
Dependent Types For DSLs
Edwin Brady

eb@cs.st-andrews.ac.uk

University of St Andrews

DSL4EE, Gothenburg, 16th June 2011

DSL4EE, Gothenburg, 16th June 2011 – p.1/22

Introduction

This talk is about a technique for Domain Specific
Language implementation. It will cover:

1. An overview of functional programming with
dependent types, using the language IDRIS.

2. Embedded Domain Specific Language (EDSL)
implementation.
� A type safe interpreter
� Verified resource management using DSLs

� e.g. for networks, security, concurrency, . . .

3. For discussion: what other domains fit this
approach?

DSL4EE, Gothenburg, 16th June 2011 – p.2/22

Idris

IDRIS is an experimental purely functional language with
dependent types (http://idris-lang.org/).

� Compiled, via C, with some optimisations.

� Loosely based on Haskell, similarities with Agda,
Epigram.

� Available from Hackage:
� cabal install idris

� Requires Boehm GC, port install boehmgc

� Tutorial notes online:
� http://idris-lang.org/tutorial

DSL4EE, Gothenburg, 16th June 2011 – p.3/22

http://idris-lang.org/
http://idris-lang.org/tutorial

Idris

IDRIS is an experimental purely functional language with
dependent types (http://idris-lang.org/).

� Compiled, via C, with some optimisations.

� Loosely based on Haskell, similarities with Agda,
Epigram.

� Available from Hackage:
� cabal install idris

� Requires Boehm GC, port install boehmgc

� Tutorial notes online:
� http://idris-lang.org/tutorial

� “Research quality software”
DSL4EE, Gothenburg, 16th June 2011 – p.3/22

http://idris-lang.org/
http://idris-lang.org/tutorial

Some Idris Features

IDRIS has several features to help support EDSL
implementation. . .

� Full-Spectrum Dependent Types

� Compile-time evaluation

� Efficient executable code, via C
� Unification (type/argument inference)

� Plugin decision procedures

� Overloadable do-notation, idiom brackets
� Simple foreign function interface

. . . and I try to be responsive to feature requests!
DSL4EE, Gothenburg, 16th June 2011 – p.4/22

Dependent Types in Idris

Dependent types allow types to be parameterised by
values, giving a more precise description of data.
Some data types in Idris:

data Nat = O | S Nat;

infixr 5 :: ; -- Define an infix operator

data Vect : Set -> Nat -> Set where -- List with size

VNil : Vect a O

| (::) : a -> Vect a k -> Vect a (S k);

We say that Vect is parameterised by the element type
and indexed by its length.

DSL4EE, Gothenburg, 16th June 2011 – p.5/22

Functions

The type of a function over vectors describes invariants
of the input/output lengths.

e.g. the type of vAdd expresses that the output length is
the same as the input length:

vAdd : Vect Int n -> Vect Int n -> Vect Int n;

vAdd VNil VNil = VNil;

vAdd (x :: xs) (y :: ys) = x + y :: vAdd xs ys;

The type checker works out the type of n implicitly, from
the type of Vect.

DSL4EE, Gothenburg, 16th June 2011 – p.6/22

Input and Output

I/O in Idris works in a similar way to Haskell. e.g. readVec
reads user input and adds to an accumulator:

readVec : Vect Int n -> IO (p ** Vect Int p);

readVec xs = do { putStr "Number: ";

val <- getInt;

if val == -1 then return <| _, xs |>

else (readVec (val :: xs));

};

The program returns a dependent pair, which pairs a
value with a predicate on that value.

DSL4EE, Gothenburg, 16th June 2011 – p.7/22

Libraries

Libraries can be imported via include "lib.idr". All
programs automatically import prelude.idr which
includes, among other things:

� Primitive types Int, String, Float and Char, plus
Nat, Bool

� Tuples, dependent pairs.

� Fin, the finite sets.
� List, Vect and related functions.
� Maybe and Either

� The IO monad, and foreign function interface.

DSL4EE, Gothenburg, 16th June 2011 – p.8/22

A Type Safe Interpreter

A common introductory example to dependent types is
the type safe interpreter. The pattern is:

� Define a data type which represents the language
and its typing rules.

� Write an interpreter function which evaluates this
data type directly.

[demo: interp.idr]

[code available at
http://idris-lang.org/examples/dsl4ee.tgz]

DSL4EE, Gothenburg, 16th June 2011 – p.9/22

http://idris-lang.org/examples/dsl4ee.tgz

A Type Safe Interpreter

Notice that when we run the interpreter on functions
without arguments, we get a translation into Idris:

Idris> interp Empty test

\ x : Int . \ x0 : Int . x + x0

Idris> interp Empty double

\ x : Int . x+x

DSL4EE, Gothenburg, 16th June 2011 – p.10/22

A Type Safe Interpreter

We have partially evaluated these programs. If we can
do this reliably, and have reasonable control over, e.g.,
inlining, then we have a recipe for efficient verified EDSL
implementation:

1. Design an EDSL which guarantees the resource
constraints, represented as a dependent type

2. Implement the interpreter for that EDSL

3. Specialise the interpreter for concrete EDSL
programs, using a partial evaluator

DSL4EE, Gothenburg, 16th June 2011 – p.11/22

Resource Usage Verification

We have applied the type safe interpreter approach to a
family of domain specific languages with resource usage
properties, in their type:

� File handling

� Memory usage

� Concurrency (locks)

� Network protocol state

I will outline a generic framework for the construction of
resource aware DSLs

DSL4EE, Gothenburg, 16th June 2011 – p.12/22

Resource Aware DSLs

Our aim is to define a language for tracking resource
usage statically. It will take the following form, a data
type parameterised over a start and end state:

data RLang : Set -> ResState -> ResState -> Set where

...

An interpreter, given an environment of resources, runs a
program which updates the environment:

rinterp : {s,s’:ResState} ->

ResEnv s -> RLang a s s’ -> IO (a & s);

DSL4EE, Gothenburg, 16th June 2011 – p.13/22

Resource Aware DSLs

Our concern is whether a resource is valid at a given
time. We define resource types, and include a time slice
in the state:
data ResTy = RTy Set;

ResState n = (Nat & Vect ResTy n);

rty : ResTy -> Set;

We parameterise resources over the time they are valid,
and their location in a resource list:
data Resource : Nat -> Fin n -> ResTy -> Set where

Res : {i:Fin n} -> rty a -> Resource t i a;

DSL4EE, Gothenburg, 16th June 2011 – p.14/22

Resource environments

An environment contains concrete resource values
(compare to the well-typed interpreter earlier)

data ResEnv : Vect ResTy n -> Set where

Empty : ResEnv VNil

| Extend : rty r -> ResEnv xs -> ResEnv (r :: xs);

DSL4EE, Gothenburg, 16th June 2011 – p.15/22

Resource IO monad

We can now define a resource state monad,
parameterised over the current state.

data ResIO : Set -> ResState n -> ResState n -> Set where

ResIOp : (ResEnv (snd s) -> IO (a & ResEnv (snd s’))) ->

ResIO a s s’;

BIND : ResIO t s s’ -> (t -> ResIO u s’ s’’) -> ResIO u s s’’;

RETURN : a -> ResIO a s s;

Operations in this monad give a DSL for managing
resources in general.

DSL4EE, Gothenburg, 16th June 2011 – p.16/22

Resource IO operations

For example, as in Haskell’s State monad we may need
to GET and PUT state:
GET : (i:Fin n) ->

ResIO (Resource (fst s) i (vlookup i (snd s))) s s;

PUT : {i:Fin n} ->

Resource (fst s) i (RTy a) -> rty b ->

ResIO () s (Later s i b);

GET gives a value valid in the current time slice. PUT
updates the time slice, using Later, which increments the
time slice portion of the state.

DSL4EE, Gothenburg, 16th June 2011 – p.17/22

Resource IO operations

We can USE a value stored in a resource, provided the
resource is valid in the current time slice:
USE : {i:Fin n} ->

(rty a -> IOr b) -> Resource (fst s) i a ->

ResIO b s s;

While the types of GET, PUT and USE may look complex (to
ensure that resources are used only when valid) using
them in a realistic example is more straightforward.

[demo: safe-file.idr]

DSL4EE, Gothenburg, 16th June 2011 – p.18/22

Conclusions

We have seen how IDRIS can be used to implement
type-safe languages, with IDRIS’s type system enforcing
the type safety of the object language.

� Resource safety in particular is an important
problem

This is not unique to IDRIS!

� Techniques equally applicable to Agda, Coq, Guru,
Trellys, Haskell (with GADTs). . .

DSL4EE, Gothenburg, 16th June 2011 – p.19/22

For Discussion

Lots of interesting (resource related) problems fit into the
EDSL framework:

� Concurrency, time/space usage, security, power
consumption, AI/planning . . .

These are all problems in Computer Science (because
that’s what I know!)

� Where else might resource aware DSLs and
dependent types in general fit?

DSL4EE, Gothenburg, 16th June 2011 – p.20/22

Related Work

� “Parameterised Notions of Computation”
— Robert Atkey,

In MSFP 2006

� “The Power of Pi”
— N. Oury and W. Swierstra,

In ICFP 2008

� “Security Typed Programming Within Dependently Typed
Programming”
— J. Morgenstern and D. Licata,

In ICFP 2010

DSL4EE, Gothenburg, 16th June 2011 – p.21/22

Further Reading

� “Scrapping your Inefficient Engine: using Partial Evaluation to
Improve Domain-Specific Language Implementation”
— E. Brady and K. Hammond,

In ICFP 2010.

� “Domain Specific Languages (DSLs) for Network Protocols”
— S. Bhatti, E. Brady, K. Hammond and J. McKinna,

In Next Generation Network Architecture 2009.

� “IDRIS — Systems Programming meets Full Dependent Types”
— E. Brady, In PLPV 2011.

� https://github.com/edwinb/ResIO — Resource IO
implementation

� http://idris-lang.org/tutorial/

DSL4EE, Gothenburg, 16th June 2011 – p.22/22

https://github.com/edwinb/ResIO
http://idris-lang.org/tutorial/

	Introduction
	Idris
	Some Idris Features
	Dependent Types in Idris
	Functions
	Input and Output
	Libraries
	A Type Safe Interpreter
	A Type Safe Interpreter
	A Type Safe Interpreter
	Resource Usage Verification
	Resource Aware DSLs
	Resource Aware DSLs
	Resource environments
	Resource IO monad
	Resource IO operations
	Resource IO operations
	Conclusions
	For Discussion
	Related Work
	Further Reading

