Programming Techniques in GCLA 1l

Goran Falkman & Olof Torgersson

Department of Computer Sciences
Chalmers University of Technology and University of Goteborg
S-412 96 Goteborg, Sweden
{falkman,oloft}@cs.chalmers.se

Abstract

This paper presents work on methodologies for the programming tool GCLA 111, Two methods are
investigated for reasoning about properties of regular expressions and their corresponding nondeter-
ministic finite automata (NFA’s). The methods described are combination of predicate and functional
programming within the framework of GCLA Il and an investigation of properties and possible usages
of the duality of the "," (and) construct within the language.

1 Introduction

This paper is the first result of a project currently carried out at the Department of Computer Sciences uni
the supervision of Lars Halln&s. Within this project we intend to study the problem of giving mathematicall
precise and implementation independent models of the notion of a knowledge base (KB). These models \
then serve as a basis for computer aided development and testing of specialized knowledge based sys
(KBS). We will especially concentrate on trying to characterize the logical interface of a KB, i.e. a user’
basic conceptual model of a given KB. We will in particular look at applications in the field of diagnosis;
error detection.

An example of such an application is environments for program development, especially debugging. O
aim is to investigate how knowledge based systems (KBS) technology can be applied to such applicatiol
using the programming tool GCLA Il. The language GCLA Il was originally designed for applications
within KBS such as default and hypothetical reasoning, diagnosis and simulation.

The examples in this paper are taken from the area of lexical analysis, since this seems to be a neces:
first step.

This paper contributes to the as yet poorly known domain of programming methodology for GCLA Il
Two methods are investigated for reasoning about properties of regular expressions and their corresponc
nondeterministic finite automata (NFA's). The methods described are combination of predicate and fun
tional programming within the framework of GCLA Il and an investigation of properties and possible
usages of the duality of the "," (and) construct within the language.

2 GCLAI

2.1 Introduction to GCLA Il

GCLA? Il (Generalized HorrClauseLAnguage) is perhaps best described as a logical programming lan:
guage, with some properties usually found among functional languages.

Compared to Prolog, what has been added to GCLA Il is the possibility to assume conditions. For exal
ple, the clause

a<=(b->c).

1. This work was carried out as part of the work in the ESPRIT working group GENTZEN.
2. To be pronounced “gisela”.

should be read as*holds ifc can be proved while assumihg
There is also a richer set of queries in GCLA 1l than in Prolog. An ordinary Prolog query is written

-a.

and should be read as “Doadold (in the definitionD)?” In GCLA 1l one can also assume things in the
guery, for example

c\-a.

which should be read as “Assumingdoesa hold (in the definitiorD)?”, or “Is a derivable front?”

To execute a program, a quédyis posed to the system, asking whether there is a substitmsach that
Go holds according to the logic defined by the program. The Gdaas the fornT” |- ¢, wherd is a list of
assumptions, and c is the conclusion from the assumptiofse system tries to construct a deduction
showing thatGo holds in the given logic.

For a more complete and comprehensive description of GCLA II's theoretical properties see [1]. [2] der
onstrates the program development methodology used in GCLA II. Various implementation techniques
including functional and object oriented programming, are also demonstrated.

2.2 Programs in GCLA Il

A GCLA Il program consists of two parts; One part is used to express the declarative content of the progra
called thedefinitionor theobject level and the other part is used to express rules and strategies acting o
the declarative part, called thde definitionor themeta level

2.2.1 The definition

The definition constitutes the formalization of a specific problem domain, and in general contains a mir
mum of control information. The intention is that the definition by itself gives a purely declarative descrip
tion of the problem domain while a procedural interpretation of the definition is obtained only by putting i
in the context of the rule definition.

2.2.2 The rule definition

The rule definition contains the procedural knowledge of the domain, i.e., the knowledge used for drawil
conclusions based on the declarative knowledge in the definition. This procedural knowledge defines
possible inferences made from the declarative knowledge.

The rule definition containgference rulalefinitions, which define how different inference rules should
act, andstrategiesvhich control the search among the inference rules.

2.2.3 Example: Default reasoning

Assume we know that an object can fly if it is a bird and if it is not a penguin. We also know that Tweet
and Polly are birds as well as all penguins, and finally we know that Pengo is a penguin. This knowledge
expressed in the following definition:

flies(X) <=

bird(X),
(penguin(X) -> false).
bird(tweety).
bird(polly).
bird(X) <=
penguin(X).
penguin(pengo).
To be able to use this definition the way we want we have to write the following rule definition:

fs <= % Never do axiom!
right(fs), % First try standard right rules.
left_if _false(fs). % else if consequent is false...

left_if false(PT) <= % Is the consequent false?

(_ \-false).
left_if_false(PT) <= % If so perform left rules.
no_false_assump(PT),
false_left().
no_false_assump(PT) <= % No false assumption.
not(member(false,A)) -> % i.e. the term false is not a
(AN-). % member of the assumption list.
no_false_assump(PT) <=
left(PT).
member(X,[X|_])- % Proviso definition.

member(X,[_|R]):-
member(X,R).

If we want to know which birds can fly, we pose the query
fs \- (\- flies(X)).

and the system will respond wikh=tweety andX = polly
If we want to know which birds cannot fly, we can pose the query

fs \\- (flies(X) \- false).
and the system will respond wikh= pengo

3 Some background material

In the following subsections we will give a short introductionrtondeterministic finite automatand
Thompson’s constructiof-or a more complete description of these subjects we refer to [3].

3.1 Nondeterministic finite automata

Definition: A nondeterministic finite automatgNFA) is a mathematical model that consists of:
a set of stateS

a set of input symbols

a transition functiomovethat maps state-symbol pairs to sets of state

N

a statesy that is distinguished as tiséart state
5. a set of statds distinguished aaccepting states

An NFA can be represented diagrammatically by a labelled directed graph, called a transition graph,
which the nodes are the states and the labelled edges represent the transition function.

An NFA accepts an input stringjif and only if there is some path in the transition graph corresponding
to the NFA from the start state to some accepting state, such that the edge labels along this pathsspell ot
Thelanguage definetly an NFA is the set of input strings that it accepts.

3.2 Thompson’s construction

Given a regular expressianwe first parse into its constituent subexpressions. Then using rule (1) and (2)
below, we construct NFA's for each of the basic symbols(tnose that are eitheror an alphabet symbol).
Then, guided by the syntactic structure of the regular expressioe combine these NFAs inductively
using rule (3) below until we obtain the NFA for the entire expression.

Each intermediate NFA produced during the course of the construction corresponds to a subexpres:
of r and has several important properties: it has exactly one final state, no edges enters the start state,
no edge leaves the final state.

1. For the regular expressienconstruct the NFA

start €
=D

Herei is a new start state ahd new accepting state.
2. For the regular expressianconstruct the NFA

start a
=S,

Againi is a new start state ahd new accepting state.
3. Supposé(s) andN(t) are NFAss for the regular expressiagandt respectively.
a) For the regular expressigh construct the composite NFA

Herei is a new start state ahd new accepting state.
b) For the regular expressish construct the composite NFA

The start state dN(s) becomes the start state of the composite NFA and the accepting shé(g of
becomes the accepting state of the composite NFA. The accepting shit® of merged with the
start state oN(t).

c) For the regular expressigh construct the composite NFA

start
—»

Herei is a new start state ahd new accepting state.

d) For the parenthesized regular expressspruéeN(s) itself as the NFA.
e) For the regular expressish use the NFA of the expressisg.

f) For the regular expressia, use the NFA of the expressigja

4 Mixing functions and predicates in programs

This section describes how we simulate an NFA in GCLA Il using the possibility to mix functions and pred
icates in a program.

4.1 A functional version of Thompson’s construction

The algorithm described in Section 3.2 for constructing NFA's is easily changed into a function that takes
regular expression as its argument and returns the corresponding NFA generated by Thompson’s const
tion. An NFA is represented by a 3-tuple consisting of a list, containing all the transitions of the NFA, it
start state and its accepting state. When we use a function in a query we put the function call to the left
the turnstile,* ', and get the result to the right. Using the stratégynp/0 , which assures that we will

only get the answers we are interested in, we get the NFA corresponding to a regular expression like tt

thomp \\- thompson("a™:"b") \- NFA.
NFA = nfa([m(0,"a",1),m(1,"b",2)],0,2)

The query above should be read: “What is the NFA corresponding to the regular expedsSidiVe could

also instantiate the result in which case the query should be read: “Is
nfa([m(0,"a"],1),m(1,"b",2)],0,2) the NFA given by Thompson’s construction for the regular
expressiorab.

The definition ofthompson/1 is simply a call tahompson/2 , which has one clause for each kind of
regular expression. We show how some of these should be read and then give the entire definition of
thompson/2 .

thompson(eps,S) <=
(S+1 -> S1) -> nfa([m(S,eps,S1)],S,S1).
The clause above, which gives the NFA for the empty string, should be re&ik:T'Ifevaluates t&1 then
thompson(1,eps,S) evaluates tafa([m(S,eps,S1)],S,51)
thompson((A:B),S) <=
(thompson(A,S) -> nfa(M1,S,T2)),
(thompson(B,T2) -> nfa(M2,T2,T)),
append(M1,M2,M3)
-> nfa(M3,S,T).
This clause gives the NFA for the regular expressemsiere we have mixed functional and predicate pro-
gramming, whereasppend/3 is a predicate that appends its first and second argument in the third. On
way to read this clause is: “lthompson(A,S) evaluates to the NFAfa(M1,S,T2) , andthomp-
son(B,T2) evaluates tmfa(M2,T2,T) , andMlandM2are appended in3thenthompson((A:B),S)
evaluates to the NFAfa(M3,S,T)

In the definition below, each clause corresponds to the different cases in the description of Thompsor

construction given in Section 3.2.
thompson(eps,S) <=
(S+1 -> S1) -> nfa([m(S,eps,S1)],S,S1).

thompson(A,S)

#HA=(_|),A\=(_),A=eps A\="2"(),A\="+'(),A\=""),A\=reg(_,)} <=
(S+I > S1) -> nfa([m(S,A,S1)];S,S1).

thompson((A|B),S) <=
(S+1 -> S1),(thompson(A,S1) -> nfa(M1,S1,T2)),
(T2+1 -> ST2),(thompson(B,ST2) -> nfa(M2,ST2,T)
(T+1->T1),
append(M1,M2,M3)
-> nfa([m(S,eps,S1),m(S,eps,ST2),m(T2,eps,T1),m(T,eps,T1)|[M3],S,T1).

thompson((A:B),S) <=
(thompson(A,S) -> nfa(M1,S,T2)),
(thompson(B,T2) -> nfa(M2,T2,T)),
append(M1,M2,M3)
-> nfa(M3,S,T).

thompson((A)*,S) <=
(S+1 -> S1),(thompson(A,S1) -> nfa(M1,S1,T)),
(T+1->T1)
-> nfa(Im(S,eps,T1),m(S,eps,S1),m(T,eps,T1),m(T,eps,S1)|M1],S,T1).

thompson((A)+,S) <=
thompson((A:A*),S).

thompson((A)?,S) <=
thompson((Aleps),S).

thompson(reg(X,E),S) <=
reg(X,E) -> thompson(E,S).

4.2 Running an NFA given by Thompson’s construction

To be able to determinate whether a certain string is recognized by a given NFA or not, we need to simul
the NFA. For this purpose we use Algorithm 3.4 in [3].
An example of a typical query is:

sim \\- input("ab") \- simula(nfa([m(0,"a",1),m(1,"b",2)],0,2)).

This should be read: “Does the given NFA recognise the stebg ?”, and will give the answeyes . When
writing a definition in GCLA Il you have to decide whether you want to use the definition on the left or the
right side of the sequent or on both. When we wrote the definitinafla/1 we decided that it should

be used to the right, and that we did not want to give the input string as a parameter to the simulation al
rithm. Instead we use the left hand as a kind of storage and read characters from it when needed.

The simulation of an NFA uses two operationsveande-closure If Sis a set of states thenove(S,a)
gives all states that can be reached from a st&byna transition om, the current input characterclo-
sure(S)gives all the states that can be reached from a st&teyiizero or more-transitions.

We describe Algorithm 3.4 by showing its definition in GCLA II:

simula(nfa(Transes,S0,Final)) <=
simula(eclosure(stack([S0]),[S0], Transes), Transes,Final).

The first thing to do is to compute tlgeclosureof the start stat&0, which is done by a call to the function
eclosure/3 , execution then continues with a calktmula/3
simula(S,Transes,Final) <=
next_char(A,(eq(A.[]),
member(Final,S))).
The above could be read: “If the next input charaéterthe empty string, then see if the final stafénal |,
is in'S, the current set of states”. If this is the case then the NFA accepts the given string.

The definition below tells us what to do if the next input character is not the empty string. First, all th
states that can be reached by transitions on the current input chaxacgecomputed bynove/4 and then
thee-closureof these are computed and execution continues with a cithiita/3

simula(S, Transes,Final)<=
next_char(A,(neq(A,[]),

move(S,[A], Transes,Moves),
simula(eclosure(stack(Moves),Moves, Transes), Transes,Final))).

The entire definition ofimula/1 andsimula/3 is

simula(nfa(Transes,S0,Final)) <=
simula(eclosure(stack([S0]),[S0], Transes), Transes,Final).

simula(E) #{E \= nfa(_,_,)}<=
(E -> NFA),
simula(NFA).

simula(S,Transes,Final#{S\=[], S\=[_|_]} <=
(S -> S1),
simula(S1,Transes,Final).

simula(S, Transes,Final) <=
next_char(A,(eq(A,[]),
member(Final,S))).

simula(S, Transes,Final)<=
next_char(A,(neq(A,[]),
move(S,[A], Transes,Moves),
simula(eclosure(stack(Moves),Moves, Transes), Transes,Final))).

4.3 Some queries

Does the given NFA accept the input string?

sim \\- input("aaaaa") \-
simula(nfa([m(0,eps,3),m(0,eps,1),m(2,eps,3),
m(2,eps,1),m(1,"a"],2)],0,3)).

yes
The NFA in the example accets
Another possibility is to give the regular expression and let the program construct the NFA thus:
sim \\- input("abaa") \- simula(thompson(("a":"b"):"a"*)).
yes
For regular expressions that are not on the foym,, wherer is possibly infinite, it is also possible to gen-
erate strings generated by the regular expression:
sim \\- input(A) \- simula(thompson(("a":"b":"c")*)).
A=
A = [0_A;
A ="abc";
A = ["abe", [ILLAJ;
A ="abcabc";

Yet another way to use the knowledge of the system is to assume a number of regular expressions and cl
if any of these generates an NFA which accepts the input string.

sim \\- reg(_,"b"),reg(_,"a"),reg(_,("a")*),input("a") \-
simula(thompson(reg(_,Exp))).

Exp ="a"
Exp = ("a™);
no
One way to read this is: “Assuming thakeg(_,"a"), reg(_,"b") andreg(_,("a")*) are regular

expressions and that we have the input stradg, is it then possible to construct an NFA that accepts the
input string?”
We could also pose the query: “Is the input striaty accepted by both the NFA's generated by the reg-

ular expressionaa* anda’.

sim \\- input("a") \- simula(thompson("a")),simula(thompson("a":("a")*)).

yes
Instead of giving the regular expressions as assumptions in the query we can put them in a definition, wh
will give us a lexical analyser for the defined regular expressions. With the definition

reg(digits,(reg(digit,))*).
reg(digit,("0"["1"|"2"]"3"|"4"|"5"|"6"|"7"|"8"|"9")).
reg(relop,("="|"=":"<"|">")).

some possible queries are:
sim \\- input("23") \- simula(thompson(reg(N,_))).
N = digits;
no
sim \\- input("=") \- simula(thompson(reg(N,_))).
N = relop;
no

4.4 About the rule definition

As mentioned before a GCLA Il program consists of two partdfitionand therule definition.To get
the answers we want from the definitions shown above we have to write some new rules and strategies.
example we do not want to try thieright/2 rule on terms that we know have no definition such as num-
bers or lists. We therefore introduce a special class of terms, which wlatealind restrict the
d_right/2 rule so that it's not applicable to these.
data(X):- var(X).
data(X):- number(X).
data(X):- X ==].
data(X):- nonvar(X), functor(X,".",2).
data(X):- functor(X,nfa,3).
d_right(C,PT) <=
not(data(C)),
atom(C),
clause(C,B),
(PT->(A\-B)) > (A\-C).
Another special construct iextchar/2 , which lacks definition since it's a so callednstructorthat has
its own inference rulaext_right/1
next_right(PT) <=
hdt(String,H,T),
(PT -> (I@[input(T)|R] \- C))
-> (I@[input(String)|R] \- next_char(H,C)).

5 Using the duality of the comma constructor

In this section we will present another approach how to implement Thompson’s construction in GCLA |
The idea behind this implementation is to use the duality of the comma-constructor in GCA 11; to the left
the object level sequent the comma is read disjunctively and to the right of the object level sequent t
comma is read conjunctively.

Suppose we want to pose queries like: “Find all regular expressions that contain the expression that ¢
responds to a given NFA as a subexpression” and “Find all subexpressions to the regular expression tt
corresponds to a given NFA”.

This can be accomplished by using just a small definition of Thompson’s construction and the duality c
the comma constructor. We will see that using the definition on the left side of the object level sequent c«
responds to the first query above and using the definition on the right side of the object level sequent col
sponds to the second query.

5.1 The definition

If we want to use the clauses of the definition on both sides, then we cannot use the definition of Thompso
construction given in the last section. The reason for this is that in the definition given in the last sectic
many of the clauses were evaluated functionally, that is, they were using the arrow-construct. But the arrc
construct is not symmetric; the interpretation of the arrow-construct on the left side of the sequent diffe
from the interpretation of the arrow-construct on the right side of the sequent.

Instead we now let the different cases of Thompson'’s construction be defined by simply listing the tra
sitions that the resulting NFA consists of. This means that we represent an NFA by just a comma-separa
list of transitions. We do not bother listing the states, symbols, start state and accepting state of the NF
since an NFA constructed by Thompson’s construction is uniquely defined by its transition function. Th
states are denoted by successor-arithmetic and the numbering of the states always gives the start stat
smallest number and the accepting state the largest number. For example, the NFA corresponding to tl
expressiora* is represented by

(m(0,eps,s(0)).m(s(s(0)),eps,s(s(s(0)))),m(s(0).a,s(s(0))),
m(s(s(0)).eps,s(0)),m(0,eps,s(s(s(0)))))

Each clause in the definition corresponds directly to the step in Thompson’s construction (see Section 3
The complete definition is given by:

thompson(eps,S,s(S)) <=
m(S,eps,s(S)).

thompson(A,S,s(S))

#HA=(_| A=), A="*(),A\="+(),A\="?"(),A\=eps,A\=p()} <=
m(S,A,s(S)).

thompson((A|B),S,s(T)) <=
m(S,eps,s(S)),
m(S,eps,s(T2)),
m(T2,eps,s(T)),
m(T,eps,s(T)),
less_than(T2,s(T)),
less_than(s(S),T2),
thompson(A,s(S),T2),
thompson(B,s(T2),T).

thompson((A:B),S,T) <=
less_than(T2,T),
less_than(S,T2),
thompson(A,S,T2),
thompson(B,T2,T).
thompson((A)*,S,s(T)) <=
m(S,eps,s(S)),
m(S,eps,s(T)),
m(T,eps,s(T)),
m(T,eps,s(S)),
thompson(A,s(S),T).
thompson((A)+,S,T) <=
thompson((A: A*),S,T).
thompson((A)?,S,T) <=
thompson((Aleps),S,T).
thompson(p(E),S,T) <=
thompson(E,S,T).

less_than(0,s()).
less_than(s(A),s(B)) <=
less_than(A,B).
For example, the case when the regular expression is in the failny ioé.,a or b is defined by
thompson((A|B),S,s(T)) <=
m(S,eps,s(S)),
m(S,eps,s(T2)),
m(T2,eps,s(T)),
m(T,eps,s(T)),
less_than(T2,s(T)),
less_than(s(S),T2),
thompson(A,s(S),T2),
thompson(B,s(T2),T).
If m(S;, Sym S,) is read: “There is a transition from stagg to stateS, on symbolSyn?, then this defini-
tion can be read: “The NFA resulting when applying Thompson’s construction to a regular expression in tl
form of aJb when starting in stat8 and ending in statg(T) , consists of an empty transition from st&e
to states(S) , an empty transition from statto states(T2) , an empty transition from state2 to state
s(T) , an empty transition from stafieto states(T) , the transitions of the NFA that results when applying
Thompson’s construction t& starting in state(S) and ending in stat€2 and the transitions of the NFA
that results when applying Thompson’s constructiom,tgtarting in states(T2) and ending in stat&,
whereT2 is a new state that lies betwegands(T).

5.2 Some rules

We also need some rules and strategies to be able to use this definition the way we want. For example,
only want thed_right/2 andd_left/3 rules to be applicable to thBompson/3 andless_than/2

clauses. We also need a newiom/3 rule, since we only want thexiom to be applicable to variables and
onm/3 clauses. Since we do not want tlsdom/3 rule to be applicable when we are following a path in
the search-tree that we know will not lead to a solution, we have to restriatithre/3 rule to be applicable
only to sequents where there are no non-evaluatetpson/3 orless_than/2 clauses and no

false/0 clauses. The neaxiom/3 rule becomes

axiom(A,C,l) <=

\+functor(A,thompson,3), % Not applicable to thompson/3.
\+functor(C,thompson,3),

\+functor(A,less_than,?2), % Not applicable to less_than/2.
\+functor(C,less_than,2),

\+functor(A,true,0), % Not applicable to true/O.
\+functor(C,true,0),

\+member(thompson(_,_,_),I), % No non-evaluated thompson/3
\+member(thompson(_, ,),R), % in the sequent.
\+member(less_than(_,),l), % No non-evaluated less_than/2
\+member(less_than(_,),R), % in the sequent.
\+member(false,l), % No false/0 in the sequent.
\+member(false,R),

term(C),

term(A),

unify(C,A) -> (I@[A|R] \- C).
5.3 Queries

There are two forms of queries that we can pose:

1. thompson(E S T)\- my, np,..., m,.
This query should be read: “Find all regular expressibrghose corresponding NFA (as given by
Thompson’s construction with start staend accepting staté) containsat leastthe transitions
m, m,..., m,” It my, mp, ..., m, is the definition of an NFA and if this NFA corresponds to the
regular expression this is equivalent to: “Find all regular expressiaawhich containr as a sub-
expression.”

2. m, m,..., m, \- thompson(E S 7).
This query should be read: “Find all regular expressibrghose corresponding NFA (as given by
Thompson’s construction with start staend accepting staté) containsat mostthe transitions
m, m,..., m,” It my, mp, ..., m, is the definition of an NFA and if this NFA corresponds to the
regular expression this is equivalent to: “Find all regular expressidgawhich are a subexpression
ofr”

5.3.1 Using the definition to the left

If we want to know which NFA that results when applying Thompson’s construction to the regular expres
sionalb we can pose the query

gclar \\- thompson((a|b),0,) \- X.
and the system will respond with
X =m(0,eps,s(0));
X =m(0,eps,s(s(s(0))));
X =m(s(s(0)).eps,s(s(s(s(s(0))));
X = m(s(s(s(s(0)))).eps,s(s(s(s(s(0))))));
X =m(s(0),a,s(s(0));
X = m(s(s(s(0))),b,s(s(s(s(s(0))));
no

that is, all transitions in the NFA corresponding to the expresgion
Another query is

gclar \\- thompson((a*|b:c),0,_) \- m(_,eps,T),m(T,a,).

It should be read: “Is there an empty transition to stabke®m any state and a transition from state any
state on symbad, in the NFA corresponding ta*|bc? The system will answer twice with = s(s(0))
since there are two such empty transitions, one from state 1 and one from state 3.
The NFA that corresponds to the expressibis given by the transitions(0,a,s(0)) and
m(s(0),b,s(s(0))) . If we pose the query
gclar \\- thompson(E,0,s(s(0))) \- m(0,a,s(0)),m(s(0),b,s(s(0))).
the system will respond with the single answer= (a:b) since that is the only expression whose corre-
sponding NFA contains exactly those transitions. If we instead pose the query
gclar \\- thompson(E,0,s(s(0))) \- m(_,a,_),m(_,b,).
we will get the answersE = (a:b) andE = (b:a) since these are the only expressions whose corre-
sponding NFA's start in statg, end in state(s(0)) and have transitions at leastsymbola and symbol
b.
If we do not want to restrict ourselves to finding expressions whose corresponding NFA's are of a certa

length, we can pose the following query

less_than(T,s(s(s(s(0)))),thompson(E,0,T) \- m(_,a,_),m(_,b,).
which should be read: “Find all expressidaghose corresponding NFA's are of length less than 4 and con-
tains transitions oat leastsymbola and symbob. The system will respond with

E = (ab)

T = s(s(0));

E = (b:a)
T = s(s(0));

E = (eps:(a:b))
T = s(s(s(0)));

E = (eps:(b:a))
T = s(s(s(0)));

If we instead we instead pose the query

less_than(T,s(s(s(s(0)))),thompson(E,0,T) \- m(_,a,N),m(N,b,).
which should be read: “Find all expressidasvhose corresponding NFA's are of length less than 4 and of
whichabis a subexpression.” We will then get the answers

E = (ab)
N = s(0)
T = s(s(0));

E = (eps:(a:b))
N = s(s(0))
T =s(s(s(0)));

5.3.2 Using the definition to the right

If we for some reason want to find all expressions whose corresponding NFA's consist only of one transitic
we can pose the query

m(_,X,_) \- thompson(E,0,).
and the system will respond with

X =eps
E = eps;

X=X
E=_X

no
that is,E is eithereps or a variable.

The query
m(_,a,),m(_,b,) \-less_than(T,s(s(s(0)))),thompson(E,0,T).
should be read: “Find all expressioBsvhose corresponding NFAs are of length less than 3 and contains
transitions orat mostsymbola and symbob. We will get the following answers
E=a
T =s(0);

E=b
T =s(0);

:b)
(S(O))
= (b:a)
T =5s(s(0));

no
If we instead pose the query

m(_,a,N),m(N,b,) \- less_than(T,s(s(s(0)))),thompson(E,0,T).
we will get the answers

E
T
E=

E=a

N =s(0)

T = s(0);
E=b
N=0

T =s(0);

E = (ab)

N = s(0)

T = s(s(0));
no

that is, we get all subexpressionsabf

References

[1] P. Kreuger, “GCLA 1l, A Definitional Approach to Control”, Extensions of Logic Programming:
Proceedings of a workshop held at SICS, February 1991, Springer Lecture Notes in Artificial Intelligence.

[2] M. Aronsson, “Methodology and Programming Techniques in GCLA 11”’, Research Report SICS R9205,
Swedish Institute of Computer Science, 1992.

[3] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman, “Compilers: Principles, Techniques, Tools”, Addison-

Wesley Publishing Company, Reading, Mass., 1986.

	Programming Techniques in GCLA II
	Göran Falkman�&�Olof Torgersson
	Abstract
	1 Introduction
	2 GCLA II
	2.1 Introduction to GCLA II
	2.2 Programs in GCLA II
	2.2.1 The definition
	2.2.2 The rule definition
	2.2.3 Example: Default reasoning

	3 Some background material
	3.1 Nondeterministic finite automata
	1. a set of states S
	2. a set of input symbols S
	3. a transition function move that maps state-symbol pairs to sets of state
	4. a state s0 that is distinguished as the start state
	5. a set of states F distinguished as accepting states

	3.2 Thompson’s construction
	1. For the regular expression e, construct the NFA Here i is a new start state and f a new accept...
	2. For the regular expression a, construct the NFA Again i is a new start state and f a new accep...
	3. Suppose N(s) and N(t) are NFA’s for the regular expressions s and t respectively.

	4 Mixing functions and predicates in programs
	4.1 A functional version of Thompson’s construction
	4.2 Running an NFA given by Thompson’s construction
	4.3 Some queries
	4.4 About the rule definition

	5 Using the duality of the comma constructor
	5.1 The definition
	5.2 Some rules
	5.3 Queries
	1. thompson(E,S,T) \- m1,m2,...,mn. This query should be read: “Find all regular expressions E wh...
	2. m1,m2,...,mn \- thompson(E,S,T). This query should be read: “Find all regular expressions E wh...
	5.3.1 Using the definition to the left
	5.3.2 Using the definition to the right

	References
	[1] P. Kreuger, “GCLA II, A Definitional Approach to Control”, Extensions of Logic Pro�gramming: ...
	[2] M. Aronsson, “Methodology and Programming Techniques in GCLA II”, Research Report SICS R9205,...
	[3] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman, “Compilers: Principles, Techniques, Tools”,...

