
Appendix A

Research Program

Main objectives

Our long term goal is to create systems (theories, programming languages, libraries and
tools) which make it easy to develop generic software together with proofs of its correctness.

The main goal of this research project is to improve the theory and implementation of
strongly typed, generic functional programming.

• On the theoretical side we introduce dependent types to be able to express generic
proofs as well as programs and to provide a solid semantic foundation for generic
functional programming.

• On the implementation side we use staged compilation and partial evaluation tech-
niques to generate more efficient code.

We will also compare the approaches to generic programming in the object oriented and
the functional programming paradigms.

Research area overview

The ability to name and reuse common patterns of computation (as functions, objects, etc.)
is a very important aspect of every programming language. In strongly typed languages this
is tightly coupled to different kinds of polymorphism. The polymorphism in object oriented
languages is based on subtyping and inheritance, while functional languages use parametric
polymorphism. Both these kinds of polymorphism have been thoroughly studied and
extensively used in the last few decades. Recently, with the increased use of user-defined
datatypes, the need for a third kind of polymorphism (to type algorithms which work for
different datatypes) has emerged. The project proposal forms an important part of the
ongoing investigation and implementation of this third kind of polymorphism.

1



Bilaga A. Patrik Jansson, 720311-7515 2

Many algorithms have to be implemented over and over again for different datatypes,
either because datatypes change during the development of programs, or because the same
algorithm is used for several datatypes. Examples of such algorithms are equality tests,
traversals and pretty printers. Polytypic programming is a paradigm for expressing such
algorithms.

In contrast to parametric polymorphic functions whose instances all do the same thing,
the instances of a polytypic function are different, but share a common structure. Each
polytypic instance can be obtained by instantiating a template algorithm with (the struc-
ture of) a datatype. In functional programming this structure is a datatype definition [5],
while in object oriented programming this structure is a class graph [7].

Strategic relevance

The research on generic functional programming is an important part of the ongoing quest
for higher level programming languages (shorter development times) and more reliable
software (strong type and proof systems).

Compared with traditional generic programming (C++ templates), already normal func-
tional programming provides much of that power through parametric polymorphism and
higher order functions. Generic functional programming (polytypic programming) takes
this even further and offers a number of benefits:

Reusability: Polytypism extends the power of polymorphic functions to allow classes of
related algorithms to be described in one definition. Thus polytypic functions are
very well suited for building program libraries.

Adaptivity: Polytypic programs automatically adapt to changing datatypes. For exam-
ple, even after adding or removing a constructor of a datatype, the same polytypic
function can still be applied. This adaptivity reduces the need for time consuming
and boring rewrites of trivial functions and eliminates the associated risk of making
mistakes.

Applications: Some algorithms are polytypic by nature: maps and traversals, pretty
printing and parsing, data compression, term rewriting, etc. Each of these can be
described informally in a datatype independent way, and with polytypic programming
this informal description can be turned into a formal definition.

Provability: More general functions means more general proofs. If we consider polytypic
proofs, then each of the earlier benefits obtains an additional interpretation: we get
reusable proofs, adaptive proofs, and new proofs of properties of printing and parsing,
packing, term rewriting etc.



Bilaga A. Patrik Jansson, 720311-7515 3

Related work

Some international projects and research groups work on polytypic programming (without
dependent types) under different names:

• Generic functional programming [2] in Oxford (Richard Bird et al.) and in Notting-
ham (Roland Backhouse et al.). They have done foundational theoretical work in a
relational setting.

• The Generic Haskell project in Utrecht led by Johan Jeuring extends the purely
functional language Haskell with type indexed functions [5].

• Adaptive OOP [7], developed by Karl Lieberherr, is the closest relative to polytypic
programming in the object oriented programming world. The work on Adaptive OOP
starts from a different paradigm compared with generic functional programming, but
the general ideas are the same. Much can be learned on both sides by combining and
comparing what has been found about polytypic programming in the two paradigms.

• The work on Intensional Type Analysis [4], pioneered by Harper and Morrisett, ap-
plies polytypic programming to compilation of functional languages. They aim at
efficient code by specialization and later work (Cornell, Princeton, Yale) has applied
polytypic ideas to obtain type-safe garbage collection [10, 8].

• Barry Jay et al. in Sydney work on a theory of polytypism called shape polymor-
phism [6]. They are implementing a language called FISh2 with support for polytypic
definitions.

The connection between polytypic programming and dependent types has been investi-
gated by Pfeifer & Rueß [9] (for some simple cases) and Dybjer & Setzer [3] (theoretical
foundations).

Project description

The project consists of four parts:

• Type systems and semantics of polytypic programming

Two systems for generic functional programming are PolyP, developed at Chalmers,
and its successor Generic Haskell, developed in Utrecht. The two system implemen-
tations have different limitations and strengths. PolyP is good at type checking and
type inference but accepts only a limited language. Generic Haskell covers the whole
language but lacks type checking and type argument inference. Both systems can



Bilaga A. Patrik Jansson, 720311-7515 4

express and instantiate generic (Haskell) functions but neither system can deal with
proofs or dependent types.

This subproject aims at a new formulation of the type system and the semantics of
generic functional programming based on (a restriction of) dependent types instead
of (an extension of) Haskell types.

Using dependent types in the semantics also suggests that we should extend polytypic
definitions to use dependent types as well (see the following subproject).

• Type-indexed proofs (in collaboration with Peter Dybjer and Marcin Benke.)

Polytypic programming is about defining families of functions indexed by types. Tra-
ditionally the functions have been in sugared lambda calculus (Haskell) and the types
have been recursive sum-of-product types. Dependent type theory gives a much more
expressive language with types parametrized by values. The goal of this subproject
is to investigate how the the expression language and the type index language of
normal polytypic programming can be extended to a dependently typed language.

Extending the expressions with dependently typed constructs seems relatively straight-
forward and increases expressibility significantly — we can express polytypic proofs
of properties of polytypic functions. The challenge is to find a suitable extension of
the dependent type system to be able to express these polytypic properties. Here
we build on recent work by Dybjer and Setzer [3] on finite axiomatizations of a very
general framework for dependent type theory, including so called inductive-recursive
definitions. They use essentially a type of codes for datatypes definable in their
system. Since they allow definition by recursion on this type of codes it is possible
to define very general polytypic programs and proofs. We will study the practical
implications of this work for polytypic programming with dependent types.

• More efficient implementation of polytypism (in collaboration with John Hughes
and Johan Jeuring)

The current implementations of generic functional programming are prototypes de-
signed for experimentation rather than efficient code generation. The last year has
seen a rapid development of the Generic Haskell implementation and the time for
more demanding applications has come.

Applying partial evaluation, deforestation and staged programming techniques to the
instances generated from a polytypic definition should result in optimized code as
good as (or better) than hand-written low level code. The goal of this subproject is to
bring theory and tools from partial evaluation to good use in implementing polytypic
programming. Combining the local expertise in partial evaluation (Hughes) and
polytypic programming (Jansson) with the implementation experience of the Generic
Haskell team (Utrecht) we are confident that we can make rapid progress.



Bilaga A. Patrik Jansson, 720311-7515 5

• Polytypic programming and OOP in collaboration with Karl Lieberherr, Boston.

This subproject will focus on how ideas from generic functional programming can be
mapped to Adaptive OOP and vice versa.

Qualitatively we know that when the type argument is made more general, the set of
expressible polytypic functions becomes smaller (some functions do not make sense
for the more complicated types). Conversely, by restricting the type argument to a
certain class of types (for example, expression trees) we can express more polytypic
functions (for example unification and rewriting). We will investigate these parts of
the design space in more detail to find the boundaries of polytypic expressibility.

We plan to work on the four subprojects in parallel over a period of four years, with Benke
focusing on “Type-indexed proofs”. The division of work between the main applicant and
the PhD student will naturally vary as the student will need some time to “get into” the
project. Some parts are likely to be carried out by Masters Thesis students, and in fact,
two projects in this area have already started.

Preliminary findings

We have developed a theory for functional polytypic programming, shown how to construct
and prove properties of polytypic algorithms, presented the language extension PolyP
for implementing polytypic algorithms in a type safe way, and implemented a number
of applications in PolyP. The applications include a library of basic polytypic building
blocks, PolyLib and two larger applications of polytypic programming: rewriting and data
conversion. In both applications papers a number of polytypic properties are proved “by
hand”. In the proposed subproject “Type-indexed proofs” we will be able to express these
(and other) proofs as constructive proof objects in a formal system.

PolyP extends a functional language (a subset of Haskell) with a construct for defining
polytypic functions by induction on the structure of user-defined datatypes. The polytypic
definitions are type checked and the generated instances are guaranteed to be type correct.
We have implemented a compiler that translates PolyP programs to Haskell. The experi-
ence gained from experimenting with the PolyP implementation and the successor (Generic
Haskell) forms the basis for the subproject “More efficient implementation of polytypism”.

A PolyP function can be applied to values of a large class of datatypes, but some restrictions
apply. The implementation requires that a polytypic function is applied to values of regular
datatypes only. A one-parameter datatype D a is regular if it is not mutually recursive,
contains no function spaces, and if the argument of the datatype constructor on the left-
and right-hand side in its definition are the same. (The collection of regular datatypes still
contains many conventional recursive datatypes, such as lists and different kinds of trees.)
The reason for these restrictions is to stay close to the Haskell type system and ensure



Bilaga A. Patrik Jansson, 720311-7515 6

polytypic functions can be type checked. To remove some of these restrictions is the aim
of the subproject “Type systems and semantics of polytypic programming”.

Patrik Jansson, two masters students and Marcin Benke (Chalmers) have already started
exploring the subproject “Type-indexed proofs”. The preliminary results have shown that
generic functional programming can be modeled using dependent types. A joint project
application (Chalmers, Durham, Nottingham and Utrecht) about programming with de-
pendent types is being drafted for the European Sixth Framework Programme.

Initial work on “Polytypic programming and OOP” has been carried out during Patrik
Jansson’s two month visit to Boston, 2001. I have also been in contact with Johan Larsson
(a PhD student at KTH, Sweden) who has a strong background in OOP and functional
programming and who is working on polytypic programming from this combined perspec-
tive.

International collaboration

I feel that even in this world of reliable and inexpensive means of long distance electronic
communication, personal meetings between researchers are still very important for the
advancement of the field. I have had very good experience from my research visits to
different departments and from the visits of other researchers to Chalmers. I therefore
apply for money so that I and my PhD student can travel to meet researchers at other
sites and for inviting other researchers to visit us to do collaborative work.

The series of Workshops on Generic Programming (WGP) was started by Johan Jeuring
and myself with the first meeting in Marstrand in 1998. The second workshop was held
in Portugal, 2000 and the third is held the Netherlands, 2002. I would like to organize a
WGP in Sweden, 2004, as part of this research program.

International contacts relevant for this application:

• I am involved in the Generic Haskell project in Utrecht (led by Johan Jeuring) in
which we combine the experiences from the PolyP system with Hinze’s new ideas
about type indexed functions (extensions to handle multiple type arguments, mutually
recursive datatypes). I have visited Utrecht for shorter times at least six times the
last few years and Johan Jeuring has also visited me at Chalmers about that often.

• I visited Karl Lieberherr, Northeastern, Boston for ten weeks in the spring of 2001.
Karl is working on the closest relative to polytypic programming in the object oriented
world: Adaptive OOP. This visit was very interesting and gave a lot of ideas for cross-
fertilizing the research on functional and object oriented polytypism.

• I have had recent discussions with Altenkirch (Nottingham), McBride (Durham),
Jeuring (Utrecht), Benke (Chalmers) and Dybjer (Chalmers) about generic pro-
gramming and dependent types [1]. We are now working on writing a joint project



Bilaga A. Patrik Jansson, 720311-7515 7

application (Chalmers, Durham, Nottingham and Utrecht) for the European Sixth
Framework Programme.

• I visited Paul Hudak and his functional programming group at Yale for three months
in 1998. There I got in contact with Zhong Shao and the FLINT project (an inter-
mediate language for compilation of strongly typed languages). The FLINT team
are experimenting with polytypic programming and dependent types.

• I have good contacts with the generic functional programming groups in Nottingham
(Roland Backhouse et al.) and Oxford (Richard Bird et al.). I visited them for two
months in 1998.

Equipment

The project uses standard computing equipment at the computing science department at
Chalmers and a laptop to be purchased for the project (to simplify travel, seminars and
work from home).

Research group members and other funding

Both the main applicant (Patrik Jansson) and a PhD student (Ulf Norell, starting 1st
of September 2002) would be paid 80% from the proposed project and 20% from the
department of computing science, Chalmers/GU. (These 20% correspond to time for de-
partmental activities — mainly pedagogical work.) Marcin Benke would be paid 25% for
working mainly on the subproject “Type-indexed proofs”.

Patrik Jansson and Marcin Benke are currently employed as assistant professors (forskaras-
sistenter) at Chalmers.

The following list describes the current funding situation:

• Assistant professor Patrik Jansson: 100% Chalmers (research time 65%)

• PhD student Ulf Norell: starting Sept. 2002 (research time 80%)

• Assistant professor Marcin Benke: 100% Chalmers (research time 65%)

A recent grant application to SSF (decision due in June 2002) is related to the current
application:

Combining Verification Methods in Software Development, main applicants:
Thierry Coquand, Peter Dybjer, John Hughes, and Mary Sheeran

Jansson and Benke would be paid 50% from SSF (2003–2004) if that project should be
fully funded.



Bilaga A. Patrik Jansson, 720311-7515 8

Bibliography

[1] Thorsten Altenkirch and Conor McBride. Generic programming within dependently
typed programming. In Jeremy Gibbons and Johan Jeuring, editors, Proceedings of
the IFIP WG2.1 Working Conference on Generic Programming 2002. Kluwer, July
2002. Accepted; to appear. http://www.dur.ac.uk/c.t.mcbride/generic/.

[2] Richard Bird, Oege de Moor, and Paul Hoogendijk. Generic functional programming
with types and relations. Journal of Functional Programming, 6(1):1–28, 1996.

[3] Peter Dybjer and Anton Setzer. A finite axiomatization of inductive and inductive-
recursive definitions. In Jean-Yves Girard, editor, Proceedings 4th Int. Conf. on Typed
Lambda Calculi and Applications, TLCA’99, L’Aquila, Italy, 7–9 Apr 1999, volume
1581 of LNCS, pages 129–146, Berlin, April 1999. Springer-Verlag.

[4] Robert Harper and Greg Morrisett. Compiling polymorphism using intensional type
analysis. In 22nd Symposium on Principles of Programming Languages, POPL ’95,
pages 130–141, 1995.

[5] Ralf Hinze. A new approach to generic functional programming. In POPL’00, pages
119–132. ACM Press, 2000.

[6] C. Barry Jay. A semantics for shape. Science of Computer Programming, 25:251–283,
1995.

[7] Karl J. Lieberherr. Adaptive Object-Oriented Software: The Demeter Method with
Propagation Patterns. PWS Publishing Company, Boston, 1996. ISBN 0-534-94602-
X.

[8] Stefan Monnier, Bratin Saha, and Zhong Shao. Principled scavenging. In Proc. ACM
SIGPLAN ’01 Conf. on Prog. Lang. Design and Implementation, pages 81–91, New
York, 2001. ACM Press.

[9] Holger Pfeifer and Harald Rueß. Polytypic proof construction. In Y. Bertot, G. Dowek,
A. Hirschowitz, C. Paulin, and L. Théry, editors, Proc. 12th Intl. Conf. on Theorem
Proving in Higher Order Logics, number 1690 in LNCS, pages 55–72. Springer-Verlag,
1999.

[10] Daniel C. Wang and Andrew W. Appel. Type-preserving garbage collectors. In POPL
2001: The 28th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pages 166–178, 2001.



Appendix B

Curricula Vitae

B.1 Curriculum Vitae: Patrik Jansson

Assistant Professor in Computing Science
Chalmers University of Technology
patrikj@cs.chalmers.se

Born: March 11, 1972

Education and Other Experience

July 2001 – present: Assistant Professor in Computing Science, Chalmers.

Aug 2000 – June 2001: PostDoc (“Doktorstjänst”) in Computing Science, Chalmers.

1995–2000: Successful graduate studies at the Computing Science Department, Chalmers
resulting in the Ph.D. thesis, Functional Polytypic Programming, 2000. Advisor: Jo-
han Jeuring, Utrecht.

1992–1995: Undergraduate studies in Engineering Physics, Chalmers. I completed a
M. Sc. in Engineering Physics in March 1995, graduating almost two years before
schedule as the best student of my year and was awarded the University Medal (John
Ericsson Medal).

1991–1992: Military service: hand picked (as one out of five per year in Sweden) for 15
months of special education in mathematics, statistics and cryptographic analysis.

Pedagogical Experience

Pedagogical courses: “Teaching and Learning in Higher Education” (2001–2002),
“Teaching, Learning and Presentation” (1997), father of Julia Jansson (1999 – present).

Graduate teaching: “Functional Polytypic Programming” (2000).

9



Bilaga B. Patrik Jansson, 720311-7515 10

Undergraduate teaching Masters project student supervision (2001, 2002), Databases
(2000, 2001), Programming Languages (2000, 2001), Imperative Programming in Ada
(1998, 1997), Introductory Programming in Haskell and Ada (1996, 1995), Program-
ming in Modula 2 (1995), Numerical Analysis (1994), Programming in C (1990).

Research Collaboration and Committee Work

Spring 2001: Research visit (2 months) to Northeastern University, Boston.

2000–2001: On the program committee of Haskell Workshop, 2001.

Spring 2000: On the program committee of Workshop on Generic Programming, 2000.

1995–2000: Several shorter research visits to Utrecht, the Netherlands.

1997–2000: Hosted several visits to Chalmers by Johan Jeuring (Utrecht), Barry Jay
(Sydney), Doaitse Swierstra (Utrecht) and Mark Jones (OGI).

Autumn 1998: Research visit (2 months) to Oxford University Computing Laboratory,
UK.

Summer 1998: On the organizing committee of Mathematics for Program Construc-
tion 1998.

Spring 1998: Research visit (3 months) to the Department of Computer Science, Yale,
USA.

Peer Review Duty

Referee on a number of occasion for journals, conferences and workshops, including Journal
of Functional Programming, ACM Transactions on Programming Languages and Systems,
Mathematics of Program Construction, International Conference on Functional Program-
ming, Typed Lambda Calculi and Applications, Workshop on Generic Programming and
Workshop on Advanced Separation of Concerns.

Awards Received

Represented Sweden in the International Mathematics Olympiad (1991) and the Inter-
national Physics Olympiads (1991). Winner of the Swedish National Physics Olympiad
(1991). Received the John Ericsson medal for outstanding scholarship, Chalmers, 1996.

Obtained travel grants from “Magnus Bergvalls Stiftelse” (2001), “Wenner-Gren Foun-
dation” (2000), “Knut och Alice Wallenbergs Stiftelse” (2000, 1999) and “Adlerbertska
Research Foundation” (1999, 1998, 1997).



Bilaga B. Patrik Jansson, 720311-7515 11

References

Roland Backhouse, University of Nottingham, UK, Roland.Backhouse@Nottingham.ac.uk
Richard Bird, Oxford University, UK, Richard.Bird@comlab.ox.ac.uk
Barry Jay, University of Technology, Sydney, Australia, cbj@socs.uts.edu.au
Johan Jeuring, Utrecht University, the Netherlands, johanj@cs.uu.nl
Paul Hudak, Yale University, USA, paul.hudak@yale.edu
Karl Lieberherr, Northeastern University, USA, lieber@ccs.neu.edu

B.2 Curriculum Vitae: Marcin Benke

Family name: Benke
First name: Marcin
Born: March 2, 1969, Warsaw, Poland
Present position: Assistant Professor

Department of Computer Science
Chalmers Univeristy of Technology
e-mail: marcin@cs.chalmers.se

Education — scientific degrees:

• M.Sc.: (with honours) Faculty of Mathematics, Informatics and Mechanics, War-
saw University, 1992, thesis A compiler and programming environment for a lazy
functional language (in Polish).

• Ph.D. (with honours) Faculty of Mathematics, Informatics and Mechanics, Warsaw
University, 1998, thesis Complexity of type reconstruction in programming languages
with subtyping, advisor: Prof. Jerzy Tiuryn.

Employment:

• Since Oct 2001 — Assistant Professor, Chalmers University of Technology, Gothen-
burg, Sweden

• Oct 1998–Sep 2000 — Assistant Professor, Institute of Informatics, Warsaw Univer-
sity, Poland

• Oct 1992–Sep 1998 — Researcher, Institute of Informatics, Warsaw University, Poland



Bilaga B. Patrik Jansson, 720311-7515 12

Longer scientific visits

• Cambridge University Computer Laboratory, Cambridge, UK, May–Aug 1996 —
EUROFOCS Research Fellow.

• Department of Computing Sciences, Chalmers University of Technology, Gothenburg,
Sweden, Oct 2000–Sep 2001 - Postdoctoral Fellow.

Scientific activities

My main research interests lie in the area of functional and object-oriented languages. In
the years 1992-1997 my research concentrated on various forms of subtyping and constuct-
ing computationally feasible systems of type reconstruction with subtyping. The results
from this period are collected in my PhD thesis. After my PhD I extended my interests
towards polymorphic subtyping; some results about predicative polymorphic subtypes are
outlined in my 1998 MFCS paper.

Currently I am working in the area of dependent types and proof-editors, focusing on
methods for program verification.

One of the areas of my interest involves automatical proof generation. Preliminary results
in this domain have been presented at the “Strategies 2001” workshop (part of IJCAR’2001)
and the TPHOL’2001 conference.

Another area of my interest is generic programming, in particular, applications of depen-
dent type systems to create generic functions and generic proofs.



Appendix C

Selected Publications

C.1 Selected Publications: Patrik Jansson

Journal articles

Patrik Jansson and Johan Jeuring. Polytypic data conversion programs. Science of
Computer Programming, 43(1):35–75, 2002.

Patrik Jansson and Johan Jeuring. Functional pearl: Polytypic unification. Journal of
Functional Programming, 8(5):527–536, September 1998.

Articles in refereed collections and conference proceedings

P. Jansson and J. Jeuring. Polytypic compact printing and parsing. In Doaitse Swierstra,
editor, ESOP’99, volume 1576 of LNCS, pages 273–287. Springer-Verlag, 1999.

P. Jansson and J. Jeuring. PolyP — a polytypic programming language extension. In
POPL’97, pages 470–482. ACM Press, 1997.

Invited tutorials

R. Backhouse, P. Jansson, J. Jeuring, and L. Meertens. Generic programming: An in-
troduction. In Advanced Functional Programming, volume 1608 of LNCS, pages 28–115.
Springer-Verlag, 1999.

J. Jeuring and P. Jansson. Polytypic programming. In J. Launchbury, E. Meijer, and
T. Sheard, editors, Advanced Functional Programming ’96, volume 1129 of LNCS, pages
68–114. Springer-Verlag, 1996.

13



Bilaga C. Patrik Jansson, 720311-7515 14

Articles in workshop proceedings

Patrik Jansson and Johan Jeuring. A framework for polytypic programming on terms, with
an application to rewriting. In Workshop on Generic Programming. Utrecht University,
2000. UU-CS-2000-19.

P. Jansson and J. Jeuring. PolyLib – a polytypic function library. Workshop on Generic
Programming, Marstrand, June 1998. Available from the Polytypic programming WWW
page.

PhD thesis

Patrik Jansson. Functional Polytypic Programming. PhD thesis, Computing Science,
Chalmers University of Technology and Göteborg University, Sweden, May 2000.

Publicly available implementation

I have also designed and implemented a compiler for the polytypic language PolyP.

Patrik Jansson. The PolyP 1.6 compiler. Available from the Polytypic programming
WWW page http://www.cs.chalmers.se/~patrikj/poly/

C.2 Selected Publications: Marcin Benke

Journal articles

(*) Marcin Benke. Some complexity bounds for subtype inequalities. Theoretical Computer
Science, 212(1–2):3–27, February 1999.

Articles in refereed collections and conference proceedings

(*) Marcin Benke. Efficient type reconstruction in the presence of inheritance. In An-
drzej M. Borzyszkowski and Stefan Sokolowski, editors, Mathematical Foundations of Com-
puter Science 1993, 18th International Symposium, volume 711 of LNCS, pages 272–280,
Springer Verlag 1993.

Marcin Benke. A logical approach to complexity bounds for subtype inequalities. In Petr
Hajek, editor, Gödel’96; proceedings, volume 6 of Lecture Notes in Logic. Springer Verlag,
1996.

Marcin Benke. Predicative polymorphic subtyping. In MFCS: Symposium on Mathemat-
ical Foundations of Computer Science, 1998.



Bilaga C. Patrik Jansson, 720311-7515 15

Marcin Benke. An algebraic characterization of typability in ML with subtyping. In
Thomas, W., editor, Foundations of Software Science and Computation Structures Springer
LNCS, 1578:104–119, 1999.

(*) Marcin Benke. Some tools for computer-assisted theorem proving in Martin-Löf type
theory. in: R. J. Boulton, P. B. Jackson (Eds.) Theorem Proving in Higher Order Logics
— Supplemental Proceedings University of Edinburgh, 2001.

Articles in refereed workshop proceedings

(*) Marcin Benke. Strategies for interactive proof and program development in Martin-Löf
type theory. in: B. Gramlich, M. P. Bonacina (editors) Proceedings of 4th International
Workshop on Strategies in Automated Deduction, Universitá degli studi di Siena 2001.

PhD thesis

(*) Marcin Benke. Complexity of type reconstruction in programming languages with
subtyping. PhD thesis, Faculty of Mathematics, Informatics and Mechanics, Warsaw
University, January 1998.



Appendix I

Prioritised Areas

Informationsteknik

Det moderna samhället blir för vart år som g̊ar allt mer beroende av informationsteknik p̊a
alla niv̊aer. Informationssamhället bygger i allt högre grad p̊a varierad programvara och
standardiserad h̊ardvara. Programsystem blir mer och mer komplicerade samtidigt som
kraven p̊a p̊alitlighet och korrekthet ökar — datorkrascher kan leda till stora ekonomiska
skador och kan även ta människoliv. För att kunna möta korrekthetskraven p̊a dagens och
framtidens komplexa system behövs nya tekniker för utveckling av korrekt programvara.
Vi behöver nya programmeringsspr̊ak för att mera koncist och överblickbart kunna lösa
stora programmeringsproblem och vi behöver nya metoder för verifiering av program och
konstruktion av korrekta programsystem. För att kunna avgöra om ett program är korrekt
behövs dels en specifikation (de krav som ställs p̊a programmet), dels en semantik (en
stringent definition av vad programspr̊akets konstruktioner betyder).

Modern typteori har visat att alla specifikationer kan uttryckas som typer i ett avancerat
typsystem (beroende typer). Funktionella programspr̊ak har under det senaste årtiondet
visat sin styrka genom sina koncisa program och sin enkla semantik. Detta projekt handlar
om grundforskning i gränsomr̊adet mellan typteori och funktionell programmering och
genom att kombinera och utveckla dessa b̊ada omr̊aden kan vi komma ett steg p̊a vägen
mot mer p̊alitliga system inom informationstekniken.

16


