Programming M ethodologiesin GCLA’

Goran Falkmang& Olof Torgersson

Department of Computing Science, Chalmers Universityeshiology
S-412 96 Gotebgr Sweden
{falkman,oloft}@cs.chalmers.se

Abstract. This paper presents work on programming methodologies for the pro-
gramming tool GCLA. Three methods are discussed which show how to con-
struct the control part of a GCLA program, where the definition of a specific
problem and the set of intended queries are given beforehand. The methods are
described by a series of examples, but we also try to give a more explicit descrip-
tion of each method. ®also discuss some important characteristics of the meth-
ods.

1 Introduction

This paper contributes to the as yet poorly known domain of programming methodo-
logy for the programming tool GCLA.

A GCLA program consists of two separate parts; a declarative part and a control
part. When writing GCLA programs we therefore have to answer the question: “Given
a definition of a specific problem and a set of queries, how can we construct the control
knowledge that is required for the resulting program to have the intended behavior?” Of
course there is no definite answer to this question, new problems may always require
specialized control knowledge, depending on the complexity of the problem at hand, the
complexity of the intended queries etc. If the programs are relatively small and simple
it is often the case that the programs can be categorized, as for example functional pro-
grams or object-oriented programs, and we can then use for these categories rather stan-
dard control knowledge. But if the programs argdaand more complex such a
classification is often not possible since mogjdaand complex programs are mixtures
of functions, predicates, object-oriented techniques etc., and therefore the usage of
more general control knowledge is often not possible. Thus, there is a need for more
systematic methods for constructing the control parts géland complex programs.

In this paper we discuss threefeient methods of constructing the control part of
GCLA programs, where the definitions and the sets of intended queries are given
beforehand. The work is based on our collective experiences from develogiag lar
GCLA applications.

The rest of this paper isganized as follows. In Se@.we give a very short intro-

* This work was carried out as part of the work in the ESPRIT working group GENTZEN and
was funded by The Swedish National Board for Industrial and Technical Development
(NUTEK).

duction to GCLA. InSect.3 we present three €#rent methods for constructing the
control part of a GCLA program. The methods are described by a series of examples,
but we also try to give a more explicit description of each method. InBeetpresent

a lager example of how to use each method in practice. Since we are mostly interested
in large and more complex programs we want the methods to have properties suitable
for developing such programs. In Séxtve therefore evaluate each method according

to five criteria on how good we perceive the resulting programs to be. Ir6Siectly,

we summarize the discussion in Ségtand we also make some conclusions about pos-
sible future extensions of the GCLA system.

2 Introduction to GCLA

The programming syste@eneralized HoriClauseLAnguage (GCLA) [1,3,4,5]is

a logical programming language (specification tool) that is based on a generalization of

Prolog. This generalization is unusual in that it takes a quferelift view of the mean-

ing of a logic program — a definitional view rather than the traditional logic view
Compared to Prolog, what has been added to GCLA is the possibility of assuming

condiions. For example, the clause

a<=(b->c).

should be read asa“holds ifc can be proved while assumihg
There is also a richer set of queries in GCLA than in Prolog. In GCLA, a query cor-
responding to an ordinary Prolog query is written

\- a.

and should be read as: “Daesold (in the definitiorD)?” We can also assume things
in the queryfor example

c \- a

which should be read as: “Assumingdoesa hold (in the definitior»)?”, or “Is a
derivable fronc?”

To execute a program, a québyis posed to the system asking whether there is a
substitutiono such thatGo holds according to the logic defined by the program. The
goalG has the fornit |- ¢, wherel™ is a list of assumptions, ands the conclusion from
the assumptions. The system tries to construct a deduction showing3tdtolds in
the given logic.

GCLA is also general enough to incorporate functional programming as a special
case.

For a more complete and comprehensive introduction to GCLA and its theoretical
properties see [5]. [1] contains some earlier work on programming methodologies in
GCLA. Various implementation techniques, including functional and object-oriented
programming, are also demonstrated. For an introduction to the GCLA system see [2].

L Tobe pronounced “gisela”.

2.1 GCLA Programs

A GCLA program consists of two parts; one part is used to express the declarative con-
tent of the program, called thiefinitionor theobject leveland the other part is used to
express rules and strategies acting on the declarative part, calletbtdefinitionor
themeta level

The Definition. The definition constitutes the formalization of a specific problem
domain and in general contains a minimum of control information. The intention is that
the definition by itself gives a purely declarative description of the problem domain
while a procedural interpretation of the definition is obtained only by putting it in the
context of the rule definition.

The Rule Definition. The rule definition contains the procedural knowledge of the
domain, that is the knowledge used for drawing conclusions based on the declarative
knowledge in the definition. This procedural knowledge defines the possible inferences
made from the declarative knadge.

The rule definition containmference ruledefinitions which define how dérent
inference rules should act, asdach strategiesvhich control the search among the
inference rules.

The general form of an inference rule is

Rul ename(Aq,..., Ay, PTq,..., PT,) <=
Provi so,
(PTy-> Seqy),

(PT, > Seqn)
-> Seq.

and the general forms of a strategy are
Strat(Ag,...,Ap) <= PTy,..., PT,.
or

Strat (Aq,..., Ap <=
(Proviso; -> Seqq),

(Provisog -> Seqy).
Strat(Al,...,An)<: PTl,...,PTn.

where
* A are arbitrary gguments.

e Provi so is a conjunction of provisos, that is calls to Horn clauses defined else-
where. ThePr ovi so could be empty

* Seq and Seq; are sequents which are on the forfvnt ecedent \-
Consequent) , whereAnt ecedent is a list of terms anGonsequent is an ordi-
nary GCLA term.

* PT; are proofterms, that is terms representing the proofs of the prestges,

Example: Default Reasoning. Assume we know that an object can fly if it is a bird
and if it is not a penguin. &also know thatweety and Polly are birds as well as are

all penguins, and finally we know that Pengo is a penguin. This knowledge is expressed
in the following definition:

flies(X) <=
bi rd(X),
(penguin(X) -> false).
bird(tweety).
bi rd(polly).
bi rd(X) <= penguin(X).

pengui n(pengo) .

One possible rule definition enabling us to use this definition the way we want, is:

fs <=
right(fs), % First try standard right rules,
left if_false(fs). % else if consequent is false.
left _if_fal se(PT) <= % 1s the consequent false?
(_\- false).
left _if _false(PT) <= % I1f so performleft rules.

no_f al se_assunp(PT),
false_left(_).

no_fal se_assunp(PT) <= % No fal se assunption,
not (menber (f al se, A)) %that is the termfalse is not a
-> (A\-). % menber of the assunption |ist.
no_fal se_assunp(PT) <=
left (PT).
merber (X, [X| _1) . % Provi so definition.
menmber (X, [_|Rl): -
menber (X, R) .

If we want to know which birds can flwe pose the query
fs \\- (\- flies(X)).

and the system will respond with= t weety andX = pol | y.
If we want to know which birds cannot fiwe can pose the query

fs \\- (flies(X) \- false).

and the system will respond with= pengo.

3 How to Construct the Procedural Part

3.1 Example: Disease Expert System

Suppose we want to construct a small expert system for diagnosing diseases. The fol-
lowing definition defines which symptoms are caused by which diseases:

synpt on(hi gh_tenp) <= di sease(pneunoni a).
synmpt on(hi gh_tenp) <= di sease(pl ague).
synpt on(cough) <= di sease(pneunoni a).
synpt om(cough) <= di sease(col d).

In this application the facts are submitted by the queries. For example, if we want to
know which diseases cause the symptom high temperature we can pose the query:

di sease(X) \- synpton(high_tenp).
Another possible query is
di sease(X) \- (synpton(high_tenp), synpton{cough)).

which should beread as. “Which diseases cause high temperature and coughing?’ If we
want to know which possible diseases follow, assuming the symptom high temperature,
we can pose the query:

synpt onm(hi gh_tenp) \- (disease(X);disease(Y)).
Yet another query is
di sease(pneunoni a) \- synmptom(X).

which should be read as: “Which symptoms are caused by the disease pneumonia?’

We will in the following three subsections use the definition and the queries above,
to illustrate three different methods of constructing the procedural part of a GCLA pro-
gram.

3.2 Method 1: Minimal Stepwise Refinement

The general form of aGCLA query is S| Q where Sis a proofterm, that is some more
or lessinstantiated inference rule or strategy, and Q isan object level sequent. One way
of reading this query is: “Sincludes a proof of Qo for some substitution .”

When the GCLA system is started the user is provided with a basic set of inference
rules and some standard strategiesimplementing common search behavior among these
rules. The standard rules and strategies are very general, that isthey are potentially use-
ful for alarge number of definitions, and provide the possibility of posing awide variety
of queries.

We show some of the standard inference rules and strategies here, the rest can be
foundin [2].

One simple inference rule is axi on’ 3 which states that anything holds if it is
assumed. The standard axi ont 3 rule is applicable to any terms and is defined by:

axiom(T,C,I) <=

term(T), % proviso
term(C), % proviso
unify(T,C) % proviso
>(1@[T|R] \- C). % conclusion

The proof of aquery is built backwards, starting from the goal sequent. So, in the rule
above we are trying to prove the last ling, that is the conclusion of the rule. Note that
when aninferenceruleis applied, the conclusion is unified with the sequent we are try-
ing to prove before the provisos and the premises of therule aretried. Thus, the axiom/
3 ruletells usthat if we have an assumption T among the list of assumptions |@[T|R]
(where‘@'/2 isaninfix append operator) and if both T and the conclusion C are terms,
and if T and C are unifiable, then C holds.

Another standard ruleisthe definition right rule, d_right/2 . The conclusions that
can be made from this rule depend on the particular definition at hand. The d_right/
2 rule appliesto al atoms:

d_right(C,PT) <=

atom(C), % C must be an atom
clause(C,B), % proviso

(PT -> (A\-B)) % premise, use PT to prove it
-=> (A\-C). % conclusion

This rule could be read as: “If we have a sequent A \- C, and if there is a clause
D <= B inthedefinition, such that C and D are unifiable by a substitution o, and if we
can show that the sequent A \- B holds using some of the proofs represented by the
proofterm PT, then (A\- C) o holds by the corresponding proof in d_right(C,PT)

There is also an inference rule, definition left, which uses the definition to the left.
Thisrule, d_left/3 , isapplicableto all atoms:

d_left(T,I,PT) <=
atom(T), % T must be an atom
def iniens(T,Dp,N), % Dp is the def iniens of T
(PT -> (I@[Dp]Y] \- C)) % premise, use PT to prove it
> (1@[T|Y]\- C). % conclusion.

The definiens operation is described in [5]. If T is not defined Dp is bound to false.

Asan example of an inference rule that applies to a constructed condition we show
the a_ri ght/2 rule which applies to any condition constructed with the arrow con-
structor ->'/2 occurring to the right of the turnstile, \-

a_right((A -> C),PT) <=
(PT -> ([AIP]\- C)) % premise, use PT to prove it
> (P\-(A->0Q)). % conclusion

Onevery general search strategy among the predefined inferencerulesisarl/0 , which
in each step of the derivation first tries the axiom/3 rule, then all standard rules oper-
ating on the consequent of a sequent and after that all standard rules operating on ele-
ments of the antecedent. It is defined by:

arl <=

axiom _, _,), %first try the rule axion 3,
right(arl), %then try strategy right/1,
left(arl). %then try strategy left/1.

Another very general search strateglyria/ 0:

lra <=
left(lra), %first try the strategy left/1,
right(lra), %then try strategy right/1,
axiom _, _,). %then try rul e axionf 3.

If we are not interested in the antecedent of sequents, we can use the standard strategy
r/ 0, with the definition:

r <= right(r).

In the definitions below of the strategidsght / 1 andl eft/ 1, user _add_ri ght/2
anduser _add_| ef t/ 3 can be defined by the user to contain any new inference rules
or strategies desired:

right (PT) <=
user _add_right(_, PT), %try users specific rules first
v_right(_, PT, PT), % t hen standard right rules

a_right(_,PT),
oright(_,_,PT),

true_right,
d right(_,PT).
left(PT) <=
user_add_left(_, ,PT), %try users specific rules first
false_left(_), % then try standard left rules

v_left(_, _,PT),
a_left(_,_,PT,PT),
o left(_,_,PT,PT),
dleft(_, _, PT),

pi _left(_,_,PT).

We see that all these default rules and strategies are very general in the sense that they
contain no domain specific information, apart from the link to the definition provided

by the provisog! ause/ 2 anddef i ni ens/ 3, and also in the sense that they span a
very lage proof search space.

Constructing the Procedural Part. Now, the idea in the minimal stepwise refine-
ment method, is that given a definitiorand a set of intended querigswe do as little

as possible to construct the procedural patthat is we try to find strategi&, ..., S,

among the general strategies given by the system, such fra®;, with the intended
procedural behavior for each of the intended queries. If such strategies exist then we are
finished, and constructing the procedural part was trivial indeed. In most cases however
there will be some queries for which we cannot find a predefined strategy which

behaves correctlythey all give redundant answers or wrong answers or even no
answers at all.

When there is no default strategy which gives the desired procedural betevior
choose the predefined strategy that seems most appropriate and try to alter the set of
proofs it represents so that it will give the desired procedural behdwido this we
use the tracer and the statistical package of the GCLA system to localize the point in the
search space of a proof of the query which causes the faulty bel@wez we have
found the reason behind the faulty behavior we can remove the error by changing the
definition of the procedural part.8fhen try all our queries again and repeat the proce-
dure of searching for and correcting errors of the procedural part until we achieve
proper procedural behavior for all the intended queries. The method is illustrated in
Fig. 1.

G H

A
N,

I B
'\A/'

e

Fig. 1. Proof search space for a que&y+ A. A is the query we pose to the
sydem. The desired procedural behavior is the path leadi@Ggnarked in the
figure, however the strate@jinstead takes the path \fato H. We localize the
choice-point taC and change the procedural part so that the €dgg is chosen
instead.

Example: Disease Expert System Revisited. We try to use the disease program
with some standard strategies. For example, in the query,deorrect answers are
X = pneunoni a and, on backtrackingg = pl ague. Thetrue answers mean that
there exists a proof of the quebut it gives no binding of the variabte

First we try the strategyr | / 0:

| ?- arl \\- (disease(X) \- synpton(high_tenp)).
X = pneunpbnia ? ;

true ? ;

true ? ;

true ? ;

X = plague ? ;

After thiswe get eight moret r ue answers. Then wetry the strategy | r a/ 0:
| ?- Ira\\- (disease(X) \- synptom(high_tenp)).

This query gives eight t r ue answers before giving the answer pneunoni a the ninth
time, then three more t r ue answers and finally the answer pl ague. We see that even
though it isthe casethat both ar | / 0 and | r a/ 0 include proofs of the query giving the
answers in which we are interested, they also include many more proofs of the query.
We therefore try to restrict the set of proofs represented by the strategy ar | / 0 in order
to remove the undesired answers.

The most typical sources of faulty behavior arethat thed_ri ght/2,d_I ef t / 3 and
axi om 3 rulesare applicablein situationswhere wewould rather seethey were not. An
example of what can happen is that if, somewhere in the derivation tree, there is a
sequent of theformp \- X, where p is not defined, and the inferenceruled_| eft/ 3
istried and found applicable, we get thenew goal f al se \ - X, which holds since any-
thing can be shown from afalse assumption, if weuseastrategy suchasarl/0orl ra/
0 that containsthef al se_l eft/ 1 rule.

By using the tracer we find that thisis what happensin our disease example, where
d_I eft/ 3 istried on the undefined atom di sease/ 1. To get the desired procedural
behavior there are at least two things we could do:

» We could delete the inference rule f al se_| ef t / 1 from our globa ar | / 0 strat-
egy, but then wewould never be ableto draw aconclusion from afal se assumption.

* Wecould restrict thed_I ef t / 3 rule so that it would not be applicable to the atom
di sease/ 1.

Restricting thed_| ef t / 3 ruleis very ssimple and could be made like this:

d_left(T,I,PT) <=
d_left_applicable(T),
definiens(T,Dp, N,
(PT -> (1@Dp|R \- Q)
-> (1@T|R \- ©.
d_left_applicable(T):-
atom(T), % standard restriction on T
not (functor (T, di sease, 1)). % application specific.

Here we have introduced the proviso d_| eft _appl i cabl e/ 1 to describe when
d_left/3 is applicable. Apart from the standard restriction that d_| eft/3 only
applies to atoms we have added the extra restriction that the atom must not be di s-
ease/ 1.

Now, wetry our query again, and thistime we get the desired answers and no others:

| ?- arl \\- (disease(X) \- synpton(high_tenp)).

pneunonia ? ;

pl ague ? ;

no

With thisrestriction onthed_| ef t / 3 rulethear | / 0 strategy correctly handles all the
queriesin Sect. 3.1.

Further Refining. One very simple optimization is to use the statistical package of
GCLA and remove any inference rulesthat are never used from the procedural part.

Sometimes there is a need to introduce new inference rules, for example to handle
numbersin an efficient way. We can then associate an inference rule with each operation
and usethis directly to show that something holds. Such new inference rules could then
be placed in one of the strategies user _add_ri ght/ 2 or user _add_| ef t/ 2 which
are part of the standard strategiesri ght/ 1 and | ef t / 1.

3.3 Method 2: Splitting the Condition Universe

With the method in the previous section we started to build the procedural part without
paying any particular attention to what the definition and the set of intended queries
looked like. If we study the structure of the definition, and of the data handled by the
program, it is possible to use the knowledge we gain to be able to construct the proce-
dural part in amore well-structured and goal-oriented way.

Thebasicideain this sectionisthat given adefinition ©and aset of intended queries
Q, it is possible to divide the universe of al object-level conditions into a humber of
classes, where every member of each classistreated uniformly by the procedural part.
Examples of such classes could bethe set of all defined atoms, the set of all termswhich
could be evaluated further, the set of all canonical terms, the set of all object level vari-
ables etc.

In order to construct the procedural part of a given definition, we first identify the
different classes of conditions used in the definition and in the queries, and then go on
to write the rule definition in such away that each rule or strategy becomes applicable
to the correct class or classes of conditions. The resulting rule definition typically con-
sists of some subset of the predefined inference rules and strategies, extended with a
number of provisos which identify the different classes and decide the applicability of
each rule or strategy.

Of coursethe described method can only be used if it is possible to divide the object-
level condition universe in some suitable set of classes; for some applications this will
be very difficult or even impossible to do.

3.4 A Typical Split

The most typical split of the universe of object-level conditionsisinto one set to which
thed_right/2 andd_| eft/ 3 rulesbut not the axi omf 3 rule apply, and another set
towhichtheaxi om 3 rulebut notthed_ri ght/2ord_|I ef t/ 3 rulesapply. To handle
this, and many other similar situations easily, we change the definition of these rules:

d_right(C PT) <=
d_right_applicabl e(C,
cl ause(C, B),
(PT -> (A\- B))

-> (A\- O.

d_left(T,I,PT) <=
d_left_applicable(T),
definiens(T,Dp, N,
(PT -> (1@Dp|R \- Q)
-> (1@TIR \- O.
axiom(T,C 1) <=
axi om applicabl e(T),
axi om appl i cabl e(O),
uni fy(C T)
-> (1@T_] V- 0.

All we haveto do now isalter the provisos used in the rules above according to our split
of the universe to get different procedural behaviors. With the proviso definitions
d_right_applicable(C :- atom(Q).

d_left_applicable(T) :- aton(T).

axi om applicable(T) :- term(T).

we get exactly the same behavior as with the predefined rules.

Example 1: The Disease Example Revisited. The disease exampleis an example
of an application where we can use the typical split described above. We know that the
d_right/2andthed_I ef t / 3 rules should only be applicable to the atom synpt om

1, so we define the provisosd_ri ght _applicable/1andd_| eft _applicable/l

by:
d_right _applicable(C) :- functor(C, synptom1).
d_left_applicable(T) :- functor(T,synptom1).

We also know that the axi omf 3 rule should only be applicable to the atom di sease/
1, so axi om appl i cabl e/ 1 thus becomes:

axi om applicable(T) :- functor(T,disease,1).

Example 2: Functional Programming. One often occurring situation, for example
infunctional programming, isthat we can split the universe of all object level termsinto
the two classes of al fully evaluated expressions and variables and all other terms
respectively.

For example, if the class of fully evaluated expressions consists of al numbers and
all lists, it can be defined with the proviso canon/ 1:

canon(X) :- number(X).
canon([]).
canon(X) :- functor(X '.’,2).

To get the desired procedural behavior we restrict the axi omi 3 rule to operate on the
class defined by the above proviso and the set of all variables, and thed_ri ght / 2 and
d_I ef t / 3 rulesto operate on any other terms, thus:

d_right_applicable(T):-

atom(T), not (canon(T)). % noncanoni cal atom
d_left_applicable(T):-

atom(T), not(canon(T)). % noncanoni cal atom

axi om applicable(T) :- var(T).
axi om applicable(T) :- nonvar(T), canon(T).

Here we use not / 1 to indicate that if we cannot prove that a term belongs to the class
of canonical termsthen it belongs to the class of al other terms.

3.5 Method 3: Local Strategies

Both of the previous methods are somehow based on the idea that we should start with
ageneral search strategy, among the inference rules at hand, and restrict or augment the
set of proofs it represents in order to get the desired procedural behavior from a given
definition and its associated set of intended queries. However, we could just aswell do
it the other way around and study the definition and the set of intended queries and con-
struct aprocedural part, that gives us exactly the procedural interpretation we want right
from the start, instead of performing atedious procedure of repeatedly cutting away (or
adding) branches of the proof search space of some general strategy. In this section we
will show how this can easily be done for many applications. Any exampleswill usethe
standard rules, but the method as such works equivalently with any set of rules.

Collecting Knowledge. When constructing the procedural part we try to collect and
use as much knowledge as possible about the definition, the set of intended queries, of
how the GCLA system works etc. Among the things we need to take into account in
order to construct the procedural part properly are:

» We need to have agood idea of how the GCLA system triesto construct the proof
of aquery.

» We must have a thorough understanding of the interpretation of the predefined
rules and strategies, and of any new rules or strategies we write.

» We must decide exactly what the set of intended queriesis. For example, inthedis-
ease example this set is as described in Sect. 3.1.

» We must study the structure of the definition in order to find out how each defined
atom should be used procedurally in the queries. Thisinvolves among other things
considering whether it will be used withthed_| ef t/ 3 orthed_ri ght/2 ruleor
both. For example, in the disease example we know that both thed | eft/ 3 and
thed_ri ght/2 ruleshould beapplicableto theatom synpt om 1, but that neither
of them should be applicable to the atom di sease/ 1. We also use knowledge of
the structure of the possible sequents occurring in a derivation, to decideif we will

need a mechanism for searching among several assumptions or to decide whereto
usetheaxi omf 3 rul e etc. For example, in the disease example we know that the
axi on1 3 rule should be applicable to the atom di sease/ 1, but not to the atom
synpt ont 1.

Constructing the Procedural Part. Assume that we have a set of condition con-
structors, ¢, with a corresponding set of inference rules, &, Given a definition © which
defines a set of atoms D24, a set of intended queries Q and possibly another set 7.4 of
undefined atoms which can occur as assumptions in a sequent, we do the following to
construct strategies for each element in the set of intended queries:

» Associate with each atom in the sets D4 and .4, a distinct procedural part that
assures that the atoms are used the way we want in all situations where they can
occur inaderivationtree. The procedural part associated with an atomisbuilt using
the elements of ®, d_right/2,d_l eft/3, axi om 3, strategies associated with
other atoms and any new inference rules needed.

We can then use the strategies defined above to build higher-level strategies for al the
intended queriesin Q,

For example, in the disease example cistheset {*;'/2,*,'/2}, Ris the set
{o_right/3,0_left/4,v_right/3,v_left/3},Dand Qareasgivenin Sect. 3.1,
DA istheset { synpt onmf 1} and U4 istheset {di sease/ 1}.

According to the method we should first write distinct strategies for each member
of D4, that is synpt omf 1. The atom synpt onf 1 can occur on the right side of the
object level sequent so we write a strategy for this case:

synptomr <= d_right(synpton{_), di sease).

When synpt om? 1 occurs on the right side we want to look up the definition of synp-
tom 1 so we usethed_ri ght/ 2 rule, giving a new object level sequent of the form
A \ - disease(X), and we therefore continue with the strategy di sease/ 0.

Now, synpt ol 1 isalso used on theleft side and sincewe can not usesynpt om r/
0 to the left, we have to introduce a new strategy for this case, synpt om | / 0:

symptom | <= d_left(sympton{_), _,synptoml2).
synptom | 2 <=
o_left(_,_,synmptoml 2, synptom.| 2),
o_right(_,_,symptom.| 2),
di sease.

When synpt onf 1 occurs on the left side we want to calculate the definiens of synp-
t om 1 sowecanusethed_| ef t / 3 rule, giving anew object level sequent of the form
(di sease(Y;); ..disease(Y,)) \- (disease(X;);.;disease(X)). In this
case we continue with the strategy synpt om | 2/ 0, which handles sequents of this
form. The strategy synpt om | 2/ 0 usesthe strategy di sease/ 0 to handletheindivid-
ual di sease/ 1 atoms.

We now definethe di sease/ 0 strategy:

di sease <= axi on(disease(_),_,_).

Finally we use the strategies defined above to construct strategies for al the intended
queries. The first kind of query is of the form disease(D) \-
synpt om(Xq) , .., synpt on(X,) . These queries can be handled by the following
strategy:

dl <= v_right(_,symptomr,dl), synptomr.

The second kind of query is of the form synptom(S) \-
(di sease(X;); ... disease(X,)). Thesequeriesarehandled by the strategy d2/ 0:

d2 <= synptoml.

What we actually do with this method isto assign a local procedural interpretation to
each atom in the sets D4 and 4. Thislocal procedural interpretation is specialized to
handl e the particular atom correctly in every sequent in which it occurs. The important
thing isthat the procedural part associated with an atom ensures that we will get the cor-
rect procedural behavior if we use it in the intended way, no matter what rules or strat-
egieswe write to handle other atoms of the definition. Since each atom hasitsown local
procedural interpretation, we can use different programming methodol ogies and differ-
ent sorts of procedural interpretations for the particular atom in different parts of the
program.

In practice this means that for each atom in 22 and 7.2 we write one or more strat-
egies which are constructed to correctly handle the particular atom. One way to do this
is to define the basic procedural behavior of each atom, by which we mean that given
an atom, say p/ 1, we define the basic procedural behavior of p/ 1 (in this application)
ashow wewant it to behavein aquery whereit isdirectly applicableto one of theinfer-
encerulesd_right/2,d_| eft/ 3 oraxi om 3,thatisqueriesof theformA \ - p(X)
orA, .. p(X), .. A, \- C

Since the basic strategy of an atom can use the basic strategy of any other defined
atom if needed, and since strategies of more complex queries can use any combination
of strategies, we will get a hierarchy of strategies, where each member has a well-
defined procedural behavior. In the bottom of this hierarchy we find the strategies that
do not use any other strategies, only rules, and in the top we have the strategies used by
auser to pose queries to the system.

Example. In the disease example we constructed the procedural part bottom-up. In
practice it is often better to work top-down from the set of intended queries, since most
of the time we do not know exactly what strategies are needed beforehand.

Thismeansthat we start with an intended query, say A, ... A, \ - p(X), construct-
ing a top level strategy for this assuming that we already have all sub-strategies we
need, and then go on to construct these sub-strategies so that they behave as we have
assumed them to do.

The following small example could be used to illustrate the methodology:

classify(X) <=
wheel s(W, engi ne(E), (cl ass(wheel s(W, engine(E)) -> X).

cl ass(wheel s(4), engi ne(yes)) <= car.
cl ass(wheel s(2), engi ne(yes)) <= notorbi ke.
cl ass(wheel s(2), engi ne(no)) <= bike.

The only intended query is A, .., A, \- classify(X), where we use the left-hand
side to give observations and try to conclude a class from them, for example:

| ?- classify \\- (engine(yes),wheels(2) \- classify(X)).
X = notorbi ke ? ;

no

We start from the top and assuming that we have suitable strategies for the queries

A, .. Ay V- wheel s(X), A, o Ay V-

engi ne(X) and Ay, ...class(X), .., A, \- C, we construct the top level strategy
classify/O0:

%l assify \\- (A \- classify(X))
classify <=
dright(_,v_rights(_, _,[wheels,engine,a right(_,class)])).

where v_ri ghts/ 3 isarule that is used as an abbreviation for severa consecutive
applications of thev_ri ght/ 3 rule. All we have left to do now isto construct the sub-
strategies. The strategies engi ne/ 0 and wheel s/ 0 are identical; engi ne/ 1 and
wheel s/ 1 are given as observations in the |eft-hand side, so we use the axi ont 3 rule
to communicate with the right side, giving the basic strategies:

%engi ne \\- (A1, ..,engine(X),.,An \- Conc)
engi ne <= axionm(engine(_), _,).

%heel s \\- (A1, ..,wheels(X),..,An \- Conc)
wheel s <= axi om(wheel s(_), _,_).

Finally cl ass/ 0 isafunction from the observed propertiesto a class, and the rule def-
inition wewant is:

%l ass \\- (A1, .,class(XY),.,An \- Conc)
class <= d_left(class(_,_),!l,axiom_, _,1)).

Of course we do not always have to be so specific when we construct the strategies and
sub-strategies if we find it unnecessary.

4 A Larger Example: Quicksort

In this section we will use the three methods described above to develop some sample
procedural parts to a given definition and an intended set of queries. Of course, due to
lack of space it is not possible to give a realistic example, but we think that the basic
ideas will shine through.

The given definition is a quicksort program, earlier described in [1] and [2], which
contains both functions and relational programming aswell as the use of new condition

constructors.

4.1 The Definition

Hereis the definition of the quicksort program:

gsort([]) <=1[].

gsort([FIR) <=
pi L\ (pi G\ (split(F,RL, G ->
append(gsort (L), cons(F,gsort(Q)))).

split(E [FIR,[FIZ],X) <= E>= Fsplit(ERZX.
split(E [FIR.Z[FIX) <= E<Fsplit(ERZX.

append([],F) <= F.
append([F| R, X) <= cons(F, append(R, X)) .
append(X,)#{X \=[_|]. X \=1[]} <=

pi 2\ ((X->2) -> append(Z,Y)).

cons(X,Y) <=pi Z\ (pi W\ ((X->2), (Y->W ->[ZW)).

In the definition above gsort/ 1, append/ 2 and cons/ 2 are functions, whilespl i t /
4 isarelation. There are also two new condition constructors, * >=" /2 and* <’ / 2.
We will only consider one intended query

gsort(X) \- Y.

where X isalist of numbersand Y isavariableto be instantiated to a sorted permutation
of X.

4.2 Method 1

We first try the predefined strategy gcl a/ 0 (the sameasar | / 0):
| ?- gcla \\- (gsort([4,1,2]) \- X).

X =qsort([4,1,2]) ?

yes

By using the debugging tools, wefind out that the fault isthat theaxi om 3 ruleisappli-
cabletogsort/ 1. Wetherefore construct anew strategy, q_axi om 3, that isnot appli-
cabletogsort/1:

g_axiomT,C 1) <=
not (functor(T,qgsort,1)) -> (1@T|_] \- O.
g_axiom(T,C 1) <= axiom(T,C1).

We must also changethear | / 0 strategy so that it usesq_axi ont 3 instead of axi o
3:

arl <= g_axiom(_,_,_),right(arl),left(arl).

Then wetry the query again:
| ?- gcla \\- (gsort([4,1,2]) \- X).

no

Thistime the fault is that we have no rules for the new condition constructors >='/ 2
and‘ <' /2. Sowewritetwonew rules,ge_right/1andlt _right/ 1, whichweadd
to the predefined strategy user _add_ri ght/ 2:

ge_right(X >=Y) <=
nunber (X),
nunber (YY),
X >=Y
-> (A\- X >=Y).

It_right(X <Y <=
nunber (X),
nunber (),
X<Y
-> (A\- X<V,

Here nunmber / 1 is apredefined proviso.
We try the query again:
| ?- gcla \\- (gsort([4,1,2]) \- X).
X = append(qgsort([1,2]),cons(4,qgsort([]))) ?

yes

We find out that the fault is that the q_axi om 3 strategy should not be applicable to
append/ 2. We therefore refine the strategy q_axi oml 3 so it is not applicable to
append/ 2 either:

g_axiom(T,C 1) <=

not (functor (T, gsort, 1),

not (functor (T, append,2) -> (1@T|_] \- ©O.
g_axiomT,C 1) <= axiom(T,C).

We try the query again:
| ?- gcla \\- (gsort([4,1,2]) \- X).

Thistime we get no answer at al. The problem isthat the q_axi o 3 strategy is appli-
cableto cons/ 2. So we refine q_axi on 3 once again:

g_axiomT,Cl) <=

not (functor (T, qgsort, 1)),

not (functor (T, append, 2)),

not (functor(T,cons,2)) -> (1@T|_] \- O.
g_axiom(T,C 1) <= axiom(T,C1).

We try the query again:

| ?- gcla \\- (gsort([4,1,2]) \- X).
X=11,2,4 2 ;

true ?

yes

Thefirst answer is obviously correct but the second is not. Using the debugging facili-
ties once again, we find out that the problem isthat thed_| ef t / 3 ruleis applicable to
lists, so we construct a new strategy, q_d_| ef t / 3, that is not applicable to lists:

g d left(T, 1,) <=

not (functor(T,[],0)),

not (functor(T,”.",2)) -> (1@T|_] \-).
g d left(T,1,PT) <= d_left(T,I,PT).

We must also changethel ef t / 1 strategy, sothat it usesthenew q_d_1I ef t / 3 strategy
instead of thed_I ef t/ 3 rule:

left (PT) <=
user_add_left(_, _, PT),
false_left(_),
v_left(_, _,PT),
a_left(_,_,PT,PT),
o left(_,_,PT,PT),
g_d left(_, _,PT),
pi _left(_,_,PT).

We try the query again:

| ?- gcla \\- (gsort([4,1,2]) \- X).
[1,2,4] ? ;

[1,2, A 2

yes

The second answer is still wrong. The fault isthat q_d_| ef t / 3 is applicable to num-
bers. We therefore refine the strategy q_d_| ef t / 3 so it is not applicable to numbers
either:

g d left(T, I,) <=

not (functor(T,[],0)),

not (functor(T,’.’,2)),

not (number (T)) -> (1@T|_] \- _).
g d left(T,I,PT) <=d_ left(T,1,PT).

We try the query once again:
| ?- gcla \\- (gsort([4,1,2]) \- X).
X=112,4 2 ;

no

And finally we get all the correct answers and no others.
One last simple refinement is to use the statistical package to remove unused strat-
egies and rules. The complete rule definition thus becomes:

arl <= g_axiom(_,_,_),right(arl),left(arl).

left (PT) <=
a_left(_,_,PT,PT),
g d_ left(_,_,PT),
pi _left(_,_,PT).

g d_left(T,1,_) <=

not (functor(T,[],0)),

not (functor(T,”.",2)),

not (number (T)) -> (1@T|_] \-).
g d left(T,1,PT) <= d_left(T,I,PT).

user_add _right(C,_) <= ge_right(Q,It _right(Q.

g_axiom(T,C 1) <=

not (functor (T, gsort, 1)),

not (functor (T, append, 2)),

not (functor(T,cons,2)) -> (1@T|_] \- O.
g _axiom(T,C 1) <= axiom(T,C1).

ge_right(X >=Y) <=
nunber (X),
nunber (Y),
X>=Y
-> (A\- X >=Y).

lt_right(X <Y) <=
nunber (X),
nunber (Y),
X<Y
-> (A\- X <Y).

constructor (' >=",2).
constructor('<',2).

4.3 Method 2

First we use our knowledge about the general structure of GCLA programs. Among the
default rulesall but d_I eft/3,d_ri ght/2 and axi onf 3 are applicable to condition
constructors only. One possible split is therefore the set of al constructors and the set
of al conditions that are not constructors, that is terms:

cond_constr(E) :- functor(E, F, A, constructor(F, A).
terms(E) :- term(E).

Now, all termscanin turn bedivided into variables and termsthat are not variables, that
is atoms. We therefore split the t er ns/ 1 class into the set of variables and the set of
atoms:

vars(E) :- var(E).
atons(E) :- atom(E).

The atoms can be divided further into all defined atoms and all undefined atoms. In this
application we only want to apply the d_l eft/3 and d_ri ght/ 2 rules to defined
atoms. We also know that the only undefined atoms are numbers and lists, that is the
data handled by the program, so one natural split could be the set of all defined atoms
and the set of all undefined atoms:

def _atoms(E) : -
functor(E, F, A),d_atons(DA), menber (F/ A, DA) .

undef _atons(E) :- nunber(E).
undef _atons(E) :- functor(E[],0);functor(E'.",2).

In this application the defined atoms areqsort/ 1, spl i t/ 4, append/ 2 and cons/ 2:
d_atons([qgsort/1,split/4, append/ 2, cons/2]).

Now we use our knowledge about the application. Our intention is to use gqsort/ 1,
append/ 2 and cons/ 2 asfunctionsand spl i t / 4 asapredicate. In GCLA functions
are evaluated on the |eft side of the object level sequent and predicates are used on the
right. We therefore further divide the classdef _at ons/ 1 into the set of defined atoms
used to the left and the set of defined atoms used to the right:

def _atoms_r(E) :-
functor(E F, A),d_atonms_r (DA), nenber (F/ A, DA).

def _atons_ | (E) :-
functor(E F, A),d _atons_I| (DA), nenber (F/ A DA).

d_atons_r([split/4]).
d_atons_| ([qgsort/ 1, append/ 2, cons/2]).

We now construct our new q_d_r i ght / 2 strategy which restrictsthed_ri ght/ 2 rule
to be applicable only to members of the classdef _at ons_r/ 1, that isall defined atoms
used to theright:

g_d_rigth(C PT) <=
def _atoms_r(C) -> (_\- O.
g_d_right(C PT) <= d_right(C, PT).

Thed_I ef t/ 3 ruleisrestricted similarly by theq_d_I ef t / 3 strategy.

Sincethe axi om 3 ruleisused to unify the result of afunction application with the
right hand side, we only want it to be applicable to numbers, lists and variables, that is
to the members of the classesundef _at ons/ 1 andvar s/ 1. Wetherefore create anew
class, dat a/ 1, which isthe union of these two classes:

data(E) :- vars(E).
data(E) :- undef_atons(E).

And the new g_axi oml 3 strategy thus becomes:

g_axiomT,C 1) <=

data(T),

data(C) -> (1@T|_] \- O.
g_axiom(T,C 1) <= axiom(T,C1).

What is |eft are the strategies for the first class, cond_const r/ 1. We use the default
Strategy c_ri ght / 2 to construct our new g_c_ri ght/ 2 strategy:

g_c_right(C PT) <=
cond _constr(C -> (_\- O.
g_c_right(C PT) <= c_right(C PT),ge_right(Q,It_right(C.

Similarly, g_c_I ef t/ 3 isdefined by:

g_c_left(T,I,PT) <=
cond_constr(T) -> (1@T|_] \-).
g c_left(T,1,PT) <= c_left(T,I,PT).

Finally we must have atop-strategy, gqsor t/ 0:

gsort <=
g_c_left(_, _,qgsort),
g_d_left(_,_,qgsort),
g_c_right(_,qgsort),
g_d_right(_,qgsort),
g_axiom(_, _,).

Thus, the complete rule definition (where we have removed redundant classes)
becomes:

% Cl ass definitions
cond_constr(E) :- functor(E, F, A, constructor(F, A).

functor(E F, A),d _atons_r (DA), nenber (F/ A DA).
functor(E, F, A), d_atoms_| (DA), menber (F/ A, DA).

def _atons_r(E)

def _atons_| (E)

undef _atons(E) :- nunber(E).

undef _atons(E) :- functor(E,[],0);functor(E’'.",2).
data(E) :- var(E).

data(E) :- undef_atons(E).

d_atons_r([split/4]).
d_atons_| ([qgsort/ 1, append/ 2, cons/2]).

% Strategy definitions

gsort <=
g_c_left(_,_,qgsort),
g_d_left(_,_,gsort),

g_c_right(_,qsort),
g_d_right(_,qgsort),
g_axiom(_, _,_).

g_c_right(C PT) <=
cond_constr(C -> (_\- O.
g_c_right(C PT) <= c_right(C PT),ge_right(Q,It_right(C).

g_c_left(T,I,PT) <=
cond_constr(T) -> (1@T|_] \-).
g c_left(T,1,PT) <= c_left(T,I,PT).

g_axiom(T,C 1) <=

data(T),

data(C -> (1@T|_] \- O.
g_axiomT,C 1) <= axiom(T,C).

g_d rigth(C PT) <=
def _atoms_r(C -> (_\- O.
g_d_right(C PT) <= d_right(C, PT).

ge_right(X >=Y) <=
nunber (X),
nunber (),
X>=Y
-> (A\- X >=Y).

It _right(X<Y) <=
nunber (X),
nunber (Y),
X<Y
-> (A\- X <Y).

g d left(T,I,PT) <=
def _atoms_I (T) -> (1@T|_] \-).
g d_left(T,I,PT) <= d_left(T,I,PT).

constructor('>=",2).
constructor('<', 2).

4.4 Method 3

We will construct the procedural part working top-down from the intended query. As
the set of rules %, we use the predefined rules augmented with the rulesge_ri ght/ 1
andl t _right/1 used above. Wewill usealist, Undef , to hold all metalevel sequents
that we have assumed we have procedural parts for but not yet defined. When this list
is empty the construction of the procedural part is finished.

When we dstart Undef contains one element, the intended query,
Undef = [(gsort(l) \\- (qgsort(L) \- Sorted))].Wethen definethe strat-
egy qsort/1:

gsort(l) <= d_left(qgsort(_),l,qgsort(_,1)).

gsort (T, 1) <=
(l1@TIR \- ©O.

gsort(T,I) <=
gsort2(T,1).

gsort2([].,1) <=
axionm([],_,1).
gsort2((pi _\ _),1) <=
pi _left(_,1,pi_left(_,l,a_left(_,1,split,append(l)))).

Now Undef contains two elements, Undef = [(split \\- (A \-
split(F,RRGL))), (append(l) \\- (A, ..,append(Lq, L), .., A, \- L))].
Thenext strategy to defineisspl i t / 0. Method 3 tells usthat each defined atom should
have its own procedural part, but not how it should be implemented, so we have some
freedom here. The definition of spl i t/ 4 includes the two new condition constructors
"'>='/2and' <'/2soweneedtousethege right/1andlt _right/1rules. One
definition of spl it/ O that will do the job for usis:

split <=
v_right(_,split,split),
d_right(split(_,_,_,_),split),
gt_right(_),
I't_right(),
true_right.

Thelist Undef did not become any bigger by the definition of spl it/ 0 soit only con-
tainsone element, Undef = [(append(1) \\- (Aq, ..,append(Ly, L), .., A, \-

L))] . When wetry to write the strategy append/ 1 werun into a problem; thefirst and
third clauses of the definition of append/ 2 includes functional expressions which are
unknown to us. We solvethis problem by assuming that we have astrategy, eval _f un/

3, that evaluates any functional expression correctly and use it in the definition of
append2/ 1:

append(l)<= d_left(append(_,), !, append2(l)).

append2(1l) <=
pi_left(_,I,a_left(_,1,a_right(_,

eval _fun(_,[],.)),append(l))),
eval _fun(_,1,_).

Again Undef holds only one element, Undef = [(eval _fun(T,I,PT) \\-
(1@T|R \- O)].Whenwedefineeval _f un/ 3 wewould like to use the fact that
the method ensures that we have procedural parts associated with each atom, that assure
that it is used correctly. We do this by defining a proviso, case_of / 3, which will
choose the correct strategy for evaluating any functional expression. Listsand numbers
areregarded as fully evaluated functional expressions whose correct procedural part is
axi om 3:

eval _fun(T,I,PT)<=
case_of (T,I,PT) -> (1@T|IR \- O.
eval _fun(T,I,PT) <= PT.

case_of (cons(_,_),Il,cons(l)).
case_of (append(_,), I, append(l)).
case_of (gsort(_),l,qsort(1)).

case of (T,l,axionm(_, ,1)) :- canon(T).
canon([]).
canon(X):- functor(X'."',2).

canon(X):- nunber (X).

In the proviso case_of / 3 weintroduced a new strategy cons/ 1, so Undef isstill not
empty, Undef = [(cons(l) \\- (A, ..cons(H T),.,A, \- L))]. When we
define cons/ 1 we again encounter unknown functional expressions, to be evaluated,
and usetheeval _f un/ 3 strategy:

cons(l) <=
d_left(cons(_,_),I,pi_left(_,I,pi_left(_,1,a_left(_1I,
v_right(_,a_right(_,eval _fun(_,[].,.))),
a_right(_,eval _fun(_,[],.))),
axiom(_, _,1))))).

Now Undef isempty, so we are finished. In the rule definition below we used a more
efficient spl i t/ 0 strategy than the one defined above:

% top-1evel strategy
% qsort \\- (l@gqgsort(List)|R \- SortedList).
gsort <= gsort(_).

gsort(l) <= d_left(qgsort(_),l,qgsort(_,1)).

gsort(T, 1) <=
(1@TIR \- O.

gsort(T,1) <=
gsort2(T,1).

gsort2([],1) <=
axion([],_,1).
gsort2((pi _\ _),1) <=
pi _left(_,I,pi_left(_,l1,a_left(_,1,split,append(l)))).

%split \\- (A\- split(A B CD)).
split <= d right(split(_, , .,),split())).

split(Q <=
(_\- ©O.

split(Q <=
split2(C).

split2(true) <=
true_right.

split2((_>= _,)) <=
v_right(_,ge_right(_),split).

split2((_ < _,)) <=
v_right(_,It_right(_),split).

% append(l) \\- (I @append(L1,L2)|R \- L).
append(l) <= d_left(append(_,_),!|,append2(l)).

append2(1l) <=
pi _left(_,l,a_left(_,1,a right(_,
eval _fun(_,[],_)),append(l))),
eval _fun(_,1I,_). %only tried if the strategy on
% the |line above fails

% cons \\- (I @cons(Hd, TI)|R \- L).
cons(l) <=
d_left(cons(_,),I,pi_left(_,I,pi_left(_1,
aleft(_,l,v_right(_,aright(_,eval _fun(_[],.))).,
a_right(_,eval _fun(_1[],.)),
axiom(_, ,1))))).

% eval _fun(T,1,PT) \\- (I@T|R \- O
eval _fun(T,I,PT)<=

case_of (T,I,PT) -> (I@T|R \- O.
eval _fun(T,I,PT) <= PT.

case_of (cons(_, _),Il,cons(l)).
case_of (append(_,), I, append(l)).
case_of (gsort(_),l,qsort(l)).

case of (T,l,axiom(_, _,1)) :- canon(T).
canon([]).
canon(X):- functor(X '.",2).

canon(X):- nunber (X).

ge_right(X >=Y) <=
nunber (X),
nunber (YY),
X >=Y
-> (A\- X >=Y).

It_right(X <Y <=
nunber (X),
nunber (),
X<Y
-> (A\- X <VY).

constructor (' >=",2).
constructor('<',2).

5 Discussion

In this section we will evaluate each method according to five criteria on how good we
perceive the resulting programs to be.
The following criteria will be used:

1. Correctness— Naturally one of the major requirements of a programming metho-

dology is to ensure a correct resulie Will use the correctness criterion as a mea-
sure of how easy it is to construct correct programs, that is to what extent the
method ensures a correct result and how easy it is to be convinced that the program
is correct. A program is correct if it has the intended behatViat is for each of

the intended queries we receive all correct answers and no others. Since we are only
interested in the construction of the procedural part, that is the rule definition, we
can assume that the definition is intuitively correct.

2. Efficiency — We also want to compare thdieiency of the resulting programs. The
term eficiency involves not only such things as execution time and the size of the
programs, but also the overall cost of developing programs using the method in
question.

3. Readability — We will use the readability criterion to measure the extent to which
the particular method ensures that the resulting programs are easy to read and easy
to understand.

4. Maintenance — Maintenance is an important issue when programming-in-the-
large. W\ will use the term maintenance to measure the extent to which the method
in question ensures that the resulting programs are easy to maintain, that is how
much extra work is implied by a change to the definition or the rule definition.

5. Reusability — Another important issue when programming-in-thgears the
notion of reusabilityBy this we mean to what extent the resulting programs can be
used in a lage number of dferent queries and to what extent the specific method
supports modular programming, that is the possibility of saving programs or parts
of programs in libraries for later usage in other programs,féreifit parts of the
programs can easily be replaced by mofieieht ones etc. For the purpose of the
discussion of this criterion we definenadule to mean a definition together with a
corresponding rule definition with a well-defined interface of queries.

5.1 Evaluation of Method 1

Correctness. If the number of possible queries is small we are likely to be able to con-
vince ourselves of the correctness of the program, but if the number of possible queries
is so lage that there is no way we can test every quben it could be very hard to
decide whether the current rule definition is capable of deriving all the correct answers
or not.

This uncertainty goes back to the fact that the rule definition is a resutiafand
error-process; we start out testing a very general strategy and only if this strategy fails
in giving us all the correct answers, or if it gives us wrong answers, we refine the strat-
egy to a less general one to remedy this mishehavien we start testing this refined
strategy and so on. The problem is that we cannot be sure we have tested all possible
cases, and as we all know testing can only be used to show the presence of faults, not
their absence.

The uncertainty is also due to the fact that the program as a whole is the result of
stepwise refinement, that is successive updates to the definition and the rule definition,
and when we use Methddto construct programs we have very little control over all
consequences that a change to the definition or the rule definition brings with it, espe-

cially when the programs are dg.

Efficiency. Sometimes we do not need to write any strategies or inference rules at all,
the default strategies and the default rules will do. This makes many of the resulting pro-
grams very manageable in size.

Due to the fact that the method by itself removes very little indeterminism in the
search space, the resulting programs are often slow howewean of course keep on
refining the rule definition until we have a version thatfigieht enough.

Readability. On one hand, since programs often are very small and make extensive
use of default strategies and rules, they are very comprehensible. On the other hand, if
you keep on refining long enough so that the final rule definition consists of many highly
specialized strategies and rules, all very much alike in form, with conditions and excep-
tions on their respective applicability in the form of provisos, then the resulting pro-
grams are not likely to be comprehensible at all.

Maintenance. Since the rule definition to a tgr extent consists of very general rules
and strategies, a change or addition to the definition does not necessarily imply a corre-
sponding change or addition to the rule definition.

The first problem then is to find out if we must change the rule definition as well. As
long as the programs are small and simple this is not much of a problem, bugdor lar
and more complex programs this task can be very time-consuming and tedious.

If we find out that the rule definition indeed has to be changed, then another problem
arises. Method is based on the principle that we use as general strategies and inference
rules as possible. This means that many strategies and rules are applicable to many dif-
ferent derivation steps in possibly manyfetiént queries. Therefore, when we change
the rule definition we have to make sure that this change does not have anyextter ef
than those intended, as for example redundant, missing or wrong answers and infinite
loops. Once again, if the programs are small and simple this is not a serious problem,
but for lager and more complex programs this is a very time-consuming and non-trivial
task.

The fact is that for lgre programs the work needed to overcome these two problems
is so time-consuming that it is seldom carried out in practice. It is due to this fact that it
is so hard to be convinced of the correctness gelaomplex programs, developed
using Method 1.

Reusability. Due to the very general rule definition, programs constructed with
Methodl can often be used in ada number of dferent queries. Howeveby the
same reason it can be very hard to reuse programs or parts of programs developed using
Method1 in other programs developed using the same method, sideeity that their
respective rule definitions (which are very general) will get into conflict with each other
But, as we will see in Sed.3, if we want to reuse programs or parts of programs con-
structed with Method. in programs constructed with Meth8dwe will not have this
problem.

Thus, the reusability of programs developed using Methdelpends on what kind

of programs we want to reuse them in.

5.2 Evaluation of Method 2

Correctness. Programs developed with Meth@dand Metho@® respectivelycan be
very much alike in form. The most importantfdience is that with the former method,
programs are constructed in a rath@hoc way; the final programs are the result of a
trial and error-process. A program is refined through a series of changes to the defini-
tion and to the rule definition, and the essential thing about this is that these changes are
to a great extent based on the progsaeternal behavipnot on any deeper knowledge
about the program itself or the data handled by the program.

In the latter method, programs are constructed using knowledge about the classifi-
cation, the programs themselves and the data handled by the programs. This knowledge
makes it easier to be convinced that the programs are correct.

Efficiency. Compared to programs developed with Methipgrograms constructed
using Method? are often somewhat tgr. However when it comes to execution time,
programs developed using Methddre generally fastesince much of the indetermin-
ism, which when using Methdbrequires a lot of refining to get ridfadisappears more

or less automatically in Methd] when we make our classification. Thus, we get faster
programs for the same amount of work, by using Methoather than Method.

Readability. A program constructed using Meth2ds mostly based on the program-
mer's knowledge about the program and on the knowledge about the objects handled by
the program. Therefore, if we understand the classification we will understand the pro-
gram.

The rule definitions of the resulting programs often consist of very few strategies
and rules, which make them even easier to understand.

Maintenance. When we have changed the definition we must do the following, to
ensure that the rule definition can be used in the intended queries:

1. For every new object that belongs to an already existing class, we add the new
object as a new member of the class in question. No strategies or rules have to be
changed.

2. For every new object that belongs to a new class, we define the new class and add
the new object as a new member of the newly defined clasthé have to change
all strategies and rules so that they correctly handle the new class. This work can
be very time-consuming.

If the changes only involves objects that are already members of existing classes, we do
not have to do anything.

If we change a strategy or a rule in the rule definition, we only have to make sure
that the new strategy or rule correctly handles all existing classes. Of course, this work
can be very time-consuming.

By introducing well-defined classes of objects we get a better control of¢leesef

caused by changes to the definition and the rule definition, compared to what we get
using Method 1. Many of the costly controls needed in the latter method, can in the
former method be reduced to less costly controls within a single class.

Reusability. Due to the very genera rule definition, programs developed using
Method 2 can often be used in alarge number of different queries. Yet, by the samerea-
sonsasin Method 1, it can be difficult to reuse programs or parts of programs devel oped
using Method 2 in other programs developed using the same method (or Method 1).

Nevertheless, we can use Method 2 to develop libraries of rule definitionsfor certain
classes of programs, for example functional and object-oriented programs.

5.3 Evaluation of Method 3

Correctness. Theruledefinitions of programs constructed using Method 3, consist of
ahierarchy of strategies, at the top of which we find the strategies that are used by the
user in the derivations of the queries, and in the bottom of which we find the strategies
and rulesthat are used in the derivations of the individual atoms.

Since the connection between each atom in the definition and the corresponding part
of the rule definition (that is the part that consists of those strategies and rules that are
used in the derivations of this particular atom) isvery direct, it is most of the time very
easy to be convinced that the program is correct.

Method 3 also gives, at least some support to modular programming, which givesus
the possibility of using library definitions, with corresponding rule definitions, in our
programs. These definitions can often a priori be considered correct.

Efficiency. One can say that Method 3 is based on the principle: “One atom — one
strategy” . This makes the rule definitions of the resulting programs very large, in some
caseseven aslarge asthe definition itself. When constructing programs using Method 3,
we may therefore get the fedling of “writing the program twice”.

The large rule definitions and all this writing are a severe drawback of Method 3.
However, the writing of the strategies often follows certain patterns, and most of the
work of constructing the rule definition can therefore be carried out more or less
mechanically. The possibility of using library definitions, with corresponding rule def-
initions, aso reduces this work.

Programs constructed using Method 3 are often very fast. There are two main rea-
sonsfor this:

1. Thehierarchical structure of the rule definition impliesthat in every step of theder-
ivation of aquery, large parts of the search space can be cut away.

2. The method encourages the programmer to write very speciaized and efficient
strategies for common definitions. In practice, large parts of the derivation of a
query istherefore completely deterministic.

Readability. Programs constructed using Method 3 often have large rule definitions
and may therefore be hard to understand. Still, the “one atom — one strategy” -principle

and the hierarchical structure of the rule definitions make it very easy to find those strat-
egies and rules that handle a specific part of the definition and vice versa, especially if
we follow the convention of naming the strategies after the atoms they handle.

The possibility of using common library definitions, with corresponding rule defini-
tions, also increases the understanding of the programs.

Maintenance. Programs developed using Method 3 are easy to maintain. Thisis due
to the direct connection between the atoms of the definition and the corresponding part
of the rule definition.

If we change some atoms in the definition, only those strategies corresponding to
these atoms might need to be changed, no other strategies have to be considered.

If we change an already existing strategy in the rule definition, we only haveto make
sure that the corresponding atoms in the definition, are handled correctly by the new
strategy. We also do not need to worry about any unwanted side-effects in the other
strategies, caused by this change.

Thus, we see that changes to the definition and the rule definition are local, we do
not have to worry about any global side-effects. Most of the time this is exactly what
wewant, but it also impliesthat it is hard to carry out changes, where we really do want
to have aglabal effect.

Reusability. Method 3 isthe only method that can be said to give any real support to
modular programming. Thanks to the very direct connection between the atoms of the
definition and the corresponding strategies in the rule definition, it is easy to develop
small independent definitions, with corresponding rule definitions, which can be assem-
bled into larger programs, or be put in libraries of common definitionsfor later usagein
other programs.

Still, for the same reason, programs developed using Method 3 are less flexible
when it comes to queries, compared to the two previous methods. The rule definition is
often tailored to work with avery small number of different queries. Of course, we can
aways write additional strategies and rules that can be used in alarger number of que-
ries, but this could mean that we have to write anew version of the entire rule definition.

6 Conclusions

In this paper we have presented three methods of constructing the procedural part of a
GCLA program: minimal stepwise refinement, splitting the condition universe and local
strategies. We have also compared these methods according to five criteria: correctness,
efficiency, readability, maintenance and reusability. We found that:

» With Method 1 we get small but slow programs. The programs can be hard to
understand and it is aso often hard to be convinced of the correctness of the pro-
grams. The resulting programs are hard to maintain and the method does not give
any support to modular programming. One can argue that Method 1 isnot really a

method for constructing the procedural part aféaprograms, since it lacks most
of the properties such a method should have. For small programs this method is
probably the best, though.

* Method2 comes somewhere in between Methoahd Method®. The resulting
programs are fairly small and generally faster than programs constructed with
Method1 but slower than programs constructed with MetBo@ne can easily be
convinced of the correctness of the programs and the programs are often easy to
maintain. Still, Metho® gives very little support to modular programming. There-
fore, Method? is best suited for small to moderate-sized programs.

» Method3 is the method best suited forgarand complex programs. The resulting
programs are easy to understand, easy to maintain, often very fast and one can eas-
ily be convinced of the correctness of the programs. Meihiedhe only method
that gives any real support to modular programming. Howgvegrams devel-
oped using Metho8 are often very lge and require a lot of work to develop.
Method3 is therefore not suited for small programs.

One should note that in the discussion of reusapdlityg especially modular program-
ming, in the previous section, an underlying assumption is that the programmer himself
(herself) has to ensure that no naming conflicts occur among the atoms diettesdif
definitions and rule definitions. This is of course not satisfactory and one conclusion we
can make is that if GCLA ever should be used to develgp knd complex programs
some sort of module system needs to be incorporated into future versions of the GCLA
system.

Another conclusion we can make is that there is a need for more sophisticated tools
for helping the user in constructing the control part of a GCLA program. Even if we do
as little as possible, for instance by using the first method described in thisquegper
fact still holds: lage GCLA programs often needdarcontrol parts. Whave in Sect
already pointed out that at least some of the work constructing the control part could be
automated. This requires more sophisticated tools than tHesedlby the current ver-
sion of the GCLA system. An example of one such tool is a graphical ediof-in
which the user can directly manipulate the priveé of a query; adding and cutting
branches at will.

References

1. M. Aronsson, Methodology and Programmingchiniques in GCLA II, SICS
Research Report R92:05, also published in: L-H. Eriksson, L. Hallnds§liroeder
Heister (eds.),Extensions of Logic Programming, Proceedings of the 2nd
International Workshop held at SCS, Sweden, 1991, Springer Lecture Notes in
Artificial Intelligence, vol. 596, pp 1-44, Spring&ferlag, 1992.

2. M. Aronsson, GCLA Uses Manual, SICTResearch Report T91:21A.

3. M. Aronsson, L-H. Eriksson, A. Géredal, L. Hallnds(Hn, The Programming
Language GCLA — A Definitional Approach to Logic Programmimggw
Generation Computing, vol. 7, no. 4, pp 381-404, 1990.

4. M. Aronsson, PKreuger L. Hallnas, L-H. Eriksson, A Survey of GCLA — A
Definitional Approach to Logic Programming, in: BhroedeHeister (ed.),
Extensions of Logic Bgramming, Poceedings of the 1st Internationabkidshop
held at the SNS, Universitat Tubingen, 1989, Springer Lexiotes in Artificial
Intelligence vol. 475, SpringeWerlag, 1990.

5. P Kreuger GCLA Il, A Definitional Approach to Control, Ph L thesis, Department
of Computer Sciences, University of Gotaiposweden, 1991, also published in:
L-H. Eriksson, L. Hallnas, .PShroedeHeister (eds.),Extensions of Logic
Programming, Poceedings of the 2nd Internationalokiéshop held at SICS,
Sweden, 1991, Springer LecatuXotes in Artificial Intelligencevol. 596, pp 239-
297, SpringeiVerlag, 1992.

