinox (which
lift MiniSAT to �rst-order logic). For DSLs in data-heavy domains such as DSP, we
need to develop automated reasoning tools in logics in which one can easily express data
manipulation. One obvious choice is to use �rst-order logic, but this constitutes a challenge:
How can one provide quick and useful feedback to questions posed in a logic which is only
semi-decidable? We have recently developed the novel concept of approximation model

which may be used to attack precisely this situation, and we are keen to put this hypothesis
to the test and develop this idea further.

The longer term goal is programming methods that enable the combination of a higher
level of abstraction with the control of those �ne details that need to be under the control
of the programmer. This goal is made concrete by the choice of telecoms programming as
an application area in which both individual DSLs and theories and methods for DSL con-
struction can be tested on concrete, demanding case studies. Our approach is compatible
with the Berkeley �view� [3], in which programming methods and auto-tuning for standard
motifs (groups of related algorithmic problems) are developed.

Testing and veri�cation Our goals in this part of the project are to place property-
based testing on a �rmer theoretical foundation, to improve the e�ectiveness of random test-
case generation, to aid in the construction of speci�cations, and to evaluate the e�ectiveness
of �property-�rst development�.

QuickCheck can be thought of as a DSL for program properties, whose interpretation is
by automatic testing. Yet a big part of its appeal is that the properties also have a logical
meaning and can be seen as a formal logical speci�cation of the program as well. Any
given property can usually be expressed in many di�erent, but logically equivalent ways.
However, these may behave quite di�erently as automated tests�some of them might not
even be testable at all! Thus, it is desirable to have a way of reasoning about not only
the logical properties of a speci�cation, but also its testability properties. We have begun
to develop a testing logic, which helps in comparing the testability of logically equivalent
speci�cations of programs, and may lead to �optimal� ways of testing a given speci�cation.



J. Hughes, 580715�2110, Putting FP to work using DSLs 7

Random testing is critically dependent on good generation of test data, which can require
considerable ingenuity. The task is not only to ful�ll the required preconditions, but also
to attain a distribution of tests that maximises the probability (per unit of test e�ort)
of �nding a bug. For example, suppose one of a set of random tests has a probability p
of revealing a bug each time it is run, while the others will always succeed�but we know
nothing about which test may fail. We could choose to �bet� on one of the tests, and devote
all of our testing e�ort to that one, increasing our chances of �nding the bug quickly if
our bet is right�but the best strategy is provably to distribute test e�ort evenly across all
the available tests. Finding this best strategy in general will improve the e�ectiveness of
random testing�but it is challenging to do so, because it depends on factors such as how
likely each code fragment is to be buggy, which may depend, for example, on who wrote
it! Our strategy is to de�ne a DSL for users to express test priorities, then generate test
data with an optimal distribution based on those priorities. So far, we have investigated
the best weighting of transitions in a �nite state machine testing library. The diagram
shows the result of applying our present heuristic to a simple locker state machine, given
that the lock() transition is prioritized ten times as highly as the others. Note that the
unlock() transition must also be followed often�even though it is not prioritized�if tests
are to contain many calls of lock(). This kind of interaction between di�erent states
makes weight assignment by hand very hard in larger cases. The problem is related to
NP-complete problems in network �ow graphs, and much work remains to be done�both
in re�ning the optimization goal function, and in �nding more e�cient approximation
algorithms to �nd high quality solutions.

Even though we are engaged in �black box� testing, there is
often some code-centered information available�code cover-
age or pro�ling information, for example. We aim to extend
QuickCheck to take advantage of such information. We al-
ready have a prototype tool which uses QuickCheck to gener-
ate aminimal test suite that achieves the same code coverage
as a long sequence of random tests; such a test suite might be
used in conjunction with random tests to ensure that parts
of the code that are hard to reach with random data, are
nonetheless tested fairly often. We plan to extend this idea to adapt the distribution of
random tests, to optimize the bug detection probability as discussed above.

One of the biggest problems in applying property-based testing in practice, is that devel-
opers �nd it hard to formulate properties. One way to ease this is to de�ne domain speci�c

speci�cation languages (such as the �nite state machine library mentioned above). We plan
to relate such DSSLs to the UML models popular within Ericsson. Note that modelling
does not obviate the need for testing�indeed, Executable UML [25] is gaining ground, in
part because models can be validated by testing before the software itself is built. Testing
requires a separate speci�cation that the model can be tested against; errors are revealed by
inconsistencies between two di�erent descriptions of the same thing. Together with Roga-
rdt Heldal (Chalmers), we are planning a collaboration with Toni Siljamäki at Ericsson to



8 Appendix A

investigate QuickCheck testing of Executable UML models.

Another enticing goal is to derive speci�cations automatically from the software itself. Such
speci�cations can yield insight into the software's behaviour, they can be used for regression
testing as the software evolves, and (if they are derived by testing) may actually reveal
bugs! We have developed a prototype tool which can suggest algebraic speci�cations for
library APIs, by using QuickCheck to test all conceivable algebraic equations between terms
up to a certain depth, �ltering out the equations that do not hold, and ending up with a
�complete� set of equations. This sounds expensive, but we use smart data structures to
battle the complexity of the problem. Our initial results are very promising�for example,
we automatically discover laws such as merge h (insert x h1) = insert x (merge h h1)
about heaps. But how far can we take this idea? The equations we generate today have
to be universally true; can we make them more useful and more applicable by generating
conditional equations? The equation generation can be seen as a way of providing feedback
about a library implementation; what happens when the implementation contains bugs?

Finally, property-based testing appeals to us as scientists�because of its focus on formal
speci�cations, and its immediate feedback when speci�cations are violated. We believe
that code can be developed faster and better, when properties are formulated together with,

or ahead of, the code they apply to. But how do we know? Studies of test-driven develop-
ment using unit tests have yielded somewhat mixed results. We plan to carry out similar
experiments to investigate this hypothesis.

Group Description, Grants and Collaboration

Our group consists currently of the four PIs (Claessen, Hughes, Jansson, Sheeran), who
together supervise six doctoral students and four postdocs. We collaborate closely with
Arts and Svensson at the Applied IT department; they are also funded by the ProTest
project1. Hughes' current VR project is also closely related to the topic of ProTest and
of this application2. Three new VR projects are sought by the co-applicants, all closely
related to this proposal3.

With the support of Sweden's Strategic Research Foundation and Ericsson Software Re-
search, Sheeran is spending a year working on a DSL for DSP programming at Ericsson
in Göteborg4. As one result of this, Anders Persson from Ericsson, already an active col-
laborator, has applied to VR for an ID-project to pursue an industrial doctorate in our

1ProTest: �Property-based Testing� (FP7-ICT-2007.1.2, started 2008, www.protest-project.eu), also
involves Ericsson, the Universities of Kent, She�eld, and Madrid, and two other smaller companies. Our
group's part focusses on testing concurrent programs.

2�Language terms as test data for property-based testing� (VR 2009�2011), focusses on generating good
random test data for telecoms protocols from the grammars contained in the RFCs that de�ne them.

3Claessen: �QuickSpec: Generating Speci�cations from Programs� (2010�2012); Jansson: �E�cient
Generic Programs and Speci�cations� (2010�2012); Sheeran: Context-aware program generation: an ap-
plication of functional programming (2010-2012).

4DSL4DSP: a project funded by Ericsson and SSF; involves 3 Ericsson sites, Chalmers and ELTE
University in Budapest. The intention is that the resulting language should become a de-facto standard,
used by DSP vendors as well as their customers.



J. Hughes, 580715�2110, Putting FP to work using DSLs 9

group, to develop a DSL for the control part of base station signal processing. Axelsson,
who is currently an Ericsson-funded postdoc on the DSL4DSP project, has applied for an
IFA-project to continue this work. This strong link to Ericsson gives us unparalleled ex-
pertise in the problems of real-world DSP implementation. Moreover, Hughes is part-time
CEO at Quviq AB, our associated company, which sells a version of QuickCheck primarily
to customers in the telecoms market; this gives us insights into the problems of testing
telecoms control software, and provides a direct route for technology transfer.

We enjoy high visibility internationally: three of us are members of the IFIPWorking Group
WG2.8 on Functional Programming, and Jansson is a member of WG2.1 on Algorithmic
Languages and Calculi. Satnam Singh (from Microsoft Research) and Carl Seger (from
Intel Strategic CAD Labs) are Visiting Faculty, interacting strongly with our group.

We collaborate locally with Sands' group in language based security, and Stenström's group
in multicore systems. Both groups provide valuable expertise in the area of this application.
Moreover, together these three groups were selected to represent our department in the
large �Chalmers Initiative on ICT� proposal recently submitted to Vinnova.

Signi�cance

Strategic relevance is guaranteed by a close collaboration with industry�indeed, the prob-
lems we have chosen to address are strongly in�uenced by this collaboration.

Scienti�cally, we will contribute to, among others: functional programming�by demon-
strating new, important applications; domain speci�c languages�by developing a toolkit
that makes new DSELs easier to develop; automated reasoning�by further development of
our prize-winning proof tools; digital signal processing�by developing a high-level language
that o�ers both portability and performance; test automation�by improving the e�ective-
ness of random testing; automated software engineering�by mining external speci�cations
from systems.

Finally, the di�culty of programming multicore systems is one of the grand challenges
facing computer science today; much of our DSL work addresses this challenge directly.

References

[1] J. Armstrong. A history of Erlang. In HOPL III: Proc. of the third ACM SIGPLAN conf. on History
of programming languages, pages 6�1�6�26. ACM, 2007.

[2] T. Arts, J. Hughes, J. Johansson, and U. Wiger. Testing telecoms software with quviq QuickCheck.
In ERLANG '06: Proc. of the 2006 ACM SIGPLAN workshop on Erlang, pages 2�10. ACM, 2006.

[3] K. Asanovic et al. The landscape of parallel computing research: A view from Berkeley. Technical
Report UCB/EECS-2006-183, EECS Department, University of California, Berkeley, Dec 2006.

[4] L. Augustsson, H. Mansell, and G. Sittampalam. Paradise: a two-stage DSL embedded in haskell. In
ICFP '08: Int. Conf. on Functional programming, pages 225�228. ACM, 2008.

[5] E. Axelsson, K. Claessen, and M. Sheeran. Wired: wire-aware circuit design. In Correct Hardware
Design and Veri�cation Methods, volume 3725 of LNCS. Springer, 2005.

[6] J. Backus. Can programming be liberated from the von neumann style?: a functional style and its
algebra of programs. Commun. ACM, 21(8):613�641, 1978.



10 Appendix A

[7] P. Bjesse, K. Claessen, M. Sheeran, and S. Singh. Lava: Hardware design in Haskell. In Int. Conf.
on Functional Programming, ICFP, pages 174�184. ACM, 1998.

[8] K. Claessen and J. Hughes. QuickCheck: A lightweight tool for random testing of Haskell programs.
In ICFP'00: Int. Conf. on Functional Programming, pages 268�279. ACM, 2000.

[9] K. Claessen and D. Sands. Observable sharing for functional circuit description. In In Asian Com-
puting Science Conference, pages 62�73. Springer Verlag, 1999.

[10] K. Claessen and N. Sörensson. New techniques that improve MACE-style model �nding. In Proc. of
Workshop on Model Computation (MODEL), 2003.

[11] N. A. Danielsson, J. Gibbons, J. Hughes, and P. Jansson. Fast and loose reasoning is morally correct.
In POPL'06, pages 206�217. ACM Press, 2006.

[12] N. Eén and N. Sörensson. An extensible SAT-solver. In The SAT Conference, 2003.
[13] C. Elliott, S. Finne, and O. de Moor. Compiling embedded languages. Journal of Functional Pro-

gramming, 13(2), 2003.
[14] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S. Tschantz, and C. Xiao. The

Daikon system for dynamic detection of likely invariants. Sci. Comp. Prog., 69(1-3), 2007.
[15] P. Godefroid, N. Klarlund, and K. Sen. Dart: directed automated random testing. In Proc. of the

2005 ACM SIGPLAN conf. on Programming language design and implementation. ACM, 2005.
[16] R. Hildebrandt and A. Zeller. Simplifying failure-inducing input. In ISSTA '00: Proc. of the 2000

ACM SIGSOFT int. symposium on Software testing and analysis, pages 135�145. ACM, 2000.
[17] P. Hudak. Modular domain speci�c languages and tools. In P. Devanbu and J. Poulin, editors, Proc.:

Fifth Int. Conf. on Software Reuse, pages 134�142. IEEE Computer Society Press, 1998.
[18] P. Hudak, J. Hughes, S. P. Jones, and P. Wadler. A history of Haskell: being lazy with class. In HOPL

III: Proc. of the third ACM SIGPLAN conf. on History of programming languages. ACM, 2007.
[19] J. Hughes. Why functional programming matters. Comput. J., 32(2):98�107, 1989.
[20] J. Hughes. Generalising monads to arrows. Science of Computer Programming, special issue on

Mathematics of Program Construction, 37(1-3):67�112, 2000.
[21] RT '06: Proc. of the 1st int. workshop on Random testing. ACM, 2006.
[22] P. Jansson and J. Jeuring. PolyP � a polytypic programming language extension. In POPL'97:

Principles of Programming Languages, pages 470�482. ACM Press, 1997.
[23] D. Leijen and E. Meijer. Domain speci�c embedded compilers. In In Proc. of the 2nd Conf. on

Domain-Speci�c Languages, pages 109�122. ACM Press, 1999.
[24] D. Lincke, P. Jansson, M. Zalewski, and C. Ionescu. Generic libraries in C++ with concepts from

high-level domain descriptions in Haskell: A DSL for computational vulnerability assessment. In
IFIP Working Conf. on Domain Speci�c Languages, LNCS, 2009. In Press.

[25] S. J. Mellor and M. Balcer. Executable UML: A Foundation for Model-Driven Architectures. Addison-
Wesley, 2002.

[26] S. Peyton Jones and J. Hughes, editors. Haskell 98 � A Non-strict, Purely Functional Language.
Available from http://www.haskell.org/definition/, Feb. 1999.

[27] J. Svensson, M. Sheeran, and K. Claessen. Obsidian: A Domain Speci�c Embedded Language for
Parallel Programming of Graphics Processors. In post-symposium proceedings of 20th International
Symposium on the Implementation and Application of Functional Languages (2008), in press, 2009.

[28] D. Syme. Why Microsoft is investing in functional programming. In S. Peyton Jones and J. Grundy,
editors, Commercial Users of Functional Programming, 2008.

[29] A. van Deursen, P. Klint, and J. Visser. Domain-speci�c languages: an annotated bibliography.
SIGPLAN Not., 35(6):26�36, 2000.


