
as its
ment
senta-
defi-

e light

ect 3
e the
nitions
t doing

-
tion is
view

or

o an

e

Translating functional programs to GCLA *

Olof Torgersson

Department of Computing Science
Chalmers University of Technology and University of Göteborg

S-412 96 Göteborg, Sweden
oloft@cs.chalmers.se

Abstract This paper presents an attempt to do lazy evaluation in GCLA by translating functional pro-

grams into GCLA definitions and evaluating these using a proper procedural part. The resulting

GCLA programs are described with some detail to illuminate different aspects of GCLA program-

ming.

1 Introduction

This paper presents a translation from functional programs into GCLA programs. This translation h
origins in a project where we planned to apply KBS -technology to build a programming environ
for a functional language. The translation into GCLA programs was then intended to be the repre
tion of the functional programs in a system to do debugging etc. The presentation of the resulting
nitions, and the procedural part used to evaluate these is carried out with some detail to give som
upon GCLA programming.

The rest of this paper is organized as follows. In Sect 2 we give a brief introduction to GCLA. In S
we describe the process of translating functional programs into GCLA definitions. In Sect. 4 we giv
inference-rules and search-strategies needed to give a procedural interpretation of the GCLA defi
produced. In Sect 5 finally, we discuss possible future work and connections to other attempts a
lazy evaluation in logic programming.

2 Introduction to GCLA

The programming systemGeneralized HornClauseLanguage (GCLA) [3,4,5,6,16]is a logical program
ming language (specification tool) that is based on a generalization of Prolog. This generaliza
unusual in that it takes a quite different view of the meaning of a logic program - a definitional
rather than the traditional logic view.

Compared to Prolog, what has been added to GCLA is the possibility to assume conditions. F
example, the clause:

a <= (b -> c).

should be read as “a holds ifc can be proved while assumingb.”
There is also a richer set of queries in GCLA than in Prolog. In GCLA, a query corresponding t

ordinary Prolog query is written:

\- a.

and should be read as “Doesa hold (in the definitionD)?” In GCLA one can also assume things in th

* This work was carried out as part of the work in the ESPRIT working group GENTZEN and was funded by

The Swedish National Board for Industrial and Technical Development (NUTEK).

e pro-
gies

min-
tive
ly by

ed for
ledge

write
g ‘
tion
 query, for example:

c \- a.

which should be read as “Assumingc, doesa hold (in the definitionD)?”, or “Is a derivable fromc?”

2.1 GCLA Programs

A GCLA program consists of two parts; One part is used to express the declarative content of th
gram, called thedefinitionor theobject level, and the other part is used to express rules and strate
acting on the declarative part, called therule definition or themeta level.

2.1.1 The Definition

The definition constitutes the formalization of a specific problem domain and in general contains a
imum of control information. The intention is that the definition by itself gives a purely declara
description of the problem domain while a procedural interpretation of the definition is obtained on
putting it in the context of the rule definition.

2.1.2 The Rule Definition

The rule definition contains the procedural knowledge of the domain, that is the knowledge us
drawing conclusions based on the declarative knowledge in the definition. This procedural know
defines the possible inferences made from the declarative knowledge.

The rule definition containsinference rule definitions which define how different inference rules
should act, and search strategies which control the search among the inference rules.

2.2 Example: Pure Prolog

The division of GCLA programs into a declarative part and a procedural part makes it possible to
programs in a number of styles. For example pure prolog programming is achieved by substitutin<=’
for ‘ :- ’ in Prolog programs. A proper procedural behavior is then given by the following rule defini

:- include_rules(lib('rules.rul')). % use standard rules, see [4].

pureprolog <= pp(_,pureprolog).

pp(C,_) <= (_ \- C). % these two clauses are read
pp(C,PT) <= correct_rule(C,PT). % conjunctively.

correct_rule(true,_) <= true_right. % choose the proper predefined
correct_rule((_,_),PT) <= v_right(_,PT,PT). % inference rule.
correct_rule((_;_),PT) <= o_right(_,_,PT).
correct_rule(C,PT)#{C \= true,C \= false,C \= (_,_),C \= (_;_)} <= d_right(C,PT).

As a simple example of a definition we take the definition of the append relation.

append([],L,L).
append([X|Xs],L1,[X|L2]) <= append(Xs,L1,L2).

| ?- pureprolog \\- (\- append([2],L1,L2),append(L3,L1,[8,2,34])).

L1 = [8,2,34], L2 = [2,8,2,34], L3 = [] ? ;

L1 = [2,34], L2 = [2,2,34], L3 = [8] ? ;

L1 = [34], L2 = [2,34], L3 = [8,2] ? ;

L1 = [], L2 = [2], L3 = [8,2,34] ? ;

no

a kind
left of
ple:

func-

l pro-
per-

ents,
ple take

ere the

o-
binator
le set

r pro-
is not
......
3 Translating functional programs into GCLA

Although GCLA is perhaps best described as logical programming language it also incorporates
of functional programming. To evaluate a function we put the expression to be evaluated to the
the turnstile ‘\- ‘ and get the result as a binding of some variable(s) occurring to the right. For exam

| ?- somestrat \\- plus(s(0),s(s(0))) \- X.

X = s(s(s(0)))

So, the problem to be solved is to translate functions written in a functional language into GCLA-
tions and to construct a procedural part that evaluates these functions correctly.

3.1 The basic Idea

The basic idea behind the translation described in this paper is the similarity between a functiona
gram containing only supercombinators and a functional GCLA-definition. According to [18] a su
combinator is defined as

Definition A supercombinator, $S of arity n is a lambda expression of the form
λx1.λx2...λxn.E
where E is not a lambda abstraction, such that
i) $S has no free variables.
ii) any lambda abstraction in E is a supercombinator.
iii) n >= 0, that is there need be no lambdas at all.

A supercombinator redex then consists of the application of a supercombinator of arity n to n argum
and a supercombinator reduction replaces a supercombinator by an instance of its body. For exam
the following supercombinator program adopted from [18]

$Y w y = + y w
$X x = $Y x x
$main = $X 4

The corresponding GCLA definition is

y(W,Y) <= +(Y,W).
x(X) <= y(X,X).
main <= x(4).

The supercombinator - program is then evaluated by performing supercombinator reductions, wh
combinators are replaced by instances of their bodies until we reach the built-in function+ and evaluate
4+4 to 8. Similarly in GCLA if we have the query

somefunstrat \\- (main \- C)

we replace each head by its body by successive applications of thed_left/3 [4,15] rule until we get the
expression+(4,4) which is then evaluated to8, and we get a binding ofC to 8. We see that reductions
correspond to applications of thed_left/3 rule. All that we have to do then is to take a functional pr
gram and perform some of the usual transformations made by compilers until we get a supercom
program which can then be turned into a GCLA definition that can be evaluated with some suitab
of inference rules and search strategies.

Unfortunately it is not quite as simple as that since we want lazy evaluation and supercombinato
grams may contain both functions as arguments, and combinators waiting for more arguments. It
obvious how to express those things in the first order language GCLA, but we try hard................

ent,
a very
at

, is it
eady
ation,
ted if

ry fea-
ions are

a pro-
ming
hich is
t it is

y the

by the
they are

they
3.2 A Tiny Functional Language

Since our original aim was to apply KBS technology to build an environment for program developm
we choose to work with a subset of an existing programming language. The language chosen was
small subset of LML [9], called TML (Tiny ML) in this paper. TML is a subset of LML in the sense th
any correct TML program also is a correct LML program.

The major limitation made in TML is that there are no type declarations in the language, that is
not possible to introduce any new types. The only possible types of objects in TML are those alr
known to the system, namely integers, booleans, lists and tuples. Although this is a serious limit
we do not believe that the translation into GCLA presented in this paper would be seriously affec
we introduced the possibility to declare new types.

Some examples of TML programs are given below. As can be seen from the examples ordina
tures such as pattern matching, anonymous patterns, lambda abstractions and higher order funct
included in TML.

let rec append nil ys = ys
|| append (x.xs) ys = x.(append xs ys)
and foldr f u nil = u
|| foldr f u (x.xs) = f x (foldr f u xs)
and fromto n m = if n = m+1 then nil
else n.fromto (n+1) m
and flat xss = foldr append nil xss

in flat [fromto 1 5;fromto 2 6 ;fromto 3 7]

let rec filter p nil = nil
|| filter p (x.xs) = if (p x) then x.(filter p xs)
else filter p xs
and from n = n.from (n+1)
and take 0 _ = nil
|| take n (x.xs) = x.take (n-1) xs
and sieve (p.ps) = p.sieve (filter (\n.n%p ~=0) ps)

in take 20 (sieve (from 2))

3.3 The Translation Process

One of the motivations of writing the translator presented here was to further evaluate GCLA as
gramming tool, and to initiate work on a programming methodology. Some first results on program
methodology extracted from this and other projects have been presented in [12]. The translator, w
written entirely in GCLA is one of the largest GCLA- applications developed so far, and shows tha
possible to use GCLA to do other things than develop Knowledge Based systems.

The translator works in a number of passes where the most important are

• Lexical analysis and parsing

• Some rewriting to remove any remaining syntactical sugar

• Pattern matching compiler

• Lambda lifting

• A pass to create a number of GCLA-functions - one for each supercombinator produced b
lambda lifting pass.

The lexical analyzer and parser were written by Göran Falkman and the rest of the translator
author of this paper. The methods used are from [7,8,14,18,19] and are not described here since
standard material in compilers for functional languages. We will simply make some remarks on how
help us achieve our purposes.

efini-
in [7,8].
ucted
e con-
d here

sed to
al infer-

bda
itions

and an
each

ration

ce the
3.3.1 Removing syntactic sugar

Some constructs in TML like if expressions, boolean operators and pattern matching in function d
tions are simply syntactic sugar for case expressions. These constructs are removed as described
For us this is advantageous since it gives us a much more limited language to work with. All constr
values are represented uniformly with a constructor number and a number of fields (the parts of th
structed value) as in [8,19]. This representation supports our claim that the translation presente
would not be seriously affected if we allowed arbitrary data types.

3.3.2 Pattern Matching Compiler

All patterns are transformed into case expressions. The pattern matching compiler [8,18]is then u
enhance the efficiency of pattern matching. In Sect. 4 we show how these are evaluated by a speci
ence rule in GCLA.

3.3.3 Lambda Lifting

In GCLA all function definitions are at the same level, that is there are no local functions or lam
abstractions. By lambda lifting the programs [14,18,19] we get a program where all function defin
(the supercombinators) are at the same outermost level which is exactly what we want.

3.3.4 Creating a GCLA Definition

When we have performed the above transformations we get a list of supercombinator definitions
expression to be evaluated. We then create a GCLA definition according to the following, where
identifier beginning with an uppercase letter is a GCLA variable

• The expression to be evaluated becomes the definition of main
main <= expression_to_evaluate .

• For each super combinator definition we create the definitions
name(X1,....,Xn) <= combinatorbody.

fn(name,[X1,...,Xn]) <= name(X1,...,Xn).

Where theXi’s are GCLA variables, and the second clause can be seen as a kind of decla
which says that there is a function of arity n calledname.

• Constructed values, that is all objects but functions, are written as
c(constructornumber : constructorname , list_of_parts)

for example a list containing the element 5 becomes
c(2:cons,[c(5:int,[]),c(1:nil,[])])

For each type constructor there is also a declaration like the ones for functions, for instan
constructorcons has the declaration
fn(cons,[Hd,Tl]) <= c(2:cons,[Hd,Tl])

• As an example of a case expression we take the following which evaluates to true ifList is an
empty list and to false otherwise
case(List,[

 (1:[] -> c(1.true,[])),

 (2:[Hd,Tl] -> c(2:false,[]))])

• let([

 X1 = exp1 ,

......

s

ts,

es iden-

le be
ction
 Xn = expn],

inexpression)

Is the translation of let expressions. Since theXi’s are GCLA variables we cannot handle program
with bindings like in,let rec ones = 1.ones in ones , which would lead to circular unification.
To handle declarations of this kind we would need to lift them out to become definitions likeones

<= c(cons/2,[c(1:int,[]),ones]) , but this is not done at the moment.

• All function applicationsf exp 1... exp n where the function is applied to enough argumen
that is a supercombinator redex, are replaced byf(exp 1,..., exp n)

3.3.5 Examples

In the examples below we have edited the variable and function names since the translator renam
tifiers to make them unique.

let rec from n = n.from (n+1)
 and take n (x.xs) = if n=0
 then nil
 else x.take (n-1) xs
in take 5 (from 3)

% Corresponding GCLA definition.
from(X)<=c(2:cons,[X,from(+(X,c(1:int,[])))]).

take(N,Xs)<=case(Xs,[
 (1:[] -> error),
 (2:[Hd,Tl] -> case(=(N,c(0:int,[])),[
 (1:[] -> c(1:nil,[])),

(2:[] -> c(2:cons,[Hd,take(-(N,c(1:int,[])),Tl)]))]))]).

main <=take(c(5:int,[]),from(c(3:int,[]))).

let rec odd 0 = false
 || odd n = even (n-1)
 and even 0 = true
 || even n = odd (n-1)
in even 5

% Corresponding GCLA definition.
odd(N)<=case(N,[
 (0:[] -> c(2:false,[])),
 (V:[] -> even(-(N,c(1:int,[]))))]).

even(N)<=case(N,[
 (0:[] -> c(1:true,[])),
 (V:[] ->odd(-(N,c(1:int,[]))))]).

main <=even(c(int/5,[])).

We could of course do some sugaring of the syntax, the definition of take could for examp
written as below with very small changes to the procedural part described in the next se.

take(N,Xs)<=case(Xs,[
 (nil:[] -> error),
 (cons:[Hd,Tl] -> case(N=n(0),[
 (true:[] -> []),
 (false:[] ->[Hd|take(N-n(1),Tl])])]).

argu-
hough,

e
aiting

need
how to
LA pro-

ti-
“
d
haviors

ly useful
show
asier to

rd
3.4 Remaining Problems

All program examples above were first order programs, and all functions were applied to enough
ments to form a super combinator redex. Not many functional programs have these properties t
so we need some way of handling higher order programs.

As yet we do not know of any natural way to do this in GCLA, but it is not very difficult to do som
syntactical rewriting to handle higher order functions. In the translation presented here functions w
for more arguments are simply represented with the constructionfn(name, ListOfArgs) , and function
application denoted with the operator¤. If we have a function like the ordinary map function which
takes two arguments, an expression likefn(map,[])¤ funexp is evaluated tofn(map,[funexp]) , and an
expressionfn(map,[funexp])¤ listexp is evaluated tofn(map,[funexp , listexp]) . We then use the
definition fn(map,[F,L]) <= map(F,L) . to replace it by the definition of the function map.
As an example, if we translate the program in Sect 3.2, the functionsfoldr andflat come out as

foldr(F,U,L)<=case(L),[
 (1:[] -> U),

 (2:[Hd,Tl] -> F¤ Hd¤ foldr(F,U,Tl))])

flat(Xss)<=foldr(fn(append,[]),c(1:nil,[]),Xss)

4 The Procedural Part : Evaluating the Programs

All we have produced so far is a definition, to give the definition a procedural interpretation we also
a procedural part, defining how the definition is to be used. Sect 4.1 gives some background on
read the rules and strategies presented in Sect 4.2, and can be skipped by the experienced GC
grammer (if there are any).

4.1 The Procedural Part Revisited

The general form of a GCLA query isS ||− Q whereS is a proofterm, that is some more or less instan
ated inference rule or strategy, andQ is an object level sequent. One way of reading this query isS
includes a proof ofQσ for some substitutionσ”. When the GCLA system is started the user is provide
with a basic set of inference rules and some standard strategies implementing common search be
among these rules. The standard rules and strategies are very general, that is they are potential
for a large number of definitions, and provide the possibility to pose a wide variety of queries. We
some of the standard inference rules and strategies here, in order to make the rest of the paper e
understand.The rest of the standard rules can be found in [4,15].

One simple inference-rule isaxiom/3 which states that anything holds if it is assumed, the standa
axiom rule is applicable to any terms and is defined by

axiom(T,C,I)<=
term(T), % provisio
term(C), % provisio
unify(T,C) % provisio
->(I@[T|R] \- C). % conclusion

The rule tells us that if we have an assumptionT among the list of assumptions(@[T|R]) ,(@is an infix
append operator) and if bothT and the conclusionC are terms, and ifT andC are unifiable thenC holds.
Another standard rule is definition right,d_right/2 , the conclusions that can be made from this rule
depend on the particular definition at hand. The d_right rule applies to all atoms

d_right(C,PT)<=
atom(C) % C must be an atom

st as

quent

strate-
rpreta-
luate

order

handle
es here
clause(C,B), % proviso
(PT -> (A \- B)) % premise, use PT to prove it
-> (A \- C). % conclusion

This rule is read as,if we have a sequentA \- C , and if there is a clauseC <= B in the definition, and
if we can show that the sequentA \- B holds using some of the proofs represented by the prooftermPT

thenC holds. There is also an inference rule, definition left, which uses the definition to the left, ju
d_right , this rule called d_left/3 is applicable to all atoms

d_left(T,I,PT) <=
 atom(T), % T must be an atom
 definiens(T,Dp,N), % Dp is the definiens of T
 (PT -> (I@[Dp|Y] \- C)) % premise, use PT to prove it
 -> (I@[T|Y] \- C). % conclusion.

The definiens operation is described in [15], ifT is not definedDp is bound tofalse .
One very general search strategy among the predefined inference rules isarl , which in each step of

the derivation first tries the axiom rule, then all standard rules operating on the consequent of a se
and after that all standard rules operating on the antecedent, it is defined by:

arl <=
axiom(_,_,_) % try axiom first,
right(arl) % then try the strategy right,
left(arl) % then try the left strategy.

In the definition below of the strategy right,user_add_right/2 can be defined by the user to contain
any new inference rules or strategies desired.

right(PT) <=
user_add_right(_,PT), % try users specific rules first
v_right(_,PT,PT), % then standard right rules
a_right(_,PT),
o_right(_,_,PT),
true_right,
d_right(_,PT).

4.2 A procedural part.

An alternative to building the procedural part from the predefined inference rules and search
gies is to implement new, specific rules and strategies to give exactly the desired procedural inte
tion of the definition at hand. In this section we use this method to develop a procedural part to eva
the function definitions described in previous sections. This procedural part gives an evaluation
corresponding to normal order evaluation in lambda calculus.

4.2.1 The Rules

There are five general rules dealing with normal order evaluation and a number of special rules to
specific constructs like case expressions and predefined functions. We show the five general rul
and some of the others. The comments are possible readings of the rules.

evaluated(T,C,I) <= % succeeds when T is a value
(functor(T,c,2); % values are c(_,_), or
(functor(T,fn,2), % fn(N,A), where fn(N,A) is
clause(T,B),B = false)), % not defined.
unify(C,T) -> (I@[T|_] \- C). % result is C.

rewrite(T,I,PT)#{T \= let(_,_),T \= case(_,_),T \= c(_,_),T \= (_ -> _),T \= (_
¤_)} <= % guard

definiens(T,Dp,N), % calculate definiens of T,if Dp \=
Dp \= false, % false, then T is defined and is
(PT -> (I@[Dp|R] \- C)) % replaced by its definiens.
-> (I@[T|R] \- C). % value of T is C.

apply_fn((fn(_,_)¤_),I,PT) <= % this rule is needed to avoid
definiens(fn(Name,Args),Dp,N), % collecting to many arguments
Dp \= false, % If fn(Name,Args) is defined
(PT -> (I@[Dp¤Arg|R] \- C)) % it is replaced by its definition
-> (I@[fn(Name,Args)¤Arg|R] \- C). % value is C.

collect_arg((fn(_,_)¤_),I,PT) <= % rule to collect arguments to
append(Args,[Arg],Args1), % functions. Arg is appended to
(PT -> (I@[fn(N,Args1)|R] \- C)) % Args and evaluation continues
-> (I@[fn(N,Args)¤Arg|R] \- C). % with fn(N,Args1).

normalorder((M¤N),I,PT1,PT2)#{M \= fn(_,_)} <=
(PT1 -> (I@[M|R] \- M1)), % first evaluate M to M1
(PT2 -> (I@[M1¤N|R] \- C)) % then evaluate M1 applied to N
-> (I@[M¤N|R] \- C). % value is C.

The built in function+ and case expressions are handled by the following rules, the provisioev/4 is
a call to the underlying prolog system to perform addition.

plus_left(+(X,Y),I,PT1,PT2)<= % rule to handle +:
(PT1 -> (I@[X|R] \- N1)), % use PT1 to compute X to N1
(PT2 -> (I@[Y|R] \- N2)), % use PT2 to compute Y to N2
ev('+',N1,N2,N), % add N1 and N2
unify(C,N) % unify N with conclusion C
-> (I@[+(X,Y)|R] \- C). % value of X+Y is C.

case(I,PT) <= % case expression rule:
(PT -> (I@[E|R] \- E1)), % evaluate E to E1
E1 = c(T:N,F), % then instantiate F and Exp
(det_axiom -> (CL \- T:F -> Exp)), % using a deterministic axiom
(PT -> (I@[Exp|R] \- C)) % evaluate Exp to C
-> (I@[case(E,CL)|R] \- C). % value of case is C.

4.2.2 The strategy

tml<=
(predef(_,_,tml) <- true), % first try strategy predef/3
(rewrite(_,_,tml) <- true), % then try rule rewrite/3
(apply_fn(_,_,tml) <- true), % then try rule apply_fn/3
(collect_arg(_,_,tml) <- true), % then try rule collect_arg/3
(normalorder(_,_,tml,tml) <- true), % then try rule normalorder/4
evaluated(_,_,_). % else try rule evaluated.

predef(T,I,PT)#{T \= fn(_,_),T \= c(_,_),T \= (_¤_)} <= (I@[T|_] \- C).
predef(T,I,PT)#{T \= fn(_,_),T \= c(_,_),T \= (_¤_)} <= predef_i(T,I,PT).

% continue with the appropriate choice
predef_i(case(_,_),I,PT) <= case(I,PT).
predef_i(let(_,_),I,PT) <= let(I,PT).
predef_i(+(_,_),I,PT) <= plus_left(_,_,PT,PT).
predef_i(-(_,_),I,PT) <= minus_left(_,_,PT,PT).
predef_i(*(_,_),I,PT) <= mult_left(_,_,PT,PT).
predef_i(/(_,_),I,PT) <= div_left(_,_,PT,PT).
predef_i(mod(_,_),I,PT) <= mod_left(_,_,PT,PT).
predef_i(<(_,_),I,PT) <= lt_left(_,_,PT,PT).
predef_i(>(_,_),I,PT) <= gt_left(_,_,PT,PT).
predef_i(=<(_,_),I,PT) <= lte_left(_,_,PT,PT).
predef_i(>=(_,_),I,PT) <= gte_left(_,_,PT,PT).
predef_i(=(_,_),I,PT) <= eq_left(_,_,PT,PT).

rder

e
t tried

l is

k being
able to

t

used in
elow,
The search strategytml/0 determines the order in which the different inference rules are tried. The o
is somewhat arbitrary, the only important thing is that the ruleapply_fn/3 is tried before the rule
collect_arg/3 . The backward arrow ‘<- ’ is described in [5]. Used the way it is here it means that if th
rule/strategy occurring to the left of the arrow succeeds, then the following rules/strategies are no
on backtracking. The strategytml/0 is deterministic, that is we only get one answer, which we fee
the correct behavior of functional programs.

4.3 Lazier Evaluation

The programs described so far are not lazy, that is expression such as arguments to functions ris
evaluated over and over again. In order to achieve lazier evaluation we attach an extra logical vari
each variable occurring more than once in an expression. We write this as(X -> XV) meaning thatX is
evaluated toXV. With this technique the function from becomes

from(X) <= c(2:cons,[X->XV,from((X->XV)+c(1:int,[]))]).

We also add an extra rule lazy/3 to the strategypredef

lazy(1,I,PT) <= % first clause of lazy
Q = (X->Y), % Q = (X -> Y)
var(Y), % if Y is a variable then
(PT -> (I@[X|R] \- C)), % evaluate X to C
unify(Y,C), % unify Y and C
-> (I@[Q|R] \- C).

lazy(2,I,PT) <= % second clause of lazy
Q = (X->Y), % Q = (X -> Y)
nonvar(Y), % if Y is not a variable
unify(Y,C) % unify Y and C
-> (I@[Q|R] \- C).

4.4 Usage

As a last example we take a program that computes an infinite list of all primes
let rec filter p nil = nil
 || filter p (x.xs) = if (p x)
 then x.(filter p xs)
 else filter p xs
 and from n = n.from (n+1)
 and take 0 _ = nil
 || take n (x.xs) = x.take (n-1) xs
 and sieve (p.ps) = p.sieve (filter (\n.n%p ~=0) ps)

in take 10 (sieve (from 2))

If we run the translation of this program with the strategytml the evaluation will of course stop almos
immediately, but with a printing mechanism to show the results we get the infinite list

| ?- inf \\- sieve(from(c(2:int,[]))) \- L.
cons(2 cons(3 cons(5

Since the programs described in this paper are ordinary GCLA programs, they can of course be
other GCLA programs. A definition to enumerate all subsets of a list on backtracking is given b
used as in the query below we get all subsets of the three first primes.

subset(c(1:nil,[]),[]).
subset(c(2:cons,[Hd,Tl]),[n(Num)|Tl1]) <=

(Hd -> c(Num:int,[])),subset(Tl,Tl1).
subset(c(2:cons,[Hd,Tl]),Tl1) <= subset(Tl,Tl1).
subset(L,L2)#{L \= c(_,_)} <= (L -> L1),subset(L1,L2).
n(N) <= c(N:int,[]).

ML
be to
ible to

ind of

so tried
[18],

e infer-
stead
in Sect
nction
uneval-
| ?- subset \\- \- subset(take(n(3),sieve(from(n(2)))),S).

S = [n(2),n(3),n(5)] ? ;

S = [n(2),n(3)] ? ;

S = [n(2),n(5)] ? ;

S = [n(2)] ? ;

S = [n(3),n(5)] ? ;

S = [n(3)] ? ;

S = [n(5)] ? ;

S = [] ? ;

no

5 Concluding Remarks

Our original aim with this work was to find a representation of TML to facilitate reasoning about T
programs in GCLA. So far we have only created this representation. Interesting future work would
see if it is possible to use it to do other things than evaluate the programs. For example is it poss
write other procedural parts and some auxiliary definitions to do things like debugging or some k
abstract interpretation? In short develop the programming environment originally planned.

5.1 Alternative Translations

The translation presented here is of course by no means the only possible solution. We have al
translating the TML programs into a fixed set of combinators (S,K, I and some more) as is done in
and to extended lambda calculus using the Y combinator. The procedural part then contained on
ence rule for each combinator. Another interesting alternative is to use GCLA pattern matching in
of doing all pattern matching with case expressions. One possible such translation of the program
4.4 is given below. The main disadvantages of this method is that the different clauses defining a fu
need to be mutually exclusive, and that we also need a number of extra clauses which evaluates
uated arguments. The definition of the function take illustrates this problem.

fn(modzero,[X,Y]) <= modzero(X,Y).

modzero(X1,X2) <=
if((X2 mod X1) = n(0)), % if
b(false), % then
b(true)). % else

filter(_,[]) <= [].
filter(F,[X|Xs]) <=

if(F¤ (X=>XV), % if
[(X=>XV)|filter(F,Xs)], % then
filter((X=>XV),Xs)). % else

filter(F,Xs)#{Xs \= [],Xs \= [_|_]} <= (Xs -> Xs1) -> filter(F,Xs1).

take(n(0),L) <= [].
take(n(N),[X|Xs])#{N \= 0} <= [X|take(n(N)-n(1),Xs)].
take(N,L)#{N \= n(_)} <= (N -> N1) -> take(N1,L).
take(N,L)#else <= (L -> L1) -> take(N,L1).% if no other clause match

from(X) <= [(X=>XV)|from((X=>XV)+n(1))].

sieve([X|Xs]) <= [(X=>XV)|sieve(filter(fn(modzero,[(X=>XV)]),Xs))].
sieve(Xs)#{Xs \= [],Xs \= [_|_]} <= (Xs -> Xs1) -> sieve(Xs1).

main <= take(n(10),sieve(from(n(2)))).

% definition of if.
if(b(true),Then,_) <= Then.
if(b(false),_,Else)<= Else.

aluat-
me-
of a

main

 is we
haves
hich
void

ince in
ogram,

we
nt the
if(B,Then,Else)#{B \= b(_)} <= (B -> B1) -> if(B1,Then,Else).

5.2 Related Work

The work in this paper is perhaps closest related to different attempts at doing functional (lazy) ev
ing in logic programming, and to work on combining functional/relational programming into one fra
work. An survey of this research area is given in [11]. GCLA itself [5,15] is of course one example
programming system which combines the two styles. [1] classify this kind of research into four
trends: anembeddingapproach; asyntacticapproach; analgebraicapproach and ahigher-order logic
approach.

Our method should then probably be classified as an example of the syntactic approach, that
take a program written in some syntax and transform it statically into an alternate syntax which be
according to the intended semantics. An early example of this approach is [20], later examples w
include normal order (lazy) evaluation are [2,16,17]. [16] use an approach very much like ours to a
computing expressions several times. As compared to [2,16,17] we get much cleaner programs s
GCLA we can evaluate functions, and we also separate the declarative and procedural parts of a pr
thus freeing the definitions from control information.

As an example of a logic programming system including equations (functional programming)
mention the language ALF [13], and as an example of a functional language with a logic compone
language LML [10].

References
[1] H. Ait-Kaci, R. Nasr, Integrating Logic and Functional Programming, Lisp and Symbolic Computation, 2

pp 51-89, 1989.

[2] S. Antoy, Lazy Evaluation in Logic LNCS 528

[3] M. Aronsson, Methodology and Programming Techniques in GCLA II, SICS Research Report R92:05,

also published in: L-H. Eriksson, L. Hallnäs, P. Shroeder-Heister (eds.), Extensions of Logic Programming,
Proceedings of the 2nd International Workshop held at SICS, Sweden, 1991, Springer Lecture Notes in Artificial
Intelligence, vol. 596, pp 1-44, Springer-Verlag, 1992.

[4] M. Aronsson, GCLA User’s Manual, SICS Research Report T91:21A.

[5] M. Aronsson, GCLA - The Design, Use, and Implementation of a Program Development System, Ph D

thesis, Department of Computer and Systems Sciences, The Royal Institute of Technology and Stock-

holm University, Sweden 1993.

[6] M. Aronsson, P. Kreuger, L. Hallnäs, L-H. Eriksson, A Survey of GCLA — A Definitional Approach to

Logic Programming, in: P. Shroeder-Heister (ed.), Extensions of Logic Programming, Proceedings of the 1st
International Workshop held at the SNS, Universität Tübingen, 1989, Springer Lectures Notes in Artificial Intel-
ligence, vol. 475, Springer-Verlag, 1990.

[7] L. Augustsson, A Compiler for Lazy ML, in Proceedings of the 1984 ACM Symposium on Lisp and Functional
Programming, pp 218-227, Austin Texas 1984.

[8] L- Augustsson, Compiling Functional Languages, part II, Ph D thesis, Chalmers University of Technology,

Sweden, 1987.

[9] L. Augustsson, T. Johnsson, Lazy ML, user’s manual
[10] A. Brogi, P. Mancarella, D. Pedreschi, F. Turini, Logic Programming within a Functional Framework,

LNCS, 456. pp. 372 - 386.

[11] D. DeGroot, D Lindstrom, (eds), Logic Programming. Functions, relations and equations, Prentice Hall, New

Jersey, 1986.

[12] G. Falkman, O. Torgersson, Programming Methodologies in GCLA, to be published in LNCS ?

[13] M. Hanus, Compiling Logic Programs with Equality, LNCS 456.

[14] T. Johnsson, Compiling lazy functional languages, Ph.D thesis, Chalmers University of technology, Sweden,

1987.

[15] P. Kreuger, GCLA II, A Definitional Approach to Control, Ph L thesis, Department of Computer Science,

University of Göteborg, Sweden, 1991, also published in: L-H. Eriksson, L. Hallnäs, P. Shroeder-Heister

(eds.), Extensions of Logic Programming, Proceedings of the 2nd International Workshop held at SICS, Sweden,
1991, Springer Lecture Notes in Artificial Intelligence, vol. 596, pp 239-297, Springer-Verlag, 1992.

[16] S. Narain, A Technique For Doing Lazy Evaluation in Logic, The Journal of Logic Programming, vol 3

,1986, pp 259-276.

[17] S. Narain, Lazy Evaluation in Logic Programming, Proceedings 1990.

[18] S. L. Peyton Jones, The Implementation of Functional Programming Languages. Prentice Hall, 1987.

[19] S. L. Peyton Jones and D. Lester, Implementing Functional Languages: A Tutorial. Prentice Hall, 1992.

[20] D. H. D. Warren, Higher-order extensions to Prolog -are they needed?, in : D. Mitchie (ed) Machine Intel-
ligence 10, pp. 441-454 Edinburgh University Press, Edinburgh, UK (1982).

	[1] H. Ait-Kaci, R. Nasr, Integrating Logic and Functional Programming, Lisp and Symbolic Computa...
	[2] S. Antoy, Lazy Evaluation in Logic LNCS 528

