
Saint: an API-generic Type-safe Interpreter?

Maximilian Algehed1orcid, Patrik Jansson1orcid,
Sólrún Halla Einarsdóttir1orcid, and Alex Gerdes1,2orcid

1 Chalmers University of Technology, Gothenburg, Sweden,
{algehed,patrikj,slrn}@chalmers.se,

2 University of Gothenburg, Gothenburg, Sweden,
alex.gerdes@cse.gu.se

Abstract. Typed functional programming allows us to write interesting
programs without sacrificing type safety. Programs that expose its API
to an open world, however, are faced with the problem of dynamic type
checking. In Haskell, existing techniques that address this problem, such
as Typeable and Dynamic, are often closed and difficult to extend. We
have constructed an extensible Haskell library for describing APIs using
annotated type representations. As a result, API calls can be interpreted
in a type-safe manner without extra programming effort. In addition, the
user has full control over the universe of allowed types, which helps to
catch misconceptions in an early stage. We have applied our technique
to connect a real-world DSL (GRACe) to a JavaScript GUI.

Keywords: Domain Specific Language · Interpreter · Lambda Calculus

1 Introduction

A large number of so-called Embedded Domain Specific Languages (EDSLs) have
been implemented in Haskell for various purposes [16,1,7,11]. Embedding DSLs
in a typed language like Haskell has many advantages, one of the major ones
being that it removes the need for the implementation of tools like parsers and
type-checkers. However, embedded languages require a full Haskell environment
in order to be compiled and executed.

A Haskell EDSL may be used as part of a larger toolchain, in combination
with other programs that may not be written in Haskell and may even be written
in an untyped language. This necessitates communication between the Haskell
EDSL and the untyped world. For instance, we may want to expose functions
from an EDSL as an API to an untyped frontend, accessible through a web
interface, and allow users to write programs using those functions which can be
sent to our Haskell backend for execution.

For example, consider a small Haskell EDSL to build pictures using a set of
functional geometry (FunGeo) combinators, as described by Henderson in [8,9].
An overview of the system can be seen in Figure 1. The FunGeo EDSL consists

? Post-print of paper from TFP 2018, LLNCS version to appear, published by Springer.

https://orcid.org/0000-0002-1666-9994
https://orcid.org/0000-0003-3908-2843
https://orcid.org/0000-0002-5445-3975
https://orcid.org/0000-0002-7445-211X

Fig. 1. A high-level overview of the system

of a datatype for images and some image combinators. We have added natrec to
make it a bit more powerful and to make sure more than one type is involved.

beside :: Image → Image → Image
above :: Image → Image → Image
over :: Image → Image → Image -- overlay
rot :: Image → Image -- 90 degrees
fish :: Image -- a simple fish to start from
data Image -- implemented as just a list of splines

natrec :: Image → -- base case
(Int → Image → Image)→ -- step function
Int → Image -- main input and output

String

untyped Expr

typed Expr

DSL value (Image)

parse

typeInference

interpret

We would like to expose the ability to program safely in
FunGeo where “safe” means “type correct”; we want to
rule out raw expressions like beside 3 fish or fish fish.
We do this in the following manner:

1. Parse the user-written program into an untyped
expression (and find syntax errors).

2. Infer the types of the expression (find type errors).
3. Interpret the typed expression as a DSL value.
4. Send the result of the DSL computation back.

An example program and its output is shown in Fig. 2.

let fish2 = flip (rot45 fish) in
let fish3 = rot (rot (rot fish2)) in
let t = over fish (over fish2 fish3) in
let u = over (over fish2 (rot fish2))

(over (rot (rot fish2))
fish3) in

let qrt = \p.\q. \r.\s.
above (beside p q)

(beside r s) in
let cyc = \p. qrt p (rot p)

(rot (rot p))
(rot (rot (rot p))) in

let side = natrec blank (\n.\img.
qrt img img

(rot t) t) in
let corn = natrec blank (\n.\img.

qrt img (side n)
(rot (side n)) u) in

let bes3 = \a.\b.\c. besideS 1 2 a (beside b c) in
let abo3 = \a.\b.\c. aboveS 1 2 a (above b c) in
let nnet = \p.\q.\r. \s.\t.\u. \v.\w.\x. abo3 (bes3 p q r)

(bes3 s t u)
(bes3 v w x) in

let sqrl = \n. nnet (corn n) (side n) (rot (rot (rot (corn n))))
(rot (side n)) u (rot (rot (rot (side n))))
(rot (corn n)) (rot (rot (side n))) (rot (rot (corn n))) in

scale 1000 (sqrl 3)

Fig. 2. The Escher Woodcut — Square Limit — source code and output.

1.1 APIs as values

In order to expose our API of DSL functions to users, we describe it as a value
of the type Library , which is a type-annotated lookup table containing an Item
describing each function. An Item contains a function’s name, its semantics, and
a representation of its type. The name can be used for parsing, the semantics
for interpretation, and the type representation for type checking. Our running
example, the FunGeo EDSL, is easily described as a Library value.

data Library = Library String [Item]
data Item = Item String TypedValue

funGeoLib :: Library
funGeoLib = Library "funGeo" (funGeoCore ++ funGeoMore)
funGeoCore, funGeoMore :: [Item]
funGeoCore =

[Item "beside" $ beside ::: image 99K image 99K image
, Item "above" $ above ::: image 99K image 99K image
, Item "over" $ over ::: image 99K image 99K image
, Item "rot" $ rot ::: image 99K image]

Here, triple colon (:::) is used to pair a semantic value with a representation of
its type. The type representations are built from the base type representations
(image, int), the function type combinator (99K), and Tag = (#) :: String →
TypeRep → TypeRep. Our TypeRep is explained, and extended, in Section 2.

We use tags to annotate parts of the API with appropriate metadata, which
can be used to display the API in the frontend.

funGeoMore = [Item "natrec" $
natrec ::: "Recursion over Nat" #

image 99K
"Step function" # (int 99K image 99K image) 99K
int 99K image

, Item "fish" $ fish ::: "Base case" # image]

1.2 Type representations

At the core of the Library datatype is the type TypedValue which stores a value
and a representation of its type. A first implementation version could be this:

data TypedValue where (:::) :: a → TypeRep a → TypedValue

Note that the type a is existentially quantified, which means that we can store
values of different types in, say, a list of typed values, ex1 :: [TypedValue]:

ex1 = [((1+) :: Int → Int) ::: int 99K int , (3 :: Int) ::: int]

The representation of types, TypeRep is also parameterised by an a, the role of
this parameter is to ”keep track” of the type a TypeRep represents:

data TypeRep a where
TRImage :: TypeRep Image
TRInt :: TypeRep Int
TRFun :: TypeRep a → TypeRep b → TypeRep (a → b)
TRList :: TypeRep a → TypeRep [a]

image = TRImage; int = TRInt ; (99K) = TRFun
infixr 1 99K

The presented type representation and typed values are closely related to the
Haskell library Dynamic together with its TypeRep type family [17]. We found
that Dynamic and TypeRep almost, but not quite, provide the functionality we
need. Their TypeRep is “deep” in that it represents the full type, and support
for it is also built-in to GHC. However, their technique is rigid: TypeRep can-
not be extended with extra constructs. We extend it to store tags in the type
(representation) tree by introducing a variant with the Tag constructor.

data TypeRep t where
TInt :: TypeRep Int
TFun :: TypeRep a → TypeRep b → TypeRep (a → b)
Tag :: String → TypeRep a → TypeRep a

int = TInt ; (99K) = TFun; (#) = Tag

Usually this kind of type family is used to represent singleton types, where each
(type) family member TypeRep t contains just one proper value tr :: TypeRep t
which is the representation of t . In our case, due to the Tags, there are more
variants possible. It would be possible to represent these tags at the type level,
but we wanted to keep the library reasonably simple.

1.3 Towards a type-safe interpreter

We can define a generic parser to a “raw” syntax tree (using a datatype for
untyped expressions). Using our Library as a parameter we then infer types and
annotate the syntax tree provided to us by the parser to make typed expressions.
In both of these two phases we discard “bad” inputs to make sure the interpreter
only receives well-typed expressions to evaluate.

The combination of these phases is what we call a “type-safe interpreter”:
you can throw any input term at it but only the (syntax- and) type-correct
inputs are run. The interpreter function itself still uses an Either type to report
errors (in case of the Env does not cover all variables used, for example) but this
should always succeed when called in combination with the type checker.

parse :: String → Maybe UExpr
typeCheck :: Library → UExpr → Maybe Expr
interpret :: Env → Expr → Maybe TypedValue
libToEnv :: Library → Env
run :: Library → String → Maybe TypedValue

This simplified view is expanded and details are explained in following sections.

1.4 Contributions

In this paper we make the following contributions:

– We construct a framework (called Saint) for exposing a typed API to untyped
world (including a parser, type checker, and an interpreter).

– We provide a version of Typeable supporting tags (annotations in the TypeRep).
– We implement a method of evaluating programs in our framework in a type-

safe way as internal Haskell values.
– We present case studies which show the application of our techniques to

DSLs used in real-world applications.

All the code for our framework, Saint, and the FunGeo case study can be found
online3. The Saint framework satisfies the following criteria:

– It is lightweight: we do not need an entire Haskell compiler to interpret code.
– It is reusable: new functionality can easily be added to a DSL.
– Interpretation of programs is type-safe.
– The results of interpreting client programs are available to the server as

Haskell values, even when the denotation is a function.
– Type information and annotations are correctly exposed to the DSL user.

3 The Saint library: https://github.com/GRACeFUL-project/Saint, and the case
study: https://github.com/GRACeFUL-project/SaintCaseStudy.

https://github.com/GRACeFUL-project/Saint
https://github.com/GRACeFUL-project/SaintCaseStudy

2 Typed values

Using our framework we can expose the API of an EDSL to external clients
and can safely evaluate programs, expressed in terms of the exported API, to
Haskell values. The two main components in our framework are: type reflection
(representing types as values) and type-safe dynamic typing. This section shows
how we have developed our type reflection implementation. The implementation
is inspired by Typeable [14] but our approach has some advantages: it is extensi-
ble, general, and remains under the control of the programmer rather than being
built in to the compiler.

We continue from the TypeRep GADT presented in the introduction, but
call it TRep for brevity. The basic idea behind this encoding is not new, and
variants of it appear for example in Eisenberg and Weirich [6]. We will now
set up some infrastructure needed for the “type-safe interpreter”: type equality,
type representation equality, coercion, and computation with “typed values”.
The infrastructure consists of the following datatype and functions:

data a ≡ b
(?=) :: TRep a → TRep b → Maybe (a ≡ b)
coerce :: TypedValue → TRep a → Maybe a
app :: TypedValue → TypedValue → Maybe TypedValue

At first we define these functions using the basic TRep type representation from
Section 1 but we will later base them on refined and generalised TypeReps.

An important feature of Typeable [14] is that we can determine equality
between types at runtime, based on type reflection. Like Typeable, we repre-
sent equality between types by a GADT — the single constructor Refl supplies
the evidence that two types are equal. Pattern-matching on Refl convinces the
compiler that two types are in fact the same as shown in the example foo below.

data a ≡ b where Refl :: a ≡ a

foo :: (a ≡ Int)→ a → Int
foo Refl x = x

Having defined a notion of equality between types, we can now implement equal-
ity checks between type representations:

(?=) :: TRep a → TRep b → Maybe (a ≡ b)
TInt ?= TInt = return Refl
Tag t ?= t ′ = t ?= t ′

t ?= Tag t ′ = t ?= t ′

TFun t0 t1 ?= TFun t0 ′ t1 ′ = do
Refl ← t0 ?= t0 ′

Refl ← t1 ?= t1 ′

return Refl
?= = Nothing

We can construct a TypedValue, as we did before, to hide the type of an expres-
sion using existential quantification.

data TypedValue where (:::) :: a → TRep a → TypedValue

We combine a value of type a with its type representation TRep a and can sub-
sequently treat that combination as an untyped value. For example, we can store
values of different types in a single list. The type representation in a TypedValue
can be used to ‘escape’ from the existential quantification and allows us to re-
trieve the original (typed) value. The function coerce retrieves the value from a
TypedValue if it matches the given expected type representation.

coerce :: TypedValue → TRep a → Maybe a
coerce (a ::: t0) t1 = do

Refl ← t0 ?= t1
return a

This approach gives us a type-safe version of dynamic typing. In our interpreter
we use the type information in a TypedValue to apply one TypedValue to another,
because we can check if the actual values have matching types.

app :: TypedValue → TypedValue → Maybe TypedValue
app (f ::: TFun a b) (x ::: a ′) = do

Refl ← a ?= a ′

return (f x ::: b)
app = Nothing

2.1 Generalising type representations

A downside of our type representation is that the universe of types, that is the
set of types we can represent, is hard-coded in the TRep datatype. We suffer
from the so-called expression problem [19]: adding more base types (or type
constructors) requires changing both the implementation of TRep as well as
functions working on it, such as (?=). A solution to this problem is to use the
‘datatypes à la carte’-method, which represents a datatype as a co-product of
its constructors [18].

data CoProduct f g a = InL (f a) | InR (g a)

The idea is that f and g are type constructors which each represent an individual
constructor in the type TRep seen previously. For example, we could construct
type representations for Int and Bool as the following datatypes IntT and BoolT :

data IntT a where IntT :: IntT Int

data BoolT a where BoolT :: BoolT Bool

Using these two base type representations we can construct the universe of type
representations that can be either Int or Bool using CoProduct :

type MyTRep a = CoProduct IntT BoolT a

However, constructing values of type TRep Int and TRep Bool is quite cumber-
some, requiring us to make use of the InL and InR constructors as well as BoolT
and IntT . Datatypes à la carte solves this problem by allowing us to construct
a subtyping typeclass which we can use with CoProduct , as shown below:

class f :< g where
inject :: f a → g a
eject :: g a → Maybe (f a)

The code for the simple instances for (:<) is elided:

instance f :< f where -- ...
instance f :< CoProduct f r where
instance {-# OVERLAPPABLE #-} f :< r ⇒ f :< CoProduct l r where

This formulation of (:<) requires the construction of CoProducts to be right-
associated to work correctly, because f :<CoProduct (CoProduct g f) h can not
be made to hold by the instances above. It is also not possible to add another
instance f :< l ⇒ f :< (CoProduct l r) as this would overlap with the last
instance above. Ideally, we would have a disjunctive instance f :< l | f :< r ⇒
f :< (CoProduct l r), but these are not allowed in GHC (and it is not clear
how to resolve such instances). We therefore present the user with a “smart
constructor” for CoProduct in the form of a type family (:+:).

type family f :+: g where
(CoProduct f g) :+: h = CoProduct f (g :+: h)
f :+: CoProduct g h = CoProduct f (g :+: h)
f :+: g = CoProduct f g

Using this smart constructor we can write generic representations, like int and
bool below, to allow us to construct typed values conveniently.

int :: IntT :< tr ⇒ tr Int
int = inject IntT

bool :: BoolT :< tr ⇒ tr Bool
bool = inject BoolT

In order to make use of our new open type universe in TypedValue we need to
alter the type slightly to move from a fixed family TRep (of codes for types) to
a type parameter:

data TypedValue tr where (:::) :: a → tr a → TypedValue tr

We can now use construct typed values in an open manner:

exI :: IntT :< tr ⇒ TypedValue tr
exI = 42 ::: int

We can also use our approach to construct representations for types built from
type constructors like Maybe and (→).

data MaybeT tr a where
MaybeT :: tr a → MaybeT tr (Maybe a)

maybe :: MaybeT tr :< tr ⇒ tr a → tr (Maybe a)
maybe = inject ◦MaybeT

data FunT tr a where
FunT :: tr a → tr b → FunT tr (a → b)

(99K) :: FunT tr :< tr ⇒ tr a → tr b → tr (a → b)
a 99K b = inject (FunT a b)

We can use these representations to construct more interesting TypedValues:

exMI :: (IntT :< tr ,MaybeT tr :< tr)⇒ TypedValue tr
exMI = Just 42 ::: maybe int

exFI :: (IntT :< tr ,FunT tr :< tr)⇒ TypedValue tr
exFI = (λx → x + 1) ::: int 99K int

Note that each of these examples (exI , exMI , exFI) encodes in its type constraint
the “minimum requirements” of a universe for them to fit into.

2.2 Type equality for generalised TypedValues

Deciding equality between types is an important part of what makes our TypedValues
useful, so we need a way to do so in this generalised setting. What we would
prefer, following our previous discussion (in Sect. 2), is a function coerce ::
TypedValue tr → tr a → Maybe a. Recall that the implementation of the coer-
cion function coerce shown previously relied on computing a value Refl of type
a ≡ a by comparing the type representation in the TypedValue with the coerced-
to type. In coerce we did this using a function (?=) :: TRep a → TRep b →
Maybe (a ≡ b). We now need to generalise over our type representation, and the
natural way to do this is by using a type class:

class TypeEquality tr where
(?=) :: tr a → tr b → Maybe (a ≡ b)

Next we need to make sure that instances of TypeEquality are modular in the
same way that the construction of type universes is modular. The type equality
should be extensible in the same way the type representation is. The first step to
achieving this is to make sure that CoProducts can be tested for type equality.

instance (TypeEquality f ,TypeEquality g)⇒
TypeEquality (CoProduct f g) where

InL a ?= InL b = a ?= b
InR a ?= InR b = a ?= b

?= = Nothing

We also show how to construct the instances for IntT and MaybeT :

instance TypeEquality IntT where
IntT ?= IntT = Just Refl

instance TypeEquality tr ⇒ TypeEquality (MaybeT tr) where
MaybeT a ?= MaybeT b = do

Refl ← a ?= b
return Refl

Now we can finally define our new and improved version of coerce:

coerce :: TypeEquality tr ⇒ TypedValue tr → tr a → Maybe a
coerce (v ::: a) a ′ = do

Refl ← a ?= a ′

return v

2.3 Constructing universes

What we need next is the ability to construct a value t a to pass to (:::) and
coerce. We might be tempted to define a type like type TypeUniverse = IntT :+:
MaybeT TypeUniverse in order that we may create types TypeUniverse (Maybe Int)
and TypeUniverse (Maybe (Maybe Int)) to serve as type representations. How-
ever, we can’t do that as GHC disallows cyclic type synonyms, so instead we
create a datatype:

newtype Close a = Close ((MaybeT Close :+: IntT) a)

The choice of the name Close is not an accident as the type represents the
closure of the IntT and MaybeT operations for constructing a type universe.
Type equality is easily implemented for Close:

instance TypeEquality Close where
Close a ?= Close b = a ?= b

In order to use our “type formers” int , maybe, etc to construct values of type
Close we need instances of :< for each type of interest.

instance IntT :< Close where
inject = Close ◦ inject
eject (Close t) = eject t

instance MaybeT Close :< Close where
inject = Close ◦ inject
eject (Close t) = eject t

Defining instances like these for every universe we may want to construct can
become quite cumbersome. Based on the fact that Close looks a lot like the fix

point of a type-level function, it’s tempting to write something along the lines of
the following (assuming a slightly more advanced type system than Haskell’s):

data Close f a = Close (f (Close f) a)

instance t :< f (Close f)⇒ t :< Close f where
inject = Close ◦ inject
eject (Close t) = eject t

type MyUniverse = Close (λc → MaybeT c :+: IntT) -- not Haskell

This fails because GHC does not allow lambda abstraction on the type level. We
may then be tempted to use a type synonym instead:

type MakeUniverse u = MaybeT u :+: IntT
type MyBadUniverse = Close MakeUniverse

However, this fails because MakeUniverse is partially applied in the definition
of MyBadUniverse. It would appear there is no good way out of this mess!

But there is: by adding an extra type parameter like the one to MaybeT to
all type representations including CoProduct we can generalise the definition,
and type equality for IntT tr is constructed the same way as before.

data IntT (tr :: ∗ → ∗) a where
IntT :: IntT tr Int

data CoProduct f g (tr :: ∗ → ∗) a = InL (f tr a) | InR (g tr a)

instance TypeEquality (IntT tr) where
IntT ?= IntT = Just Refl

Now we can use our definition of Close to define universes without the recursive
occurrence of Close:

type MyUniverse = Close (IntT :+: MaybeT)

int :: forall tr . IntT tr :< tr ⇒ tr Int
int = inject (IntT :: IntT tr Int) -- a generic type code for Int

value :: Maybe Int
value = coerce (42 ::: int) (int :: MyUniverse Int)

Note that the use of coerce in value requires an instance of TypeEquality for
MyUniverse in order to type check. The core to this instance is the instance of
TypeEquality for our new CoProduct type:

instance (TypeEquality (f tr),TypeEquality (g tr))
⇒ TypeEquality (CoProduct f g tr) where

Because tr is used both in the premise and the conclusion of the instance (much
like in the instance for Close above) we are forced to use the GHC language

extension UndecidableInstances. However, this does not cause any issue as the
search for an instance will terminate when it hits IntT tr or similar instances
which do not need to make use of type equality at tr in order to work.

It is possible to generalise the type formers from the previous section even
further than we have done so far. Namely, it is possible to abstract the definition
of any n-ary type representation. For nullary type formers this is straightforward:

data A0 typ (univ :: ∗ → ∗) a where
A0 :: A0 typ univ typ

instance TypeEquality (A0 typ univ) where
A0 ?= A0 = Just Refl

int :: forall u. A0 Int u :< u ⇒ u Int
int = inject (A0 :: A0 Int u Int)

Unary and binary type formers can be constructed in the same way: here we
show the unary case:

data A1 f univ a where
A1 :: univ a → A1 f univ (f a)

instance TypeEquality univ ⇒ TypeEquality (A1 f univ) where
A1 t ?= A1 t ′ = do

Refl ← t ?= t ′

return Refl

maybe :: A1 Maybe u :< u ⇒ u a → u (Maybe a)
maybe = inject ◦A1

And analogously for the binary case:

data A2 f univ a where
A2 :: univ a → univ b → A2 f univ (f a b)

instance TypeEquality univ ⇒ TypeEquality (A2 f univ) where -- ...

What we have obtained, then, is a general framework in which we can represent
any type, and we have done it all without needing to change the GHC compiler.

2.4 Implementing tags

As previously discussed, we use Tags to annotate our EDSL types with metadata.
To implement tags for our generalised TypedValues, we want a function like:

(#) :: String → Close u a → Close u a

How would we implement (#)? One option is to add an external type former:

data TagT u a where
TagT :: String → u a → TagT u a

(#) :: TagT u :< u ⇒ String → u a → u a
t # s = inject (TagT t s)

But what instance of TypeEquality should we give for TagT? That depends on
what kind of equality we want to consider. If we want it to be the case that two
types are not considered equal unless their tags are equal, we can use:

TagT s a ?= TagT s ′ b = if s 6≡ s ′ then Nothing else a ?= b

However, if we wish for our tags to be transparent so that TypeEquality is in-
dependent of tags, that is, (s # t) ?= t = Just Refl , this is not sufficient. To
achieve that we need be able to compare a Tag to a constructor which is not
a Tag . The simplest way of doing so is to not consider Tag as a separate type
former, but rather introduce a separate notion of metadata, which we achieve
by making Tag part of Close:

data Close f a = Tag String (Close f a)
| Close (f (Close f) a)

instance TypeEquality (t (Close t))⇒ TypeEquality (Close t) where
Tag t ?= t ′ = t ?= t ′

t ?= Tag t ′ = t ?= t ′

Close t ?= Close t ′ = t ?= t ′

(#) :: String → Close t a → Close t a
(#) = Tag

This tagging infrastructure allows us to attach arbitrary information anywhere in
a type representation in the form of a String . Naturally, this could be generalised
to any type of metadata with more structure than a simple type:

data Close f ann a = Tag ann (Close f ann a)
| Close (f (Close f ann) a)

Alongside the appropriate instance of TypeEquality and definition of (#).
This concludes our implementation of type representations. The system is

extensible, yet allows for fine grained control over the type universe in question.
Types can also be annotated with arbitrary information, this feature is particu-
larly useful when exposing EDSLs to the outside world, where different types of
metadata may need to be associated to functions in the EDSL.

2.5 The Saint API

We have presented a number of different encodings of type universes and typed
values. It is time we took a step back and review the final API of Saint. First
we review the generic constructs which form type representations:

data A0 :: (t :: ∗) (univ :: ∗ → ∗) a
data A1 :: (t :: ∗ → ∗) (univ :: ∗ → ∗) a

...
data An :: (t :: ∗ → ...→ ∗) (univ :: ∗ → ∗) a

A0 :: A0 t u t
A1 :: u a → A1 t u (t a)
...
An :: u a → u b → ...→ u x → An t u (t a b ... x)

These type formers assume they are given a universe u. To construct a repre-
sentation of a concrete universe we give a way to tie the knot:

data Close (f :: (∗ → ∗)→ ∗ → ∗) a
type (f :: (∗ → ∗)→ ∗ → ∗) :+: (g :: (∗ → ∗)→ ∗ → ∗) :: (∗ → ∗)→ ∗ → ∗

Using which we can construct a concrete universe:

type MyUniverse = Close (A0 Int :+: A1 Maybe :+: A2 Either)

Elements of the universe can be constructed using smart constructors:

int :: A0 Int u :< u ⇒ u Int
maybe :: A1 Maybe u :< u ⇒ u a → u (Maybe a)
(99K) :: A2 (→) u :< u ⇒ u a → u b → u (a → b)
...

In order to add a new smart constructor we need only use the injection from the
:< type class.

int = inject A0
maybe a = inject (A1 a)
a 99K b = inject (A2 a b)
...

Finally, a library can be created which is polymorphic in the representation of
types:

data Item = Item String (TypedValue u)
data Library u = Library String [Item u]

We can now put everything together to create an example of a very simple
library, containing only addition on integers.

myLibrary :: (A0 Int u :< u,A2 (→) u :< u)⇒ Library u
myLibrary = Library "My Library" [Item "+" ((+) ::: int 99K int 99K int)]

With the library in place we can move on to interpreting programs written in
the DSL.

3 Type-safe interpretation

We use our TypedValues to expose EDSLs to the outside world in a type-safe and
useful way. The previous section showed how we can gather a group of functions
into a Library . In this section we construct a type-safe function (interpret),
which interprets a string as a program written in a small functional language
and defined in terms of the Library functions. We start with the definition of a
datatype for expressions, which we limit to the essentials for discussion purposes.
The type UExpr (U for “untyped”) contains constructors for variables (UVar),
application (UApp), and lambda-abstraction (ULam).

data UExpr where
UVar :: String → UExpr
UApp :: UExpr → UExpr → UExpr
ULam :: String → UExpr → UExpr

If we attempt to write an interpreter for expressions of this type we quickly run
into trouble, as it’s unclear how we should interpret the lambda case (ULam):

interpret :: (TypeEquality tr ,A2 (→) tr :< tr)
⇒ Env tr → UExpr → Maybe (TypedValue tr)

interpret en e = case e of
UVar v → en v
UApp f x → do

f ′ ← interpret en f
x ′ ← interpret en x
app f ′ x ′

ULam v e →
let a = -- should be the type of v

b = -- should be the type of e
fun x = fromJust (interpret (extend en v (x ::: a)) e)

in return (fun ::: a 99K b)

type Env tr = String → Maybe (TypedValue tr)

The first case in the definition is self-explanatory. The second case uses the app
function below to apply one TypedValue to another.

app :: forall u. (TypeEquality u,A2 (→) u :< u)
⇒ TypedValue u → TypedValue u → Maybe (TypedValue u)

app (f ::: funType) (x ::: arg) = do
A2 from to :: A2 (→) u f ← eject funType
Refl ← from ?= arg
return (f x ::: to)

The third case is where things get interesting. How do we interpret lambdas?
Clearly, lambda expressions should be interpreted as functions from some type
a to some type b, but how should we choose a and b? The problem is that we

do not have access to the type of the result or the argument of the lambda.
There is no fundamental reason why this has to be the case, type inference for
the simply typed lambda calculus with monomorphic constants is known to be a
solved problem! From an untyped expression and a library we can easily derive
a typed expression. Below is an encoding of the typed expressions:

data Expr tr where
Var :: String → Expr tr
App :: Expr tr → Expr tr → Expr tr
Lam :: String → tr a → Expr tr → tr b → Expr tr

A value Lam x ra e rb represents a lambda expression (λx → e) :: a → b where
ra :: tr a and rb :: tr b. Using a standard type inference algorithm, like algorithm
W [5], it is possible to infer the type annotations in an Expr tr from just an
untyped UExpr and a Library tr . With type annotations in place, we can fix our
interpreter to act correctly in the case for Lam.

interpret :: (TypeEquality u,A2 (→) u :< u)
⇒ Env u → Expr u → Maybe (TypedValue u)

interpret en e = case e of
Var v → en v
App f x → do

f ′ ← interpret en f
x ′ ← interpret en x
app f ′ x ′

Lam v a e b →
let fun x = let en ′ = extend en v (x ::: a)

Just res = interpret en ′ e
in fromJust (coerce res b)

in return (fun ::: a 99K b)

Note the use of fromJust in the last row of the definition of fun. This is
an ostensibly partial operation, but we claimed to have provided a type-safe
interpreter! Not to worry, the interpreter always returns a Just v given a correct
environment and a well-typed expression e. This means that we can safely use
interpret in a context where expressions are type-checked before we call it. This
means that we can build a safe function run :: Complete tr ⇒ Library tr →
String → Maybe (TypedValue tr), where we have:

type Complete tr = (TypeEquality tr ,A2 (→) tr :< tr)

We elide the functions for parsing and type checking but present run:

parse :: String → Maybe UExpr
typeCheck :: Complete tr ⇒ Library tr → UExpr → Maybe (Expr tr)
libToEnv :: Library tr → Env tr

run :: Complete tr ⇒ Library tr → String → Maybe (TypedValue tr)
run l s = parse s >>= typeCheck l >>= interpret (libToEnv l)

It would be possible to take one further step towards manifest type-safety: we
could add type-indices to Expr and Env to obtain an interpreter without Maybe.
If we ignore variable binding this would result in an interpreter in the style of
eval1 :: E a → a for a type indexed expression type E . With binding, we would
also need a parameter for the environment: eval2 :: env → E env a → a. But
in our full setting, with parameterisation also over the universe, we decided this
would take us too far from the intended application and leave it as future work.

4 Case study: GRACe

The GRACe language [11] is a Haskell EDSL for working with diagrammatic sys-
tems of components implemented by constraint logic programming. The GRACe
DSL is used in the GRACeFUL RAT [15] (Rapid Assessment Tool), which is
a tool for graphical composition of maps representing causal relationships be-
tween parts of complex systems, such as systems describing urban design and its
sensitivity to weather. The rapid assessment tool consists of a Haskell backend
connected to a constraint solver and a web-based visual editor frontend [13]. The
tool exposes a library of functions written in the DSL to the user as graphical
widgets.

Fig. 3. A GRACe graph representation in the visual editor frontend.

The function widgets have parameter fields for the user to specify the function
parameters, as well as input and output ports that can be connected to send the
output of one function as the input to another. Using these widgets, the user
constructs a program in the form of a graph. The graph is submitted to the
Haskell backend using HTTP, at which point it is interpreted as a program in
the GRACe EDSL.

The tool makes use of Typed Values to retain type information for the li-
brary functions exposed to the frontend which allows type-safe interpretation of
the programs sent back from the frontend. The library contains a Typed Value

representing each of the exposed functions, along with metadata concerning the
visual presentation of the function on the frontend. When the program graph
is submitted to the backend the appropriate library functions are applied to
parameters provided by the user, which are communicated in a type-safe man-
ner using Typed Values. The resulting value is sent back to the frontend to be
displayed to the user.

Using Typed Values we can prevent users from causing type errors by making
mistakes like giving function parameters of the wrong type or sending the output
of one function as the input to a function with a different input type. We use the
Typed Value tags to annotate the library of functions with metadata to specify
how the functions should be presented on the frontend.

5 Related work

In [17], Peyton Jones et al. present Dynamic and TypeRep, implemented with
built-in support in GHC. We use a similar technique but can unfortunately
not use their TypeRep directly because we want support for “labelling” of type
representations to help communication with the external world. They support
an open universe of all Haskell types rather than our “extensible but closed”
universes.

In his lecture notes on “Typed Tagless Final Interpreters” [12], Kiselyov
presents a technique (or design pattern) for representing typed higher-order lan-
guages (DSLs) in a typed metalanguage (Haskell), along with type-preserving
interpretation. It is a powerful technique, but does not deal with connecting to
the untyped world as we do.

Baars and Swierstra [2] present an approach for dynamic typing that is similar
to the standard libraries Dynamic and Typeable, but they abstract over the
actual type representation using an type class. Whereas they abstract over the
type representation, we show how to control the range of type representation
using an universe of types. We can extend an existing universe of types, instead
of supplying a new instance for a type representation type class. The paper
by Baars and Swierstra [2] also shows how to construct a typed evaluator that
can interpret expressions using dynamic typing. The main difference is that the
supported expressions need to be tagged with their types. We don’t need to have
such annotations since we infer the type of an expression.

Cheney and Hinze [4] use the same type representation encoding, but focus
their library more on generic programming, rather than dynamic type checking.
Similarly Bahr and Hvitved [3] present a compositional encoding of datatypes
with an emphasis on recursion schemes. They do not focus their effort on encod-
ing type representations, however.

6 Conclusions and future work

We have presented a framework for exposing Haskell EDSLs to the untyped
world and interpreting the resulting EDSL programs in a type-safe manner.

We have shown how this framework is useful in a small example (Henderson’s
functional geometry EDSL) as well as a larger real-world case study (GRACe).
The mechanisms for achieving this have all been implemented in Haskell without
special compiler support.

Future work Currently our technique only supports exposing monomorphic APIs;
supporting polymorphic APIs is noted as future work. Achieving this would be
both useful and technically interesting. To the best of our understanding, repre-
senting polymorphic types without special compiler support is a non-trivial task.
Being able to expose polymorphic EDSLs using our technique would significantly
increase the versatility of the language.

It would also be interesting to explore the extent to which our technique
for adding annotations could be used to add semantically rich annotations. The
tagging mechanism that allows us to attach additional documentation to a type
in our TypedValues could be extended to express contracts in the style of Hinze et
al. [10], stating properties that the attached value must satisfy. Adding contracts
could potentially greatly increase the utility of the framework for the EDSL
writer. Being able to specify pre- and post-conditions is useful both for the
EDSL writer and the end user.

It would be interesting to evaluate the Saint library both in terms of us-
ability (can new users easily apply it to their EDSLs) and efficiency (how much
overhead, in memory and time, is used by Saint).

Finally it would be a natural direction to continue up the ladder of type
safety to a type indexed expression datatype and a tag-less interpreter.

Acknowledgements

This work was partially supported by the projects GRACeFUL (grant #640954)
and CoeGSS (grant #676547), which have received funding from the European
Union’s Horizon 2020 research and innovation programme. It was also partially
supported by the Wallenberg Artificial Intelligence, Autonomous Systems and
Software Program (WASP) funded by Knut and Alice Wallenberg Foundation.

References

1. Axelsson, E., et al.: Feldspar: A domain specific language for digital signal pro-
cessing algorithms. In: 8th IEEE/ACM International Conference on Formal Meth-
ods and Models for Codesign (MEMOCODE 2010). pp. 169–178. IEEE (2010).
https://doi.org/10.1109/MEMCOD.2010.5558637

2. Baars, A.I., Swierstra, S.D.: Typing dynamic typing. In: Proceedings of
the Seventh ACM SIGPLAN International Conference on Functional Pro-
gramming. pp. 157–166. ICFP ’02, ACM, New York, NY, USA (2002).
https://doi.org/10.1145/581478.581494

3. Bahr, P., Hvitved, T.: Compositional data types. In: Proceedings of the seventh
ACM SIGPLAN workshop on Generic programming. pp. 83–94. WGP ’11, ACM,
New York, NY, USA (2011). https://doi.org/10.1145/2036918.2036930

https://doi.org/10.1109/MEMCOD.2010.5558637
https://doi.org/10.1145/581478.581494
https://doi.org/10.1145/2036918.2036930

4. Cheney, J., Hinze, R.: A lightweight implementation of generics and dynamics. In:
Proceedings of the 2002 ACM SIGPLAN Workshop on Haskell. pp. 90–104. Haskell
’02, ACM, New York, NY, USA (2002). https://doi.org/10.1145/581690.581698

5. Damas, L., Milner, R.: Principal type-schemes for functional programs. In: Pro-
ceedings of the 9th ACM SIGPLAN-SIGACT Symposium on Principles of pro-
gramming languages. pp. 207–212. POPL ’82, ACM, New York, NY, USA (1982).
https://doi.org/10.1145/582153.582176

6. Eisenberg, R.A., Weirich, S.: Dependently typed programming with singletons. In:
Proceedings of the 2012 Haskell Symposium. pp. 117–130. Haskell ’12, ACM, New
York, NY, USA (2012). https://doi.org/10.1145/2364506.2364522

7. Heeren, B., Jeuring, J., Gerdes, A.: Specifying rewrite strategies for in-
teractive exercises. Mathematics in Computer Science 3(3), 349–370 (2010).
https://doi.org/10.1007/s11786-010-0027-4

8. Henderson, P.: Functional geometry. In: Proceedings of the 1982 ACM Symposium
on LISP and Functional Programming. pp. 179–187. LFP ’82, ACM, New York,
NY, USA (1982). https://doi.org/10.1145/800068.802148

9. Henderson, P.: Functional geometry. Higher-Order and Symbolic Computation
15(4), 349–365 (Dec 2002). https://doi.org/10.1023/A:1022986521797

10. Hinze, R., Jeuring, J., Löh, A.: Typed contracts for functional programming. In:
Hagiya, M., Wadler, P. (eds.) Functional and Logic Programming, 8th Interna-
tional Symposium, FLOPS 2006. LNCS, vol. 3945, pp. 208–225. Springer (2006).
https://doi.org/10.1007/11737414 15

11. Jansson, P., et al.: D4.2: A domain specific language for GRACeFUL con-
cept maps (2017), https://github.com/GRACeFUL-project/DSL-WP/raw/master/
deliverables/d4.2.pdf, deliverable of the GRACeFUL project (640954)

12. Kiselyov, O.: Typed tagless final interpreters. In: Gibbons, J. (ed.) Proceed-
ings of the 2010 International Spring School Conference on Generic and In-
dexed Programming. pp. 130–174. SSGIP’10, Springer, Berlin, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32202-0 3

13. Krishna Murthy, D.R., Wiens, V., Lohmann, S., Asmat, R.: D3.3: VA EDA tool
prototype (2017), deliverable of the GRACeFUL project. FETPROACT-1-2014
Grant No 640954

14. Lämmel, R., Peyton Jones, S.: Scrap your boilerplate: A practical design pattern for
generic programming. In: Proceedings of the 2003 ACM SIGPLAN International
Workshop on Types in Languages Design and Implementation. pp. 26–37. TLDI
’03, ACM, New York, NY, USA (2003). https://doi.org/10.1145/604174.604179

15. Lohmann, S.: D2.5: CRUD RAT prototype (2017), deliverable of the GRACeFUL
project. FETPROACT-1-2014 Grant No 640954

16. Mestanogullari, A., Hahn, S., Arni, J.K., Löh, A.: Type-level web APIs with
Servant: An exercise in domain-specific generic programming. In: Proc. 11th
ACM SIGPLAN Workshop on Generic Programming. pp. 1–12. ACM (2015).
https://doi.org/10.1145/2808098.2808099

17. Peyton Jones, S., Weirich, S., Eisenberg, R.A., Vytiniotis, D.: A reflection on types.
In: Lindley, S., et al. (eds.) A List of Successes That Can Change the World: Essays
Dedicated to Philip Wadler on the Occasion of His 60th Birthday, pp. 292–317.
Springer (2016). https://doi.org/10.1007/978-3-319-30936-1 16

18. Swierstra, W.: Data types à la carte. J. Funct. Program. 18(4), 423–436 (Jul 2008).
https://doi.org/10.1017/S0956796808006758

19. Wadler, P.: The expression problem (1998), appeared on the Java-genericity
mailing list. Available here: http://homepages.inf.ed.ac.uk/wadler/papers/

expression/expression.txt.

https://doi.org/10.1145/581690.581698
https://doi.org/10.1145/582153.582176
https://doi.org/10.1145/2364506.2364522
https://doi.org/10.1007/s11786-010-0027-4
https://doi.org/10.1145/800068.802148
https://doi.org/10.1023/A:1022986521797
https://doi.org/10.1007/11737414_15
https://github.com/GRACeFUL-project/DSL-WP/raw/master/deliverables/d4.2.pdf
https://github.com/GRACeFUL-project/DSL-WP/raw/master/deliverables/d4.2.pdf
https://doi.org/10.1007/978-3-642-32202-0_3
https://doi.org/10.1145/604174.604179
https://doi.org/10.1145/2808098.2808099
https://doi.org/10.1007/978-3-319-30936-1_16
https://doi.org/10.1017/S0956796808006758
http://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt
http://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt

	Saint: an API-generic Type-safe Interpreter

