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Abstract

We describe a definitional approach to functional logic programming, based on the theory of
Partial Inductive Definitions and the programming language GCLA. It is shown how functional
and logic programming are easily integrated in GCLA using the features of the language,
that is combining functions and predicates in programs becomes a matter of programming
methodology. We also give a brief description of a way to automatically generate efficient
procedural parts to the described definitions.

1 Introduction

Through the years there have been numerous attempts to combine the two main declarative pro-
gramming paradigms functional and logic programming into one framework providing the benefits
of both. The proposed methods varies from different kinds of translations, embedding one of the
methods into the other, to more integrated approaches such as Horn Clause Logic with equality
[5] and Constraint Logic Programming as in the language Life [2].

A notion shared between functional and logic programming is that of a definition, we say that
we define functions and predicates. The programming language can then be seen as a formalism
especially designed to provide the programmer with an as clean and elegant way as possible to
define functions and predicates respectively. Of course these formalisms are not created out of thin
air but are explained by an appropriate theory.

In GCLA [1, 6] we take a somewhat different approach, we do talk about definitions but
these definitions are not given meaning by mapping them on some theory about something else,
but are instead understood through a theory of definitions and their properties, the theory of
Partial Inductive Definitions (PID) [4]. This theory is designed to express and study properties of
definitions, so we look at the problem from a different angle and try to answer the questions; what
are the specific properties of function and predicate definitions and how can they be combined and
interpreted to give an integrated functional logic computational framework based on PID.

A GCLA program consists of two communicating partial, inductive definitions which we call
the (object level) definition and the rule definition respectively. The rule definition is used to give a
meaning to the conditions in the definition and it is also through this the user queries the definition.
We present a rule definition to a class of functional logic program definitions. This rule definition
implicitly determines the structure of function, predicate and integrated functional logic program
definitions. We also try to give a brief description of how to write functional logic GCLA programs.
Furthermore we show how the knowledge that a definition defines a functional logic program can be
used to automatically generate better proof-search strategies, enhancing efficiency and enabling us
to write more concise definitions. The approach taken to functional logic programming in GCLA
in this paper is inspired by some earlier work found in [1, 6].
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2 The GCLA Programming Language

The programming system GCLA [1, 6, 3](to be pronounced “gisela”) is a logical programming
language that is based on a generalisation of Prolog. This generalisation is unusual in that it
takes quite a different view of the meaning of a logic program - a definitional view rather than the
traditional logic view.

Compared to Prolog, what has been added to GCLA is the possibility of assuming conditions.
For example, the clause

a <= (b -> c).

should be read as: “a holds if c can be proved while assuming b”.
To execute a program, a query G is posed to the system asking whether there is a substitution

σ such that Gσ holds according to the logic defined by the program. The goal G has the form
Γ ` c, where Γ is a list of assumptions, and c is the conclusion from the assumptions Γ. The system
tries to construct a deduction showing that Gσ holds in the given logic.

2.1 GCLA Programs

A GCLA program consists of two parts; the definition or the object level and the rule definition or
meta level.

The definition constitutes the formalisation of a specific problem domain and in general contains
a minimum of control information. The intention is that the definition by itself gives a purely
declarative description of the problem domain while a procedural interpretation of the definition
is obtained only by putting it in the context of the rule definition.

The rule definition contains the procedural knowledge of the domain, that is the knowledge
used for drawing conclusions based on the declarative knowledge in the definition. This procedural
knowledge defines the possible inferences made from the declarative knowledge. The rule definition
contains inference rule definitions which define how different inference rules should act, and search
strategies which control the search among the inference rules.

3 Functional Logic Programming: A First Example

The key to using GCLA as a (kind of) first-order functional programming language is the inference
rule D-left, Definition Left also called the rule of Definitional Reflection [4, 6], which gives us the
opportunity to reason on the basis of assumptions with respect to a given definition. The rule of
Definitional Reflection tells us that if we have an atom a as an assumption and C follows from
everything that defines a then C follows from a

Γ, A ` C

Γ, a ` C
D ` for each a ∈ D(a)

where D(a) = {A | (a ⇐ A) ∈ D}. With this rule at hand functional evaluation becomes a special
case of hypothetical reasoning. Asking for the value of the function f in x is done with the query:

f(x) \- C.

3.1 Defining addition

In ML we can write a definition of addition using successor arithmetic:

datatype nat = zero | s of nat

fun plus(zero,N) = N
| plus(s(M),N) = s(plus(M,N))



Functions in GCLA are also defined by a number of equations so the naive way to define
addition as a function in GCLA would be to mimic the ML program and write the definition:

plus(zero,N)<= N.
plus(s(M),N)<= s(plus(M,N)).

Unfortunately this will not give us a function that computes anything useful since we have not
defined what the value of s(plus(M,N)) should be. What we forgot was that in the (strict)
functional language ML the type definition and the computation rule together give a way to
compute a value from s(plus(M,N)). The type definition says that s is a constructor function and
since the language is strict the argument of s is evaluated before a data-object is constructed. One
way to achieve the same thing in GCLA is to introduce an object constructing function succ:

succ(X) <= (X ->Y) -> s(Y).

We read this as “the value of succ(X) is defined to be s(Y) if the value of X is Y” . The function
succ plays much the same role as the constructor function s in the functional program, it is used
to build data-objects. We will sometimes call such functions that are used to build data-objects
objectfunctions.

How the function succ works can be seen in the following derivation:

{Y = 0}
0 ` Y

Axiom

` 0→ Y
A-right

{s(Y) = X}
s(Y) ` X

Axiom

(0→ Y) → s(Y) ` X
A-left

succ(0) ` X
D-left

The functional GCLA definition we have given so far only allow nested function calls in its
second argument, an expression like plus(plus(zero,zero),zero) is undefined. Since we have
no external computation rule telling us to evaluate arguments to functions before they are called
we must add the following extra clause to handle this case:

plus(Exp,N)#{Exp\=zero, Exp\=s(_)}<=(Exp -> M) -> plus(M,N).

The guard is needed to make the different clauses defining addition mutually exclusive.
So at last we have a useful definition of addition. If we use the standard rules we are unfortu-

nately still able to construct some undesired derivations like

false ` X
False-left

s(zero) ` X
D-left

plus(zero, s(zero)) ` X
D-left

which succeeds without binding X. The general problem that needs to be solved is to choose
correctly between the rules D-left and Axiom. To do this we need to distinguish canonical values
from non-canonical values. We achieve this by giving the canonical values circular definitions:

zero <= zero.
s(X) <= s(X).

Now the canonical values are defined so they can not be absurd, but on the other hand the definition
is empty in content so there is nothing to be gained from using D-left. We also restrict our inference
rules so that the axiom rule only is applicable to circularly defined atoms, and symmetrically restrict
the rule D-left to be applicable only to atoms not circularly defined. We call atoms with circular
definitions canonical objects.

In the final definition below the first three clauses corresponds to the type definition in the ML
program, while the last three really constitutes the definition of the addition function.



0 <= 0.
s(X) <= s(X).

succ(X) <= (X -> Y) -> s(Y).

plus(0,N)<= N.
plus(s(M),N) <= succ(plus(M,N)).
plus(Exp,N)#{Exp \= 0, Exp \= s(_)}<= (Exp -> M) -> plus(M,N).

4 A Calculus for Functional Logic Programming

In this section we describe a basic rule definition to functional logic program definitions. We
present the inference rules as a sequent calculus to enhance readability.

We call the rule definition consisting of the rules below FL (for functional logic). This rule
definition shows implicitly the choices we have made as for what counts as a valid functional logic
program. We have chosen to work with the common condition constructors ’,’ ,’ ;’ and ’ ->’ ,
which all have more or less their usual meaning. However, the inference rules are restricted to
specialise them to functional logic programs. We have also added a special condition constructor
,’not’ ,for negation.

One of the goals of FL is to give a useful rule definition producing as few redundant answers
as possible, to achieve this we have made the calculus deterministic in the sense that at most one
inference-rule can be applied to each object-level sequent.

FL is very similar to the calculus DOLD [6] used to interpret the meta-level of a GCLA program
(that is, DOLD is used to interpret the GCLA code of the rules here described) This should not
be surprising since the meta-level of a GCLA program is nothing but an indeterministic functional
logic program run backwards.

4.1 Rules of Inference

The inference rules of FL can be naturally divided into two groups, rules relating atoms to a
definition and rules for constructed conditions.

4.1.1 Rules Relating Atoms to a Definition.

` Cσ
` c σ

D-right (b ⇐ C) ∈ D,σ = mgu(b, c), Cσ 6= cσ

D(aσ) ` Cσ

a ` C σ
D-left σ is an a-sufficient substitution , aσ 6= D(aσ)

a ` c στ
D-Axiom σ is an a-sufficient substitution , aσ = D(aσ), τ = mgu(aσ, cσ)

The restrictions we put on these definitional rules are such that they are mutually exclusive,a very
important feature to minimise the number of possible answers. For a more in-depth description
and motivation of these rules, in particular the rule D-Axiom, see [7].

4.1.2 Rules for Constructed Conditions.

The rules for constructed conditions are essentially the standard GCLA and PID rules [6, 4]
restricted to allow at most one element in the antecedent:

` true
True-right



false ` false
False-left

A ` B
` A → B

A-right

` A B ` C
A → B ` C

A-left

` C1 ` C2

` (C1, C2)
V-right

Ci ` C

(C1, C2) ` C
V-left i ∈ {1, 2}

` Ci

` (C1;C2)
O-right i ∈ {1, 2}

C1 ` C C2 ` C

(C1;C2) ` C
O-left

C ` false

` not(C)
Not-right

` A
not(A) ` false

Not-left

4.2 Queries

Both the left and right hand side of sequents in queries may be arbitrarily complex as long as we
remember that whenever there is something in the left hand side the right hand side must be a
variable or a (partially instantiated) canonical object.

Assuming that f,g and h are functions, p and q predicates and a, b and c canonical objects
some possible examples are

\- p(X).

“Does p hold for some X”

p(b) -> g(a,b) \- C

“What is the value of g in (a,b) provided that p(b) holds”

(p(X);q(X)) -> (f(X);h(X)) \- a.

“Find a value of X such that p(X) or q(X) holds and both fand h has the value a in X”

5 Writing Functional Logic Program Definitions

In this section we give a brief description of how to write functional logic GCLA-programs. Note
that all readings we give of definitions, conditions and queries are with respect to the given rule
definition (calculus), FL, and that there is nothing intrinsical in the definitions themselves that
forces this particular interpretation. For example, if we allow contraction, and several elements
in the antecedent, function definitions as we describe them cease to make sense since it is then
possible to prove things like

plus(s(0),s(0)) \- s(s(s(0))).



using the definition of addition given in Sect. 3.
Conditions are built up using the condition constructors ’,’ , ’;’ , ’->’ , ’true’ , ’false’ and

’not’. Both functions and predicates are defined using the same condition constructors and there
is no easily recognisable syntactic difference between functions and predicates. The difference in
interpretation of functions and predicates instead comes from whether they are intended to be used
to the left or to the right in queries. The basic principle is that predicates are used to the right
(negation excepted), while functions are used to the left.

In order to show that it is not always so obvious to see what constitutes function and predicate
definitions respectively, we look at a simple example:

q(X) <= p(X) -> r(X).

If we read this as defining a predicate, we read it as “q(X) holds if the value of p(X) is r(X)” ,
read as a (conditional) function it becomes “the value of q(X) is defined to be r(X) provided that
p(X) holds” .

5.1 Defining Predicates

Since pure Prolog is a subset of GCLA, defining predicates is very much the same thing in this
context as in Prolog even though the theoretical foundation is different. The predicate definitions
allowed by FL also provides two extensions of pure Prolog in predicates ; use of functions in
conditions defining predicates and constructive negation.

A predicate definition defining the predicate P consists of a number of definitional clauses

P (t1,. . . ,tn) ⇐ C1.
...
P (t1,. . . ,tn) ⇐ Cm . n ≥ 0,m > 0

where each Ci is a Predicate Condition as described below, and all variables occurring in Ci not
occurring in the head of the clause are understood as existentially quantified.

We say that a condition C is a Predicate Condition if

• C is an atom

• C = true or C = false

• C = (C1,C2) , where both C1 and C2 are predicate conditions. We read this as “C holds if
C1 and C2 holds”

• C = (C1;C2), where both C1 and C2 are predicate conditions. We read this as “C holds if
C1 or C2 holds”

• C = (C1 → C2), where C1 is a Functional Condition as described below and C2 is a variable
or a (partially instantiated) canonical object. We read this as “C holds if the value of C1 is
C2”

• C = not(C1) , where C1 is a predicate condition. We read this as “C holds if C1 can be
proven false”.

5.2 Defining Canonical Objects

Each atom that should be regarded as a canonical object in a definition, in the sense that it could
possibly be the result of some function, is given a circular definition.

Generally the definition of the canonical objects S of arity n is

S(X1, . . . , Xn) ⇐ S(X1, . . . , Xn).



where each Xi is a variable.
Note that we make a distinction between a canonical object and a canonical value. Any atom

which has a circular definition is a canonical object, while a canonical value is a canonical object
where each subpart is a canonical value (a canonical object of arity zero is also a canonical value).

5.2.1 Object-Functions and Implicit Type Definitions

In the definition of addition in Sect. 3 we used the objectfunction succ to ensure that all numbers
we constructed were fully evaluated canonical values built up from s and 0 only. Generally to each
canonical object S of arity n we create an objectfunction F to be used whenever we want to build
an object of type S in a definition. F has the definition:

F (X1, . . . , Xn) ⇐ ((X1 → Y1),. . . ,(Xn → Yn)) → S(X1, . . . , Xn) .

The canonical objects and objectfunctions together form an Implicit Type Definition. The
implicit type definition for lists is:

[] <= [].
[X|Xs] <= [X|Xs] .

cons(X,Xs) <= (X -> Y),(Xs ->Ys) -> [Y|Ys].

5.2.2 Laziness and Strictness.

When we use FL to evaluate programs it is the definition and not the computation rule that
determines if a function is strict or lazy. To define a strict function we always use an objectfunction
when we construct a data-object in a program, this will ensure that evaluation continues until we
reach a fully evaluated value. The definition of plus given in Sect. 3 follows this convention, as
does the following definition of append which uses the implicit type definition of lists:

append([],Ys) <= Ys.
append([X|Xs],Ys) <= cons(X,append(Xs,Ys)).
append(E,Ys)#{E\=[],E\=[_|_]}<= (E -> Xs) -> append(Xs,Ys).

In lazy functional languages expressions are evaluated to WHNF, in our context this means that
evaluation stops whenever we reach a canonical object, whether or not its subparts are fully
evaluated. When we write function definitions this simply means that we omit the object-functions
whose purpose is to evaluate the subparts of canonical objects. The lazy version of append then
becomes:

append([],Ys) <= Ys.
append([X|Xs],Ys) <= [X|append(Xs,Ys)].
append(E,Ys)#{E\=[],E\=[_|_]}<= (E -> Xs) -> append(Xs,Ys).

If we use lazy evaluation function definitions must be uniform and have only shallow patterns [8].

5.3 Function Definitions

A definition of a function F really consists of two parts, an implicit type definition T made up of
definitions of canonical objects and objectfunctions used in F , and the definition of F itself.

A function definition defining F then consists of a number of definitional clauses

F (t1,. . . ,tn) ⇐ C1.
...
F (t1,. . . ,tn) ⇐ Cm . n ≥ 0,m > 0



where each Ci is a Functional Condition as described below, and all variables occurring in Ci not
occurring in the head are understood as universally quantified.

We say that a condition C is a Functional Condition if

• C is an atom

• C = (C1,C2), where both C1 and C2 are functional conditions. We read this as “the value
of C is the value of C1 or C2”

• C = (C1 → C2), where C1 is a predicate condition and C2 is functional condition. We read
this as “the value of C is C2 provided that C1 holds”

• C = (C1;C2), where both C1 and C2 are functional conditions. We read this as “the value
of C is B if B is the value of both C1 and C2”.

If the heads of two or more clauses defining a function are overlapping all the corresponding
bodies must evaluate to the same value, since the definiens operation used in D-left collects all
clauses defining an atom. For example consider the function definition:

f(0) <= 0.
f(N) <= s(0)

Even though f(0) is defined to be 0 the derivation of the query

f(0) \- C.

will fail since f(0) is also defined to be s(0), the definition of f is ambiguous.

5.4 Examples

If we use the lazy version of append and ask the query

append([0],[s(0)]) \- C.

we will get the single answer C = [0|append([],[s(0)])], since this is a canonical value and
cannot be evaluated further. To get a fully evaluated answer we have to force evaluation somehow,
one way is to use the following function show which takes canonical values apart and evaluate the
subparts:

show(0) <= 0.
show(s(X)) <= (show(X) -> Y) -> s(Y).
show([]) <= [].
show([X|Xs]) <= (show(X) ->Y),(show(Xs)->Ys) -> [Y|Ys].
show(E)#{E\=0,E\=s(_),E\=[],E\=[_|_]} <= (E -> V) -> show(V).

As another example we define a function odd double defined only for odd numbers, this func-
tion uses the definition of plus from Sect.3. Note how the predicate odd is used to restrict the
applicability of odd double to odd numbers only.

odd_double(X) <= (X ->X1),
odd(X1) -> plus(X1,X1).

odd(s(X)) <= even(X).

even(0).
even(s(X)) <= odd(X).



6 Generating Specialised Rule Definitions

In Sect. 3 we noticed that FL is deterministic, thus making search strategies more or less super-
fluous, the answers will be the same no matter in what order the inference rules are tried.

However, there are several reasons to use search strategies anyway. The most important
concerns integration of functional logic programs into large systems using other programming
paradigms as well; without a proper search strategy all the rules and strategies concerning the
rest of the system will also be tested. Another reason is to enhance efficiency, the strategies we
present in this section will almost always try the correct rule. Yet another reason is that the spe-
cialised rules we create allows us to write definitions without “evaluation clauses” for arguments
thus making definitions shorter and more elegant.

In [3] we suggested the method Local Strategies as a way to write efficient rule definitions to
a given definition. We also suggested that it should be possible to more or less automatically
generate rule definitions according to this method to some programs, the rules we generate are
applications of this method.

6.1 Specialised D-Rules

It is beyond the scope of this paper to describe the algorithms and heuristics used to generate rules,
in short we try to decide which atoms are functions and which are predicates and then create spe-
cialised rules which as far as possible pre-compile the rule-sequences needed to use each particular
function and predicate. Sometimes it is impossible to distinguish functions from predicates, in
such cases an oracle (the user) is queried. It is also beyond the scope of this paper to describe the
resulting rules and strategies in any greater detail, we simply give schematic descriptions of the
D-Rules created for each function and predicate

6.1.1 Predicate Definitions and their D-right Rules

When we create specialised D-right rules to predicates we let them evaluate all arguments before
we try to find a unifiable clause. This means that we may have functional expressions as arguments
to predicates. It also means that the only allowed patterns in the heads of predicate definitions
(and function definitions) are variables and canonical values. This corresponds closely to the
approach taken in functional logic languages based on a constructor discipline [5]. Generally if P
is a predicate of arity n its corresponding D-right rule becomes:

X1 ` Y1 . . . Xn ` Yn ` B

` P (X1, . . . , Xn)
B ∈ D(P (Y1, . . . , Yn))

If we use strict functions in the arguments of predicates this approach works well enough, but if
we combine lazy functions and predicates the patterns allowed in the heads of predicate definitions
must be further restricted to shallow patterns with no repeated variables.

6.1.2 Function Definitions and their D-left Rules

The usual meaning of a strict function definition is that its arguments are evaluated before the
function is called. It is therefore perfectly reasonable to associate with each strict function a rule
which evaluates each of the arguments and then tests to see if the resulting atom is defined. If F
is a function of arity n the rule becomes:

X1 ` Y1 . . . Xn ` Yn Dp ` C

F (X1, . . . , Xn) ` C
Dp = D(F (Y1, . . . , Yn))

In lazy functions we only evaluate arguments which have a non-variable pattern, if we do not want
to risk evaluating to many arguments it is important that the function definitions are uniform, the
patterns must also be linear, that is no variable may occur more than once in the head of a clause.



If we use lazy functions the rule-generator also generates a strategy which makes it possible to
evaluate a functional condition to a fully evaluated canonical value which makes show-functions
like the one given in Sect. 5 superfluous. It is up to the user to specify if a function is strict or
lazy.

6.2 Examples

We now give some examples to show how functional logic programs may be written if we create
specialised rules to each program.

6.2.1 Addition Revisited

The strict definition of addition given in Sect. 3 may now be reformulated as:

0 <= 0.
s(X) <= s(X).
succ(X) <= s(X).

plus(0,N) <= N.
plus(s(M),N) <= succ(plus(M,N)).

The definition of succ may look a bit strange but remember that succ has a corresponding spe-
cialised D-left rule which evaluates the argument.

6.2.2 Mixing Functions and Predicates

Let append and mem have the definitions:

[] <= [].
[X|Xs] <= [X|Xs].
cons(X,Xs) <= [X|Xs].

append([],Ys) <= Ys.
append([X|Xs],Ys) <= cons(X,append(Xs,Ys)).

mem(X,[X|_]).
mem(X,[_|Ys]) <= mem(X,Ys).

and let plus be defined as above, we may then ask queries like:

\- mem(plus(s(0),X),append(cons(0,[s(0)]),[s(s(0))])).
X = 0 ? ;
X = s(0) ? ;

6.2.3 Computing Prime Numbers

As a last example we show a definition that can be used to compute prime numbers using the well-
known sieve of Erastothenes. To implement this algorithm we use a combination of lazy functions
and predicates, and also the possibility to regard numbers as canonical objects and use the ordinary
arithmetic operations. We also use a special condition constructor if (that has a corresponding
inference rule) which chooses one of two functional conditions depending on whether a predicate
is provable or not.

[] <= [].
[X|Xs] <= [X|Xs].



primes <= sieve(from(2)).

sieve([P|Ps]) <= [P|sieve(filter(P,Ps))].

filter(_,[]) <= [].
filter(N,[X|Xs]) <= if(p(N,X),

filter(N,Xs),
[X|filter(N,Xs)]).

p(A,B) <= (B mod A) =:= 0.

from(M) <= (M -> N) -> [N|from(N+1)].

We also need something to force evaluation. We can not use a show strategy since the result is
infinite. The solution is to define a predicate to print the elements of the infinite list of primes

print_list(E) <= (E -> [X|Xs]),put(X),print_list(Xs).

where put is defined elsewhere. Now the query

\- print_list(primes).

will print 2 3 5 7 11 and so on until we run out of memory.
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