
On GCLA, Gisela, and MedView

Studies in Declarative Programming

with Application to Clinical Medicine

Olof Torgersson

Department of Computing Science

Chalmers University of Technology and Göteborg University

Göteborg, 2000

1

Thesis for the degree of Doctor of Philosophy

On GCLA, Gisela, and MedView
Studies in Declarative Programming with

Application to Clinical Medicine

Olof Torgersson

Department of Computing Science

Chalmers University of Technology and Göteborg University

Göteborg, Sweden, 2000

On GCLA, Gisela, and MedView

Studies in Declarative Programming with Application to Clinical Medicine

Olof Torgersson

ISBN 91-628-4354-0

c© Olof Torgersson, 2000

Computing Science

Chalmers University of Technology and Göteborg University

SE-412 96 Göteborg

Sweden

Printed at Chalmers, Göteborg, 2000

On GCLA, Gisela, and MedView

Studies in Declarative Programming with Application to Clinical Medicine

Olof Torgersson

Department of Computing Science

Chalmers University of Technology and Göteborg University

Abstract

Using declarative programming a programmer should be able to concentrate on

what a program should do without worrying to much about how it is done. To

be able to advance declarative programming methodologies, real-world examples

are needed that push the limits of the proposed programming techniques. In

this thesis we focus on some aspects of declarative programming, mostly from an

applied angle. Specifically, various issues in the area of definitional programming,

which has its roots in the theory of partial inductive definitions, are investigated.

The thesis consists of four separate but related parts. In the first part it

is shown how functional logic programming can be achieved in the definitional

programming language GCLA. Although all examples are given in GCLA the

general ideas could just as well be applied to build a specialized functional logic

programming language based on definitional ideas.

The second part presents the Gisela framework for definitional programming.

Gisela is intended to provide a general extensible framework for definitional pro-

gramming based on a new definitional computation model. The framework is also

intended to facilitate building state-of-the art GUI-based applications with em-

bedded definitional reasoning components. The computation model and various

programming techniques are described.

The third part gives an overview of the MedView project. MedView is a

joint project with participants from computer science and clinical medicine. The

project is centered around the question: how can computing technology be used

to handle clinical information in everyday work such that clinicians more system-

atically can learn from their gathered clinical data? All knowledge representation

in MedView is based on a definitional model.

The fourth part concerns how Gisela can be used to facilitate knowledge rep-

resentation and application development in the MedView project. Expressed

differently, how MedView is used as a real-world example for declarative pro-

gramming techniques. It is shown how the MedView knowledge base can be

represented using Gisela and how to use Gisela for finding information in the

knowledge base. A number of example applications are described as well as the

general methodology used to incorporate definitional reasoning machinery based

on Gisela into object-oriented applications with GUIs.

Keywords: declarative programming, functional logic programming, definitional

programming, knowledge based systems, medical informatics.

This thesis consists of the following papers:

• Olof Torgersson. Functional Logic Programming in GCLA. Different parts
of this paper are published as:

– O. Torgersson. Functional logic programming in GCLA. In U. Eng-
berg, K. Larsen, and P. Mosses, editors, Proceedings of the 6th Nordic
Workshop on Programming Theory. Aarhus, 1994.

– O. Torgersson. A definitional approach to functional logic program-
ming. In Extensions of Logic Programming, ELP’96, Lecture Notes in
Artificial Intelligence. Springer-Verlag, 1996.

The version included here is a revised version of a paper with the same
name in

– O. Torgersson. Definitional programming in GCLA: Techniques, func-
tions, and predicates. Licentiate thesis, Chalmers University of Tech-
nology and Göteborg University, 1996.

• Olof Torgersson. Gisela—A Framework for Definitional Programming.

• Youssef Ali, Göran Falkman, Lars Hallnäs, Mats Jontell, Ulf Mattson,
Nader Nazari, and Olof Torgersson. An Overview of MedView.
This paper is based on material from

– Y. Ali, G. Falkman, L. Hallnäs, M. Jontell, N. Nazari, and O. Torgers-
son. Medview: Design and adoption of an interactive system for oral
medicine. In Proceedings of Medical Informatics Europe (MIE’00),
Hannover, Germany, August 2000, 2000,

– M. Jontell, L. Hallnäs, and U. Mattson. Oralmedicinsk information-
steknologi i klinisk praxis. In Odontologi 2000, pages 217–230. Munks-
gaard, København, 2000,

– G. Falkman, M. Jontell, and N. Nazari. Information visualisation
in clinical medicine using 3D parallel diagrams: a case history. In
Proceedings of Medical Informatics Europe (MIE’00), Hannover, Ger-
many, August 2000, August 2000,

– SimVis: an interaction model for exploring clinical data. In G. Szwillus
and T. Turner, editors, CHI 2000 Extended Abstracts. Conference on
Human Factors in Computing Systems, 1–6 April 2000, The Hague,
The Netherlands, pages 319–320. ACM Press, New York, 2000,

revised for the present paper and extended with some new material.

• Olof Torgersson. MedView and Gisela.

Acknowledgements

I would like to thank Lars Hallnäs for constant support and inspiration, and for
forcing me to rewrite parts of this thesis several times when I thought it was all
written, Göran Falkman for all the ideas and opinions, and for reading my papers
meticulously, Peter Hammond for valuable comments and corrections, Jan Smith
and Björn von Sydow for providing input on the initial version of this thesis,
Mats Jontell, Nader Nazari, and Youssef Ali for collaboration in the MedView
project, Bengt Nordström for help with my final course-plan, Christer Carlsson
for support and for giving me the opportunity to work as a teacher during the
last year, all students who have contributed to making teaching an inspiring part
of my work, everyone at the computing science department for keeping up the
good work, and finally: My family for being there.

On GCLA, Gisela, and MedView

Studies in Declarative Programming with

Application to Clinical Medicine

Olof Torgersson

1 Introduction

Since the computer was first invented, more than 50 years ago, a very large
number of programming languages and programming techniques for these have
been developed. From the early days of programming using machine instruc-
tions, via assembler, high-level languages, structured imperative programming,
to today’s sophisticated object-oriented application development environments
and very high-level declarative programming languages.

The development of more and more sophisticated programming tools has been
paralleled by the development of more and more powerful hardware. Whenever
more powerful machines have been developed, software developers have tended to
build applications demanding more computing power. Whenever a more powerful
programming paradigm has evolved, it has been used to its limit, calling for even
more powerful development tools. Today, most owners of an ordinary PC for
use at home, have more computing power available than what was present in the
machines used to travel to the moon thirty years ago.

Developing large software systems is a non-trivial task. Software is often
plagued by errors, and late delivery is more of a rule than an exception when it
comes to releases of major systems. Software engineering techniques have been
developed to aid in the process. Much research effort has been, and is being,
put into ways of proving programs correct, or automatically creating programs
known to satisfy given specifications for a problem. So far, software engineering
techniques are used for programming-in-the-large, while actually proving program
correctness can only be done for smaller programs.

The choice of programming language is important since different languages
are more or less well suited for different tasks. At a very high level the program-
ming languages existing today can be divided into imperative and declarative
languages. Imperative programming languages have been around since the be-
ginning of computer science and are still used in an overwhelming majority of
all software systems being developed. Imperative programming languages are

1

On GCLA, Gisela, and MedView

based on the Von Neumann sequential model of computation and the program-
mer must specify with great detail how computations should be performed. Since
imperative programming languages in some sense are directly based on the actual
machine used, compilers can be written which generate very efficient code. On
the other hand, the programmer must explicitly deal with low-level detail like
allocating and de-allocating memory. This means that the gap between the cog-
nitive model, natural for the human mind, and the encoding, as a program, might
be very wide which makes coding an unnecessarily complicated and error-prone
task.

Declarative programming languages, on the other hand, start from a human
point of view. The foundation for declarative programming languages is typically
computation-models aimed at being conceptually appealing for the human mind.
Using a declarative programming language, the programmer should be able to
focus more on what the program should do than on the details for how it should
be done. Not surprisingly, this approach leads to programs that are less efficient,
even though modern compilers for declarative languages come close enough to
imperative ones in many cases.

In this thesis we focus on some aspects of declarative programming, mostly
from an applied angle. Specifically, various issues in the area of definitional pro-
gramming are investigated. Both programming techniques and Gisela, a frame-
work for definitional programming based on a new computation model, are pre-
sented. The system for definitional programming developed was designed with
the specific goal of making interaction between a declarative system and sur-
rounding imperative programs natural, thus enabling us to use each paradigm for
the task where it is best suited. Furthermore, we give an overview of MedView,
a larger research project based on definitional knowledge representation and pro-
gramming methodologies, which has served as a driving force for a substantial
part of the work presented here.

2 Declarative Programming

There are several different branches of declarative programming languages, the
main ones being functional and logic programming. In this section, we discuss
some declarative programming paradigms, including definitional programming.
In particular we will discuss how control is handled in some example languages.
One reason for focusing on control issues is that management of control is a ma-
jor difference between definitional programming and other declarative approaches.
Another is that the higher level of abstraction used in declarative languages might
make it harder for the programmer to understand the actual computational con-
tent of a program. The effect of this might be that it becomes difficult to find
performance bottle-necks and programming errors.

2

Introduction

2.1 Declarative Programming and Control

Most declarative programming languages stem from work in artificial intelligence
and automated theorem proving, areas where the need for a higher level of ab-
straction and a clear semantic model of programs is obvious.

The basic property of a declarative programming language is that a program
is a theory in some suitable logic. This property immediately gives a precise
meaning to programs written in the language. From a programmer’s point of view
the basic property is that programming is raised to a higher level of abstraction.
As mentioned above, this higher level of abstraction enables the programmer
to concentrate on stating what is to be computed, not necessarily how it is to
be computed. In Kowalski’s terms where algorithm = logic + control [28], the
programmer supplies the logic but not necessarily the control.

According to [34], declarative programming can be understood in a weak and
in a strong sense. Declarative programming in the strong sense then means that
the programmer only has to supply the logic of an algorithm and that all control
information is supplied automatically by the system. Declarative programming
in the weak sense means that the programmer, apart from the logic of a program,
also must give control information to yield an efficient program.

2.1.1 Functional Programming

In functional programming languages programs consist of a number of function
definitions. To give meaning to programs these are typically mapped to some
version of the λ-calculus, which is then given a denotational semantics. There
are both impure (strict) functional languages like Standard ML [36], allowing
things like assignment, and pure (lazy) functional languages like Haskell [27].

On the one hand, modern functional languages, such as Haskell, come rather
close to achieving declarative programming in the strong sense. On the other
hand, the execution order of lazy evaluation is not very easy to understand and
the real computational content of a program is hidden under layers and layers
of syntactic sugar and program transformations. Consequently, the programmer
loses control of what is really going on and may need special tools like heap-
profilers [40] to find out why a program consumes memory in an unexpected way.
To fix the behavior of programs the programmer may be forced to rewrite the
declarative description of the problem in some way better suited to the particular
underlying implementation. Thus, an important feature of declarative program-
ming may be lost. The programmer does not only have to be concerned with how
a program is executed but has to cope with a model that is hard to understand
and very different from the intuitive understanding of the program.

However, functional programming languages provide many elegant and power-
ful features like higher order functions, strong type systems, list comprehensions,
and monads [46]. Several of these notions are being adopted in other declarative
programming languages (see below).

3

On GCLA, Gisela, and MedView

Functional languages also support code reuse, and come with a number of
useful predefined functions. While reuse of general higher-order library functions
results in shorter programs, it is not obvious that it always makes programs easier
to understand and maintain. An example of a general list reducing function is
foldr, which can be used to define almost any function taking a list and reducing
it somehow:

fun foldr _ u nil = u

| foldr f u (x::xs) = f x (foldr f u xs)

Functional programming methodology makes heavy use of foldr and similar
functions to define other functions based on recursion over lists. For instance the
function len, computing the length of a list, can be defined as

val len = foldr (add o K 1) 0

where add computes the sum of two integers and K is the K combinator. We
leave it up to the reader to understand how this definition works.

As mentioned, general higher-order functions, function composition, list com-
prehensions and so on, makes it possible to write very concise programs. However,
it also tends to turn functional programming into an activity for experts only since
it becomes difficult for non-experts to understand the resulting programs.

2.1.2 Logic Programming

For practical applications there is one logic programming language in widespread
use: Prolog [12]. Prolog is used for a variety of applications in artificial intel-
ligence, knowledge-based systems, and natural language processing. A (pure)
Prolog program is understood as a set of Horn clauses, a subset of first order
predicate logic, which can be given a model-theoretic semantics, see [32]. Pro-
grams are evaluated by proving queries with respect to the given program.

From a programming point of view, Prolog provides two features not present
in functional languages: built-in search and the ability to compute with partial
information. This is in contrast to functional languages where computations
always are directed, require all arguments to be known, and give exactly one
answer. A simple example of how a predicate can be used to compute in several
modes and with partial information is the following program for for appending
two lists:

append([], Ys, Ys).

append([X|Xs], Ys, [X|Zs]) :- append(Xs, Ys, Zs).

Not only can append be used to append two lists but also to take a list apart or
to append some as yet unknown list to another one.

The built-in search makes it easier to formulate many problems. For instance,
if we define what we mean by a subset of a list

4

Introduction

subset([], []).

subset([X|Xs], [X|Ys]) :- subset(Xs, Ys).

subset([_|Xs], Ys) :- subset(Xs, Ys).

we can easily compute all subsets by asking the system to find them for us:

| ?- findall(Sub, subset([1,2,3], Sub), SubSets).

SubSets = [[1,2,3],[1,2],[1,3],[1],[2,3],[2],[3],[]]

While the built-in search gives powerful problem solving capacities to the
language it also makes the evaluation principle more complicated. Accordingly,
Prolog and most other logic programming languages only provide declarative pro-
gramming in the weak sense where the programmer needs to provide some control
information to get an efficient program from a declarative problem description.
The method used by many Prolog programmers is rather ad hoc: First, the prob-
lem is expressed in a declarative fashion as a number of predicate definitions.
Then the program is tested and found slow. To remedy the problem the origi-
nal program is rewritten by adding control information (cuts) as annotations in
the original code and doing some other changes like changing the order of argu-
ments to predicates. The resulting program is likely to be quite different from
the original one—and less declarative.

As an example, assume that we wish to define a predicate lookup that finds
a certain element in a list of pairs of keys and values. If the element is missing,
the result should be the atom notfound. A first definition could be:

lookup(Key, [], notfound).

lookup(Key, [(Key,Value)|_], Value).

lookup(Key, [_|Xs], Value) :- lookup(Key, Xs, Value).

If we compute lookup(1, [(1,a),(1,a)], V) we will get the answer V = a

twice and the answer V = notfound once. Of course, given the definition above
all these answers are implied by the program. What we had in mind was probably
to get one single answer V = a. By adding some control information, the program
can be rewritten to one that gives only one answer:

lookup(Key, [], notfound).

lookup(Key, [(Key,Value)|_], Value) :- !.

lookup(Key, [_|Xs], Value) :- lookup(Key, Xs, Value).

The cut (!) means that the third clause is never tried if the second can be
applied. Since the cut has no logical meaning, the two versions of lookup are
identical from a logical point of view. However, the second version does not
compute all answers implied by the program. Improper use of the cut, like in the
present example, complicates reasoning about logic programs and is the source
of many errors. A more efficient version can be defined by swapping the order of

5

On GCLA, Gisela, and MedView

the two first arguments since it will allow the compiler to generate better code.
Prolog also includes loads of impure features like arithmetic, meta predicates,
operational I/O, and so on. All in all, there exist very few large-scale Prolog
programs which are truly declarative.

It is possible to incorporate notions like monads and list comprehensions into
logic programming. For instance, [11] shows how it can be done in the higher-
order logic programming language λ-Prolog [38].

There are also languages aimed at overcoming the deficiencies of Prolog by
providing a cleaner mechanism for control and meta-programming. One example
is the language Gödel [26], a typed language based on a many-sorted logic. An-
other is Mercury [45], which claims to be a purely declarative logic programming
language.

2.1.3 Functional Logic Programming

A functional logic programming language tries to amalgamate functional and
logic programming into one language that is more expressive. In [34], it is ar-
gued that such a language should serve to bring together the researchers in the
respective areas. This should speed up progress towards a truly declarative lan-
guage and lessen the risk for duplicating research efforts. Unifying functional and
logic programming should also make it easier for students to master declarative
programming since they would only need to learn one language.

The efforts to combine functional and logic programming largely comes from
the logic programming community in trying to create more powerful and elegant
languages by including functional evaluation and programming techniques in logic
programming.

The two most commonly used methods for functional evaluation in languages
combining functional and logic programming are narrowing (see below) and resid-
uation [1]. Languages using residuation suspend evaluation of functional expres-
sions until they are sufficiently instantiated to be reduced deterministically. Thus,
any mechanism for evaluating functions will do.

Narrowing. The theoretical foundation of languages using narrowing is Horn-
clause logic with equality [39], where functions are defined by introducing new
clauses for the equality predicate. Narrowing, a combination of unification and
rewriting that originally arose in the context of automatic theorem proving [42], is
used to solve equations. In a functional language setting this amounts to evaluat-
ing functions, possibly instantiating unknown arguments to functions. Narrowing
is a sound and complete operational semantics for functional logical languages.
Unrestricted narrowing is very expensive however, so much effort has gone into
finding efficient versions of narrowing for useful classes of functional logic pro-
grams. A survey is given in [23].

6

Introduction

On an abstract level, programs in all narrowing languages consist of a number
of equational clauses defining functions:

LHS = RHS : − C1, . . . , Cn n ≥ 0

where a number of left-hand sides (LHS) with the same principal functor define a
function. The Ci’s are conditions that must be satisfied for the equality between
the LHS and the right-hand side (RHS) to hold. Narrowing can then be used to
solve equations by repeatedly unifying some subterm in the equation to be solved
with a LHS in the program, and then replacing the subterm by the instantiated
RHS of the rule. Examples of early languages using narrowing are ALF [20, 21],
using a narrowing strategy corresponding to eager evaluation, Babel [37], and
K-LEAF [15] using lazy evaluation (narrowing).

As an example of a functional logic program and a narrowing derivation,
consider the definition

0 + N = N.

s(M) + N = s(M+N).

and the equation X+s(0)=s(s(0)) to be solved. A solution is given by first doing
a narrowing step with the second rule replacing X+s(0) by s(Y+s(0)) binding
X to s(Y). This gives the new equation s(Y+s(0))=s(s(0)). A narrowing step
with the first rule can then be used to replace the subterm Y+s(0) by s(0),
thus binding Y to 0 and therefore X to s(0). Since the equation to solve now is
s(s(0))=s(s(0)) we have found the solution X=s(0).

Curry. The language Curry [24] is a recent proposal for a standardized lan-
guage in the area of functional logic programming. The intention is to combine
the research efforts of researchers in the area of functional logic programming
and also, hopefully, researchers in the areas of functional and logic programming
respectively.

Curry is primarily an effort to design a language realizing research into effi-
cient evaluation principles (narrowing strategies) for functional logic languages.
However, in [24] it is stated that Curry should combine the best ideas of existing
declarative languages including the functional languages Haskell and Standard
ML, the logic languages Gödel and λ-Prolog, and the functional logic languages
ALF, Babel, and Escher [33].

The default evaluation principle in Curry is a sophisticated lazy narrowing
strategy [5, 22, 35]. The goal of this strategy is to be as deterministic as possible
and to perform as few computation steps as possible. The strategy is complete
in that it computes all solutions to a goal for a certain set of programs.

A simple example of a Curry program is the following:

function append: [A] -> [A] -> [A]

append [] Ys = Ys

append [X|Xs] Ys = [X|append Xs Ys]

7

On GCLA, Gisela, and MedView

This looks just like an ordinary definition in a functional language but can also
be used to solve equations. For instance, Curry computes the answer L = [1,2]

to the equation

append L [3,4] == [1,2,3,4]

Similarly, the ordinary map function can be defined:

function map: (A -> B) -> [A] -> [B]

map F [] = []

map F [X|Xs] = [(F X)|map F Xs]

Again, map can be used in the same way as in a functional programming language.
However, if the function succ, giving the next natural number, is defined in the
program, then the equation

map F [1,2] == [3,4]

will give the solution F = succ. For details of how Curry handles higher order
function variables see [31].

Predicates are represented as boolean functions using conditional equations.
A simple example of this is following:

perm([],[]) = true.

perm([X|Xs],[Y|Ys]) = true <= select(Y,[X|Xs],Z),

perm(Z,Ys).

The second clause means that the result is true if the condition to the right of
the arrow holds (evaluates to true). Some syntactical sugaring is also provided.
An alternative definition for perm where select is defined locally is:

perm([],[]).

perm([E|L],[F|M]) <= select(F,[E|L],N),perm(N,M)

where select(E,[E|L],L)

select(E,[F|L],[F|M]) <= select(E,L,M).

The where constructs are explained using implications. An implication in turn
is understood by adding clauses to the program in much the same way as in
λ-Prolog [38].

The default evaluation principle in Curry is an attempt at declarative pro-
gramming in the strong sense. However, it is realized that it is not obvious that
the lazy narrowing used as default is ideal for all applications. It is therefore
possible to give control information in the form of evaluation restrictions. An
evaluation restriction makes it possible to specify all sorts of evaluation strate-
gies between lazy narrowing and residuation. If evaluation restrictions are used
it is up to the user to ensure that the program computes all desired answers.

8

Introduction

To specify that the function append can only be reduced if its first argument is
instantiated1 the restriction

eval append 1:rigid

is added to the program. If append is called with a variable as first argument the
call waits, residuates, until the variable is bound. As another example, consider
the function leq on natural numbers:

function leq: nat -> nat -> bool

eval leq 1:(s => 2)

leq 0 _ = true

leq (s M) 0 = false

leq (s M) (s N) = leq M N

The evaluation restriction means that the first argument should always be eval-
uated (to head-normal form), but that the second argument should only be eval-
uated if the first argument has the functor s at the top. Note that this might
reduce an infinite computation to a finite one if the second argument can be re-
duced to infinitely many values. An alternative evaluation strategy, describing
residuation, is

eval leq 1:rigid(s => 2:rigid)

It is also possible to specify that a function should be strict by giving the evalu-
ation restriction nf(normal form) for the arguments.

Curry also allows the user to give control information by use of encapsulated
search [25]. This means that the search required due to logical variables and
back-tracking, non-deterministic predicates or functions can be encapsulated into
a certain part of the program. A library of typical search-operators, including
depth-first and breadth-first search, is provided.

2.1.4 Constraint Logic Programming

A constraint logic programming language performs deterministic computations
over non-deterministic ones. We will not go into any details here but simply
give some examples of programs in the language Life [3]. Life is not a very typ-
ical constraint programming language but conveys some interesting ideas which
has influenced other languages2. An influential language using a concurrent con-
straint programming model related to constraint logic programming and aiming
at several goals similar to those of Life (including object-orientation and functions
evaluated using residuation) is Oz [43, 44].

1In [24] it is demanded that the argument must not be headed by a defined function symbol,
not be a logical variable nor an application of an unknown function to some arguments.

2Actually, Life is no longer being developed.

9

On GCLA, Gisela, and MedView

Life Life is formally a constraint programming language using a constraint sys-
tem based on order-sorted feature structures [2]. One of the aims of Life is to
provide a synthesis of three different programming paradigms: logic program-
ming, functional programming and object-oriented programming. Life has many
similarities with Prolog but adds functions, approximation structures and inher-
itance.

Pure logic programming in Life is very similar to programming in Prolog.
Predicates are defined using Prolog-compatible syntax—even the cut is included
to prune the search space. Thus, the same problems with control mixed with
declarative statements as in Prolog are present. However, the presence of func-
tions with deterministic evaluation makes it possible to write cleaner programs.

An interesting feature of Life is that it replaces the (first-order) terms of Prolog
with ψ-terms. The ψ-terms are used to represent all data structures, including
lists, clauses, functions and sorts. A ψ-term has a basic sort. The partially
ordered set of all sorts may be viewed as an inheritance hierarchy. A sort may
have subsorts and the subsorts of a sort inherit all properties of the parent sort.
At the the top of the sort hierarchy we find > written @ in Life. At the base
of the hierarchy we find ⊥ written{}. There is no conceptual difference between
values and sorts. For instance 1 is equal to the set {1} which is a subsort of int.
The sort int is a subsort of real, written int <| real.

The user is free to specify new sorts. The declaration truck <| vehicle

means that all trucks are vehicles and also that trucks inherit all properties of
vehicles. This corresponds in some sense to subclassing in object-oriented lan-
guages. Now, if we define

mobile(vehicle)

useful(truck)

and ask the query

mobile(X),useful(X)?

we will get the answer X = truck. A ψ-term represents a set of objects. Each
object can have attributes. Each attribute consists of a label (feature name) and
a ψ-term:

car(nbr_of_wheels => 4,

manufacturer => string,

max_speed => real).

Note that ψ-terms do not have fixed arities. It may even be possible to unify two
ψ-terms of the same principal sort but with different arities.

As mentioned, Life supports the use of functions. A function residuates until
its arguments are sufficiently instantiated to match a clause. An example is:

10

Introduction

fact(0) -> 1.

fact(N:int) -> N*fact(N-1)

Now, if we ask the query

A = fact(B)?

the system will respond with A = @, B = @~. The tilde means that B is a residu-
ation variable, that is, further instantiation of B might lead to further evaluation
of some expression. If we state that B = 5 the call to fact can be computed and
we get the answer A = 120. To use and define higher-order functions poses no
problem since functions are evaluated using matching, that is, no higher order
unification is involved.

2.1.5 Definitional Programming

In definitional programming a program is simply regarded as a definition. This is
a more basic and low-level notion than the notion of a function or the notion of
a predicate as can be seen from the fact that we talk of function and predicate
definitions respectively.

In the definitional programming language GCLA [7, 8, 29], programs are
regarded as belonging to a special class of definitions, the partial inductive defini-
tions (PID) [17, 30]. Apart from being a definitional language there is one feature
that sets GCLA apart from the rest of the declarative languages discussed here,
namely its approach to control. In GCLA the control (or procedural) part of
a program is completely separated from the declarative description. A program
consists of two definitions called the (object) definition and the rule (meta) defini-
tion, where the rule definition holds the control information. Both the definition
and the object definition consist of a number of definitional clauses

a⇐ A.

where an atom a is defined in terms of a condition A. The most important
operation on definitions is the definiens operation, D(a), giving all conditions
defining a in D.

The separation of the declarative description and the control information
means that there is no need to destroy the declarative part with control in-
formation. It also means that one definition can be used together with several
rule definitions giving different procedural behavior. Furthermore, typical control
information definitions can be reused together with many different object defini-
tions. However, for most programs the programmer has to be aware of control
issues.

It is important to note that the rule definition giving the control information
has a declarative reading as a definition giving a declarative approach to control.
For more information on the control part see [7, 13, 30].

11

On GCLA, Gisela, and MedView

From a programming point of view, GCLA is essentially a logic programming
language sharing backtracking and logical variables with Prolog. It was developed
with the aim to find a suitable modelling tool for knowledge based systems and
has been tested in several applications [8, 14, 16, 41]. One way that GCLA

extends Prolog is that it allows hypothetical reasoning in a natural way. We show
an example where we only give the definition. To get an executable program a
suitable rule definition has to be supplied as well.

Assume we know that an object can fly if it is a bird and if it is not a penguin.
We also know that Tweety and Polly are birds as are all penguins, and that Pengo
is a penguin. A definition expressing this information is the following:

flies(X) <= bird(X),(penguin(X) -> false).

bird(tweety).

bird(polly).

bird(X) <= penguin(X).

penguin(pengo).

To find out which objects cannot fly we can pose the query

(flies(X) \- false).

and the system will respond with X = pengo. Note how this binds variables in a
negated query.

2.2 Discussion

The implicit vision underlying declarative programming is that programmers
should be able to concentrate completely on what a program should do and not
need to worry about the low-level details of how to do it. As we have seen, not
many declarative systems fulfill this goal. Another vision is that the semantics of
programs should be sufficiently clear to enable formal reasoning about programs.
A problem in many cases then is that while reasoning about the pure parts of
languages may be feasible it is not practical for real applications to be restricted
to such a subset.

The aim at declarative programming in the strong sense reflects an extensional
view of programs; focus is on the functions or predicates defined not on their
definitions. Definitional programming takes a quite different approach in that
it studies the definitions that constitute programs. Programs are regarded as
definitions and focus is on the definitions themselves as the primary objects—
a focus that reflects an intensional view of programs. In this more low-level
approach there is no obvious fixed uniform computational or procedural meaning
of all definitions. Instead, different kinds of definitions require different kinds of
evaluation procedures. For instance, the definition of a predicate is not used in the

12

Introduction

same way as the definition of a function. To describe the intended computational
content, or procedural information, another definition with a fixed interpretation
is used. Thus, control becomes an integrated part of the program with the same
status and with a declarative reading just like the definition of the problem to be
solved.

Although declarative programming languages have been around for some
thirty years by now they have still not gained any widespread use for real-world
applications. At the same time object-oriented programming has conquered the
world and is the methodology used for most programs developed today. This is
a fact even though object-oriented languages like C++ lack most features consid-
ered important in declarative programming, such as clear and simple semantics,
automatic memory management, and so on. It should be obvious that the object-
oriented approach has something that is intuitively appealing to software develop-
ers. Accordingly, many attempts have been made to include object-oriented fea-
tures into declarative programming and several languages like Prolog and Haskell
have object-oriented extensions. Of course, another reason for the popularity
of the object-oriented approach is the maturity of the existing systems. To our
knowledge there is no declarative programming environment that is even close in
terms of development tools and size of libraries of reusable software components.
For declarative programming to gain popularity we believe that it is time to start
focusing more on building real applications and making it easy to interact with
legacy software. This requires clean foreign-language interfaces and better pro-
gramming environments and software libraries. Unless these are developed there
is a definite risk that declarative programming remains an activity for enthusiasts
only for the foreseeable future.

3 An Introduction to GCLA

The first part of this dissertation concerns programming in GCLA. To make it
comprehensible we give a brief overview of GCLA here.

A program in GCLA consists of two partial inductive definitions which we
refer to as the definition, or the object-level definition, and the rule definition or
the meta-level definition respectively. We will refer to the definition as D and to
the rule definition as R.

Definitional programming as it is realized in GCLA shares several features
with most logic programming languages, like logical variables allowing computa-
tions with partial information. Computations are performed by posing queries
to the system and the variable bindings produced are regarded as the answer to
the query. The search for proofs is performed depth-first with backtracking, and
clauses of programs are tried by their textual order. We assume some familiar-
ity with basic logic programming concepts, such as the notion of a most general
unifier (mgu) [32], and also rudimentary knowledge of sequent calculus.

13

On GCLA, Gisela, and MedView

We will not go into any theoretical details of GCLA but concentrate on
the aspects relevant for programming. The conceptual basis for GCLA, the
theory of partial inductive definitions, is described in [17]. A finitary version is
presented, and relations to Horn clause logic programming investigated in [18, 19].
Most of the details of the language as we present it were given in [29]. Several
papers describing the implementation and use of GCLA can be found in [8].
Among them, [7] gives a comprehensive introduction to GCLA and describes
programming methodology. More on programming methodology can be found
in [13]. Finally, [30] contains a wealth of material on different finitary calculi of
partial inductive definitions including details of the theoretical basis of GCLA.

3.1 Basic Notions

3.1.1 Atoms, Terms, Constants, and Variables

We start with an infinite signature, Σ, of term constructors and a denumerable
set, V, of variables. We write variables starting with a capital letter. Each term
constructor has a specific arity, and there may be two different term constructors
with the same name but different arities. The term constructor t of arity n is
written t/n. We will leave out the arity when there is no risk of ambiguity. A
constant is a term constructor of arity 0. Terms are built up using variables and
constants according to the following:

1. all variables are terms,

2. all constants are terms,

3. if f is a term constructor of arity n and t1, . . . , tn are terms then f(t1, . . . , tn)
is a term.

An atom is a term which is not a variable.

3.1.2 Conditions

Conditions are built from terms and condition constructors. The set CC of condi-
tion constructors always includes true and false. Conditions can then be defined:

1. true and false are conditions,

2. all terms are conditions,

3. if p ∈ CC is a condition constructor of arity n, and C1, . . . , Cn are conditions,
then p(C1, . . . , Cn) is a condition. Condition constructors can be declared
to appear in infix position like in C1 → C2.

In R the set of condition constructors is predefined, while in D any symbol can
be declared to become a condition constructor.

14

Introduction

3.1.3 Clauses

If a is an atom and C is a condition then

a⇐ C.

is a definitional clause, or simply a clause for short. We refer to a as the head
and to C as the body of the clause. We write

a.

as short for the clause a⇐ true. The clause

a⇐ false.

is equivalent to not defining a at all.
A guarded definitional clause has the form

a#{G1, . . . , Gn} ⇐ C.

where a is an atom, C a condition, and each Gi is a guard. If t1 and t2 are
terms then t1 6= t2 and t1 = t2 are guards. Guards are used to restrict variables
occurring in the heads of guarded definitional clauses.

3.1.4 Definitions

A definition is a finite sequence of (guarded) definitional clauses:

a1 ⇐ C1.
...
an ⇐ Cn.

Note that both D and R are definitions in the sense described here.

3.1.5 Operations on Definitions

The domain, Dom(D), of a definition D, is the set of all instances of heads of
clauses in D, that is, Dom(D) = {aσ | ∃A(a⇐ A ∈ D)}.

The definiens, D(a), of an atom a is the set of all bodies of clauses in D
whose heads matches a, that is {Aσ | (b ⇐ A) ∈ D ∧ bσ = a}. If there are
several bodies defining a then they are separated by ‘;’. A closely related notion
is that of a-sufficiency. Given an atom a, a substitution σ is called a-sufficient
if D(aσ) is closed under further substitution, that is, for all substitutions τ ,
D(aστ) = (D(aσ))τ . Given an a-sufficient substitution the definiens of an atom
a is completely determined. There can be more than one definiens of a how-
ever since there may be several a-sufficient substitutions. If a 6∈ Dom(D), then
D(a) = false. For formal definitions of the definiens operation and a-sufficient
substitutions see [19, 29, 30].

15

On GCLA, Gisela, and MedView

3.1.6 Sequents and Queries

A sequent is as usual Γ ` C, where, in GCLA, Γ is a (possibly empty) list of
assumptions, and C is the conclusion of the sequent. A query has the form

S (Γ ` C). (1)

where S is a proof term, that is, some more or less instantiated condition in R.
The intended interpretation of (1) is that we ask for an object-level substitution
σ such that

Sφ (Γσ ` Cσ).

holds for some meta-level substitution φ. We will sometimes refer to a query as
a meta sequent.

3.2 The Definition

In the definition the programmer should state the declarative content of a problem
without worrying to much about its procedural behavior. Indeed, a definition
D, has no procedural interpretation without its associated procedural part R. R

supplies the necessary information to get a program fulfilling the intent behind D.
The programmer can choose to use the predefined set of condition constructors,
or replace or mix them with new ones. This gives a large degree of freedom in the
declarative part of programs making it easy to express different kinds of ideas.

The default set of condition constructors include ‘,’, ‘;’, and ‘→’, which are
understood by a calculus given by the standard rule definition. This rule definition
implements the calculus OLD from [29], which in turn is a variant of the calculus
LD given in [19]. We demonstrate the definition with a small example that will
be used also in Section 3.5.

Let the size of a list be the number of distinct elements in the list. We can
state this fact in the following definition:

size([]) <= 0.

size([X|Xs]) <= if(member(X,Xs),

size(Xs),

(size(Xs) -> Y) -> s(Y)).

with the intended reading: “the size of the empty list is 0, and the size of [X|Xs]
is size(Xs) if X is a member of Xs, else evaluate size(Xs) to Y and take as result
of the computation the successor of Y”. Here if/3 is a condition constructor, we
do not give its meaning in the definition but instead interpret it through a special
inference rule. To complete the program we also define member:

member(X,[X|_]).

member(X,[Y|Xs])#{X \= Y} <= member(X,Xs).

16

Introduction

A few observations: Prolog notation is used for lists, size is a function and
member a predicate, the guard in member restricts X to be different from Y even if
both are variables.

3.3 The Rule Definition

In the rule definition we state inference rules, search strategies, and provisos which
together give a procedural interpretation of the definition. The rule definition can
be seen as forming a sequent calculus giving meaning to the condition constructors
in D. The condition constructors available in R are fixed to ‘,’, ‘;’, →, true, and
false. Instead of interpreting these by giving yet another definition, the condition
constructors in R are given meaning in a fixed calculus DOLD see Section 3.4.

Also available in the rule definition are a number of primitives to handle the
communication between R and D. Some of these are described in Section 3.3.3.

3.3.1 Inference Rules

The interpretation of conditions in D is given by inference rules in R. Inference
rules (or rules for short) are coded as functions from the premises of a rule to its
conclusion. The inference rule

P1, . . . , Pn

C
rule Proviso

is coded by the function

rule(P1, . . . , Pn) ⇐ (Proviso, P1, . . . , Pn) → C. (2)

where Pi and C are object level sequents. We can read the arrow in (2) as “if
. . . then . . . ”. In actual proof search, derivations are constructed bottom-up so
the functions representing rules are evaluated backwards, that is, we look for
instantiations of arguments giving a certain result. For more details see [7, 29].

Generally the form of an inference rule is

rule(A1, . . . , Am, PT1, . . . , PTn) ⇐ P1, . . . , Pk,
(PT1 → Seq1),
. . . ,
(PTn → Seqn),
→ Seq.

where

• Ai are arbitrary arguments. One way to use these is demonstrated in Section
3.5.3.

• PT1, . . . , PTn are proof terms, that is, more or less instantiated functional
expressions representing the proofs of the premises, Seqi.

17

On GCLA, Gisela, and MedView

• P1, . . . , Pk, for k ≥ 0, are provisos, that is, side conditions on the applica-
bility of the rule.

• Seq and Seqi are sequents, Γ ` C, where Γ is a list of (object level) condi-
tions and C is a condition.

One possible reading of rule is: “if P1 to Pk hold and each PTi proves Seqi then
rule(A1, . . . , Am, PT1, . . . , PTn) proves Seq”.

3.3.2 Search Strategies

Search strategies are used to combine rules together, guiding search among the
rules. The basic building blocks of strategies are rules and provisos and by com-
bining these together, with each other and with other search strategies, we can
build more and more complex structures. The general form of a strategy is

strat ⇐ P1 → Seq1,
. . . , n ≥ 0
Pn → Seqn.

strat ⇐ PT1, . . . , PTm.

where again Pi are provisos, PTi are proof terms, and Seqi are sequents. We can
read this as: “if Pi holds, i ≤ n, and some PTj, 1 ≤ j ≤ m, proves Seqi then
strat proves Seqi”. In its simplest form n = 0 and the strategy becomes

strat ⇐ PT1, . . . , PTm.

which is best understood as a nondeterministic choice between PT1, . . . , PTm.

3.3.3 Provisos

A proviso is a side condition on the applicability of a rule or strategy. There are
two kinds of provisos—predefined and user defined. We do not go into the user
defined provisos here but refer to [7, 10]. Among the predefined provisos there are
really three provisos handling the communication between R and D and various
provisos implementing different kinds of simple tests like var, atom, number, etc.

The provisos handling the communication between R and D are:

• definiens(a,Dp, n) which holds if D(aσ) = Dp, where σ is an a-sufficient
substitution and n is the number of clauses defining a. If n > 1 then the
different bodies defining a are separated by ‘;’. If n = 0 then Dp = false.

• clause(b, B) which holds if (c ⇐ C) ∈ D, σ = mgu(b, c), and B = Cσ. If
b is not defined by any clause then B is bound to false.

• unify(t, c) which unifies the two object level terms t and c.

18

Introduction

3.4 Operational Semantics

To answer a query S (Γ ` C) can be seen as solving an equation. The right-
hand side is a partially instantiated object-level sequent representing the answer,
and the left-hand side (the proof term) is a partially instantiated functional ex-
pression. To answer a query it is necessary to find an instance of the proof term
that evaluates to an object-level sequent which is an instance of the right-hand
side. The actual search is conducted backwards starting with the query.

The operational semantics for GCLA is given by the calculus DOLD pre-
sented below. A more detailed description can be found in [29]. A goal in the
calculus is a triple 〈Seq0 · · ·Seqn, θ, ξ〉, where the first element is a sequence of
queries (meta sequents), the second element is a substitution of meta variables
(i.e., variables occurring in the rule definition), and the third element is a substi-
tution of object variables (i.e., variables occurring in the object definition).

Note that the sets of meta variables and object variables are disjoint.

3.4.1 Initial Rules

1. Initial context

〈∅, {}, {}〉
IC.

A goal with an empty set of queries is solved.

2. Initial sequent

〈Σσ, θ, ξ〉

〈((A ` B) (C ` D)) · Σ, θσ, ξ〉
IS

if (A ` B)σ = (C ` D). Note that only meta variables are bound by this
rule.

3.4.2 Rules for Constructed Conditions

1. Truth and Falsity

〈Σ, θ, ξ〉

〈(true) · Σ, θ, ξ〉
 true

〈Σ, θ, ξ〉

〈(false false) · Σ, θ, ξ〉
false

2. Arrow rules

〈(A C) · (B) · Σ, θ, ξ〉

〈((A→ B) C) · Σ, θ, ξ〉
→

〈(A B) · Σ, θ, ξ〉

〈((A→ B)) · Σ, θ, ξ〉
→

Note the ordering of the goals in the premise of the rule →.

3. Sum left
〈(A C) · (B C) · Σ, θ, ξ〉

〈((A;B) C) · Σ, θ, ξ〉
;

19

On GCLA, Gisela, and MedView

4. Sum right

〈(A) · Σ, θ, ξ〉

〈((A;B)) · Σ, θ, ξ〉
;

〈(B) · Σ, θ, ξ〉

〈((A;B)) · Σ, θ, ξ〉
;

The rules are tried from left to right by backtracking.

5. Product left

〈(A C) · Σ, θ, ξ〉

〈((A,B) C) · Σ, θ, ξ〉
,

〈(B C) · Σ, θ, ξ〉

〈((A,B) C) · Σ, θ, ξ〉
,

The rules are tried from left to right by backtracking.

6. Product right
〈(A) · (B) · Σ, θ, ξ〉

〈((A,B) · Σ, θ, ξ〉
,

Product right is the dual of Sum left. Note the left to right ordering of the
goals in the premise.

3.4.3 Definition Rules

1. Definition Left
〈(R(aσ) Cσ) · Σσ, θ, ξ〉

〈(a C) · Σ, θσ, ξ〉
D

if σ is an a-sufficient substitution with respect to R. There is one instance
of this rule for each a-sufficient substitution σi. All instances are tried by
backtracking. Note that only meta variables are bound by this rule.

2. Definition Right
〈(Ciσ) · Σσ, θ, ξ〉

〈(c) · Σ, θσ, ξ〉
 D

if (ci ⇐ Ci) ∈ R and σ = mgu(c, ci). All instances of this rule will be tried
by backtracking over the clauses (ci ⇐ Ci) in the order they appear in R.
Note that only meta variables are bound by this rule.

3.4.4 Proviso Rules

The following rules are for the predefined provisos used in the communication
between R and D.

1. Unify
〈Σρ, θ, ξ〉

〈(unify(t1, t2) · Σ, θ, ξρ〉
 Unif

if ρ = mgu(t1, t2). This and the following two rules are the only rules where
object variables are bound.

20

Introduction

2. Clause
〈Σρ, θ, ξ〉

〈(clause(b, Bi)) · Σ, θ, ξρ〉
 Clause

if (bi ⇐ Bi) ∈ D and ρ = mgu(b, bi). All instances of this rule will be tried
by backtracking over the clauses (bi ⇐ Bi) in the order they appear in D.

3. Definiens
〈Σρ, θ, ξ〉

〈(definiens(a,Dp, n)) · Σ, θ, ξρ〉
 Def

if ρ is an a-sufficient substitutions with respect to D and D(aρ) = Dp.
There is one instance of this rule for each a-sufficient substition ρi. All
instances are tried by backtracking.

3.5 Examples

To further illustrate GCLA we give a number of examples. The examples are
mostly aimed at showing how to program the rule definition. We show most of
the rules of the standard rule definition, both as sequent calculus rules and as
rules coded in GCLA.

The rule that gives most of the additional power in GCLA, as compared
to Horn clause languages, is the rule of definitional reflection, also called D-left.
Pictured as a sequent calculus rule:

Γσ,D(aσ) ` Cσ

Γ, a ` C σ
D-left σ is an a-sufficient substitution .

That is, if C follows from everything that define a then C follows from a. This
rule comes as a standard rule in GCLA coded as

d_left(A,I,PT) <=

atom(A),

definiens(A,Dp,N),

(PT -> (I@[Dp|R] \- C))

-> (I@[A|R] \- C).

where @ is an infix append operator. Another standard rule is a-right, interpreting
‘→’ to the right:

Γ, A ` C
Γ ` A→ C

a-right

In GCLA:

a_right((A -> C),PT) <=

(PT -> ([A|G] \- C))

-> (G \- (A -> C)).

21

On GCLA, Gisela, and MedView

We also give a possible rule for the constructor if used in Section 3.2. In the
given program if will be used to the left, so we call the corresponding inference
rule if-left:

` Pred Then ` C
if(Pred, Then, Else) ` C

if-left
Pred ` false Else ` C

if(Pred, Then, Else) ` C
if-left

Note that a predicate is false if it can be used to derive falsity [7, 19, 29]. Coded
in GCLA if-left becomes:

if_left(PT1,PT2,PT3,PT4) <=

((PT1 -> ([] \- P)),

(PT2 -> ([T] \- C))

;

(PT3 -> ([P] \- false)),

(PT4 -> ([E] \- C)))

-> ([if(P,T,E)] \- C).

3.5.1 Pure Prolog

Pure Prolog programs, that is, Horn clause programs, are a subset of GCLA.
All that is needed is to use some of the standard rules acting on the consequent,
namely D-right, v-right, o-right, and true-right. In sequent calculus style notation
these rules are written:

Γσ ` Bσ
Γ ` c σ

D-right (b⇐ B) ∈ D ∧ σ = mgu(b, c)
Γ ` C1 Γ ` C2

Γ ` C1, C2

v-right

Γ ` Ci

Γ ` C1;C2

o-right i ∈ {1, 2}
Γ ` true

true-right

The coding in GCLA is straightforward. Note that the conclusion of the rule in
each case is the last line in the coded version and also note the PT s that are used
to give search strategies to guide search for proofs of the premises:

d_right(C,PT) <=

atom(C),

clause(C,B),

(PT -> (A \- B))

-> (A \- C).

v_right((C1,C2),PT1,PT2) <=

(PT1 -> (A \- C1)),

(PT2 -> (A \- C2)),

-> (A \- (C1,C2)).

22

Introduction

o_right((C1;C2),PT1,PT2) <=

((PT1 -> (A \- C1));

(PT2 -> (A \- C2)))

-> (A \- (C1;C2)).

true_right <= (A \- true).

To connect these rules together we can write the strategy:

prolog <= d_right(_,prolog),

v_right(_,prolog,prolog),

o_right(_,prolog,prolog),

true_right.

A Prolog-style program to compute all permutations of a list is the following:

perm([], []).

perm(Xs, [Y|Ys])#{Xs \= []} <=

delete(Y, Xs, Zs),

perm(Zs, Ys).

delete(X, [X|Ys], Ys).

delete(X, [Y|Ys], [Y|Zs]) <= delete(X,Ys,Zs).

If we use the strategy prolog this program will give the same answers as the
corresponding Prolog program. To prove the trivial fact that a singleton list is a
permutation of itself the following proof is constructed:

` true
true-right

` delete(a, [a], [])
D-right ` true

true-right

` perm([], [])
D-right

` delete(a, [a], []), perm([], [])
v-right

` perm([a], [a])
D-right

3.5.2 More Standard Rules

The standard rule definition consists of the rules given so far (except if-left) plus
the six rules:

Γ, false ` C
false-left

Γ, A ` C

Γ, pi X\A ` C
pi-left

Γ ` A Γ, B ` C
Γ, A→ B ` C

a-left
Γ, C1, C2 ` C

Γ, (C1, C2) ` C
v-left

Γ, C1 ` C Γ, C2 ` C

Γ, (C1;C2) ` C
o-left

Γ, a ` c σ
axiom σ = mgu(a, c)

23

On GCLA, Gisela, and MedView

To guide search among the standard rules a number of predefined strategies
are given. One such strategy, testing the rules in the order axiom, all rules
operating on the consequent, all rules operating on the antecedent, is arl (for
axiom, right, left):

arl <= axiom(_,_,_),right(arl),left(arl).

right(PT) <= v_right(_,PT,PT),

a_right(_,PT),

o_right(_,PT,PT),

true_right,

d_right(_,PT).

left(PT) <= false_left(_),

v_left(_,_,PT),

a_left(_,_,PT,PT),

o_left(_,_,PT,PT),

d_left(_,_,PT),

pi_left(_,_,PT).

One way to program R to a given D is to start with the standard rules and some
predefined search strategy and then make refinements to these to get exactly the
desired procedural behavior. Another possibility is to write a whole new set of
rules and strategies.

3.5.3 Yet Another Procedural Part

We conclude by giving a possible rule definition giving the intended procedural
behavior for the function size defined in Section 3.2. What we wish to do is to
evaluate size as a function. For instance, the query

sizeS \\- size([a,b,c]) \- C.

should bind C to s(s(s(0))) and give no more answers. We use the standard
rules d left, d right, a left, a right, true right, and false left plus the
new rule if left given in Section 3.5.

We start by writing a strategy, sizeS, for the query above assuming that we
have a strategy that handles member correctly. Since size is used to the left, the
first step is to apply the rule d left. After that either the axiom rule or if left

should be used. This gives us the skeleton strategy:

sizeS <= d_left(size(_),_,sizeS),

axiom(0,_,_),

if_left(PT1,PT2,PT3,PT4).

24

Introduction

We have instantiated the first argument in d left and axiom to restrict their
applicability properly. All that is left is to instantiate the arguments to if left.
Looking back at its definition we see that the first and third arguments should
be able to prove and disprove member respectively. We assume that the strategy
memberS does this. The second argument should simply be sizeS while in the
fourth we give a specialized rule sequence to handle the condition correctly:

sizeS <= d_left(size(_),_,sizeS),

axiom(0,_,_),

if_left(memberS,sizeS,

memberS,a_left(_,_,a_right(_,sizeS),axiom(s(_),_,_))).

The strategy memberS simply consists of the rules d right, d left, true right,
and false left:

memberS <= d_right(member(_,_),memberS),

true_right,

d_left(member(_,_),_,memberS),

false_left(_).

Now we can handle the query above as well as the more interesting

sizeS \\- (size([a,X,b]) \- L).

which first gives L = s(s(0)), X = a, then L = s(s(0)), X = b, and finally
L = s(s(s(0))), a \= X, X \= b. In particular note the last answer telling us
that the size is s(s(s(0))) if X is anything else than a or b.

We also show the derivation built to compute the size of a list of one element:

false ` false
false-left

member(0, []) ` false
D-left

{Y = 0}

0 ` Y
axiom

size([]) ` Y
D-left

` size([]) → Y
a-right

{C = s(0)}

s(0) ` C
axiom

(size([]) → Y) → s(Y) ` C
a-left

if(member(0, []), size([]), (size([]) → Y) → s(Y)) ` C
if-left

size([0]) ` C
D-left

The purpose of the strategy sizeS is to ensure that this is the only possible
derivation of the goal sequent.

4 Application to Clinical Medicine

To be able to advance declarative programming methodologies, real-world exam-
ples are needed that push the limits of the proposed languages and programming

25

On GCLA, Gisela, and MedView

techniques. Of course, this applies to definitional programming as well. An inter-
esting review of a number of cases where functional programming has been used
“in anger” for real-world tasks can be found in [47].

GCLA was used in a number of applications, the largest probably being a
system for planning and management at construction sites [9]. This system was
tested on a 40 000 square meter office building in 8 floors described by a database
consisting of about 2000 facts.

When new application areas were needed to further develop definitional knowl-
edge representation and programming techniques, attention was drawn to clinical
medicine. To try to find ways of describing clinical procedures and model clinical
experience appeared to be an interesting project.

Clinical experience is the foundation of all health care systems. However,
clinical experience takes a long time to develop. In addition, it is necessary
to continously update the gained clinical experience with information from new
clinical cases and external sources, e.g., literature and seminars. Furthermore,
the complexity of data, including both text and images, challenge the capacity of
the human mind to organize information. If the total amount of data cannot be
easily overviewed, there is a risk that vital information, which could be used to
improve diagnosis and treatment strategies, is lost.

Computerized systems have been introduced to improve access to clinical data.
However, the current systems do not generally provide advanced support for
qualitative analysis of the collected data. Consequently, many open problems
remain to be solved in this area, ranging from clinical procedures via knowledge
representation to human-computer interaction and information visualization.

4.1 The MedView Project

In 1995, the Medview project [4], based on a co-operation between computing
science and oral medicine, was initiated. The overall goal of the project is to
develop models, methods, and tools to support clinicians in their diagnostic work.
The project is centered around the question: how can computing technology be
used to handle clinical information in everyday work such that clinicians more
systematically can learn from their gathered clinical data? That is, how can the
chain “formalize-collect-view-analyse-learn” be understood and implemented in
the area of clinical medicine.

Essentially, the MedView project can be divided into two sub-problems: knowl-
edge representation and development of applications for gathering and exploring
clinical data. The model of clinical information used in MedView is a definitional
one. Basic clinical data consists of disease history and status information from
examinations. The process of assembling this information is modeled as acts of
defining a series of descriptive parameters such as disease history (anamnesis),
status, diagnosis etc. Thus, the result of gathering information is a knowledge
base consisting of a large number of definitions, each representing a particular ex-

26

Introduction

amination. The knowledge base can also contain additional definitional structures
describing general knowledge not related to any particular examination.

An important goal of the project is to support clinicians in their daily work.
Already from the start there has been an existing userbase of clinicians working
with software developed within the project. It follows that it has been necessary
to develop reliable and user-friendly applications that run on ordinary personal
computers available in a clinical setting.

4.2 Declarative Programming and MedView

Symbolic computations, knowledge representation, and reasoning are typically
areas where declarative programming tools are a natural choice. In fact, GCLA

was specifically developed with knowledge-based systems in mind. Thus, using
the declarative programming tool GCLA to implement the definitional model
of information and reasoning used in the MedView project would appear to be
obvious.

On the other hand, it has been equally important to build applications with
graphical user interfaces for use in the real world. GCLA is not an appropriate
tool for this task. It is also desirable to use tools with support for networking,
distributed computing, image processing, database connectivity etc. The natural
choice for the mentioned tasks is to use some industrial-strength object-oriented
application development framework and environment. Accordingly, one of the
components of the MedView project has been to come up with a solution that
allows us to naturally have access to the benefits of both worlds. That is, to
be able to both express definitional structures and computations in a clean way
and to have full access to all the years of effort put into a full-fledged application
development environment. The solution adopted in MedView is to use declara-
tive programming for knowledge representation and reasoning and object-oriented
programming for application development. To be able to smoothly combine the
two we have developed new tools for definitional programming suitable for inte-
gration into an object-oriented environment.

5 Overview

This thesis consists of four papers illuminating different aspects of applied declar-
ative programming. The first paper deals with how definitional programming in
GCLA can be used for functional logic programming. The second paper de-
scribes a framework for definitional programming called Gisela, which among
other things can be seen as a successor to GCLA. The third gives an overview
of the MedView project where definitional models are used for knowledge repre-
sentation. The fourth paper finally, reports on how we intend to use the Gisela
framework within MedView and some of the work done so far in this direction.

27

On GCLA, Gisela, and MedView

Functional Logic Programming in GCLA

Many researchers have sought to combine the best of functional and logic pro-
gramming into a combined language giving the benefits of both. That functions
and predicates can be integrated in GCLA is nothing new. Most papers on
GCLA mention in one way or the other that functions can be defined and exe-
cuted in a natural way. The most in-depth treatment so far is given in [6]. Here
we delve deeper into the subject and try to give a detailed description of what is
needed to combine functions and predicates in a definitional setting. The func-
tional logic GCLA programs shown build on programming techniques developed
in [13].

All examples are given in GCLA but the general ideas could just as well be
applied to build a specialized functional logic programming language. We also
compare the definitional approach with other proposals noting that the closest
relationship is with languages based on narrowing [23].

Gisela—A Framework for Definitional Programming

While GCLA is a nice realization of definitional programming it has several
drawbacks which became significant when new programming techniques were de-
veloped and attempts were made to use GCLA for knowledge representation and
reasoning in the MedView project.

It was therefore decided that a new definitional programming system should
be developed. When we analyzed our needs we realized that what we wanted was
not yet another declarative programming language based on a definitional model.
Rather, we wanted to create a general framework for definitional programming
which would allow us to implement definitional knowledge structures in a flexi-
ble way. Also, an important requirement was that the framework should allow
us to easily build state-of-the-art desktop and web applications with embedded
definitional reasoning components.

The result is an extensive object-oriented application programming framework
(an API) for definitional programming. The framework, called Gisela, imple-
ments a new model for definitional programming. Since it is an object-oriented
framework where certain classes may be subclassed or replaced in a well-defined
manner it is open for experimentation with definitional computations. One im-
portant design-choice in the computation model is that definitions are described
in an abstract manner only. Thus, any object which implements this abstract
model (interface) can be used by the definitional computing machinery provided
by the framework. The realization of the system as an object-oriented framework
also makes it very simple to include it as a component in GUI-based applications
developed using industrial-strength software tools.

It is often easier and clearer to describe definitional programs using a syntactic
representation than by creating a number of objects. Therefore, the framework

28

Introduction

also provides parsers for certain classes of definitions to allow for what we might
call “traditional” declarative programming.

The definitional computational model underlying Gisela is presented together
with the basics of the implementation. It is also shown how to program using
both syntactic representations and by using the object-oriented API directly.

An Overview of MedView

Since the MedView project was first initiated data from more than 1500 ex-
aminations has been gathered and stored into a knowledge base. A number of
applications have been developed both for gathering data at examinations and
for viewing and analyzing the contents of the knowledge base in different ways.

The theoretic model used for knowledge representation is definitional, which
relates MedView closely to both GCLA and Gisela. Another key property of the
project is that it is truly applied—applications developed within the project are
used by clinicians in their daily work.

Here we give an overview of the work done in the project so far and discuss
future directions.

MedView and Gisela

One of the specific goals during the development of Gisela has been to build a
framework suitable for knowledge representation and reasoning in the MedView
project. So far, the actual MedView system in clinical use only uses a small sub-
set of Gisela. We are working on using Gisela as the reasoning machinery within
MedView in a more uniform manner. Here we describe the general approach we
intend to use to build a modified MedView system based on Gisela. Specifically,
it is shown how the MedView knowledge base can be represented using Gisela
and how to use Gisela for basic searches in the knowledge base. Also, a num-
ber of smaller applications developed to test Gisela in the MedView setting are
described. Finally as a larger example, a functional-logic text-generator, imple-
mented in Gisela, that can be used to create comprehensible summaries from
clinical examination records in the knowledge base, is presented.

References

[1] H. Äıt-Kaci and R. Nasr. Integrating logic and functional programming.
Lisp and Symbolic Computation, 2:51–89, 1989.

[2] H. Äıt-Kaci and A. Podelski. Logic programming over order-sorted feature
terms. In Extensions of logic programming, third international workshop,
ELP93, number 660 in Lecture Notes in Artificial Intelligence. Springer-
Verlag, 1993.

29

On GCLA, Gisela, and MedView

[3] H. Äıt-Kaci and A. Podelski. Towards a meaning of Life. Journal of Logic
Programming, 16:195–234, 1993.

[4] Y. Ali, G. Falkman, L. Hallnäs, M. Jontell, N. Nazari, and O. Torgersson.
Medview: Design and adoption of an interactive system for oral medicine. In
Proceedings of Medical Informatics Europe (MIE’00), Hannover, Germany,
August 2000, 2000. To appear.

[5] S. Antoy, R. Echahed, and M. Hanus. A needed narrowing strategy. In Proc.
21st ACM Symposium on Principles of Programming Languages, pages 268–
279, 1994.

[6] M. Aronsson. A definitional approach to the combination of functional and
relational programming. Research Report SICS T91:10, Swedish Institute of
Computer Science, 1991.

[7] M. Aronsson. Methodology and programming techniques in GCLA II. In
Extensions of logic programming, second international workshop, ELP’91,
number 596 in Lecture Notes in Artificial Intelligence. Springer-Verlag, 1992.

[8] M. Aronsson. GCLA, The Design, Use, and Implementation of a Program
Development System. PhD thesis, Stockholm University, Stockholm, Sweden,
1993.

[9] M. Aronsson. Planning the construction of a building. Research Report
SICS R93:03, Swedish Institute of Computer Science, 1993.

[10] M. Aronsson. GCLA user’s manual. Technical Report SICS T91:21A,
Swedish Institute of Computer Science, 1994.

[11] Y. Bekkers and P. Tarau. Logic Programming with Monads and Compre-
hensions. In Proceedings of JFPL’95, Dijon, May 1995.

[12] P. Deransart, A. Ed-Dbali, and L. Cervoni. Prolog: The Standard. Springer-
Verlag, 1996.

[13] G. Falkman and O. Torgersson. Programming methodologies in GCLA. In
R. Dyckhoff, editor, Extensions of logic programming, ELP’93, number 798
in Lecture Notes in Artificial Intelligence, pages 120–151. Springer-Verlag,
1994.

[14] G. Falkman and J. Warnby. Technical diagnoses of telecommunication equip-
ment: An implementation of a task specific problem solving method (TDFL)
using GCLA II. Research Report SICS R93:01, Swedish Institute of Com-
puter Science, 1993.

30

Introduction

[15] E. Giovannetti, G. Levi, C. Moiso, and C. Palamidessi. Kernel-LEAF: A
logic plus functional language. Journal of Computer and System Sciences,
42:139–185, 1991.

[16] M. Gustafsson. Texttolkning med abduktion i GCLA. Master’s thesis, De-
partment of Linguistics, Göteborg University, 1994.

[17] L. Hallnäs. Partial inductive definitions. Theoretical Computer Science,
87(1):115–142, 1991.

[18] L. Hallnäs and P. Schroeder-Heister. A proof-theoretic approach to logic
programming. Journal of Logic and Computation, 1(2):261–283, 1990. Part
1: Clauses as Rules.

[19] L. Hallnäs and P. Schroeder-Heister. A proof-theoretic approach to logic
programming. Journal of Logic and Computation, 1(5):635–660, 1991. Part
2: Programs as Definitions.

[20] M. Hanus. Compiling logic programs with equality. In Proc. of the 2nd Int.
Workshop om Programming Language Implementation and Logic Program-
ming, number 456 in Lecture Notes in Computer Science, pages 387–401.
Springer-Verlag, 1990.

[21] M. Hanus. Improving control of logic programs by using functional lan-
guages. In Proc. of the 4th International Symposium on Programming Lan-
guage Implementation and Logic Programming, number 631 in Lecture Notes
in Computer Science, pages 1–23. Springer-Verlag, 1992.

[22] M. Hanus. Combining lazy narrowing and simplification. In Proc. 6th Inter-
national Symposium on Programming Language Implementation and Logic
Programming, pages 370–384. Springer LNCS 844, 1994.

[23] M. Hanus. The integration of functions into logic programming: From theory
to practice. Journal of Logic Programming, 19/20:593–628, 1994.

[24] M. Hanus, H. Kuchen, and J. Moreno-Navarro. Curry: A truly functional
logic language. In Proc. ILPS’95 Workshop on Visions for the Future of
Logic Programming, pages 95–107, 1995.

[25] M. Hanus and F. Steiner. Controlling search in declarative programs. In
Principles of Declarative Programming (Proc. Joint International Sympo-
sium PLILP/ALP’98), pages 374–390. Springer LNCS 1490, 1998.

[26] P. Hill and J. Lloyd. The Gödel Programming Language. Logic Programming
Series. MIT Press, 1994.

31

On GCLA, Gisela, and MedView

[27] P. Hudak et al. Report on the Programming Language Haskell: A Non-
Strict, Purely Functional Language, March 1992. Version 1.2. Also in Sigplan
Notices, May 1992.

[28] R. A. Kowalski. Algorithm = Logic + Control. Communications of the
ACM, 22(7):424–436, July 1979.

[29] P. Kreuger. GCLA II: A definitional approach to control. In Extensions of
logic programming, second international workshop, ELP91, number 596 in
Lecture Notes in Artificial Intelligence. Springer-Verlag, 1992.

[30] P. Kreuger. Computational Issues in Calculi of Partial Inductive Definitions.
PhD thesis, Department of Computing Science, University of Göteborg,
Göteborg, Sweden, 1995.

[31] H. Kuchen and J. Anastasiadis. Higher order Babel: Language and imple-
mentation. In R. Dyckhoff, H. Herre, and P. Schroeder-Heister, editors, Ex-
tensions of Logic Programming 5th International Workshop, ELP’96, num-
ber 1050 in Lecture Notes in Artificial Intelligence, pages 193–208. Springer,
1996.

[32] J. W. Lloyd. Foundations of Logic Programming. Springer Verlag, second
extended edition, 1987.

[33] J. W. Lloyd. Combining functional and logic programming languages. In
M. Bruynooghe, editor, Logic Programming, Proceedings of the 1994 Inter-
national Symposium. MIT Press, 1994.

[34] J. W. Lloyd. Practical advantages of declarative programming. In Joint
Conference on Declarative Programming, GULP-PRODE’94, 94.

[35] R. Loogen, F. López-Fraguas, and M. Rodŕıguez-Artalejo. A demand driven
computation strategy for lazy narrowing. In Proc. of the 5th International
Symposium on Programming Language Implementation and Logic Program-
ming,PLIP’93, number 714 in Lecture Notes in Computer Science, pages
184–200. Springer-Verlag, 1993.

[36] R. Milner. Standard ML core language. Internal report CSR-168-84, Uni-
versity of Edinburgh, 1984.

[37] J. J. Moreno-Navarro and M. Rodŕıguez-Artalejo. Logic programming with
functions and predicates: The language BABEL. Journal of Logic Program-
ming, 12:191–223, 1992.

[38] G. Nadathur and D. Miller. An overview of λProlog. In R. Kowalski and
K. Bowen, editors, Proceedings of the Fifth International Conference and
Symposium on Logic Programming, pages 810–827. MIT Press, 1988.

32

Introduction

[39] P. Padawitz. Computing in Horn Clause Theories, volume 16 of EATCS
Monographs on Theoretical Computer Science. Springer-Verlag, 1988.

[40] C. Runciman and D. Wakeling. Heap profiling of lazy functional programs.
Journal of Functional Programming, 3(2):217–245, April 1993.

[41] H. Siverbo and O. Torgersson. Perfect harmony—ett musikaliskt expertsys-
tem. Master’s thesis, Department of Computing Science, Göteborg Univer-
sity, January 1993. In Swedish.

[42] J. J. Slagle. Automated theorem-proving for theories with simplifiers, com-
mutativity, and associativity. Journal of the ACM, 21(4):622–642, 1974.

[43] G. Smolka. The definition of kernel Oz. DFKI Oz documentation series, Ger-
man Research Center for Artificial Intelligence (DFKI), Saarbrücken, Ger-
many, 1994.

[44] G. Smolka. The Oz programming model. In J. van Leeuwen, editor, Current
Trends in Computer Science, number 1000 in Lecture Notes in Computer
Science, pages 441–454. Springer-Verlag, 1995.

[45] Z. Somogyi, F. Henderson, and T. Conway. The execution algorithm of Mer-
cury: an efficient purely declarative logic programming language. Journal of
Logic Programming, 29(1–3):17–64, 1996.

[46] P. Wadler. Comprehending Monads. In Proceedings of the 1990 ACM Sym-
posium on Lisp and Functional Programming, Nice, France, 1990.

[47] P. Wadler. Functional programming: An angry half dozen. SIGPLAN No-
tices, 33(2):25–30, February 1998.

33

Functional Logic Programming in GCLA

Olof Torgersson∗

Department of Computing Science

Chalmers University of Technology and Göteborg University
S-412 96 Göteborg,Sweden

oloft@cs.chalmers.se

Abstract

We describe a definitional approach to functional logic programming,
based on the theory of Partial Inductive Definitions and the programming
language GCLA. It is shown how functional and logic programming are
easily integrated in GCLA using the features of the language, that is, com-
bining functions and predicates in programs becomes a matter of program-
ming methodology. We also give a description of a way to automatically
generate efficient procedural parts to the described definitions.

1 Introduction

Through the years there have been numerous attempts to combine the two main
declarative programming paradigms functional and logic programming into one
framework providing the benefits of both. The proposed methods varies from
different kinds of translations, embedding one of the methods into the other,
[39, 51], to more integrated approaches such as narrowing languages [17, 24, 37, 45]
based on Horn clause logic with equality [43], and constraint logic programming
as in the language Life [2].

A notion shared between functional and logic programming is that of a defini-

tion, we say that we define functions and predicates. The programming language
can then be seen as a formalism especially designed to provide the programmer
with as clean and elegant a way as possible to define functions and predicates
respectively. Of course these formalisms are not created out of thin air but are
explained by an appropriate theory.

∗This work was carried out as part of the work in the ESPRIT working group GENTZEN

and was funded by The Swedish National Board for Industrial and Technical Development
(NUTEK).

1

On GCLA, Gisela, and MedView

In GCLA [7, 27] we take a somewhat different approach, we do talk about
definitions but these definitions are not given meaning by mapping them onto
some theory about something else, but are instead understood through a theory of
definitions and their properties, the theory of Partial Inductive Definitions (PID)
[19]. This theory is designed to express and study properties of definitions, so we
look at the problem from a different angle and try to answer the questions: what
are the specific properties of function and predicate definitions and how can they
be combined and interpreted to give an integrated functional logic computational
framework based on PID.

A GCLA program consists of two communicating partial inductive definitions
which we call the (object level) definition and the rule definition respectively. The
rule definition is used to give meaning to the conditions in the definition and it
is also through this the user queries the definition. One could also say that the
rule definition gives the procedural reading of the declarative definition.

What we present in this paper is a series of rule definitions to a class of func-
tional logic program definitions. These rule definitions implicitly determine the
structure of function, predicate, and integrated functional logic program defini-
tions. We also try to give a description of how to write functional logic GCLA

programs.

The work presented in this paper has several different motivations. One is
to further develop earlier work on functional logic programming in GCLA [6,
27] to the point where it can be seen that it actually works by giving a more
precise formulation of the programming methodology involved and a multitude
of examples. Another motivation is to use and develop ideas from [16] on how
to construct the procedural part of GCLA programs. The rule definitions given
in Sections 3, 5, 6, and 7 can be seen as applications of the methods proposed
in [16]. The rule definitions presented in Sections 3 and 5 confirm the claim
that it is possible to use the method Splitting the Condition Universe to develop
the procedural part to certain classes of definitions, in this case functional logic
program definitions. The rule definitions developed in Sections 6 and 7 on the
other hand show that the claim that it is possible to automatically generate rule
definitions according to the method Local Strategies, holds for the definitions
defining functional logic programs. Yet another motivation is the need to develop
a library of rule definitions that can be used in program development.

The rest of this paper is organized as follows. In Section 2 we give some in-
troductory examples and intuitive ideas. In Section 3 we present a minimal rule
definition to functional logic program definitions. Section 4 gives an informal
description of functional logic program definitions. In Section 5 the calculus of
Section 3 is augmented with some inference rules needed in practical program-
ming, and a number of example programs are given. Section 6 presents a method
to automatically generate efficient rule definitions. Section 7 shows how the possi-
bility to generate efficient rules opens up a way to write more concise and elegant
definitions and Section 8, finally, gives an overview of related work.

2

Functional Logic Programming in GCLA

2 Introductory Example

The key to using GCLA as a (kind of) first-order functional programming lan-
guage is the inference rule D-left, definition left, also called the rule of definitional

reflection [19, 27], which gives us the opportunity to reason on the basis of as-
sumptions with respect to a given definition. The rule of definitional reflection
tells us that if we have an atom a as an assumption and C follows from everything
that defines a then C follows from a

Γ, A ` C (A ∈ D(a))

Γ, a ` C
D `,

where D(a) = {A | (a⇐ A) ∈ D}. With this rule at hand functional evaluation
becomes a special case of hypothetical reasoning. Asking for the value of the
function f in x is done with the query

f(x) \- C.

to be read as : “What value C can be derived assuming f(x)” or perhaps rather
as “Evaluate f(x) to C”.

Functions are defined in a natural way by a number of equations. As a trivial
example, we define the identity function with the single equation1

id(X) <= X.

which tells us that the value of id(X) is defined to be X (or the value of X). By
using the standard GCLA rules D-left and axiom we can build the derivation:

{a = C}

a ` C
axiom

id(a) ` C
D-left

id(id(a)) ` C
D-left

Note that the evaluation of a function is performed by (repeatedly) replacing
a functional expression with its definiens until a canonical value is reached, in
which case the axiom rule is used to communicate the result. If we use the
standard GCLA inference rules the derivation above is not the only possible
derivation however. Another possibility is to try the axiom rule first and bind C

to id(id(a)). We see that writing a definition that intuitively defines a function
is not enough, we must also have a rule definition that interprets our function
definitions according to our intentions.

1In [19] = is used instead of the backward arrow to form clauses making the word equation
more natural. In this paper however we use the notation of GCLA.

3

On GCLA, Gisela, and MedView

2.1 Defining Addition

In this section we give definitions of addition, using successor arithmetic, in
GCLA, ML [36] and Prolog, and also make an informal comparison of the re-
sulting programs and of how they are used to perform computations.

Functional programming languages can be regarded as syntactical sugar for
typed lambda-calculus, or as languages especially constructed to define functions.
In ML the definition of addition is written

datatype nat = zero | s of nat

fun plus(zero,N) = N

| plus(s(M),N) = s(plus(M,N))

to be read as “the value of adding zero to N is N, and the value of adding s(M)

and N is the value of s(plus(M,N))”.
In logic programming languages like Prolog, functions are defined by intro-

ducing an extra result argument which is instantiated to the value of the function.
The Prolog version becomes:

plus(zero,N,N).

plus(s(M),N,s(K)) :- plus(M,N,K).

Since pure Prolog is a subset of GCLA we can do the same thing in GCLA and
define addition:

plus(zero,N,N).

plus(s(M),N,s(K)) <= plus(M,N,K).

This definition is used by posing queries like

\- plus(zero,s(zero),K).

that is “what value should K have to make plus(zero,s(zero),K) hold according
to the definition”.

The naive way to define addition as a function in GCLA would then be to
write a definition that is so to speak a combination of the ML program and the
Prolog program:

plus(zero,N) <= N.

plus(s(M),N) <= s(plus(M,N)).

We could read this as “the value of plus(zero,N) is defined to be N, and the
value of plus(s(M),N) is defined to be s(plus(M,N))”. Unfortunately, this will
not give us a function that computes anything useful since we have not defined
what the value of s(plus(M,N)) should be. What we forgot was that in the
(strict) functional language ML the type definition and the computation rule

4

Functional Logic Programming in GCLA

together give a way to compute a value from s(plus(M,N)). The type definition
s of nat says that s is a constructor function and since the language is strict
the argument of s is evaluated before a data object is constructed. One way to
achieve the same thing in GCLA is to introduce an object constructing function

succ that evaluates its argument to some number Y and then constructs the
canonical object s(Y). We then get the definition:

succ(X) <= (X -> Y) -> s(Y).

plus(zero,N) <= N.

plus(s(M),N) <= succ(plus(M,N)).

The first clause could be read as “the value of succ(X) is defined to be s(Y) if the
value of X is Y”. The function succ plays much the same role as the constructor
function s in the functional program, it is used to build data objects. We will
sometimes call such functions that are used to build data objects object functions.
We are now in a position where we can perform addition, as can be seen in the
derivation below:

{Y = zero}

zero ` Y
axiom

plus(zero, zero) ` Y
D-left

` plus(zero, zero) → Y
a-right

{X = s(zero)}

s(Y) ` X
axiom

(plus(zero, zero) → Y)→ s(Y) ` X
a-left

succ(plus(zero, zero)) ` X
D-left

plus(s(zero), zero) ` X
D-left

One of the things that normally distinguishes a function definition in a func-
tional programming language from a relational function definition, like the Prolog
program above, is that the functional language allows arbitrary expressions as
arguments, that is, expressions like plus(plus(zero,zero),zero) can be eval-
uated. In Prolog on the other hand a goal like plus(plus(zero,zero),zero,K)

will fail. The functional GCLA definition we have given so far comes somewhere
in between; it allows arbitrary expressions in the second argument but not in the
first. An expression like plus(plus(zero,zero),zero) is simply undefined. In
a strict functional language like ML this problem is solved by the computation
rule, which says that all arguments to functions should be evaluated before the
function is called. We see that again we have to have as part of the definition
something that in a conventional functional programming language is part of the
external computation rule. What we do is to add an extra equation to the def-
inition of addition which is used to force evaluation of the first argument when
necessary:

plus(zero,N) <= N.

plus(s(M),N) <= succ(plus(M,N)).

plus(Exp,N)#{Exp \= zero, Exp \= s(_)} <= (Exp -> M) -> plus(M,N).

5

On GCLA, Gisela, and MedView

Now, the last equation matches arbitrary expressions except zero and s(_).
It could be read as “the value of plus(Exp,N) is defined to be plus(M,N) if
Exp evaluates to M”. The guard is needed to make the clauses defining addition
mutually exclusive.

At last we have a useful definition of addition. If we use the standard rules
we are unfortunately still able to derive some undesired results, as can be seen
below:

{X = plus(s(zero), zero)}

plus(s(zero), zero) ` X
axiom

false ` X
false-left

s(zero) ` X
D-left

plus(zero, s(zero)) ` X
D-left

The last derivation succeeds without binding X. The problem with the first deriva-
tion is that the axiom rule can be applied to an expression we really want to
evaluate by applying the rule D-left. In the second derivation the problem is the
opposite, the rule D-left can be applied to a canonical value that cannot be eval-
uated any further. To prevent situations like these the canonical values must be
distinguished as a special class of atoms. We achieve this by giving them circular
definitions:

zero <= zero.

s(X) <= s(X).

Now the canonical values are defined so they cannot be absurd, but on the other
hand the definition is empty in content so there is nothing to be gained from using
D-left. We also restrict our inference rules so that the axiom rule only is applicable
to such circularly defined atoms, and symmetrically restrict the rule D-left to be
applicable only to atoms not circularly defined. With these restrictions in the
inference rules and with the definition below plus(m, n) ` k holds iff m + n = k,
see [19]. We call atoms with circular definitions canonical objects. Note that in
the final definition below the first three clauses correspond to the type definition

in the ML program, while the last three really constitute the definition of the
addition function. We also use 0 instead of zero which we only used since ML

does not allow 0 as a constructor.

0 <= 0.

s(X) <= s(X).

succ(X) <= (X -> Y) -> s(Y).

plus(0,N) <= N.

plus(s(M),N) <= succ(plus(M,N)).

plus(Exp,N)#{Exp \= 0, Exp \= s(_)} <= (Exp -> M) -> plus(M,N).

6

Functional Logic Programming in GCLA

2.2 Discussion

From the above example one might wonder if it would not be easier to abandon
functional programming in GCLA and stick to relational programming in the
Prolog vein. Still, we hope to be able to show that it is possible to write rea-
sonably elegant functional logic programs and perhaps most of all that we get a
very natural integration of functional and logic programming in the same com-
putational framework. We will also in Section 7 show how the information of the
third clause of the definition of plus can be moved to the rule definition thus
making the definition shorter and more elegant.

3 A Calculus for Functional Logic Programming

In this section we describe a basic rule definition to functional logic program
definitions. We present the inference rules as a sequent calculus to enhance read-
ability. In appendix B the same rules are presented using GCLA code.

We call the rule definition consisting of the rules in Section 3.2 FL (for func-
tional logic). This rule definition shows implicitly the choices we have made as for
what we regard as a valid functional logic program. Whenever we write a query

a \- c.

without specifying the search strategy we assume that FL is used.

3.1 Design Goals

One can imagine more than one way to integrate functions and predicates in
GCLA, both concerning syntax and perhaps most of all concerning the expressive
power and generality of function and predicate definitions respectively.

We have chosen to work with the common GCLA condition constructors ‘,’,
‘;’, ‘pi’, ‘^’, and ‘->’, which all have more or less their usual meaning. However,
the inference rules are restricted to specialize them to functional logic programs.
We have also added a special condition constructor, ‘not’, for negation. In de-
limiting the class of functional logic programs we have tried to keep as much
expressive power as possible while still allowing a useful simple deterministic rule
definition FL.

3.1.1 Making it Useful

One of our goals has been to create a rule definition towards a well-defined class
of definitions in such a way that it can be part of a library and used without
modification when needed. Practically all the standard search strategies of the
GCLA system are far too general in the sense that they will give too many
derivations for most definitions and queries. FL, on the other hand, is not general

7

On GCLA, Gisela, and MedView

but does not give nearly the same amount of redundant answers. To make FL

useful we must then delimit the notion of a functional logic program definition
so that the library rule definition can be used directly without modification.

The most typical problem when function evaluation is involved is to decide
what is to be regarded as “data” in a derivation. If we wish to solve this in a way
that allows one rule definition for all functional logic programs, the information
of what atoms are to be treated as canonical values must be part of the definition.
This has led us to a solution where the canonical values are defined in circular
definitions, that is, they are defined to be themselves. We have then altered the
definitions of the rules axiom and D-left, so that they are mutually exclusive; the
former so that it can only be applied to atoms with circular definitions and the
latter so that it can only be applied to atoms not circularly defined. The same
solution is advocated in [28] in the context of interpreting the rule definition of
GCLA programs.

3.1.2 Keeping it Simple

Functional logic programming is actually inherent in GCLA, the only problem
is to describe it in some manner which makes it easy to understand and learn
to program. Indeed, most examples in Sections 2 and 4 can be run with the
standard rules at the cost of a number of redundant answers.

In order to keep the rule definition simple we have decided not to try to make
it handle general equation solving. How such a rule definition should be designed
and what additional restrictions on the definitions that would be needed to make
equation solving work generally remain open questions even though some results
are given in [50].

Instead, FL guarantees that if F (t1, . . . , tn) is ground, F is a deterministic
function definition, and F is defined in (t1, . . . , tn) then the query

F (t1, . . . , tn) ` C.

will give exactly one answer, the value of F (t1, . . . , tn). We feel that in most cases
it is much more important that a function has a deterministic behavior than that
it can be used backwards, since then it could have been defined as a relation in
the first place.

As it happens, functions can often be used backwards anyway, as mentioned
in [6]. For instance, the query

plus(X,s(0)) \- s(s(0)).

gives X = s(0) as the first answer but loops forever if we try to find more answers.

8

Functional Logic Programming in GCLA

3.1.3 Achieving Determinism

Generally, an important feature of GCLA is the possibility to reason from as-
sumptions, to ask queries like “if we assume a, b and q(X), does p(X) hold”, that
is,

[a,b,q(X)] \- p(X).

This gives very powerful reasoning capabilities but if we want to set up a general,
useful and simple calculus to handle functional logic program definitions we get
into trouble. To begin with, what should we try to prove first in a query like the
one above, that p(X) holds, or that

q(X) \- p(X).

holds, or perhaps that

[(d;e),b,q(X)] \- p(X).

holds, where d;e is the definiens of a? There are simply too many choices in-
volved here if we want to describe a general way to write functional logic program
definitions that can use a simple library rule definition.

In FL we have decided to get rid of this entire problem in the easiest way
possible—we do not allow any other kind of hypothetical reasoning than func-
tional evaluation and negation. This makes the design of the rule definition much
more simple and also allows us to make FL deterministic in the sense that at
most one inference rule can be applied to each object level sequent. Of course,
we lose a lot of expressive power, but what we have left is not so bad either. Also,
if parts of a program need to reason with a number of assumptions we can always
use another rule definition for those parts and only use FL for the functional logic
part of the program.

Determinism is achieved more or less in the same manner as in the calculus
DOLD, used to interpret the rule definition of GCLA programs [27]. We make
the following restrictions:

• at most one condition is allowed in the antecedent,

• rules that operate on the consequent can only be applied if the antecedent
is empty,

• the axiom rule, D-ax, can only be applied to atoms with circular definitions,

• if the condition in the antecedent is (C1, C2) then C1 and C2 are tried from
left to right by backtracking,

• if the condition in the consequent is (C1; C2) then C1 and C2 are tried from
left to right by backtracking.

9

On GCLA, Gisela, and MedView

Note that since FL is deterministic it does not matter in which order the inference
rules are tried. The search strategy could therefore be “try all rules in any order”.
Other search strategies allowing for different kinds of extensions are discussed in
Sections 5, 6 and 7.

3.2 Rules of Inference

The inference rules of FL can be naturally divided into two groups, rules relating
atoms to a definition and rules for constructed conditions.

3.2.1 Rules Relating Atoms to a Definition

` Cσ
` c σ

D-right (b⇐ C) ∈ D, σ = mgu(b, c), Cσ 6= cσ

D(aσ) ` Cσ

a ` C σ
D-left σ is an a-sufficient substitution, aσ 6= D(aσ)

a ` c στ
D-ax σ is an a-sufficient substitution, aσ = D(aσ), τ = mgu(aσ, cσ)

The restrictions we put on these definitional rules are such that they are mutually
exclusive, a very important feature to minimize the number of possible answers.
For a more in-depth description and motivation of these rules, in particular the
rule D-ax, see [28, 29].

3.2.2 Rules for Constructed Conditions

The rules for constructed conditions are essentially the standard GCLA and PID

rules [19, 27] restricted to allow at most one element in the antecedent:

` true
truth

false ` false
falsity

A ` B
` A→ B

a-right ` A B ` C
A→ B ` C

a-left

` C1 ` C2

` (C1, C2)
v-right

Ci ` C

(C1, C2) ` C
v-left i ∈ {1, 2}

` Ci

` (C1; C2)
o-right i ∈ {1, 2}

C1 ` C C2 ` C

(C1; C2) ` C
o-left

C ` false

` not(C)
not-right ` A

not(A) ` false
not-left

A ` C
(pi X\A) ` C

pi-left ` C
` XˆC

sigma-right

10

Functional Logic Programming in GCLA

3.3 Queries

It should be noted that the restriction to at most one element in the antecedent
does not rule out the possibility to ask more complex queries than simply asking
for the value of a function or whether a predicate holds or not. As can be seen
from the inference-rules, both the left and right-hand side of sequents may be ar-
bitrarily complex as long as we remember that whenever there is something in the
left-hand side the right-hand side must be a variable or a (partially instantiated)
canonical object.

Assuming that f, g and h are functions, p and q predicates and a, b and c

canonical objects some possible examples are:

f(a) \- C.

“What is the value of f in a.”

\- p(X).

“Does p hold for some X.”

p(b) -> g(a,b) \- C

“What is the value of g in (a,b) provided that p(b) holds.”

p(X) -> (f(X),h(X)) \- b.

“Is there a value of X such that f or h has the value b if p(X) holds.”

(p(X);q(X)) -> (f(X);h(X)) \- a.

“Find a value of X such that p(X) or q(X) holds and both f and h has the value
a in X.”

More precisely there are two forms of possible queries, functional queries and
predicate or logic queries. The functional query has the form

FunExp ` C.

where FunExp is a functional expression as described in Section 6.2 and C is
a variable or a (partially instantiated) canonical object. The predicate (logic)
query has the form

` PredExp.

where PredExp is a predicate expression as described in Section 6.2.

11

On GCLA, Gisela, and MedView

3.4 Discussion

FL gives the interpretation of definitions we have in mind when we in the next
section describe how to write functional logic programs. At the same time it
determines the class of definitions and queries that can be regarded as functional
logic programs. FL can be classified as a rule definition constructed according
to the method Splitting the Condition Universe described in [16], where we have
split the universe of all atoms into atoms with circular definitions and atoms with
non-circular definitions. The code given in appendix B is a rule definition to a
well-defined class of definitions and queries and does therefore confirm the claim
that the this method can be useful for certain classes of programs.

In practical programming it is convenient to augment the rule definition given
here with a number of additional rules, for example to do arithmetic efficiently.
These additional rules do no affect the basic interpretation given here nor the
methodology described in Section 4.

The rule falsity deserves some extra comments; it is restricted so that it can
only be used in the context of negation, that is, to prove sequents where the
consequent is false. One motivation for this is that we do not want this rule to
interfere with functional evaluation; if a function f is undefined for some argument
x we do not want to be able to construct the proof

false ` Y
false-left

f(x) ` Y
D-left

but instead want the derivation to fail. On the other hand we do not want to
rule out the possibility of negation so we use the presented rule.

FL is very similar to the calculus DOLD [27] used to interpret the meta-level
of a GCLA program (that is, DOLD is used to interpret the GCLA code of
the rules described here). This should not be surprising since the meta-level of
a GCLA program is nothing but a non-deterministic functional logic program
run backwards. One important similarity with the calculus DOLD is that our
rule definition is deterministic in the sense that there is at most one inference
rule that can be applied to each given object level sequent. The most important
difference, apart from that we use our rule definition to another kind of programs,
is that we use the definition to guide the applicability of the rules D-left, D-ax

and D-right, an approach we find very natural in the context of functional logic
programming.

3.4.1 A Problem with D-ax

We have chosen to formulate the rule D-ax in the same way as in [28]. However,
there is one possible case not covered in [28] which must be dealt with to use
this rule in programming, namely what we should do if both the condition in the
antecedent and the consequent are variables.

12

Functional Logic Programming in GCLA

One solution is to make the rule only applicable to atoms but this would rule
out too many interesting programs and queries. Another solution would be to
unify the two variables and instantiate the resulting variable to some atom with
a circular definition, but this would really require that we type our programs.
The solution we take in the GCLA-formulation given in appendix B uses the
fact that a variable is a place-holder for some as yet unknown atom. When both
the antecedent and the consequent are variables D-ax succeeds unifying the two
variables, but with the constraint that when the resulting variable is instantiated
it must be instantiated to an atom with a circular definition.

3.4.2 Alternative Approaches

Controlling when the inference rules D-left and axiom may be applied is definitely
the key to successful functional logic programming in GCLA. Consequently, sev-
eral solutions have been proposed for this problem through the years.

In the first formulation of GCLA [8], there was no rule definition but pro-
grams consisted only of the definition which could be annotated with control
information. To prevent application of the rules D-right and D-left to an atom it
was possible to declare the atom “total”. It was also possible to annotate directly
in a definition that only the axiom rule could be applied to certain atoms.

When the rule definition was introduced in GCLA [27], new methods were
needed. Basically, it is possible to distinguish two methods to handle control in
functional logic programs.

In [6], axiom and D-left are made mutually exclusive by introducing a special
proviso in the rule definition which defines what is to be regarded as data in a
program. In this approach there is no information in the definition of what is to
be regarded as data and we have to write a new rule definition for each program.
An interactive system that among other things can be used to semi-automatically
create this kind of rule definitions for functional logic programs is described in
[42].

Another approach is taken in [16, 27], where the rule sequence needed to
evaluate a function or prove a predicate is described by strategies in such detail
that there is no need for a general way to choose between different inference
rules. Of course, with this approach we have to write new rule definitions for
each program. Circular definitions of canonical objects are included in [27] but
these are never used in any way. In Section 6 we will show that this kind of highly
specialized rule definition may be automatically generated providing an efficient
alternative to a general rule definition like FL.

Finally, [28] presents more or less exactly the same definition of addition as
we did in Section 2.1 as an example of the properties of the rule D-ax.

13

On GCLA, Gisela, and MedView

4 Functional Logic Program Definitions

Now that we have given a calculus for functional logic program definitions, it is
in order that we also describe the structure of the definitions it can be used to
interpret and how to write programs. Note that all readings we give of definitions,
conditions and queries are with respect to the given rule definition, FL, and that
there is nothing intrinsic in the definitions themselves that forces this particular
interpretation. For example, if we allow contraction, and several elements in the
antecedent, function definitions as we describe them cease to make sense since it
is then possible to prove things like

plus(s(0),s(0)) \- s(s(s(0))).

using the definition of addition given in Section 2.1.
As mentioned in the previous section, conditions are built up using the condi-

tion constructors ‘,’, ‘;’, ‘->’, ‘true’, ‘false’, ‘not’, ‘pi’ and ‘^’. Both functions
and predicates are defined using the same condition constructors and there is no
easily recognizable syntactic difference between functions and predicates. The dif-
ference in interpretation of functions and predicates instead comes from whether
they are intended to be used to the left or to the right of the turnstile, ‘\-’, in
queries.

When we read and write functional logic program definitions the condition
constructors have different interpretations depending on whether they occur to
the left or to the right, for instance ‘;’ is read as or to the right and as and to
the left. Thus, when we write a function or a predicate we must always keep in
mind whether the condition we are currently writing will be used to the left or
to the right to understand its meaning. The basic principle is that predicates are
used to the right (negation excepted), while functions are used to the left.

In order to show that it is not always obvious to see what constitutes function
and predicate definitions respectively, we look at a simple example:

q(X) <= p(X) -> r(X).

If we read this as defining a predicate, we get “q(X) holds if the value of p(X)
is r(X)”. On the other hand, read as a (conditional) function it becomes “the
value of q(X) is r(X) provided that p(X) holds”. Of course, if we look at the
definition of p, we might be able to determine if q is intended to be a function
or a predicate, since if p is a function then q is a predicate and vice versa. In
the following sections we look more closely at definitions of canonical values,
predicates and functions respectively.

4.1 Defining Canonical Objects and Canonical Values

Each atom that should be regarded as a canonical object in a definition, in the
sense that it could possibly be the result of some function call, must be given a

14

Functional Logic Programming in GCLA

circular definition. From an operational point of view this is essential to prevent
further application of the rule D-left and allow application of the rule D-axiom.
These circular definitions also set canonical objects apart as belonging to a special
class of terms since they cannot be proven true or false in FL.

Compared to functional languages, these circular or total objects correspond
to what are usually called constructors, but with one important difference, con-
structor functions may be strict and take an active part in the computation,
whereas our canonical objects are passive and simply define objects.

Generally, the definition of the canonical object S of arity n is

S(X1, . . . , Xn)⇐ S(X1, . . . , Xn).

where each Xi is a variable.
Note that we make a distinction between a canonical object and a canonical

value. Any atom with a circular definition is a canonical object, while a canonical
value is a canonical object where each subpart is a canonical value (a canonical
object of arity zero is also a canonical value).

We have already in Section 2 seen definitions of the canonical objects 0 and
s, some more examples are given below:

[] <= [].

[X|Xs] <= [X|Xs].

’True’ <= ’True’.

’False’ <= ’False’.

empty_tree <= empty_tree.

node(Element,Left,Right) <= node(Element,Left,Right).

Note that a definition like

[_|_] <= [_|_].

is not circular since the variables in definiens and definiendum are different.

4.2 Defining Predicates

Since pure Prolog is a subset of GCLA, defining predicates is very much the
same thing in this context as in Prolog even though the theoretical foundation is
different. Given a pure Prolog program, the corresponding GCLA definition is
obtained by substituting ‘<=’ for ‘:-’ in clauses. SLD-resolution, [33], corresponds
to that we only use the rules D-right, truth, v-right, and o-right to construct
proofs of queries. Of course, in such queries the antecedent is always empty. The
relationship between SLD-resolution and the more proof-theoretical approach
taken in GCLA is thoroughly investigated in [20].

15

On GCLA, Gisela, and MedView

However, the predicate definitions allowed by FL also provide two extensions
of pure Prolog in predicates that go beyond the power of SLD-resolution: use of
functions in conditions defining predicates and constructive negation.

4.2.1 Calling Functions In Predicates

As an example of how functions can be used in the definitions of predicates we
define a predicate add such that ` add(m, n, k) whenever m + n = k. Using the
function plus already defined in Section 2.1 the definition becomes one single
clause:

add(N,M,K) <= plus(N,M) -> K.

we read this as “add(N,M,K) is defined to be equal to the value of plus(N,M)”.
We show an example derivation below. Note that the predicate add is used
to the right, that is, “does add(0,s(0),K) hold”, while plus is evaluated to
the left, that is, “what is the value of plus(0,s(0))” or “what follows from
plus(0,s(0))”.

{K = s(0)}

s(0) ` K
D-ax

plus(0, s(0)) ` K
D-left

` plus(0, s(0))→ K
a-right

` add(0, s(0), K)
D-right

4.2.2 Negation

The usual way to achieve negation in logic programming is negation as failure
[33]. In GCLA however, we have the possibility to derive falsity from a condition
which gives us a natural notion of negation. This kind of negation and its relation
to negation as failure is described in [21], here we will simply give a very informal
description and discuss its usefulness and limitations in practical programming.

We say that a condition C is true with respect to the definition at hand if
` C, and false if C ` false, that is if C can be used to derive falsity. It is now
possible to achieve negation by posing the query

` C → false.

or equivalently

` not(C).

The constructor not, and the inference rules not-right and not-left are really
superfluous; we have included them as syntactic sugar and to reserve the arrow
constructor for usage in functional expressions only.

In order to understand how and why we are able to derive falsity, there are
two consequences of the interpretation of a GCLA definition as a PID that must
be kept in mind, namely:

16

Functional Logic Programming in GCLA

1. if we take a definition like

nat(0).

nat(s(X)) <= nat(X).

it should properly be read as “0 is a natural number, s(X) is natural number
if X is and nothing else is a natural number”,

2. as a consequence of the above property, we have that for any atom a that
is not defined in a definition D, D(a) = false.

Remembering this we can derive that s(?) is not a natural number as follows:

false ` false
falsity

nat(?) ` false
D-left

nat(s(?)) ` false
D-left

` not(nat(s(?)))
not-right

Unfortunately it is not possible to use this kind of constructive negation for
all the predicates we are able to define. Apart from the fact that the search
space sometimes becomes impracticably large, there are two restrictions we must
adhere to if we want to be able to negate a defined atom correctly. First of
all, since we use the rule D-left, all clauses a ⇐ C defining a must fulfill the
no-extra-variable condition, that is, all variables occurring in C must also occur
in a. If this condition does not hold the generated substitutions in the definiens
operation will not be a-sufficient [21, 27, 29] and we may be able to derive things
which do not make sense logically. Secondly, it is not possible to use functions
in conjunction with negation, that is, no clause a⇐ C defining a may contain a
function call of the form C1 → C2.

To see why functions in predicates and negation cannot be used together
consider the definition of add and the failed derivation:

this goal fails,

` plus(0, 0)
as does this
s(0) ` false

plus(0, 0)→ s(0) ` false
a-left

add(0, 0, s(0)) ` false
D-left

` not(add(0, 0, s(0)))
not-right

We see that we end up trying to prove that plus(0,0) holds which of course is
nonsense. It is easy to see that using FL the query ` F fails for every function
F .

As described in [7] we are also able to instantiate variables, both positively
and negatively in negative queries. These possibilities are best illustrated with a
small example:

17

On GCLA, Gisela, and MedView

p(1).

p(2) <= q(2).

:- complete(append/3).

append([],Xs,Xs).

append([X|Xs],Ys,[X|Zs]) <= append(Xs,Ys,Zs).

In this definition we have declared append to be complete [7], which means that
the definition of append is completed to make it possible to find bindings of
variables such that append(X,Y,Z) is not defined. We may now ask for some
value of X such that p(X) does not hold:

\- not(p(X)).

X = 2 ?;

Another possible query is

\- not(append([1,2],L,[1,2,3,4])).

append([],L,[3,4]) \= append([],_A,_A) ? ;

which tells us that L must not be the list [3,4].

4.3 Defining functions

A function definition, defining the function F , consists of a number of equational
clauses

F (t1, . . . , tn)⇐ C1.
... n ≥ 0, m > 0
F (t1, . . . , tn)⇐ Cm.

where each right-hand side condition, Ci, is on one of the following forms

• universally quantified, (pi X\C),

• atomic, that is Ci is a variable, a canonical value or a function call,

• conditional, (C1 → C2),

• choice, (C1, C2),

• split, (C1; C2)

18

Functional Logic Programming in GCLA

each of which are described below.
If the heads of two or more clauses defining a function are overlapping all

the corresponding bodies must evaluate to the same value, since the definiens
operation used in D-left collects all clauses defining an atom. For example consider
the function definition:

f(0) <= 0.

f(N) <= s(0).

Even though f(0) is defined to be 0 the derivation of the query

f(0) \- C.

will fail, as seen below, since f(0) is also defined to be s(0). The definition of f
is ambiguous.

{C = 0}

0 ` C
D-ax

fails since C = 0
s(0) ` C

0; s(0) ` C
o-left

f(0) ` C
D-left

We will mainly describe how to write function definitions with non-overlapping
heads. The methodology involved if we use overlapping heads is only slightly
touched upon in Section 4.3.5.

4.3.1 Universally Quantified Condition

In predicates, variables not occurring in the head of a clause are thought of
as being existentially quantified. In function definitions, however, they should
normally be seen as being universally quantified. Universal quantification is ex-
pressed with the construct pi X\C. As an example the function succ of Section
2.1 should be written as:

succ(X) <= pi Y \ ((X -> Y) -> s(Y)).

Since evaluation of universal quantification on the left-hand side of sequents is
carried out by simply removing the quantifier, we will often omit it in our function
definitions to avoid clutter. All variables in an equation not occurring in the head
should then be understood as if they were universally quantified.

4.3.2 Atomic Condition

With an atomic condition we simply define the value of a function to be the value
of the defining atomic condition. Using the definition of addition given in Section
2.1 a function definition consisting of a single atomic equation is:

double(X) <= plus(X,X).

19

On GCLA, Gisela, and MedView

Note that atomic conditions with circular definitions are the only possible end-
points in functional evaluation since the derivation of a functional query, F ` C,
always starts (ends) with an application of the inference rule D-axiom.

A useful special kind of function definition, defined with a single atomic equa-
tion, is constant functions or defined constants:

max <= s(s(0)).

double_max <= plus(max,max).

add_max(X) <= plus(X,max).

A drawback of constants like double max is that they, contrary to in functional
languages, will be evaluated every time their value is needed in a derivation.

4.3.3 Conditional Condition

A conditional clause:

F ⇐ C1 → C2.

states that the value of F is C2 provided that the condition C1 holds, otherwise
the value of F is undefined. The schematic derivation below shows how this kind
of equation may be used to incorporate predicates into functions; C1 is proved to
the right of the turnstile, that is, in exactly the same manner as if we posed the
query ` C1, “does C1 hold”. Of course, C1 and C2 may be arbitrarily complex
conditions in which case the meaning of different parts depend on whether they
end up on the left or right hand side of sequents.

...
` C1

...
C2 ` C

C1 → C2 ` C
a-left

F ` C
D-left

We have already seen some examples of conditional equations, which have all
been of the form

F ⇐ (C1 → C2)→ C3.

(the definition of succ for instance). A clause like this could be read as “the
value of F is C3 provided that C1 evaluates to C2”. Note that the two arrows
have different meanings since the first will be proved to the right and the second
used to the left of the turnstile ‘`’ .

As another example we write a function odd double. This function returns
the double value of its argument and is defined on odd numbers only. When we
define it we use the definition of double from Section 4.3.2. We define odd as a
predicate using the auxiliary predicate even:

20

Functional Logic Programming in GCLA

odd_double(X) <= odd(X) -> double(X).

odd(s(X)) <= even(X).

even(0).

even(s(X)) <= odd(X).

Since s(s(0)) is an even number the query

odd_double(s(s(0))) \- C.

fails, while

odd_double(s(0)) \- C.

binds C to s(s(0)).
If we try to compute the value of odd double(plus(s(0),0))), the derivation

will fail since odd is only defined for canonical values. To avoid this we can write
a slightly more complicated conditional equation in the definition of odd double:

odd_double(X) <=

(X -> X1),

odd(X1)

-> double(X1).

The condition (X -> X1) corresponds closely to a let expression in a functional
language, it gives a name to an expression and ensures (in the strict case, see
below) that it will only be evaluated once.

4.3.4 Choice Condition

Remembering the rule v-left, we see that to derive C from (C1, C2) it is enough
to derive C from either C1 or C2. Accordingly, an equation like

F ⇐ C1, C2.

means that the value of F is that of C1 or C2. The alternatives are tried from left
to right and if backtracking occurs C2 will be tried even if C can be derived from
C1. This gives us a possibility to write non-deterministic functions. For instance,
we can define a function nats to enumerate all natural numbers on backtracking
with the equations:

0 <= 0.

s(X) <= s(X).

nats <= nats_from(0).

nats_from(X) <= X,nats_from(s(X)).

21

On GCLA, Gisela, and MedView

Of course, if C1 and C2 are mutually exclusive the choice condition will be deter-
ministic.

If we combine a conditional condition with a choice condition we get a kind of
multiple choice mechanism, something like a case expression in a functional lan-
guage. The typical structure of a functional equation containing such a condition
is:

F ⇐ (C → V al)→ ((P1 → E1), . . . , (Pn → En)).

The meaning of this is that the value of F is Ei if C evaluates to V al and Pi

holds. Note that Pi will be proved on the right-hand side of ‘`’, and that if Pi

holds for more than one i this kind of condition will also be non-deterministic.
As an example we write the boolean function and. Since the alternatives in the
choice condition are mutually exclusive this function is deterministic.

’True’ <= ’True’.

’False’ <= ’False’.

X=X.

and(X,Y) <=

(X -> Z) ->

((Z = ’True’ -> Y),

(not(Z = ’True’) -> ’False’)).

We also give a derivation of the query

and(’False’,’True’) \- C.

since it shows most of the rules involved in functional evaluation plus negation in
action.

{Z = False}

False ` Z
D-ax

` False→ Z
a-right

false ` false
falsity

False = True ` false
D-left

` not(True = False)
not-right

{C = False}

False ` C
D-ax

not(True = False)→ False ` C
a-left

(Z = True→ True), (not(Z = True)→ False) ` C
v-left

(False→ Z)→ ((Z = True→ True), (not(Z = True)→ False)) ` C
a-left

and(False, True) ` C
D-left

4.3.5 Split Condition

The main subject of this paper is to describe how GCLA allows what we might
call traditional functional logic programming. When we include the condition
constructor ’;’ to the left and also allow function definitions with overlapping

22

Functional Logic Programming in GCLA

heads it is possible to use the power of the definiens operation to write another
kind of function definition. Since this is not really the subject of this paper we
just give a couple of examples as an aside, more material may be found in [14, 15].

Recall from the rule o-left, that to show that C follows from (A1; A2) we
must show that C follows from both A1 and A2. An alternative definition of
odd double using a split condition is:

odd_double(X) <= (odd(X) -> Y);double(X).

Using the power of the definiens operation we can write the equivalent definition:

odd_double(X) <= odd(X) -> Y.

odd_double(X) <= double(X).

Since the two heads of this definition are unifiable the definiens of odd double(X)

consists of both clauses separated (in GCLA) by the constructor ’;’.
As a last example consider:

odd_double(X) <= odd_double(X,_).

odd_double(X,Xval) <= (X -> Xval) -> Y.

odd_double(_,Xval) <= odd(Xval) -> Y.

odd_double(_,Xval) <= double(Xval).

Here we use an auxiliary function odd double/2 which might need some expla-
nation. The first clause evaluates X to a canonical value Xval, and since the three
heads are unified by the definiens operation this value is communicated to the
second and third clauses, thus avoiding repeated evaluations. The second clause
checks the side condition that the argument is an odd number, and finally the
third computes the result.

4.4 Laziness and Strictness

We will now proceed to describe how by writing different kinds of function defi-
nitions we are able to define both lazy and strict functions.

It should be noted that our notions of strictness and laziness differ both from
their usual meaning in the functional programming community and from their
meanings in earlier work on functional GCLA programming [5, 6, 27].

In functional programming terminology a function is said to be strict (or
eager) if its arguments are evaluated before the function is called. With the
logical interface FL however, arguments to functions are never evaluated unless
the function definition contains some clause that explicitly forces evaluation. A
property of the strict function definitions we present, shared with strict functional
languages, is that whenever an expression is evaluated it will be reduced to a
canonical value with no remaining inner expressions. That a functional language

23

On GCLA, Gisela, and MedView

is lazy on the other hand means that arguments to functions are evaluated only if
needed and then only once. Also evaluation stops when the value of an expression
is a data object (canonical object) even if the parts of the object are not evaluated.
While the lazy function definitions we present share the property that evaluation
stops whenever a canonical object is reached, the rule definition we use cannot
avoid repeated evaluation of expressions.

In earlier work on functional programming in GCLA it is not the definition
but the rule definition that determines if lazy or eager evaluation is used. Lazy
evaluation then means that an expression is evaluated as little a possible before
an expression is returned and backtracking is used as the engine to evaluate
expressions further.

Given the definition of addition in Section 2.1, and with lazy evaluation, the
query

plus(s(0),0)\- C.

would then produce the answers:

C = plus(s(0),0);

C = succ(plus(0,0));

C = s(plus(0,0));

C = s(0);

no.

The eager evaluation strategy gives the same answers in the opposite order.
Although this might be interesting we do not feel that it is very useful for a

deterministic function like plus since all the answers represent exactly the same
value.

The definition of addition in Section 2.1 is an example of a strict function
definition. Using the calculus FL the query

plus(s(0),0) \- C.

will give the single answer C = s(0). It is actually a property of FL together
with the function definitions we present that, in both the lazy and strict case,
we will get only one answer unless the function itself is non-deterministic. In
short, given a definition of a deterministic function F , there is only one possible
derivation of F ` C.

4.4.1 Defining Strict Functions

By a strict function definition we mean a definition which ensures that the value
returned from the function is a fully evaluated canonical value, that is, a canonical
object with no inner expressions remaining to be evaluated. We must therefore
find a systematic way to write function definitions that guarantees that only fully
evaluated expressions are returned from functions.

24

Functional Logic Programming in GCLA

The solution to this problem is to be found in the method we use to build
data objects in definitions. Recall the ML type definition

datatype nat = zero | s of nat

of Section 2.1, and that we discussed that it gives information on what objects
are constructed from and (together with the computation rule) on how objects
are constructed. We then made the same information explicit in our definition
by putting the corresponding information in three clauses, two defining of what

natural numbers are constructed and one defining how a natural number is built
from an expression representing a natural number. These clauses provide us with
the necessary type definition needed to work with successor arithmetic in strict
function definitions.

0 <= 0.

s(X) <= s(X).

succ(X) <= (X -> Y) -> s(Y).

Now, the idea is that whenever we need to build a natural number in a function
definition, we always use succ to ensure that anything built up using s is truly a
canonical value (although not necessarily a natural number).

A general methodology is given by generalization: to each canonical object S
defined by a clause:

S(X1, . . . , Xn)⇐ S(X1, . . . , Xn).

we create an object function F to be used whenever we want to build an object
of type S in a definition. F has the definition:

F (X1, . . . , Xn)⇐ ((X1 → Y1), . . . , (Xn → Yn))→ S(Y1, . . . , Yn).

In function definitions S is used when we define functions by pattern-matching
while F is used to build data objects. We call the definition of the canonical
objects of a data type together with their object functions an implicit type defi-

nition.
Lists is one of the most common data types. In GCLA, Prolog syntax is used

to represent lists. If we call the object function associated with lists cons, the
implicit type definition needed to use lists in strict function definitions is:

[] <= [].

[X|Xs] <= [X|Xs].

cons(X,Xs) <= (X -> Y),(Xs -> Ys) -> [Y|Ys].

The elements of lists must also be defined as canonical objects somewhere, but it
does not matter what they are.

We can now write a strict functional definition of append:

25

On GCLA, Gisela, and MedView

append([],Ys) <= Ys.

append([X|Xs],Ys) <= cons(X,append(Xs,Ys)).

append(E,Ys)#{E \= [], E \= [_|_]} <= (E -> Xs) -> append(Xs,Ys).

This append function can of course be used with any kind of list elements. If we
use append together with our definition of addition we can ask queries like

append(append(cons(plus(s(0),0),[]),[]),[s(s(0))]) \- C.

which gives C = [s(0),s(s(0))] as the only answer.
As another example we define the function take which returns the first n

elements of a list. If there are fewer than n elements in the list the value of
take is undefined. In the second clause below we take the argument L apart by
evaluating it to [X|Xs], note how we use this form to inspect the head and tail
of a list and that we use cons when we put elements together to form a list.

take(0,_) <= [].

take(s(N),L) <=

(L -> [X|Xs]) -> cons(X,take(N,Xs)).

take(E,L)#{E \= 0, E \= s(_)} <= (E -> N) -> take(N,Xs).

4.4.2 Defining Lazy Functions

By a lazy function definition, we mean a definition where arguments to functions
are only evaluated if necessary and where evaluation stops whenever we reach a
canonical object, regardless of whether all its subparts are evaluated or not. Lazy
function definitions make it possible to compute with infinite data structures like
streams of natural numbers in a natural way.

In strict function definitions, object functions were used to ensure that all
parts of canonical objects were fully evaluated. It is obvious that if the object
functions do not force evaluation of subparts of canonical objects we will get lazy
evaluation in the above sense.

If we simply replace the definition of cons by the clause:

cons(X,Xs) <= [X|Xs].

neither X nor Xs will be evaluated and the unique answer to the query

append([0],[0]) \- C.

will be C = [0|append([],[0])].
Of course, if the object function serves no other purpose than to replace one

structure by another one, identical up to the name of the principal functor, it can
just as well be omitted which is what we will do in our lazy function definitions. To
illustrate the idea we show the lazy versions of plus and append. The definitions
are identical to the strict ones except for that we do not use cons and succ when
we build data objects.

26

Functional Logic Programming in GCLA

0 <= 0.

s(X) <= s(X).

plus(0,N) <= N.

plus(s(M),N) <= s(plus(M,N)).

plus(E,N)#{E \= 0,E \= s(_)} <= (E -> M) -> plus(M,N).

[] <= [].

[X|Xs] <= [X|Xs].

append([],Ys) <= Ys.

append([X|Xs],Ys) <= [X|append(Xs,Ys)].

append(E,Ys)#{E \= [], E \= [_|_]} <= (E -> Xs) -> append(Xs,Ys).

The only problem with these definitions is that the results we get are generally
not fully evaluated values but we need something more to force evaluation at
times. Before we address that problem however, we will give one example of how
infinite objects are handled.

Assume that we wish to compute the first element of the list consisting of
the five first elements of the infinite list [a,b,a,b,a,b,a,...]. How should this
be done as a functional program in GCLA? We start by defining the canonical
objects of our application which are the constants a and b, the natural numbers
and lists. This is done as usual with circular definitions:

a <= a.

b <= b.

0 <= 0.

s(X) <= s(X).

[] <= [].

[X|Xs] <= [X|Xs].

The next thing to do is to define the infinite list. We call this list ab, it is defined
as the list starting with an a followed by the list ba, which in turn is defined as
the list starting with a b followed by the list ab.

ab <= [a|ba].

ba <= [b|ab].

To conclude the program, we need the function hd, which returns the first element
of a list and the function take, which returns the first n elements. Note that it
is important that we use a lazy version of take here and not the one in Section
4.4.1.

27

On GCLA, Gisela, and MedView

hd([X|_]) <= X.

hd(E)#{E \= [], E \= [_|_]} <= (E -> Xs) -> hd(Xs).

take(0,_) <= [].

take(s(N),L) <= (L -> [X|Xs]) -> [X|take(N,Xs)].

take(E,L)#{E \= 0, E \= s(_)} <= (E -> N) -> take(N,L).

Now we can pose the query

hd(take(s(s(s(s(s(0))))),ab)) \-C.

which solves our problem binding C to a. The unique derivation, in FL, producing
this value is shown below:

{Y = a, Ys = ba}

[a|ba] ` [Y|Ys]
D-ax

ab ` [Y|Ys]
D-left

` ab→ [Y|Ys]
a-right

{Xs = [a|take(4, ba)]}

[Y|take(4, Ys)] ` Xs
D-ax

(ab→ [Y|Ys])→ [Y|take(4, Ys)] ` Xs
a-left

take(5, ab) ` Xs
D-left

` take(5, ab)→ Xs
a-right

{C = a}

a ` C
D-ax

hd(Xs) ` C
D-left

(take(5, ab)→ Xs)→ hd(Xs) ` C
a-left

hd(take(5, ab)) ` C
D-left

Forcing Evaluation. The technique we use to force evaluation of expressions
is similar to the approach taken in lazy functional languages where a printing
mechanism is used as the engine to evaluate expressions [44]. One important
difference should be noted, if the result of a computation is infinite we will not
get any answer at all while in a functional language the result is printed while
it is computed which may give some information. We have chosen a method
which does not present the answer until it is fully computed since backtracking
generally makes it impossible to do otherwise—we cannot know that it will not
change before the computation is completed. In each particular case it may of
course be possible to write a definition that presents results as they are computed.

To force evaluation we write an auxiliary function show whose only purpose
is to make sure that the answer presented to the user is fully evaluated. To get
a fully evaluated answer to the query

F ` C.

we instead pose the query

show(F) ` C.

thus forcing evaluation of F .
The show function for a definition involving natural numbers and lists is

28

Functional Logic Programming in GCLA

show(0) <= 0.

show(s(X)) <= (show(X) -> Y) -> s(Y).

show([]) <= [].

show([X|Xs]) <=

(show(X) -> Y),

(show(Xs) -> Ys)

-> ([Y|Ys]).

show(Exp)#{Exp\=0,Exp\=s(_),Exp\=[],Exp\=[_|_]}<=

(Exp -> Val) -> show(Val).

In general, for a definition defining the canonical objects S1, . . . , Sn the definition
of the show function consists of:

• for each canonical object S of arity 0 a clause

show(S)⇐ S.

• for each canonical object S(X1, . . . , Xn) of arity n > 0, a clause

show(S(X1, . . . , Xn))⇐ ((show(X1)→ Y1),
. . . ,
(show(Xn)→ Yn))
→ S(Y1, . . . , Yn).

• a clause to evaluate anything that is not a canonical object. This clause
becomes

show(E)#{E 6= S1, . . . , E 6= Sn} ⇐ (E → V)→ show(V).

Writing the show function could be done automatically given a definition. It is
also possible, as discussed in Section 7, to lift it to become part of the rule defini-
tion instead. To move the information of the show function to the rule definition
is well-motivated if we regard it as containing purely procedural information. The
reason why we keep it as part of the definition is that we wish to describe how one
rule definition may be used to any functional logic program definition adhering
to certain conventions.

Pattern matching problems. We have already seen that it is more compli-
cated to define functions by pattern matching in GCLA than in a functional
language. The basic reason for this is that in GCLA we have much less hid-
den information used to explain a function definition. A positive effect of this
is that the function definition in GCLA mirrors in greater detail the computa-
tional content of a function, that is, what computations are necessary to produce
a value.

29

On GCLA, Gisela, and MedView

When we write lazy function definitions, of the kind we have described here,
pattern matching becomes even more restricted. Not only must the clauses defin-
ing a function be unique and arguments evaluated “manually” when necessary,
but each individual pattern is severely restricted. In a lazy function definition
the only possible patterns, except for variables, are canonical objects where each
argument is a variable, that is, if S(t1, . . . , tn) is a pattern used in the head of a
function definition, then S(t1, . . . , tn) must have a circular definition and each ti
must be a variable. In [31] these are called shallow patterns. Finally, patterns
must be linear, that is no variable may occur more than once in the head of a
clause.

The reason for these restrictions is obvious, unless we use a show function
nothing is evaluated inside a canonical object. Of course, it is possible to write
more general patterns like

rev(rev(L)) <= L.

f([[],[a,b]]) <= a.

but they will probably not work as we expect in a program.
One simple example will suffice to demonstrate the problem, a definition of

the function last. A definition of last inspired by functional programming is:

last([X]) <= X.

last([X|Xs])#{Xs \= []} <= last(Xs).

last(Exp)#{Exp \= [], Exp \= [_|_]}<= (Exp -> List) -> last(List).

The problem with this definition is that we cannot tell whether a list contains
one or more than one element. The query

last([a|append([],[])]) \- C.

will fail since the second clause of last will be matched even though the expression
append([],[]) evaluates to []. Instead we must write something like:

last([X|Xs]) <= (Xs -> Ys) -> ((null(Ys) -> X),

(not(null(Ys)) -> last(Ys)).

last(E)#{E \= [],E \= [_|_]} <= (E -> L) -> last(L).

null([]).

It should be noted that in a lazy functional language a definition like

last([X]) = X.

last([X,Y|Ys]) = last([Y|Ys])

is really taken as syntactical sugar for another definition consisting of a number
of case expressions which in turn are transformed a number of times yielding
something like the following, where we can see the computations needed better:

30

Functional Logic Programming in GCLA

last(L) = case L of

[] => error

[X|Xs] => case Xs of

[] => X

[Y|Ys] => last(Xs).

4.4.3 Examples

We conclude our discussion of how to write programs with two more examples,
one that uses guarded clauses and negation and one that combines lazy evaluation
with non-determinism and backtracking giving an elegant way to code generate
and test algorithms.

Let the size of a list be the number of distinct elements in the list. One
definition, adopted from [4, 31], that states this fact is:

size([]) <= 0.

size([X|Xs]) <= (member(X,Xs) -> size(Xs)),

(not(member(X,Xs)) -> succ(size(Xs))).

size(E)#{E \= [], E \= [_|_]} <= (E -> Xs) -> size(Xs).

member(X,[X|_]).

member(X,[Y|Ys])#{X \= Y} <= member(X,Ys).

In this example we assume that strict evaluation is used. To use the definition
given so far we also need some implicit type definitions, we only show the one for
pairs since the ones for lists and numbers were given in section 4.4.1:

pair(X,Y) <= pair(X,Y).

mk_pair(X,Y) <= (X -> X1),(Y -> Y1) -> pair(X1,Y1).

A simple query using this definition is

size(cons(mk_pair(0,succ(size([]))),cons(pair(0,s(0)),[]))) \- S.

which gives the single answer S = s(0). More interesting is to leave some vari-
ables in the list uninstantiated and see if different instantiations of these give
different sizes:

size([pair(X,0),pair(Y,Z)]) \- S.

Here we first get the answer S = s(0), Y = X, Z = 0 and then on backtrack-
ing S = s(s(0)), pair(X,0) \= pair(Y,Z), that is, the list has size 2 if the
variables in the antecedent are instantiated so that the two pairs are not equal.

Finally, in an example adopted from [41], we consider the following problem:
Given a number k and a set S of positive numbers, generate all subsets of S such
that the sum of the elements is equal to k. It is obvious that if a subset Q of S has

31

On GCLA, Gisela, and MedView

been generated whose sum is greater than k, then all sets that can be created by
adding elements to Q can be discarded. This idea can be coded in the following
definition where subset is a lazy function which ensures that we only create as
much as is needed to determine if a subset is a feasible candidate:

sum_of_subsets(S,K) <= sum_eq(subset(S),0,K).

sum_eq([],Acc,K) <= (Acc = K) -> [].

sum_eq([X|Xs],Acc,K) <= (X+Acc -> N),

(N =< K)

-> [X|sum_eq(Xs,N,K)].

sum_eq(E,Acc,K)#{E \= [], E \= [_|_]} <=

(E -> Xs) -> sum_eq(Xs,Acc,K).

subset([]) <= [].

subset([X|Xs]) <= [X|subset(Xs)],subset(Xs).

subset(E)#{E \= [], E \= [_|_]} <= (E -> Xs) -> subset(Xs).

We do not show the implicit type definitions and show function needed to compute
a result. Note that if the first argument to sum eq is a list but Acc is greater than
K then sum eq fails thus forcing evaluation of a new subset.

4.5 Discussion

As we have seen, the condition constructors ‘->’ and ‘,’ may be used in ways
that produce expressions similar to functional let and case expressions. A natural
question then is why we have not integrated them as condition constructors in
our function definitions, that is, why not write

f(X) <= let(Y = g(X) in h(Y,Y)).

instead of:

f(X) <= (g(X) -> Y) -> h(Y,Y).

The answer to this question is that we have chosen to stick as close as possible
to the general GCLA rules and the underlying theory of PID. Working with
the ordinary condition constructors both shows what can be expressed using
only the basic constructors and what restrictions are necessary in the general
inference rules to achieve a working logical interface towards functional logic
program definitions.

A problem with the function definitions we have presented is that they may
loop forever if they are used with incorrect arguments. For example if gcla is de-
fined as a canonical object we can go on forever trying to evaluate plus(gcla,0).

32

Functional Logic Programming in GCLA

5 Extending FL

While FL describes the basic properties of our functional logic program definitions
well, it is not quite as well-suited for practical programming. There are several
reasons for this, for example successor arithmetic is not particularly efficient,
there is no way to write something to a file etc. In this section we discuss FLplus

which is FL augmented with a number of inference rules.

5.1 Arithmetics

In FLplus numbers are represented with the construct n(Number), where n/1 has
a circular definition:

n(X) <= n(X).

To see why we need to have the extra functor around numbers consider the
following definition of the factorial function:

fac(n(0)) <= n(1).

fac(N)#{N = n(_),N \= n(0)} <= N*fac(N-n(1)).

fac(Exp)#{Exp \= n(_)} <= (Exp -> Num) -> fac(Num).

Without the functor n, denoting numbers, we cannot distinguish between a num-
ber and an expression that needs to be evaluated. In Section 7 we will discuss how
we can generate a rule definition which allows us to drop evaluation clauses like
the last clause of fac. We will then not need the extra functor around numbers.

5.1.1 Evaluation Rules

The rules for evaluating arithmetical expressions are almost identical to the rules
used in [7], the only difference is that we, as usual, only allow one element in the
antecedent of object level sequents.

We allow the usual operations on numbers. The rule for the operator Op is

X ` n(X1) Y ` n(Y1) n(Z) ` C

X Op Y ` C
Z = X1 Op Y1

The operation X1 Op Y1 is a proviso, a side condition which must hold for the
rule to hold. The GCLA code of a rule for addition is

add_left((X+Y),PT1,PT2,PT3) <=

(PT1 -> ([X] \- n(X1))),

(PT2 -> ([Y] \- n(Y1))),

add(X1,Y1,Z),

(PT3 -> ([n(Z)] \- C))

-> ([X+Y] \- C).

How the proviso add is defined and executed is not really important as long as Z
is the sum of X1 and Y1.

33

On GCLA, Gisela, and MedView

5.1.2 Comparison Rules

We also have a number of rules to compare numbers. These operate on conditions
occurring to the right since we regard them as efficient versions of a number of
predicates comparing numbers. We use the same operators as in Prolog, thus =:=
is used to test equality of two numerical expressions. The rule for the operator
Op is:

X ` n(X1) Y ` n(Y1)

` X Op Y
X1 Op Y1

The corresponding GCLA code for the operation less than is:

lt_right((X < Y),PT1,PT2) <=

(PT1 -> ([X] \- n(X1))),

(PT2 -> ([Y] \- n(Y1))),

less_than(X1,Y1)

-> ([] \- (X < Y)).

The comparison rules can only be used to test if a relation between two expressions
holds, not to prove that it does not hold, we cannot prove a query like:

\- not(n(4) < n(3)).

Also, both the evaluation rules and the comparison rules will work correctly only
if the arithmetical operators are applied to ground expressions.

5.2 Rules Using the Backward Arrow

Sometimes we wish to cut possible branches of the derivation tree depending on
whether some condition is fulfilled or not. To do this we use the backward arrow
‘<-’ described in [7]. The backward arrow is a kind of meta-level if-then-else. It
has the operational semantics:

If ` Seq ` Then

((If ← Then), Else) ` Seq

Else ` Seq

((If ← Then), Else) ` Seq
If 6` Seq

Using this backward arrow we can introduce two very useful (but not so pure)
conditions; if-expressions in functions and negation as failure in predicates.

5.2.1 If Conditions

If-expressions are commonly used in functional programming. A kind of if-
expression can be defined and executed using FL as well:

if(Pred,Then,Else) <= (Pred -> Then),(not(Pred) -> Else).

34

Functional Logic Programming in GCLA

If if/3 is used to the left we can read it as “if Pred holds then the value of
if(Pred,Then,Else) is Then, else if not(Pred) holds then the value is Else”.
This is very nice and logical but not so efficient. In practice we are often satisfied
with concluding that the value of if(Pred,Then,Else) is Else if we cannot
prove that Pred holds, without trying to prove the falsity of Pred. To implement
this behavior we introduce if/3 as a condition constructor and handle it with a
special inference rule, if-left:

` P T ` C
if(P, T, E) ` C

E ` C
if(P, T, E) ` C

6` P

Note that ` P may succeed any number of times. We leave out the somewhat
complicated encoding of this rule, it can be found in Appendix C.

5.2.2 Negation as Failure

We have already seen that we can derive falsity in GCLA. However, just as we in
if conditions do not care to prove falsity, in many applications we do not care to
prove a condition false in predicates either. We therefore introduce the condition
constructor ‘\+’. The condition \+ c is true if we cannot prove that c holds. The
inference rule handling this is called naf-right (negation as failure right) and is
coded using the backward arrow:

naf_right((\+ C),PT) <=

(((PT -> ([] \- C)) -> ([] \- (\+ C)) <- false),

([] \- (\+ C)).

This rule is of course not sound. It is very important that a possible proof of
C is included in the set of proofs represented by PT or we can prove practically
anything.

5.3 A Rule for Everything Else

Sometimes it is necessary to communicate with the underlying computer (op-
erating) system. We take a very rudimentary and pragmatically oriented ap-
proach to doing this. We introduce a new condition constructor system/1 and
a corresponding inference rule system-right. Communication with the underlying
computer system is then handled by giving the command to be executed as an
argument to system/1, which so to speak lifts it up to the rule level. Since in
the current implementation the underlying system is Prolog, only valid Prolog
commands are allowed.

The definition of the rule system-right simply states that ` system(C) holds
if the proviso C can be executed successfully:

system_right(system(C)) <=

C -> ([] \- system(C)).

35

On GCLA, Gisela, and MedView

It is now very easy to define primitives for I/O for instance. The definition below
allows us to open and close files and to do formatted output.

open(File,Mode,Stream) <= system(open(File,Mode,Stream)).

close(Stream) <= system(close(Stream)).

format(T,Args) <= system(format(T,Args)).

format(File,T,Args) <= system(format(File,T,Args)).

5.4 Yet Another Example

A classical algorithm to generate all prime numbers is the sieve of Eratosthenes.
The algorithm is: start with the list of all natural numbers from 2, then cross out
all numbers divisible by 2, since they can not be primes, take the next number
still in the list (3) and cross out all numbers divisible by this number since they
cannot be primes either, take the next number still in the list (5) and remove all
numbers divisible by this, and so on.

To implement this algorithm we use a combination of lazy functions, predi-
cates, and some of the additional condition constructors of FLplus. First of all
we define what the canonical objects of the application are, in this case numbers
and lists:

n(X) <= n(X).

[] <= [].

[X|Xs] <= [X|Xs].

Next we define the prime numbers, primes is defined as the result of applying
the function sieve to the list of all numbers from 2:

primes <= sieve(from(n(2))).

The function sieve is the heart of the algorithm. Given a list [P|Ps], where we
know that P is prime, the result of sieve is the list beginning with this prime
followed by the list where we have applied sieve to the result of removing all
multiples of P from Ps.

sieve([P|Ps]) <= [P|sieve(filter(P,Ps))].

sieve(E)#{E \= [], E \= [_|_]} <= (E -> Xs) -> sieve(Xs).

All that remains is to define the functions from and filter. Note that we
evaluate the argument of from, this is done to avoid repeated evaluations which
would otherwise be the case:

36

Functional Logic Programming in GCLA

filter(_,[]) <= [].

filter(N,[X|Xs]) <= if(divides(N,X),

filter(N,Xs),

[X|filter(N,Xs)]).

filter(N,E)#{E \= [],E \= [_|_]} <= (E -> Xs) -> filter(N,Xs).

divides(A,B) <= (B mod A) =:= n(0).

from(M) <= (M -> N) -> [N|from(N+n(1))].

Of course, one problem remains. Since we use lazy evaluation of functions the
answer to the query

primes \-C.

is [n(2)|sieve(filter(n(2),from(n(2)+n(1))))]. We cannot use a show func-
tion since the result is infinite. The solution is to define a predicate print list

used to print the elements of the infinite list of primes:

print_list(E) <= (E -> [n(X)|Xs]),

print(X),

print_list(Xs).

print(X) <= system((format(’~ w’,[X]),ttyflush)).

Now the query

\- print_list(primes).

will print 2 3 5 7 11 and so on until the system runs out of memory.

5.5 Discussion

We have presented some useful extensions of FL. Other extensions are possible
as well, for instance we could introduce an apply function with a corresponding
inference rule enabling us to write functions like:

map(_,[]) <= [].

map(F,[X|Xs]) <= [apply(F,X)|map(F,Xs)].

map(F,E)#{E \= [], E \= [_|_]} <= (E -> Xs) -> map(F,Xs).

The function sieve given in Section 5.4 is not particularly efficient and con-
sumes a considerable amount of memory. In fact, if run long enough, execution
will be aborted due to lack of space.

The reason behind the inefficiency of sieve (and other programs we present)
is that while the current GCLA system is designed to be as general as possible,

37

On GCLA, Gisela, and MedView

allowing for many different styles of programming, it cannot detect the limited
kind of control needed in functional logic programming and optimize the code
accordingly. This does not mean that it is impossible in principle to efficiently
execute the kind of programs we describe in this paper. We believe that with a
specialized compilation scheme for functional logic program definitions the pro-
grams we describe could be executed just as fast as programs written in existing
functional logic programming languages, that is, at a speed approaching that of
functional or logic programming languages [24].

6 Generating Specialized Rule Definitions

In Sections 3 and 5 we noticed that both FL and FLplus were deterministic thus
making search strategies more or less superfluous; the answers will be the same
no matter in which order the inference rules are tried.

However, there are several reasons to use search strategies anyway. The most
important concerns integration of functional logic programs into large systems
using other programming paradigms as well; without a proper search strategy
all the rules and strategies concerning the rest of the system will also be tested.
Another reason is to enhance efficiency, the strategies we present in this section
will almost always try the correct rule immediately.

In [16], the method Local Strategies was suggested as a way to write efficient
rule definitions to a given definition. It was also suggested that it should be
possible to more or less automatically generate rule definitions according to this
method for some programs. In this section we will show how such rule definitions
may be generated for functional logic program definitions.

Note that the rule generation process take it for granted that the clauses
in function definitions are mutually exclusive. We put this demand on func-
tion definitions in Section 4, but with the difference that the rule definitions FL

and FLplus could deal with overlapping function definitions. Also, we do not
attempt to generate specialized strategies to handle negation through the con-
structor not/1 since we feel that this is a typical case which requires ingenuity,
not mechanization. Instead, the general rule definition FLplus is used.

6.1 A First Example

The method Local Strategies described in [16] states that each defined atom should
have a corresponding procedural part, specialized to handle the particular atom
in the desired way. In a functional logic program definition this means that each
function, predicate, and canonical object have a specialized procedural interpre-
tation given by the rule definition.

We illustrate with a small example, consisting of two predicate definitions,
defining naive reverse:

38

Functional Logic Programming in GCLA

rev([],[]).

rev([X|Xs],Zs) <= append(Ys,[X],Zs),rev(Xs,Ys).

append([],Ys,Ys).

append([X|Xs],Ys,[X|Zs]) <= append(Xs,Ys,Zs).

To this definition we need two search strategies, one for each defined predicate,
which we call rev strat and append strat. Since rev is a predicate it will
always be used to the right (remember that we do not consider negation). The
first (and only) rule to try to prove a query

\- rev(X,Y).

is D-right, therefore the definition of rev strat becomes:

rev_strat <= d_right(rev(_,_),rev_cont(_)).

rev cont (cont for continuation) is the strategy to be used to construct the rest
of the proof.

If we look at the definition of rev, we see that when we have applied d right

there are two possible cases. Either the body is true and we are finished, or it is
append(Zs,[X],Ys),rev(Xs,Ys) and we have to continue building a proof. It
would be nice if we could check this and choose the correct continuation depending
on what we have got to prove. To achieve this we define rev cont:

rev_cont(C) <= ([] \- C).

rev_cont(C) <= rev_next(C).

This kind of strategy is standard GCLA programming methodology and is de-
scribed in [6]. The effect of rev cont is that we get the argument of rev next

bound to the consequent we are trying to prove thus making it possible to use
pattern-matching to choose the correct rule to continue with:

rev_next(true) <= truth.

rev_next((append(_,_,_),rev(_,_)) <=

v_right(_,append_strat,rev_strat).

When we define rev next we use the knowledge that append is a predicate and
thus has a corresponding strategy append strat.

When we wrote the strategy rev strat we did not depend on any sophisti-
cated knowledge that could not be put in a program. Really, the only knowledge
used was:

• append and rev are predicates,

• predicates are used to the right,

39

On GCLA, Gisela, and MedView

• each predicate has a corresponding strategy,

• FL is deterministic and therefore for each occurrence of a condition con-
structor there is only one possible rule to apply.

In programs combining functions and predicates we also need, among other things,
to distinguish between predicates and functions.

If we analyze the code of rev strat we see that if we unfold the call to d right

we can write more efficient and compact code. Also, we do not need to check
at run time that we do not use d right on canonical objects. Furthermore, the
strategy rev cont is not needed. With these changes the rule definition in our
example becomes:

rev_d_right <=

functor(C,rev,2), % just to make sure...

clause(C,B),

(rev_next(B) -> ([] \- B))

-> ([] \- C).

rev_next(true) <= truth.

rev_next((append(_,_,_),rev(_,_)) <=

v_right(_,append_d_right,rev_d_right).

append_d_right <=

functor(C,append,3),

clause(C,B),

(append_next(B) -> ([] \- B))

-> ([] \- C).

append_next(true) <= truth.

append_next(append(_,_,_)) <= append_d_right.

We have changed the name from rev strat to rev d right to signify that what
we get is really a specialized version of the inference rule D-right, which may only
be used to prove the predicate rev.

6.2 Algorithm

The rule generation process consists of three phases which we will describe one
by one.

In the first phase the functional logic program definition is analyzed to sep-
arate the defined atoms into three classes: canonical objects, defined functions,
and defined predicates. The second phase creates an abstract representation of
a specialized rule definition for each function and predicate. The third phase fi-
nally takes this abstract representation and creates a rule file. We could of course

40

Functional Logic Programming in GCLA

merge phase two and three into one and write rules and strategies to a file as soon
as they have been created. We have chosen to separate them to make it easier to
experiment with different kinds of output from the rule generator.

Our prototype implementation is implemented as a special kind of rule defi-
nition. This rule definition is specialized to handle the single query

rulemaster \\- (\- makerules(DefinitionFile,RuleFile)).

where DefinitionFile is the name of the definition we wish to generate rules
for and RuleFile is the name of the generated file. The interesting thing is that
it is a rule definition to reason about definitions, not to interpret definitions to
perform computations.

6.2.1 Splitting the Definition

To find the canonical objects of a definition is not difficult, we simply collect all
clauses with identical head and body. Distinguishing function definitions from
predicate definitions is not quite as easy, in fact it is so hard that in the rule
definitions of GCLA programs (which as pointed out in Section 3 are a kind of
functional logic programs) predicates are syntactically distinguished by using ’:-’
instead of ’<=’ . This is done to ensure that it is always possible to tell functions
(rules and strategies) and predicates (provisos) apart.

When we automatically generate rule definitions, for functional logic pro-
grams, we are satisfied if it is almost always possible to decide what constitutes
a predicate definition and what constitutes a function definition. In case the
rule-generator can not make up its mind we let an oracle (the user) decide.

Before we start separating functions from predicates we collect the names and
arities of all functions and predicates into a list, [N1/A1, . . . , Nn/An]. For example
if the definition is

a <= a.

p(X) <= q(X,X).

q(a,a).

this list becomes [p/1,q/2].
The goal of the separation process is to split this list into one list of functions

and one list of predicates. To do this we traverse the list of names and arities
and use the following heuristics to decide if the atom N of arity A is a function
or a predicate; N/A is a function if:

• N/A is already known to be a function,

• the body of some clause defining N/A is an atom which is either a canonical
object or a function,

41

On GCLA, Gisela, and MedView

• the body of some clause defining N/A is a constructed condition which is a
functional expression as described below.

If we could decide that N/A is a function we store this fact. Note that as a side
effect we might find other functions (and predicates) as well. If N/A could not be
shown to be a function we try to show that it is a predicate. N/A is a predicate
if:

• N/A is already known to be a predicate,

• the body of some clause defining N/A is the condition true or an atom
which is a predicate,

• the body of some clause defining N/A is a constructed condition which is a
predicate expression as described below.

If we could decide that N/A is a predicate we store this fact. Note that as a
side effect we might find other predicates (and functions) as well. If we could not
decide that N/A is a predicate we let the oracle decide.

We say that the condition C is a functional expression if:

• C is an atom which is either a canonical object or a function,

• the main condition constructor of C is pi, or in the case of FLplus one of
pi, if, +, -, *, /, and mod,

• C = (C1, C2) or C = (C1; C2) and C1 or C2 is a functional expression,

• C = C1 → C2 and C2 is a functional expression but not a canonical object
or C1 is a predicate expression and C2 is a functional expression.

We also say that the condition C is a predicate expression if:

• C is either the condition true or an atom which is a predicate,

• the main constructor of C is ^, or in the case of FLplus one of , ^, \+,
system, < , >, =<, >=, =:=, and =\=,

• C = (C1, C2) or C = (C1; C2) and C1 or C2 is a predicate expression,

• C = C1 → C2 and C1 is a functional expression or C2 is canonical object.

The given heuristics are correct but not complete. Typically, there are two cases
not covered, namely definitions like

q(X) <= X.

and

q(X) <= r(X).

where r/1 is not defined at all.

42

Functional Logic Programming in GCLA

6.2.2 Specialized Rules

When we know which definitions constitute functions, predicates, and canonical
objects, we proceed to create an efficient rule definition according to the method
Local Strategies. We describe phase two and three together but one should keep
in mind that it is possible to imagine other more or less equivalent ways to write
the exact details of the created rule definitions.

We need two things, specialized rules and strategies to handle each separate
function and predicate, and a top level strategy for arbitrary queries.

Specialized D-right rules for Predicates. A proof of a predicate in FL

will always end with an application of the rule D-right. Since proofs are built
backwards the first rule to use in a proof of a predicate is d right. We generate
a specialized version of this rule for each predicate. Given a predicate, say pred

of arity 2, the following rule is generated:

pred2_d_right <=

functor(C,pred,2),

clause(C,B),

(pred2_next(B) -> ([] \- B))

-> ([] \- C).

Note that since we know that pred is a predicate we do not need to check at run
time that B does not have a circular definition. The strategy pred2 next chooses
the correct continuation for the rest of the proof depending on the structure of
the chosen clause.

Specialized D-left rules for Functions. Symmetrically to predicates the
evaluation of a function, in FL, always ends with an application of the rule D-left.
We generate a specialized version of D-left for each function. Given a function
fun of arity 3 for instance, the generated rule becomes:

fun3_d_left <=

functor(T,fun,3),

definiens(T,Dp,_),

(fun3_next(Dp) -> ([Dp] \- C))

-> ([T] \- C).

Again, it is not necessary to check at run time that fun does not have a circular
definition. The strategy fun3 next chooses the correct continuation depending
on the definiens of T.

Generalized Axiom Rule. We do not create any special rules or strategies
for canonical objects. It is worth noting that since the rules are pre-compiled we
can omit the check for circularity at run time, thus enhancing efficiency.

43

On GCLA, Gisela, and MedView

6.2.3 Creating Continuation Strategies

Each function and predicate definition consists of a number of clauses:

A1 ⇐ B1.
...
A1 ⇐ B1.

When we have looked up a body with clause or definiens we would like to continue
in the correct manner depending on which Bi was chosen. The naive approach
to do this is to define a strategy with one clause for each Bi, thus:

FP next(B1)⇐ S1.
...
FP next(Bn)⇐ Sn.

This works well enough as long as fewer than two bodies are unifiable, but is
otherwise inefficient. To see why consider the definition:

p(1,X) <= q(X).

p(X,1) <= q(X).

q(1).

q(2).

The naive approach would generate:

p2_next(q(_)) <= q1_d_right.

p2_next(q(_)) <= q1_d_right.

Now if we ask the query

p2_d_right \\- \- p(1,1).

the body of p will be proved twice, once for each clause of p2 next.
To remedy this problem, we have to analyze the bodies of each function

and predicate definition and merge overlapping bodies together before the next-
strategies are created. There is one problem in the merging process though;
variables. As an example consider the definition:

p(X) <= X,r,q.

p(X) <= r,X,q.

The two bodies are possibly overlapping but neither is an instance of the other,
so we cannot simply take one body and throw the other away. Instead we have to
create a generalized condition which can be instantiated to both, we must merge
and generalize. The rule-generator will produce:

44

Functional Logic Programming in GCLA

p1_next((X,Y,q)) <= somestrategy.

Generally, given the list of bodies defining a function or a predicate we do the
following:

• the list of bodies is split into non-variable bodies and variable bodies. The
variable bodies are immediately merged into one. The purpose of this split
is that it sometimes is convenient to treat the variable bodies separately,

• the non-variable bodies are merged and generalized according to the proce-
dure described below.

Merging non-variable bodies. We describe the algorithm used to merge and
generalize bodies with a GCLA rule definition. The definition is designed to
handle one single query:

cases \\- (\- cases(InBodies,OutBodies).

The code given in Figure 1 looks (and is) very much like a Prolog-program. The
main reason for this is that at the rule level the only possible canonical values,
that is, the only possible results from functions, are object-level sequents, thus
forcing us to write everything as predicates. Some possible queries are:

cases \\- (\- cases([q(_),q(_)],B)).

B = [q(_A)] ?

cases \\- (\- cases([(r,X,q),(X,r,q)],B)).

B = [(_B,_A,q)] ?

Creating Strategies for each Body. When the bodies have been merged
and generalized the only remaining problem is to create a suitable strategy for
each. With a fixed set of deterministic inference rules this poses no great problem
since for each occurrence of a constructed condition there is at most one rule to
apply and also for each function and predicate there is a specialized rule to use.
The only problem is that there may be variables denoting conditions which are
unknown when we the strategies are created. This problem is solved by having
two top level strategies, one called eval for functional expressions (the left hand
side of sequents), and one called prove for predicates (the right hand side of
sequents), which are used whenever a variable is found in the generation process.

We do not describe in detail how the strategies for each body are generated
since it is not very interesting (an interesting question is how we best can allow
for new rules and condition constructors) but merely demonstrate with a couple
of examples:

45

On GCLA, Gisela, and MedView

cases <=

cases(In,Out)

-> ([] \- cases(In,Out)).

cases(In,Out):-

cases(In,Mid,Flag),

(Flag == nochange,

unify(Mid,Out) -> true

;

Flag == change,

cases(Mid,Out)

).

cases([],[],nochange).

cases([],[],Flag):- Flag == change.

cases([X|Xs],[Y|R],Flag):-

rem_and_gen(X,Xs,Y,Xs1,Flag),

cases(Xs1,R,Flag).

rem_and_gen(X,[],X,[],Flag).

rem_and_gen(X,[Y|Xs],Z,R,Flag):-

match_gen(X,Y,Z1,Flag),

rem_and_gen(Z1,Xs,Z,R,Flag).

rem_and_gen(X,[Y|Xs],Z,[Y|R],Flag):-

%\+match_gen(X,Y...

rem_and_gen(X,Xs,Z,R,Flag).

match_gen(X,Y,Z,change):- var(X),nonvar(Y).

match_gen(X,Y,Z,change):- nonvar(X),var(Y).

match_gen(X,Y,Z,Flag) :- var(X),var(Y).

match_gen(X,Y,X,Flag):-

functor(X,N,A),

A =:= 0,

functor(Y,N,A).

match_gen(X,Y,Z,Flag):-

functor(X,N,A),

A > 0,

functor(Y,N,A),

X =.. [F|ArgsX],

Y =.. [F|ArgsY],

match_gen_args(ArgsX,ArgsY,ArgsZ,Flag),

Z =.. [F|ArgsZ].

match_gen_args([],[],[],Flag).

match_gen_args([X|Xs],[Y|Ys],[Z|Zs],Flag):-

match_gen(X,Y,Z,Flag),

match_gen_args(Xs,Ys,Zs,Flag).

Figure 1: Code to split definitions into functions and predicates.

46

Functional Logic Programming in GCLA

• the functional expression p(X) -> succ(X) will generate (provided that p
is defined as a predicate and succ as a function):
a left(,a right(,p1 d right),succ1 d left)),

• the functional expression (X -> Y) -> s(Y) will get the strategy(provided
that s is a canonical object): a left(,a right(,eval),axiom(,))),

• the predicate expression q(X),r(X) will have the corresponding strategy
v right(,q1 d right,r1 d right).

Whenever the merging process results in a single body the corresponding strategy
is inserted directly into the function or predicates D-rule, thus omitting the next-
strategies. For instance

from(N) <= [N|from(s(N))].

will get the rule:

from1_d_left <=

functor(T,from,1),

definiens(T,Dp,_),

(axiom(_,_) -> ([Dp] \- C))

-> ([T] \- C).

6.2.4 Top Level Strategies

All files created with the rule generator described here includes a file with all the
rules of FLplus and three top level strategies fl gen, eval and prove. These
top level strategies are implemented to find the correct rule or strategy to use,
including all the specialized rules for each predicate and function created by the
rule generator. They are defined as follows:

fl_gen <= fl_gen(_).

fl_gen(A) <= (A \- _).

fl_gen([]) <= prove.

fl_gen([A]) <= eval.

eval <= left(_).

left(T) <= ([T] \- _).

left(T) <= (nonvar(T),case_l(T,PT) -> PT) <- true,

var(T) -> d_axiom(_,_).

47

On GCLA, Gisela, and MedView

The proviso case l is a listing of the appropriate rule to continue a proof with
for each possible condition T. As a default, it lists the correct continuation for
each constructed condition having an inference rule in FLplus. When a rule is file
created case l is augmented with clauses for each function and canonical object.
The definition of prove is analogously (case r is augmented with clauses for each
predicate):

prove <= right(_).

right(C) <= ([] \- C).

right(C) <= nonvar(C),case_r(C,PT) -> PT.

6.3 Example

One of the most commonly used examples in papers on functional logic program-
ming in GCLA is quick sort. We will use it again here to make it possible to
compare the results from the rule generation process with previous hand-coded
suggestions.

We use the same definition as in [6, 16], with the exception that we add
circular definitions to define canonical objects. We also use the possibility of the
rule-generator to create rules where numbers are regarded as canonical objects.
The definition, which is a combination of the strict functions qsort and append

and the predicate split, is:

[] <= [].

[X|Xs] <= [X|Xs].

cons(X,Xs) <= pi Y \ (pi Ys \ ((X -> Y),(Y -> Ys) -> [Y|Ys])).

qsort([]) <= [].

qsort([X|Xs]) <= pi L \ (pi G \

(split(X,Xs,L,G)

-> append(qsort(L),cons(X,qsort(G))))).

append([],Ys) <= Ys.

append([X|Xs],Ys) <= cons(X,append(Xs,Ys)).

append(Exp,Ys)#{Exp \= [],Exp \= [_|_]} <= pi Xs \

((Exp -> Xs) -> append(Xs,Ys)).

split(_,[],[],[]).

split(E,[F|R],[F|Z],X) <= E >= F,split(E,R,Z,X).

split(E,[F|R],Z,[F|X]) <= E < F,split(E,R,Z,X).

The fact that we use explicit quantification in this definition makes it very easy to

48

Functional Logic Programming in GCLA

find functions and predicates and the code given in Figure 2 is generated without
any questions being asked.

6.4 Discussion

If we use explicit quantification as in the example in Section 6.3 it is usually
possible to divide the defined atoms into functions and predicates automatically,
for most definitions it is even enough to use explicit quantification in the object
functions only. It would of course be trivial to get rid of the entire splitting prob-
lem by introducing some kind of declarations, but we wish to keep our definitions
free from this kind of external information.

The rule-generation process is really very much like a kind of partial evaluation
of a general rule definition like FL with respect to a certain definition and a given
set of queries. An interesting question is if this process can be extended to more
general classes of definitions as well. Another possibility to investigate is to
unfold as many rule calls as possible thus minimizing the number of rule calls
and increasing performance.

When we generate rules according to the method local strategies, what we get
is so to speak a basic procedural interpretation for each function and predicate.
Since we have a distinct procedural part for each function and predicate it is
very easy to manually alter the procedural behavior of a particular function or
predicate. For example, given the definition

member(X,[X|_]).

member(X,[_|Xs]) <= member(X,Xs).

the created rule member2_d_right will enumerate all instances of X in Xs. If
we only want to find the first member somewhere in a program we can write
another procedural part achieving this and substitute it for member2_d_right at
the appropriate places.

7 Moving Information to the Rule Level

Almost all function definitions shown so far have contained some clause to force
evaluation of arguments when necessary. If we want to have function definitions
which by themselves explicitly describe the computations needed to evaluate a
function this makes perfect sense and, as we have seen, it is possible to get by
with very simple rule definitions.

There is one major problem though, it is sometimes very complicated to define
functions by pattern matching. We have not seen many examples of this but then
we have avoided the problem by only writing function definitions where at most
one argument has a pattern other than a variable.

When we try to define functions using pattern matching on several arguments
we immediately run into problems, as seen below.

49

On GCLA, Gisela, and MedView

:- include_rules(lib(’FLRules/flnumplus.rul’)).

:- include_rules(lib(’FLRules/flnumplus_basic_strats.rul’)).

cons2_d_left <=

functor(A,cons,2),

definiens(A,Dp,_),

(pi_left(_,

pi_left(_,

a_left(_,v_right(_,a_right(_,eval),a_right(_,eval)),

axiom))) -> ([Dp] \- C))

-> ([A] \- C).

qsort1_d_left <=

functor(A,qsort,1),

definiens(A,Dp,_),

(qsort1_next(Dp) -> ([Dp] \- C))

-> ([A] \- C).

qsort1_next(([])) <= axiom.

qsort1_next((pi A\pi B\split(C,D,A,B)-> append(qsort(A),cons(C,qsort(B))))) <=

pi_left(_,pi_left(_,a_left(_,split4_d_right,append2_d_left))).

append2_d_left <=

functor(A,append,2),

definiens(A,Dp,_),

(eval -> ([Dp] \- C))

-> ([A] \- C).

split4_d_right <=

functor(A,split,4),

clause(A,B),

(split4_next(B) -> ([] \- B))

-> ([] \- A).

split4_next((true)) <= truth.

split4_next((A>=B,split(A,C,D,E))) <=

v_right(_,gte_right(_,eval,eval),split4_d_right).

split4_next((A<B,split(A,C,D,E))) <=

v_right(_,lt_right(_,eval,eval),split4_d_right).

case_l([],axiom).

case_l([A|B],axiom).

case_l(cons(A,B),cons2_d_left).

case_l(qsort(A),qsort1_d_left).

case_l(append(A,B),append2_d_left).

case_r(split(A,B,C,D),split4_d_right).

Figure 2: Generated rules for the quick sort example.

50

Functional Logic Programming in GCLA

7.1 Why Pattern Matching Causes Problems

Let us try to define the function min returning the smallest value of two natural
numbers. If we only allow canonical objects as arguments the natural definition
is:

min(0,_) <= 0.

min(s(_),0) <= 0.

min(s(X),s(Y)) <= succ(min(X,Y)).

When we wish to allow arbitrary expressions as arguments we need at least one
more clause to evaluate arguments. First we try to define a version that only
evaluates the arguments which are not natural numbers, that is, we evaluate
exactly the needed arguments. The difficulty in doing this is to write evaluation
clauses without introducing overlapping clauses while still covering all possible
cases. One solution is to add four more clauses giving a total of seven clauses:

min(0,_) <= 0.

min(s(_),0) <= 0.

min(s(X),s(Y)) <= succ(min(X,Y)).

min(E,s(X))#{E \= 0, E \= s(_)} <= (E -> V) -> min(V,s(X)).

min(E,0)#{E \= s(_),E \= 0} <= 0.

min(s(X),E)#{E \= 0,E \= s(_)} <= (E -> V) -> min(s(X),V).

min(E1,E2)#{E1 \= 0,E1 \= s(_), E2 \= 0, E2 \= s(_)} <=

(E1 -> V1),(E2 -> V2) -> min(V1,V2).

This is rather terrible and can not be considered as a serious alternative. We can
do slightly better if we evaluate both arguments when none of the original clauses
match, that is, we add a fourth clause:

min(E1,E2)# Guard <= (E1 -> V1),(E2 -> V2) -> min(V1,V2).

When E1 or E2 is already a canonical object this clause will perform redundant
computations when one of the arguments is evaluated to itself, but that cost is
negligible compared to the gain in readability. What we need is a guard that
excludes the three first cases but catches all cases where one of the arguments
is something other than 0 or s(). The guards are built-up of conjunctions of
inequalities. One guard that does not work is the one in the last clause above
since it also excludes all cases where one argument is a canonical object. Instead
we have to write the fourth clause:

min(E1,E2)#{min(E1,E2) \= min(0,_),

min(E1,E2) \= min(s(_),0),

min(E1,E2) \= min(s(_),s(_))} <=

(E1 -> V1),(E2 -> V2) -> min(V1,V2).

51

On GCLA, Gisela, and MedView

This version is obviously better than the previous one. It should be mentioned
that since it is a common problem in GCLA to define functions like min, where
it is not trivial to write a correct guard to exclude all other cases, there is a
special construct in the language for this. If we write a#else ⇐ C a guard
which excludes all other clauses defining a is generated, thus making the following
definition possible:

min(0,_) <= 0.

min(s(_),0) <= 0.

min(s(X),s(Y)) <= succ(min(X,Y)).

min(E1,E2)#else <= (E1 -> V1),(E2 -> V2) -> min(V1,V2).

However, the specialized D-left rules we create when we generate rule definitions
in Section 6 opens up the way for another approach where the fourth clause is
not needed at all. What we do is to create a specialized D-left rule which ensures
that the arguments to min are evaluated before we use the definiens operation to
substitute definiens for definiendum. The rule connected with min becomes:

X ` X1 Y ` Y1 M ` C

min(X, Y) ` C
M = D(min(X1, Y1))

Naturally, rules like this could be coded manually but it gets rather tiresome to
write specialized rules for each function and predicate.

7.2 Another Way to Define Functions and Predicates

When we remove the evaluation clauses from function definitions it reflects a shift
of our view of the relation between the definition and the rule definition. The
function definitions of previous sections are in some sense complete, we stated all
information needed to perform computations explicitly, the role of the rule defi-
nition was passive, it merely stated ways to combine atoms (interpret condition
constructors) and replace them with their definiens.

By removing the evaluation clauses it is the definition which so to speak
becomes the passive part, its only role is to statically define substitutions between
atoms. Instead, the rule definition becomes the vehicle that forces evaluation
and determines the meaning of expressions not defined in the definition. The
resulting programs express the fact that the definition and the rule definition are
two equivalent parts in GCLA.

There are several different possible choices concerning what arguments to
functions and predicates that should be evaluated by the rules. We suggest some
conventions below. Other possible schemes are discussed in Section 7.4.

7.2.1 Strict Function Definitions and their D-left Rules

The usual meaning of a strict function definition is that its arguments are evalu-
ated before the function is called. It is therefore reasonable to associate with each

52

Functional Logic Programming in GCLA

strict function a rule that evaluates each of the arguments and then looks up the
definiens of the resulting atom. If F is a function of arity n the rule becomes:

X1 ` Y1 . . .Xn ` Yn Dp ` C

F (X1, . . . , Xn) ` C
Dp = D(F (Y1, . . . , Yn))

Since arguments to functions are evaluated before the function is called the only
meaningful patterns are canonical objects and variables. To see why, consider the
definition:

rev(rev(L)) <= L.

rev([]) <= [].

rev([X|Xs]) <= append(rev(Xs),[X]).

The first clause is intuitively correct but it can never be applied since the argu-
ment is evaluated to a canonical object before rev is called.

Besides the removed evaluation clauses there is one more difference in strict
function definitions—the implicit type definitions. Recall that in Section 4 we
used object functions which evaluated their arguments to build canonical objects.
A typical example is the function succ:

succ(X) <= (X -> Y) -> s(Y).

When we evaluate the argument of succ before it is called the condition (X -> Y)

becomes redundant. The entire implicit type definition of natural numbers thus
becomes:

0 <= 0.

s(X) <= s(X).

succ(X) <= s(X).

The new version of succ may look a bit strange but it has the same purpose as
the old one; to evaluate X before the number s(X) is built. Generally using this
kind of strict evaluation the object function connected to the canonical object
with definition

S(X1, . . . , Xn)⇐ S(X1, . . . , Xn)

becomes:

F (X1, . . . , Xn)⇐ S(X1, . . . , Xn)

We may now reformulate our first example of Section 2.1. We assume that the
implicit type definition above is used:

plus(0,N) <= N.

plus(s(M),N) <= succ(plus(M,N)).

53

On GCLA, Gisela, and MedView

7.2.2 Lazy Functions and their D-left Rules

The ideal in lazy function definitions is to only evaluate arguments if it is abso-
lutely necessary. A reasonable and easy to implement compromise is to evaluate
arguments which have another pattern than a variable in some defining clause.
To ensure avoiding evaluating unnecessary arguments one should then only write
uniform function definitions.

As an example we define append once more. The implicit type definitions
remain identical compared with previous lazy functions:

append([],Ys) <= Ys.

append([X|Xs],Ys) <= [X|append(Xs,Ys)].

Since the second argument is not needed to match any clause we do not evaluate
it before append is applied. Thus, the D-left rule connected to append becomes:

X ` X1 A ` C

append(X, Y) ` C
A = D(append(X1, Y))

It should be noted that since arguments with variable patterns in all clauses are
not evaluated before we apply definiens we can not allow repeated variables in
the heads of lazy function definitions.

We also remove the show functions from lazy function definitions and instead
introduce a strategy show that is used to fully evaluate expressions. This strat-
egy can be automatically generated based on what the canonical values of the
definition are.

The top-level strategy show/0 is simply defined in terms of a rule show/1

which does all the work. The definitions of show/0 and show/1 are as follows:

show <= show(eval).

show(PT) <=

eval_these(T,PT,Exp,C1),

Exp,

unify(C,C1)

-> ([T] \- C).

In the rule show/1, T is the functional expression to be evaluated and PT is
some kind of general strategy for functional evaluation such as eval described
in Section 6. The purpose of the proviso eval these is to define which parts
of T that need to be further evaluated and what the resulting value is. The
third argument of eval these provides a (meta-level) condition specifying the
necessary computations and the fourth the result which is unified with C, the
conclusion of the rule. The definition of eval these is in terms of a proviso
show case, which varies depending on the canonical objects of the application:

54

Functional Logic Programming in GCLA

eval_these(T,PT,Exp,C1) :- nonvar(T),show_case(T,PT,Exp,C1).

eval_these(T,_,true,T) :- var(T),circular(T).

Recall that what the show functions presented earlier in Section 4 did was to
evaluate the subparts of canonical objects. There were three different kinds of
cases in the definition of a show function: the expression to be showed could be
either a canonical object of arity zero, a canonical object of arity greater than
zero or a functional expression other than a canonical object. The corresponding
definitional clauses of show case are:

• for each canonical object S of arity zero a clause

show case(S, , true, S).

• for each canonical object S of arity n a clause

show case(S(X1, . . . , Xn), PT, ((show(PT)→ ([X1] ` Y1)), . . . ,
(show(PT)→ ([Xn] ` Yn))),
S(Y1, . . . , Yn)).

• and finally a clause to handle expression that are not canonical objects, it
becomes

show case(E, PT, ((PT → ([E] ` CanObj)),
(show(PT)→ ([CanObj] ` CanV al))),
CanV al)#{Guard}.

where Guard contains the inequality E 6= Si for each canonical object Si.

As a simple example, assume that we have a definition where lists and numbers
are the only canonical objects. Then the definition of show case becomes:

show_case(0,_,true,0).

show_case(s(X),PT,(show(PT) -> ([X] \- Y)),s(Y)).

show_case([],_,true,[]).

show_case([X|Xs],PT,((show(PT) -> ([X] \- Y)),

(show(PT) -> ([Xs]\-Ys))),[Y|Ys]).

show_case(E,PT,((PT -> ([E] \- CanObj)),

(show(PT) -> ([CanObj] \- CanVal))),Canval)

#{E \= 0, E \= s(_), E \= [], E \= [_|_]}.

Now if we ask the query

show \\- append(append([],[0]),[s(0)]) \- C.

the only answer will be C = [0,s(0)].

55

On GCLA, Gisela, and MedView

7.2.3 Predicate Definitions and their D-right Rules

We also take the approach that arguments to predicates (symmetrically) may
be any functional expressions. A consequence of this is that the only allowed
patterns in predicate definitions, as in function definitions, are canonical objects
and variables.

When we create specialized versions of D-right to predicates we let them
evaluate all arguments before we try to find a unifiable clause. The reason for
this is of course the two-way nature of predicates. Generally, if P is a predicate
of arity n its corresponding D-right rule becomes:

X1 ` Y1 . . .Xn ` Yn ` B

` P (X1, . . . , Xn)
B ∈ D(P (Y1, . . . , Yn)).

If we use strict functions in the arguments of predicates this approach works well
enough, but if we combine lazy functions and predicates the situation becomes,
as usual, more complicated.

For instance, consider the usual member definition

member(X,[X|_]).

member(X,[_|Ys]) <= member(X,Ys).

If append is a lazy function and we ask a query like

\- member(3,append([2+1],[])).

it will of course fail since the functional expression append([2+1],[]) will be
evaluated to [2+1|append([],[])].

There are two simple solutions to this problem, the first is to write the defi-
nitions so that problems of this kind does not occur. The membership predicate
may instead be written

member(X,[Y|_]) <= X=Y.

member(X,[_|Ys]) <= member(X,Ys).

provided a proper definition of ‘=’, see Section 8.2.2. A first step to write pred-
icates which work correctly with lazy functions as arguments is to adhere to all
restrictions we have mentioned concerning pattern matching in functions. The
second way to avoid the problem is that when the D-right rules are generated use
the strategy show instead of eval to evaluate arguments thus forcing evaluation
of arguments to predicates.

Of course these solutions are far from perfect, leaving us with some prob-
lems remaining to be solved concerning integration of functions and predicates in
GCLA.

56

Functional Logic Programming in GCLA

7.3 Examples

In order to show the differences and similarities of the function and predicate
definitions described in this section and the previous sections we present a couple
of examples here. More examples may be found in appendix A.

Our first example is the type definition for lists, the definition of the canonical
objects remains the same, only the definition of cons is changed:

[] <= [].

[X|Xs] <= [X|Xs].

cons(X,Xs) <= [X|Xs].

In Section 4 we defined the function take returning the n first elements of a list
using pattern matching on the first argument only. We can now write the more
compact definition

take(0,_) <= [].

take(s(N),[X|Xs]) <= cons(X,take(N,Xs)).

with the corresponding generated D-left rule:

take_d_left <=

(eval -> ([N] \- N1)),

(eval -> ([L] \- L1)),

definiens(take(N1,L1),Dp,1),

(take_next(Dp) -> ([Dp] \- C))

-> ([take(N,L)] \- C).

A lazy version of take is:

take(0,_) <= [].

take(s(N),[X|Xs]) <= [X|take(N,Xs)].

Note that if we use the conventions of Section 7.2 both definitions of take will
act lazily if rules are generated according to the lazy scheme. The reason for this
is that the function cons will not evaluate its arguments under the lazy scheme.
This means that we are back in a situation where one and the same definition
may be used both for lazy and eager evaluation depending on the rule definition
used as in [5, 6]. The notions lazy and strict (eager) evaluation are quite different
though as discussed in Section 4.4.

Sections 7.1 and 7.2 also give definitions of plus, append and member. Using
these definitions and take we can pose queries like (strict evaluation is assumed):

fl_gen \\- take(min(s(0),s(s(0)),append([0],[s(0)])) \- C.

C = [0];

57

On GCLA, Gisela, and MedView

no

fl_gen \\- \- member(X,append([0,s(0)],[s(s(0))])).

X = 0;

X = s(0);

X = s(s(0));

no

fl_gen \\- \- member(plus(s(0),s(0)),cons(0,cons(s(s(0)),[]))).

true ?;

no

The rule generator also allows us to stipulate that numbers should be regarded
as if they were canonical objects, that is as if we had the clauses

0 <= 0.

1 <= 1.

and so on. We may then restate the factorial function from Section 5:

fac(0) <= 1.

fac(N)#{N \= 0} <= N > 0 -> N*fac(N-1).

7.4 Discussion

The functional logic program definitions and rule definitions we have presented in
this section are not equivalent to the ones in previous sections. A typical example
is the difference in behavior if we call a function with an incorrect argument like:

plus([],0) \- C.

If the empty list is defined as a canonical object, the definition of Section 2.1
will loop forever trying to evaluate it to 0 or s(X). The definition of Section 7.2
together with its generated rule definition on the other hand will fail.

The computational behavior of the functional logic programs described in
this section is easily mapped into definitions executable with FLplus though,
by writing each function in two steps—the first step evaluates each argument
needed and the second step is identical to the function definitions described in
this section. A strict definition of addition according to this two-step scheme is:

plus(X,Y) <= (X -> X1),(Y -> Y1) -> plus1(X1,Y1).

plus1(0,N) <= N.

plus1(s(M),N) <= succ(plus(M,N)).

58

Functional Logic Programming in GCLA

It should also be noted that the restriction of patterns in clause heads to canonical
objects is really very much the same as the restriction to constructors in so called
constructor-based languages [24], although differently motivated.

A central idea in GCLA-programming is that it is possible to write a proce-
dural part which gives exactly the desired procedural behavior for each specific
definition and query. Since there is nothing absolute in the conventions for spe-
cialized D-rules described in Section 7.2 the rule-generator allows the programmer
to customize the produced rule definitions. In addition to the D-rules of Section
7.2 it is possible to work in a manual mode where for each function and predicate
definition it is possible to stipulate exactly which arguments should be evaluated.

None of our schemes is really satisfactory for lazy functional logic programs,
the main reasons being the severely restricted pattern matching and the fact that
we will often evaluate too many arguments. The usual approach to solve this in
other languages is to use different kinds of program transformation and analysis
techniques [18, 35, 37, 44]. We could of course use similar methods in GCLA.
For instance, [49] describes an automatic transformation of programs from a
lazy functional language into GCLA which uses such techniques to simplify the
program before it is mapped into a GCLA definition.

A last question is if it is necessary to have such highly specialized D-rules,
could we not just as well have general D-rules producing the same behavior? To
show how this can be done we give the code for a general D-right rule which
evaluates each argument (D-left could be defined analogously):

d_right(C,PT) <=

atom(C),

not(circ(C)),

all_args_canonical(C,PT,C1),

clause(C1,B),

(PT -> ([] \- B))

-> ([] \- C).

all_args_canonical(C,PT,C1) :-

functor_args(C,Functor,Args),

eval_args(Args,PT,Args1),

functor_args(C1,Functor,Args).

eval_args([],_,[]).

eval_args([X|Xs],PT,[Y|Ys]) :-

(PT -> ([X] \- Y)),

eval_args(Xs,PT,Ys).

The proof term PT must be a strategy not containing any variables (since it is
used several times). The proviso functor args/3 is defined using the prolog
primitive ’=..’:

59

On GCLA, Gisela, and MedView

functor_args(C,F,A):- C =..[F|A].

and is thus not “pure” GCLA code.
The main disadvantages of this approach are that it is less efficient and also

that the possibility to describe the desired behavior for each function and predi-
cate separately is lost.

8 Related Work

Through the years much has been written about different approaches combining
functional and logic programming, for surveys see [9, 12, 24]. An interesting,
albeit somewhat dated, overview classifying different approaches together as em-

bedding, syntactic, algebraic, and higher-order logic respectively is included in
[1]. Today, most research seems to focus on functional logic languages using nar-
rowing as their operational semantics, these correspond roughly to the algebraic
approach in [1].

8.1 Syntactic Approaches

The syntactic approach to the combination of functional and logic programming
is based on the idea that a functional (equational) program may be transformed
into a logic (Prolog) program that may then be executed using ordinary SLD-
resolution [33]. This is a well-known idea going back at least to [51]. Some more
examples of this approach may be found in [3, 39, 40, 48]. By regarding function
definitions as syntactical sugar that is transformed away the problem of giving a
computational model suitable for both functions and predicates is avoided.

We illustrate with some examples. In [40] a method is described that makes
it possible to transform function definitions into Prolog programs in such a way
that lazy evaluation is achieved. This is done by defining a relation reduce/2

based on the function definitions at hand. For instance the definition

append(X,Y) = if null(X)

then Y

else [hd(X)|append(tl(X),Y)]

is transformed into:

reduce(append(X,Y),Z) :- reduce(X,[]),reduce(Y,Z).

reduce(append(X,Y),[FX|append(RX,Y)]) :- reduce(X,[FX|RX]).

To perform computations it is also necessary to define values of lists:

reduce([],[]).

reduce([U|V],[U|V]).

60

Functional Logic Programming in GCLA

Higher-order functions can be handled by another trick reducing higher-order
variables to first-order. We illustrate with an example adopted from [1] showing
how higher-order and curryed functions are handled in [51]. A possible equational
syntax for defining the higher-order function map is:

map(F,[]) = [].

map(F,[X|Xs]) = [F(X)|map(F,Xs)].

In a functional language this kind of definition is regarded as a sugaring of the
λ-calculus, but it could also be interpreted as rewriting rules or, as we will see, as
a sugaring of a set of Horn clauses. To begin with, each n-ary function is seen as
an (n + 1)-ary predicate where the last argument gives the value of the function.
Higher-order function variables are then reduced to first-order by expressing ev-
erything at a meta-level with a binary function apply denoting (curryed) function
application, thus F(X) becomes apply(F,X). Representing the function apply/2

with the predicate apply/3, [51] desugars the definition of map into:

apply(map,F,map(F)).

apply(map(F),[],[]).

apply(map(F),[X|Xs],[FX|FXs]) :-

apply(F,X,FX),

apply(map(F),X,FXs).

A variant of the approach to handle higher-order functions has been implemented
in a transformation from a lazy functional language into GCLA [49] and could
of course, as mentioned in Section 5.5, be added to our programs as well.

8.2 Narrowing

The notion of a functional logic programming language goes back to [45] that
suggests using narrowing as the operational semantics for a functional language,
thus defining a functional logic language as a programming language with func-
tional syntax that is evaluated using narrowing. The name may also be used in
a broader sense, like in this paper, denoting any language combining functional
and logic programming.

The theoretical foundation of languages using narrowing is Horn-clause logic
with equality [43], where functions are defined by introducing new clauses for the
equality predicate. Narrowing, a combination of unification and rewriting that
originally arose in the context of automatic theorem proving [46], is used to solve
equations, which in a functional language setting amounts to evaluate functions,
possibly instantiating unknown functional arguments.

Several languages based on Horn-clause logic with equality and narrowing
have been proposed, among them are ALF [22, 23], BABEL [37], and SLOG

[17]. The language K-LEAF [18] is based on Horn-clause logic with equality but
uses a resolution-based operational semantics that is proved to be equivalent to
conditional narrowing.

61

On GCLA, Gisela, and MedView

8.2.1 Narrowing Strategies

Narrowing is a sound and complete operational semantics for functional logical
languages (Horn-clause Logic with Equality) if a fair computation rule is used2.
Unrestricted narrowing is very expensive however, so a lot of work has gone
into finding efficient versions of narrowing for useful classes of functional logic
programs. A detailed discussion of most narrowing strategies is given in [24], here
we will simply try to give the basic ideas of narrowing and mention something
about different strategies used.

On an abstract level programs in all narrowing languages consist of a number
of equational clauses defining functions:

LHS = RHS : − C1, . . . , Cn n ≥ 0

where a number of left-hand sides (LHS) with the same principal functor define a
function. The Ci’s are conditions that must be satisfied for the equality between
the LHS and the right-hand side (RHS) to hold. Narrowing can then be used to
solve equations by repeatedly unifying some subterm in the equation to be solved
with a LHS in the program, and then replacing the subterm by the instantiated
RHS of the rule.

In order to be able to use efficient but complete forms of narrowing, and to
ensure certain properties of programs, there are usually a number of additional
restrictions on equational clauses. The exact formulations of these varies between
languages but most of the following are usually included:

• The set of function symbols is partitioned into a set of constructors, corre-
sponding to our canonical objects, and a set of defined functions. The LHS
of equations are then restricted so that no defined functions are allowed in
patterns.

• The set of variables in the RHS should be included in the set of variables
in the LHS. Sometimes extra variables are allowed in the conditional part.

• No two left-hand sides should be unifiable, or if they are then the right-hand
sides must have the same value, or alternatively the conditional parts of the
equations must not both be satisfiable.

• The rewrite system formed by the equational clauses most fulfill certain
properties, for instance that it is confluent and terminating.

The restricted forms of narrowing can be given efficient implementations using
specialized abstract machines, see [24] for more details and references. Indeed,
[23] argues that functional logic programs are at least as, and often more, efficient
than pure logic programs. The possibility to get more efficient programs is due

2Just as in Prolog most actual implementations use depth-first search with backtracking, so
answers may be missed due to infinite loops

62

Functional Logic Programming in GCLA

to improved control and to the possibility to perform functional evaluation as
a deterministic rewriting process. In purely functional languages like BABEL
or K-LEAF predicates are simulated by boolean functions with some syntactic
sugaring to make them similar to Prolog predicates.

As an example of a functional logic program and a narrowing derivation con-
sider the definition

0 + N = N.

s(M) + N = s(M+N).

and the equation X+s(0)=s(s(0)) to be solved. A solution is given by first doing
a narrowing step with the second rule replacing X+s(0) by s(Y+s(0)) binding
X to s(Y). This gives the new equation s(Y+s(0))=s(s(0)). A narrowing step
with the first rule can then be used to replace the subterm Y+s(0) by s(0),
thus binding Y to 0 and therefore X to s(0). Since the equation to solve now is
s(s(0))=s(s(0)) we have found the solution X=s(0).

Basic Innermost Narrowing. Innermost narrowing is performed inside out
and therefore corresponds to eager evaluation of functions. That a narrowing
strategy is basic means that narrowing cannot be applied at subterms introduced
by substitutions but only at subterms present in the original program or goal.
This means that the possible narrowing positions can be determined at compile
time which of course is much more efficient than looking through the entire term
to be evaluated and trying all positions.

Normalizing Narrowing. A normalizing narrowing strategy prefers determin-
istic computations. Therefore the equation to be solved is reduced to normal form
by rewriting before each narrowing step. Normalizing narrowing may reduce an
infinite search space to a finite one since a derivation can be safely terminated
if the sides of an equation are rewritten to normal forms that can never yield a
solution, see Section 8.2.2 below.

Lazy Narrowing. Lazy narrowing strategies correspond to lazy evaluation of
functions. To give a good lazy narrowing strategy is much more difficult than
to evaluate a lazy functional language due to the complications introduced by
non-determinism and backtracking. Outermost narrowing only allows narrowing
at outermost positions but is generally too weak [24]. Therefore, variants like
lazy narrowing have been proposed. Lazy narrowing allows narrowing at inner
positions if it is necessary to enable some outer narrowing. Another problem is
that different rules may require evaluation of different subterms to be applicable.
As a solution, the implementation of the language BABEL suggested in [30]
transforms programs into a flat uniform (c. f. Section 7.2.2) form. Consider the
following equational program [24]:

63

On GCLA, Gisela, and MedView

f(0,0) = 0.

f(s(X),0) = 1.

f(X,s(Y)) = 2.

Here the second, but not the first, argument must always be evaluated to find a
suitable rule. The transformation into flat uniform programs makes this explicit
by giving the new program:

f(X,0) = g(X).

f(X,s(Y)) = 2.

g(0) = 0.

g(s(X)) = 1.

Other recent proposals for efficient lazy evaluation of functional languages include
demandedness analysis and needed narrowing, see [24] for more details.

8.2.2 Examples and Comparison with GCLA

To give some kind of intuitive feeling of the behavior of different narrowing strate-
gies and their relationship to the definitional approach taken in this paper we give
some simple examples.

Addition. In Section 3 we mentioned that the query

X+s(0) \- s(s(0)).

using a strict function definition like the one in Section 2.1 will loop forever after
finding the first answer. This corresponds to the behavior of basic innermost
narrowing for the definition in Section 8.2.1. An alternative solution is to use the
following lazy definition

0 <= 0.

s(X) <= s(X).

0 + N <= N.

s(M) + N <= s(M+N).

together with a specialized generated rule file. We also need an appropriate
definition of equality:

0 = 0.

s(X) = s(Y) <= X = Y.

64

Functional Logic Programming in GCLA

Now there is one unique proof to show that X+s(0) = s(s(0)) given below.
In the derivation =/2 has a corresponding D-right rule that evaluates the first
argument.

{Y = s(M + s(0))}

s(M + s(0)) ` Y
D-ax

X + s(0) ` Y
add-Dl

{Z = s(0)}

s(0) ` Z
D-ax

M + s(0) ` Z
add-Dl

{W = 0}

0 ` W
D-ax

` true
truth

` 0 = 0
eq-Dr

` M + s(0) = s(0)
eq-Dr

` X + s(0) = s(s(0))
eq-Dr

Rejection. Innermost normalizing narrowing is more powerful than any
method to achieve eager evaluation presented in this paper. To see why con-
sider the rules

append([],L) = L.

append([X|Xs],L) = [X|append(Xs,L)].

and the equation append(append([0|V],W),Y) = [1|Z]. This equation can be
reduced by deterministic rewriting to [0|append(append(V,W),Y)] = [1|Z]

and can therefore be rejected since 0 and 1 are different constructors. A corre-
sponding strict definition of append according to the methods we have presented
will fail to terminate both for the query

append(append([0|V],W),Y) \- [1|Z].

and for:

\- append(append([0|V],W),Y) = [1|Z].

8.3 Residuation

Both the programs we have presented and languages based on narrowing allow
unknown arguments to functions. Although this may be advantageous in equa-
tion solving it destroys the deterministic nature of functional evaluation when
values for functions are guessed in a non-deterministic way. Several researchers
have therefore suggested that functional expressions should only be reduced if
arguments are ground (or sufficiently instantiated), and that all non-determinism
should be represented by predicates. Predicates may then be proved using SLD-
resolution extended so that a function call in a term is evaluated before the term
is unified with another term. The exact computational model of functions is not
important as long as it ensures that each expression has a unique value. The
language Le Fun [1] uses λ-calculus to define functions, Life [2] rewrite rules, and
in [32] Standard ML is used to compute functions.

There is one problem with this method however, how should functional ex-
pressions containing unknown values be handled? The usual approach is what

65

On GCLA, Gisela, and MedView

is called residuation in Le Fun, similar methods are used in [2, 32, 39, 47]. We
illustrate residuation with an example adopted from [24].

Assume that we have the following definition relating a number to its square:

square(X,X*X).

Since relations in logic programming usually can be used in both directions we
would expect to be able to prove square(3,9) as well as find instantiations of
variables occurring in square. To find a solution to a literal like square(3,Z), X
is first unified with 3 and then the value of X*X is computed before it is unified
with Z, thus binding Z to 9. But if we try the query

?- square(V,9), V=3.

it leads to failure even though the solution is obviously implied by the program.
The reason for this failure is that 9 and the unevaluable function call V*V cannot
be unified. To avoid failures like this residuation is used; instead of failing the
evaluation of the functional expression X*X is postponed until the variable X be-
comes bound and unification of square(V,9) and square(X, X*X) succeeds with
the residuation that 9 = V*V. When V later becomes bound to 3 the residuation
can be proved and the entire goal is proved to be true. Residuation is satisfactory
for many programs, but it may also happen that solutions are not found since
variables never become instantiated, see [24] for more details and references.

8.4 Other methods

There have of course been many more proposals to combine functional and logic
programming than those we have discussed here. Also, some languages men-
tioned, e.g. the language Life, do not only combine functional and logic program-
ming but also attempt to include object-oriented and constraint logic program-
ming into one computational framework.

A recent ambitious proposal for a language combining functional and logic
programming is the language Escher [34]. Escher attempts to combine the best
parts of the logic programming languages Gödel [25] and λ-Prolog [38] and the
functional language Haskell [26], with the aim to make learning of declarative
programming easier since students will only have to learn one language, and also
to bring the functional and logic programming communities closer together, thus
avoiding some duplication of research. Escher has its theoretical foundations in
Church’s simple theory of types and an operational semantics without the usual
logic programming operations unification and backtracking. Instead, in Escher,
a goal term is rewritten to normal form using function calls and more than 100
rewrite rules.

There are also extensions to functional programming languages to give them
some logical features of logical languages. One approach is to extend function
definitions with logical guards that have to be proved to make a clause applicable

66

Functional Logic Programming in GCLA

[13], another used in the language LML (Logical Meta Language) [11], is to
have a special (built-in) data type for logical theories and then use the functional
language as a kind of glue to combine different theories together.

8.5 Discussion

We have a presented a definitional approach to functional logic programming and
given a brief overview of some prominent proposals by others. We believe that
the definitional approach has many advantages including:

• Programs are understood through a simple and elegant theory where both
predicates and functions are easily defined.

• Compared to narrowing languages an important conceptual difference is
that we differ between functions and predicates—predicates are something
more than syntactical sugar for boolean functions.

• The two-layered nature of GCLA gives the programmer very explicit con-
trol of control and at the same time gives a clean separation between the
declarative and the procedural content of a program.

• It is up to the programmer to choose lazy or strict evaluation or even com-
bine them in the same program.

• The rule-generator presented in Sections 6 and 7 provides efficient rule
definitions for free, also the specialized definitional rules presented in Section
7 gives a very natural way to handle nested terms in both functions and
predicates.

Our approach is far from perfect however, some disadvantages and areas for
future work are:

• Programs cannot be run very efficiently as discussed in Section 5.5. To solve
this we could either develop a specialized definitional functional language
or try to build a better GCLA-compiler.

• More work needs to be done on lazy evaluation strategies and/or program
transformations to be able to have less restrictions on patterns in lazy pro-
grams. Presumably ideas from the area of lazy narrowing can be used also
in the definitional setting.

• More work needs to be done on the theoretical side for instance to investi-
gate the relation between narrowing (Horn Clause Logic with equality) and
the definitional approach.

67

On GCLA, Gisela, and MedView

• The current rule-generator gives no support for modular program develop-
ment and is less efficient than it could be. An easy way to increase perfor-
mance would be to optimize the rules generated by unfolding as many rule
calls as possible.

References

[1] H. Äıt-Kaci and R. Nasr. Integrating logic and functional programming.
Lisp and Symbolic Computation, 2:51–89, 1989.

[2] H. Äıt-Kaci and A. Podelski. Towards a meaning of Life. Journal of Logic

Programming, 16:195–234, 1993.

[3] S. Antoy. Lazy evaluation in logic. In Proc. of the 3rd Int. Symposium

on Programming Language Implementation and Logic Programming, number
528 in Lecture Notes in Computer Science, pages 371–382. Springer-Verlag,
1991.

[4] P. Arenas-Sánchez, A. Gil-Luezas, and F. López-Fraguas. Combining lazy
narrowing with disequality constraints. In Proc. of the 6th International

Symposium on Programming Language Implementation and Logic Program-

ming,PLIP’94, number 844 in Lecture Notes in Computer Science, pages
385–399. Springer-Verlag, 1994.

[5] M. Aronsson. A definitional approach to the combination of functional and
relational programming. Research Report SICS T91:10, Swedish Institute of
Computer Science, 1991.

[6] M. Aronsson. Methodology and programming techniques in GCLA II. In
Extensions of logic programming, second international workshop, ELP’91,
number 596 in Lecture Notes in Artificial Intelligence. Springer-Verlag, 1992.

[7] M. Aronsson. GCLA, The Design, Use, and Implementation of a Program

Development System. PhD thesis, Stockholm University, Stockholm, Sweden,
1993.

[8] M. Aronsson, L.-H. Eriksson, A. Gäredal, L. Hallnäs, and P. Olin. The pro-
gramming language GCLA: A definitional approach to logic programming.
New Generation Computing, 7(4):381–404, 1990.

[9] M. Bellia and G. Levi. The relation between logic and functional languages:
A survey. Journal of Logic Programming, 3:217–236, 1986.

[10] H. Boley. Extended logic-plus-functional programming. In Extensions of

logic programming, second international workshop, ELP’91, number 596 in
Lecture Notes in Artificial Intelligence, pages 45–72. Springer-Verlag, 1992.

68

Functional Logic Programming in GCLA

[11] A. Brogi, P. Mancarella, D. Pedreschi, and F. Turini. Logic programming
within a functional framework. In Proc. of the 2nd Int. Workshop om Pro-

gramming Language Implementation and Logic Programming, number 456 in
Lecture Notes in Computer Science, pages 372–386. Springer-Verlag, 1990.

[12] D. DeGroot and G. Lindstrom, editors. Logic Programming, Functions, Re-

lations and Equations. Prentice Hall, New York, 1986.

[13] R. Dietrich and H. Lock. Exploiting non-determinism through laziness in
a guarded functional language. In TAPSOFT’91, Proc. of the Int. Joint

Conference on Theory and Practice of Software Development, number 494
in Lecture Notes in Computer Science. Springer-Verlag, 1991.

[14] G. Falkman. Program separation as a basis for definitional higher order
programming. In U. Engberg, K. Larsen, and P. Mosses, editors, Proceedings

of the 6th Nordic Workshop on Programming Theory. Aarhus, 1994.

[15] G. Falkman. Definitional program separation. Licentiate thesis, Chalmers
University of Technology, 1996.

[16] G. Falkman and O. Torgersson. Programming methodologies in GCLA. In
R. Dyckhoff, editor, Extensions of logic programming, ELP’93, number 798
in Lecture Notes in Artificial Intelligence, pages 120–151. Springer-Verlag,
1994.

[17] L. Fribourg. SLOG: A logic programming language interpreter based on
clausal superposition and rewriting. In Proceedings of the IEEE International

Symposium on Logic Programming, pages 172–184. IEEE Computer Soc.
Press, 1985.

[18] E. Giovannetti, G. Levi, C. Moiso, and C. Palamidessi. Kernel-LEAF: A
logic plus functional language. Journal of Computer and System Sciences,
42:139–185, 1991.

[19] L. Hallnäs. Partial inductive definitions. Theoretical Computer Science,
87(1):115–142, 1991.

[20] L. Hallnäs and P. Schroeder-Heister. A proof-theoretic approach to logic
programming. Journal of Logic and Computation, 1(2):261–283, 1990. Part
1: Clauses as Rules.

[21] L. Hallnäs and P. Schroeder-Heister. A proof-theoretic approach to logic
programming. Journal of Logic and Computation, 1(5):635–660, 1991. Part
2: Programs as Definitions.

69

On GCLA, Gisela, and MedView

[22] M. Hanus. Compiling logic programs with equality. In Proc. of the 2nd Int.

Workshop om Programming Language Implementation and Logic Program-

ming, number 456 in Lecture Notes in Computer Science, pages 387–401.
Springer-Verlag, 1990.

[23] M. Hanus. Improving control of logic programs by using functional lan-
guages. In Proc. of the 4th International Symposium on Programming Lan-

guage Implementation and Logic Programming, number 631 in Lecture Notes
in Computer Science, pages 1–23. Springer-Verlag, 1992.

[24] M. Hanus. The integration of functions into logic programming: From theory
to practice. Journal of Logic Programming, 19/20:593–628, 1994.

[25] P. Hill and J. Lloyd. The Gödel Programming Language. Logic Programming
Series. MIT Press, 1994.

[26] P. Hudak et al. Report on the Programming Language Haskell: A Non-

Strict, Purely Functional Language, March 1992. Version 1.2. Also in Sigplan
Notices, May 1992.

[27] P. Kreuger. GCLA II: A definitional approach to control. In Extensions of

logic programming, second international workshop, ELP91, number 596 in
Lecture Notes in Artificial Intelligence. Springer-Verlag, 1992.

[28] P. Kreuger. Axioms in definitional calculi. In R. Dyckhoff, editor, Extensions

of logic programming, ELP93, number 798 in Lecture Notes in Artificial
Intelligence. Springer-Verlag, 1994.

[29] P. Kreuger. Computational Issues in Calculi of Partial Inductive Definitions.
PhD thesis, Department of Computing Science, University of Göteborg,
Göteborg, Sweden, 1995.

[30] H. Kuchen, F. J. López-Fraguas, J. J. Moreno-Navarro, and M. Rodŕıguez-
Artalejo. Implementing a lazy functional logic language with disequality
constraints. In Proc. of the 1992 Joint International Conference and Sym-

posium on Logic Programming. MIT Press, 1992.

[31] H. Kuchen, R. Loogen, J. J. Moreno-Navarro, and M. Rodŕıguez-Artalejo.
Lazy narrowing in a graph machine. In Proceedings of the Second Inter-

national Conference on Algebraic and Logic Programming, number 463 in
Lecture Notes in Computer Science. Springer-Verlag, 1990.

[32] G. Lindstrom, J. Maluszyński, and T. Ogi. Our lips are sealed: Interfac-
ing functional and logic programming systems. In Proc. of the 4th Inter-

national Symposium on Programming Language Implementation and Logic

Programming, number 631 in Lecture Notes in Computer Science, pages 24–
38. Springer-Verlag, 1992.

70

Functional Logic Programming in GCLA

[33] J. W. Lloyd. Foundations of Logic Programming. Springer Verlag, second
extended edition, 1987.

[34] J. W. Lloyd. Combining functional and logic programming languages. In
M. Bruynooghe, editor, Logic Programming, Proceedings of the 1994 Inter-

national Symposium. MIT Press, 1994.

[35] R. Loogen, F. López-Fraguas, and M. Rodŕıguez-Artalejo. A demand driven
computation strategy for lazy narrowing. In Proc. of the 5th International

Symposium on Programming Language Implementation and Logic Program-

ming,PLIP’93, number 714 in Lecture Notes in Computer Science, pages
184–200. Springer-Verlag, 1993.

[36] R. Milner. Standard ML core language. Internal report CSR-168-84, Uni-
versity of Edinburgh, 1984.

[37] J. J. Moreno-Navarro and M. Rodŕıguez-Artalejo. Logic programming with
functions and predicates: The language BABEL. Journal of Logic Program-

ming, 12:191–223, 1992.

[38] G. Nadathur and D. Miller. An overview of λProlog. In R. Kowalski and
K. Bowen, editors, Proceedings of the Fifth International Conference and

Symposium on Logic Programming, pages 810–827. MIT Press, 1988.

[39] L. Naish. Adding equations to NU-Prolog. In Proc. of the 3rd Int. Symposium

on Programming Language Implementation and Logic Programming, number
528 in Lecture Notes in Computer Science, pages 15–26. Springer-Verlag,
1991.

[40] S. Narain. A technique for doing lazy evaluation in logic. Journal of Logic

Programming, 3:259–276, 1986.

[41] S. Narain. Lazy evaluation in logic programming. In Proceedings of the 1990

International Conference on Computer Languages, pages 218–227, 1990.

[42] N. Nazari. A rulemaker for GCLA. Master’s thesis, Department of Comput-
ing Science, Göteborg University, 1994.

[43] P. Padawitz. Computing in Horn Clause Theories, volume 16 of EATCS

Monographs on Theoretical Computer Science. Springer-Verlag, 1988.

[44] S. L. Peyton Jones. The Implementation of Functional Programming Lan-

guages. Prentice Hall, 1987.

[45] U. S. Reddy. Narrowing as the operational semantics of functional languages.
In Proceedings of the IEEE International Symposium on Logic Programming,
pages 138–151. IEEE Computer Soc. Press, 1985.

71

On GCLA, Gisela, and MedView

[46] J. J. Slagle. Automated theorem-proving for theories with simplifiers, com-
mutativity, and associativity. Journal of the ACM, 21(4):622–642, 1974.

[47] G. Smolka. The definition of kernel Oz. DFKI Oz documentation series, Ger-
man Research Center for Artificial Intelligence (DFKI), Saarbrücken, Ger-
many, 1994.

[48] A. Togashi and S. Noguchi. A program transformation from equational
programs into logic programs. Journal of Logic Programming, 4:85–103,
1987.

[49] O. Torgersson. Translating functional programs to GCLA. In Proceedings of

La Wintermöte 94. Department of Computing Science, Chalmers University
of Technology, 1994.

[50] O. Torgersson. A definitional approach to functional logic programming. In
R. Dyckhoff, H. Herre, and P. Schroeder-Heister, editors, Extensions of Logic

Programming 5th International Workshop, ELP’96, number 1050 in Lecture
Notes in Artificial Intelligence, pages 273–287. Springer-Verlag, 1996.

[51] D. H. D. Warren. Higher-order extensions to Prolog—are they needed? In
D. Mitchie, editor, Machine Intelligence 10, pages 441–454. Edinburgh Uni-
versity Press, 1982.

[52] D. H. D. Warren, L. M. Pereira, and F. Pereira. Prolog—the language and
its implementation compared with Lisp. SIGPLAN Notices, 12(8):109–115,
1977.

A Examples

In order to make it easier to compare the style of our programs with the style of
some other proposals integrating functional logic programming, we provide some
examples adopted from different sources. The following implicit type definitions
are assumed to be included in programs using natural numbers and lists:

0 <= 0.

s(X) <= s(X).

succ(X) <= s(X).

[]<= [].

[X|Xs] <= [X|Xs].

cons(X,Xs) <= [X|Xs].

72

Functional Logic Programming in GCLA

A.1 Quick Sort

The code for quick sort given in Section 6.3 is cluttered with universally quantified
conditions and evaluation clauses. Here we have a nicer syntax for quantifiers and
let the rule level evaluate arguments to functions. We also use the operator @ to
denote append.

qsort([]) <= [].

qsort([X|Xs]) <= pi [L,G] \

split(X,Xs,L,G) -> (qsort(L) @ cons(X,qsort(G))).

split(_,[],[],[]).

split(E,[F|R],[F|Z],X) <= E >= F,split(E,R,Z,X).

split(E,[F|R],Z,[F|X]) <= E < F,split(E,R,Z,X).

[] @ Ys <= Ys.

[X|Xs] @ Ys <= cons(X,Xs@Ys).

A.2 Sieve Revisited

The code below for sieve is basically the same as in Section 5.4, but without
evaluation clauses for arguments.

primes <= sieve(from(2)).

sieve([P|Ps]) <= [P|sieve(filter(P,Ps))].

filter(N,[X|Xs]) <= if(X mod N =:= 0,

filter(N,Xs),

[X|filter(N,Xs)]).

from(M) <= [M|from(M+1)].

print_list([X|Xs]) <= system((format(’~w ’,[X]),ttyflush)),

print_list(Xs).

The generated rule definition is shown below, note that we have instructed the
rule-generator to create a rule that evaluates the argument to from (c. f. Sec-
tion 5.4):

primes0_d_left <=

functor(A,primes,0),

definiens(A,Dp,_),

(sieve1_d_left -> ([Dp] \- C))

-> ([A] \- C).

73

On GCLA, Gisela, and MedView

sieve1_d_left <=

(eval -> ([X1] \- Y1)),

definiens(sieve(Y1),Dp,_),

(axiom -> ([Dp] \- C))

-> ([sieve(X1)] \- C).

filter2_d_left <=

(eval -> ([X2] \- Y2)),

definiens(filter(X1,Y2),Dp,_),

(if_left(_,eq_right(_,eval,eval),filter2_d_left,

axiom) -> ([Dp] \- C))

-> ([filter(X1,X2)] \- C).

from1_d_left <=

(eval -> ([X1] \- Y1)),

definiens(from(Y1),Dp,_),

(axiom -> ([Dp] \- C))

-> ([from(X1)] \- C).

print_list1_d_right <=

(eval -> ([X1] \- Y1)),

clause(print_list(Y1),B),

(v_right(_,system_right(_),print_list1_d_right) -> ([] \- B))

-> ([] \- print_list(X1)).

case_l([],axiom).

case_l([A|B],axiom).

case_l(primes,primes0_d_left).

case_l(sieve(A),sieve1_d_left).

case_l(filter(A,B),filter2_d_left).

case_l(from(A),from1_d_left).

case_r(print_list(A),print_list1_d_right).

A.3 Serialise

Our next example is adopted from [10, 52]. It defines a function serialise which
transforms a string (list of characters) into a list of their alphabetic serial numbers,
for instance serialise("prolog") should give the result [4,5,3,2,3,1]. The
definition using lazy evaluation becomes:

nil <= nil.

74

Functional Logic Programming in GCLA

node(E,L,R) <= node(E,L,R).

p(X,Y) <= p(X,Y).

serialise(L) <= (numbered(arrange(zip(L,R)),1) -> _) -> R.

zip([],[]) <= [].

zip([X|L],[Y|R]) <= [p(X,Y)|zip(L,R)].

arrange([]) <= nil.

arrange([X|L]) <= partition(L,X,L1,L2)

-> node(X,arrange(L1),arrange(L2)).

partition([],_,[],[]).

partition([X|L],X,L1,L2) <= partition(L,X,L1,L2).

partition([X|L],Y,[X|L1],L2) <= before(X,Y),partition(L,Y,L1,L2).

partition([X|L],Y,L1,[X|L2]) <= before(Y,X),partition(L,Y,L1,L2).

before(p(X1,_),p(X2,_)) <= X1 < X2.

numbered(nil,N) <= N.

numbered(node(p(X,N1),T1,T2),N0) <=

numbered(T2,((numbered(T1,N0) -> N1) -> N1 + 1)).

A short explanation is appropriate; zip combines the input list of characters with
a list R of unbound logical variables into a list of pairs, the list of pairs is then
sorted and put into a binary tree. Finally, numbered assigns a number to each
logical variable variable in the tree, simultaneously binding the variables in R.

A.4 N-Queens

We also show a definition (inspired by [40]) combining lazy functions predicates
and non-determinism into a generate and test program for the N-Queens problem.
Note how fromto is made strict by using cons and also note the non-deterministic
function insert.

queens(N) <= safe(perm(fromto(1,N))).

safe([]) <= [].

safe([Q|Qs]) <= [Q|safe(nodiag(Q,Qs,1))].

nodiag(_,[],_) <= [].

nodiag(Q,[X|Xs],N) <= noattack(Q,X,N) -> [X|nodiag(Q,Xs,N+1)].

75

On GCLA, Gisela, and MedView

noattack(Q1,Q2,N) <= Q1 > Q2,N \= Q1-Q2.

noattack(Q1,Q2,N) <= Q1 < Q2,N \= Q2-Q1.

perm([])<= [].

perm([X|Xs]) <= insert(X,perm(Xs)).

insert(X,[]) <= [X].

insert(X,[Y|Ys]) <= [X,Y|Ys],[Y|insert(X,Ys)].

fromto(N,M) <= if(N=:=M,

[N],

cons(N,fromto(N+1,M))).

A.5 Imitating Higher Order Functions

This program uses an extra function apply to imitate higher order programming.
The function gen_bin computes all binary numbers of length n. The operator
‘@’ is as defined in the quick sort example.

1 <= 1.

cons(X) <= cons(X).

map(_,[]) <= [].

map(F,[X|Xs]) <= cons(apply(F,X),map(F,Xs)).

gen_bin(0) <= [[]].

gen_bin(s(X)) <=

(gen_bin(X) -> Nums)

-> map(cons(0),Nums) @ map(cons(1),Nums).

apply(cons(X),Y) <= cons(X,Y).

A.6 Hamming Numbers

Finally, a program computing hamming numbers. In this program we combine
both lazy (ham, mlist, merge) and strict (addition and multiplication) functions
with predicates (nth hamming, nth mem, ‘<’).

nth_hamming(N,M) <= nth_mem(N,ham,M).

nth_mem(0,[X|Xs],X).

nth_mem(s(N),[X|Xs],Y) <= nth_mem(N,Xs,Y).

ham <= [s(0)|merge(mlist(s(s(0)),ham),

76

Functional Logic Programming in GCLA

merge(mlist(s(s(s(0))),ham),

mlist(s(s(s(s(s(0))))),ham)))].

mlist(N,[X|Xs])<= (N*X -> M) -> [M|mlist(N,Xs)].

merge([X|Xs],[Y|Ys]) <= if(X < Y,

[X|merge(Xs,[Y|Ys])],

if(Y < X,

[Y|merge([X|Xs],Ys)],

[X|merge(Xs,Ys)])).

0 + N <= N.

s(M) + N <= succ(M + N).

0 * N <= 0.

s(M) * N <= (M * N) + N.

0 < s(_).

s(M) < s(N) <= M < N.

The predicate nth hamming can be used both to compute the nth hamming num-
ber, to give the number of a certain hamming number, and to enumerate all
hamming numbers on backtracking.

The rule definition shown below was generated by manually telling the rule
generator what arguments to evaluate for each function and predicate, thus mak-
ing it possible to freely mix functions, predicates, strict, and lazy evaluation in
one program. We only show the definitional rules for each function and predicate
since that is enough to see how arguments are evaluated.

% specialized d_left-rules for each function

nth_hamming2_d_right <=

functor(A,nth_hamming,2),

clause(A,B),

(nth_mem3_d_right -> ([] \- B))

-> ([] \- A).

nth_mem3_d_right <=

(eval -> ([X1] \- Y1)),

(eval -> ([X2] \- Y2)),

clause(nth_mem(Y1,Y2,X3),B),

(nth_mem3_next(B) -> ([] \- B))

-> ([] \- nth_mem(X1,X2,X3)).

77

On GCLA, Gisela, and MedView

ham0_d_left <=

functor(A,ham,0),

definiens(A,Dp,_),

(axiom -> ([Dp] \- C))

-> ([A] \- C).

mlist2_d_left <=

(eval -> ([X2] \- Y2)),

definiens(mlist(X1,Y2),Dp,_),

(a_left(_,a_right(_,’*2_d_left’),axiom) -> ([Dp] \- C))

-> ([mlist(X1,X2)] \- C).

merge2_d_left <=

(eval -> ([X1] \- Y1)),

(eval -> ([X2] \- Y2)),

definiens(merge(Y1,Y2),Dp,_),

(if_left(_,’<2_d_right’,axiom,

if_left(_,’<2_d_right’,axiom,axiom))

-> ([Dp] \- C))

-> ([merge(X1,X2)] \- C).

’+2_d_left’ <=

(eval -> ([X1] \- Y1)),

definiens(+(Y1,X2),Dp,_),

(eval -> ([Dp] \- C))

-> ([+(X1,X2)] \- C).

’*2_d_left’ <=

(eval -> ([X1] \- Y1)),

definiens(*(Y1,X2),Dp,_),

(’*2_next’(Dp) -> ([Dp] \- C))

-> ([*(X1,X2)] \- C).

’<2_d_right’ <=

(eval -> ([X1] \- Y1)),

(eval -> ([X2] \- Y2)),

clause(<(Y1,Y2),B),

(’<2_next’(B) -> ([] \- B))

-> ([] \- <(X1,X2)).

succ1_d_left <=

(eval -> ([X1] \- Y1)),

definiens(succ(Y1),Dp,_),

78

Functional Logic Programming in GCLA

(axiom -> ([Dp] \- C))

-> ([succ(X1)] \- C).

B FL in GCLA

This appendix shows how the calculus FL presented in Section 3 is coded as
a rule definition in GCLA. The code contains no search strategies since the
deterministic nature of FL makes them superfluous.

:- multifile(constructor/2).

%%% declarations of the condition constructors used in FL.

constructor(true,0).

constructor(false,0).

constructor(’,’,2).

constructor(’;’,2).

constructor((->),2).

constructor(pi,1).

constructor(^,2).

constructor(not,1).

%%% Rules Relating Atoms to a Definition

d_right(C,PT) <=

atom(C),

clause(C,B),

C \== B,

(PT -> ([] \- B))

-> ([] \- C).

d_left(T,PT) <=

atom(T),

definiens(T,Dp,N),

T \== Dp,

(PT -> ([Dp] \- C))

-> ([T] \- C).

d_axiom(T,C) <=

term(T),

term(C),

unify(T,C),

circular(T)

-> ([T] \- C).

79

On GCLA, Gisela, and MedView

%%% Rules for Constructed Conditions

truth <= ([] \- true).

falsity <= functor(C,false,0) -> ([C] \- false).

a_right((A -> B),PT) <=

(PT -> ([A] \- B))

-> ([] \- (A -> B)).

a_left((A -> B),PT1,PT2) <=

(PT1 -> ([]\- A)),

(PT2 -> ([B] \- C))

-> ([(A -> B)] \- C).

v_right((C1,C2),PT1,PT2) <=

(PT1 -> ([] \- C1)),

(PT2 -> ([] \- C2))

-> ([] \- (C1,C2)).

v_left((C1,C2),PT1,PT2) <=

((PT1 -> ([C1] \- C)) -> ([(C1,C2)] \- C)),

((PT2 -> ([C2] \- C)) -> ([(C1,C2)] \- C)).

o_right((C1 ; C2),PT1,PT2) <=

((PT1 -> ([] \- C1)) -> ([] \- (C1 ; C2))),

((PT2 -> ([] \- C2)) -> ([] \- (C1 ; C2))).

o_left((A1 ; A2),PT1,PT2) <=

(PT1 -> ([A1] \- C)),

(PT2 -> ([A2] \- C))

-> ([(A1 ; A2)] \- C).

pi_left((pi X \ A),PT) <=

inst(X,A,A1),

(PT -> ([A1] \- C))

-> ([(pi X \ A)] \- C).

sigma_right((X^C),PT) <=

inst(X,C,C1),

(PT -> ([] \- C1))

-> ([] \- (X^C)).

not_right(not(C),PT) <=

80

Functional Logic Programming in GCLA

(PT -> ([C] \- false))

-> ([] \- not(C)).

not_left(not(A),PT) <=

(PT -> ([] \- A))

-> ([not(A)] \- false).

%%% Definition of the proviso circular/1

circular(T) :- when_nonvar(T,canonical_object(T)).

canonical_object(T) :- definiens(T,Dp,1),T == Dp.

when_nonvar(A,B) :- user:freeze(A,B).

C Flplus

FLplus is made up of all the rules of FL plus the rules listed here. Note that
FLplus is deterministic so we do not show any search-strategies. We have also
included rules for dynamically changing the definition. These are really the same
as the standard ones with restricted antecedents and are discussed in [6].

constructor(if,3).

constructor(\+ ,1).

constructor(system,1).

constructor(add_def,2).

constructor(rem_def,2).

if_left(if(B, T, E), P1, P2, P3) <=

(((P1->([] \- B)) -> ([if(B,T,E)] \- C)) <- (P2->([T] \- C))),

((P3 -> ([E] \- C)) -> ([if(B,T,E)] \- C)).

naf_right((\+ C), PT) <=

(((PT -> ([] \- C)) -> ([] \- (\+ C))) <- false),

([] \- (\+ C)).

system_right(system(C)) <=

C -> ([] \- system(C)).

add_left(add_def(X,Y),PT) <=

add(X),

(PT -> ([Y] \- C))

-> ([add_def(X,Y)] \- C).

81

On GCLA, Gisela, and MedView

rem_left(rem_def(X,Y),PT) <=

rem(X),

(PT -> ([Y] \- C))

-> ([rem_def(X,Y)] \- C).

add_right(add_def(X,Y),PT) <=

add(X),

(PT -> ([] \- Y))

-> ([] \- add_def(X,Y)).

rem_right(rem_def(X,Y),PT) <=

rem(X),

(PT -> ([] \- Y))

-> ([] \- rem_def(X,Y)).

We do not actually list all the rules to handle arithmetics since they are really all
the same, only the arithmetical operation differ. Instead we list the constructor
declarations and four example rules.

constructor(int,1).

constructor(=:=,2).

constructor(=\=,2).

constructor(<,2).

constructor(>=,2).

constructor(>,2).

constructor(=<,2).

constructor(’*’,2).

constructor(’/’,2).

constructor(’//’,2).

constructor(’+’,2).

constructor(’-’,2).

integer_left(int(X),PT,PT1) <=

(PT -> ([X] \- n(X1))),

Y is integer(X1),

(PT1 -> ([n(Y)] \- C))

-> ([int(X)] \- C).

mul_left(*(A,B),PT1,PT2,PT3) <=

(PT1 -> ([A] \- n(A1))),

(PT2 -> ([B] \- n(B1))),

X is A1 * B1,

(PT3 -> ([n(X)] \- C))

-> ([(A * B)] \- C).

82

Functional Logic Programming in GCLA

gt_right(>(X,Y),PT1,PT2) <=

(PT1 -> ([X] \- n(NX))),

(PT2 -> ([Y] \- n(NY))),

NX > NY

-> ([] \- X > Y).

eq_right(=:=(X,Y),PT1,PT2) <=

(PT1 -> ([X] \- n(N))),

(PT2 -> ([Y] \- n(M))),

N =:= M

-> ([] \- (X=:=Y)).

D Building Blocks for Generated Rules

All rules created by the rule-generator include some common building blocks and
top-level strategies as described in Section 6.2.4. If the basic rules are pure FL

these strategies are as shown below. If FLplus is used instead some clauses are
added to case l and case r. Apart from generating specialized procedural parts
to each function and predicate the rule-generator adds a number of clauses to
the provisos case l, and case r and if lazy evaluation is suspected creates the
proviso show cases.

% The file "fl.rul" must be loaded.

% :- include_rules(lib(’FLRules/fl.rul’)).

% Clauses may be added to case_l/2 and case_l/2 from other files

:- multifile(case_l/2).

:- multifile(case_r/2).

% Additional simple axiom rule, only to be used in generated rules

% at places where we know that axiom should be applied.

axiom <=

unify(T,C)

-> ([T] \- C).

% Top-level strategies.

fl_gen <= fl_gen(_).

fl_gen(A) <= (A \- _).

fl_gen([]) <= prove.

fl_gen([A]) <= eval.

83

On GCLA, Gisela, and MedView

eval <= left(_).

left(T) <= ([T] \- _).

left(T) <=

(left1(T) <- true),

(var(T) -> d_axiom(_,_)).

left1(T) <= nonvar(T),case_l(T,PT) -> PT.

prove <= right(_).

right(C) <= ([] \- C).

right(C) <= nonvar(C),case_r(C,PT) -> PT.

% The basic definitions of case_l and case_r state which rule

% to use for each predefined condition constructor.

case_l(false,falsity).

case_l((_ -> _),a_left(_,right(_),left(_))).

case_l((_,_),v_left(_,left(_),left(_))).

case_l((_;_),o_left(_,left(_),left(_))).

case_l((pi_ \ _),pi_left(_,left(_))).

case_l(not(_),not_left(_,fl)).

case_r(true,truth).

case_r((_,_),v_right(_,right(_),right(_))).

case_r((_;_),o_right(_,right(_),right(_))).

case_r((_ -> _),a_right(_,left(_))).

case_r(not(_),not_right(_,fl)).

case_r((_^_),sigma_right(_,right(_))).

% Show is a top level strategy used to force evaluation,

% the definition of show_case/4 is added by the rule-generator.

show <= show(eval).

show(PT) <=

eval_these(T,PT,Exp,C1),

Exp,

unify(C,C1)

-> ([T] \- C).

eval_these(T,PT,Exp,C) :- nonvar(T),show_case(T,PT,Exp,C).

eval_these(T,_,true,T) :- var(T),circular(T).

84

Gisela—A Framework for Definitional

Programming

Olof Torgersson

Department of Computing Science
Chalmers University of Technology and Göteborg University

S-412 96 Göteborg,Sweden
oloft@cs.chalmers.se

Abstract

We describe Gisela, a framework for developing systems based on defini-

tional models. The framework can be seen as a successor to the definitional

programming tools GCLA and GCLAII. Compared to these, Gisela was

designed to provide for a cleaner definitional programming methodology

and to allow for new ideas on programming with definitions not covered by

previous systems. Another important goal has been to create a system suit-

able for use as an embedded deductive database engine in object-oriented

applications with GUIs. The computational model and implementation

are described, and a number of example programs are given to illustrate

how the framework can be used.

1 Introduction

Declarative programming comes in many flavors. There are functional languages,
lazy functional languages, logic languages, constraint logic languages, functional
logic languages and so on. Common to most of these is the concept of a definition.
Function definitions are given, predicates are defined etc. Yet another approach
to declarative programming is what we call definitional programming. In a def-
initional program, the definition is the basic notion, not functions, predicates,
or constraints. Since both functions and predicates conceptually are given using
definitions, taking the definition as the basic notion puts definitional program-
ming at a lower level. This said, we also believe that definitional programming
does, and should, provide for a large degree of freedom. Using the tools presented
here many different kinds of programs and evaluation strategies can be expressed,
although it might take some more work than using a higher-level declarative sys-
tem. The situation can be compared to imperative languages. A language like

1

On GCLA, Gisela, and MedView

Ada or Java puts programming on a higher level than C. On the other hand, no
other widely used imperative language gives the freedom provided by C.

With Gisela1, we have tried to keep the flexibility of the definitional program-
ming tool GCLAII and move on to another level. Gisela should not be seen as
a programming language with a fixed syntax and semantics, but as a framework
for definitional programming. The intention is to provide a set of tools that
are useful for realizing definitional (knowledge) models into executable programs.
The framework gives an abstract description of definitions in terms of sets and
operations. It also provides a general machinery for computing with definitions,
which does not depend on the details of how definitions are realized. Depending
on the application at hand, the tools may be used to implement programs using
a variety of different kinds of definitions and evaluation orders. Furthermore, the
framework also contains all the building blocks we need to construct a complete
definitional program, if we have no requirements beyond those provided by the
Gisela framework.

Theoretically, the basis for all work on definitional programming so far is, in
some sense, the theory of Partial Inductive Definitions (PID) [25]. Although the
definitions and proof-systems presented in this paper differ in many ways from the
original PIDs the heritage should be obvious. The model presented here builds
on, and borrows from, earlier definitional programming systems, reformulated,
augmented and constrained to fit the needs set up as goals for Gisela.

The definitional programming tools GCLA [9, 10] and GCLAII [6, 11, 36],
were based on finitary versions [29, 30, 38] of the infinitary PID theory. The basic
motivation for the development of these tools was to find a suitable modeling
tool for knowledge-based systems. GCLAII was successfully used in a number of
applications, including construction planning [7], music theory [47], and reasoning
about circuits [24]. It was also used for knowledge representation in the initial
phases of the MedView project [1, 28].

As definitional programming evolved, and new demands were set by the Med-
View project, it became obvious that a replacement for GCLAII was needed.
Some of the problems with GCLAII and ideas for a new definitional tool are
discussed in [58]. Gisela is the result of our efforts at building this replacement.
During development, several of the initial requirements have changed, both with
respect to the theoretic model used and the realization as a framework for defi-
nitional programming. However, several central ideas remain the same.

Among the goals we have had in mind while developing Gisela are:

• To design a framework for definitional programming rather than a defini-
tional programming language.

1In Swedish the preceding definitional language GCLAII was pronounced “Gisela 2”. Since

GCLA was an acronym for Generalized Horn Clause Language, which did not feel appropriate

in the current setting, we kept the way GCLA was pronounced but changed the spelling.

2

Gisela—A Framework for Definitional Programming

• To describe definitional computations in a sufficiently abstract manner to
make the above possible.

• To provide a framework suitable for use for knowledge representation and
reasoning in the MedView project.

• To build a framework which can easily be integrated into a modern object-
oriented application programming environment.

• To provide a machinery that can be used as a definitional programming
language based on a particular concrete syntax.

• To give a description of definitional programming that breaks the links to
Prolog present in GCLA.

• To provide a framework that is complete enough to be used as is, but which
can also easily be extended. Accordingly, the behavior of Gisela can be
modified and extended by providing specialized observers (see Section 4.3)
or new definition object classes.

• To keep the distinction between declarative and procedural parts of pro-
grams used in GCLAII, thus separating declarative descriptions and con-
trol information.

• To allow a more fine-grained definiens operation. The definiens operation
as described in [7, 30, 38] is very costly. By implementing several different
versions for different tasks, efficiency can be gained in many cases.

• To allow any number of distinct definitions in programs. The GCLAII

system used two: the declarative (object) definition and the procedural
(rule) definition.

• To allow for new definitional programming ideas [18, 19, 21, 22, 58] while
keeping many techniques developed for GCLAII.

• To create a portable implementation.

To meet the goal of smooth integration into a modern object-oriented application
programming environment, Gisela is realized as an object-oriented framework
for definitional computing. This framework provides a complete object-oriented
application programming interface (API) for building definitional components
for use in applications, see Section 5.6. The realization as an object-oriented
framework also solves the issue of flexibility since it is possible to introduce new
classes, or subclass existing ones, to customize the behavior of the system. A
second API is provided in terms of equational syntactic representations, which
enables the use of Gisela as a “traditional” declarative programming language,
see Section 5.1. In addition, the two APIs may be mixed freely.

3

On GCLA, Gisela, and MedView

Gisela is still very much of an ongoing project. However, we believe that the
basic design will remain the same and we are developing various applications to
test and investigate programming using the Gisela framework.

The general organization of the rest of this paper is that we make a number
of iterations through Gisela where each iteration provides more detail than the
previous ones. Thus, in Section 2 we give a few examples of programs built using
Gisela to give a flavor of the general ideas. In Section 3 we introduce, in a general
way, the definitional computation model of Gisela. It is followed by a description
of Gisela and its operational semantics in Section 4. Section 5 gives a variety of
examples showing how Gisela can be used in various ways. Section 6 refines the
computational model into a more fine-grained operational semantics that is more
suited as a basis for implementation. In Section 7 an overview of the current
implementation is given. Section 8 finally, sums it all up with a discussion of
Gisela, its relation to other declarative programming systems, future directions
etc.

2 Samples

Programs in Gisela consist of an arbitrary number of data definitions and method
definitions. The data definitions describe the declarative content of the program,
and the method definitions give the algorithms, or search strategies, used to
compute solutions. A query is built from a method definition and an initial state
definition. The method definition tells the system how to compute an answer from
the initial state definition. The result of a computation is another state definition,
referred to as the result definition, and an answer substitution for variables in the
initial state definition. By default, the result definition is rather complex and
contains information, not only about the answer as such, but information about
how it was computed as well. Depending on the application, the result definition
may be simplified in different ways, since the full definition may not be interesting
and building it requires a lot of resources.

All examples in this section are based on the syntactic representations of
definitions described in Section 5.1. The example queries have been run using
the interactive system discussed in Section 5.8.

2.1 A Toy Expert System

As a first example we consider a toy expert system adopted from [6]. The knowl-
edge base of the system is the following data definition:

definition diseases.

symptom(high_temp) = disease(pneumonia).

symptom(high_temp) = disease(plague).

4

Gisela—A Framework for Definitional Programming

symptom(cough) = disease(pneumonia).

symptom(cough) = disease(cold).

The data definition, named diseases, contains the connections between symp-
toms and diseases, but no facts. To ask the system what a possible disease might
be, based on observed facts, e.g. symptoms, we form a query using a method
definition and an initial state definition. For instance, assume that the patient
has the symptom high_temp, from which diseases does this follow?

G3> lra(diseases){disease(X) = symptom(high_temp)}.

The meaning of the query is “use the method definition lra instantiated with
the domain knowledge in the data definition diseases to compute a result def-
inition from the initial state definition {disease(X) = symptom(high_temp)}”.
Generally, the form of a query is m{e1, . . . , en} where m is the method definition
to use to compute a result from the initial state definition {e1, . . . , en}.

Now, let us run the above query and have a look at the result:

G3> lra(diseases){disease(X) = symptom(high_temp)}.

X = pneumonia,

{

[lra,r:D] = {

[D] = {

disease(pneumonia) = disease(pneumonia)

}

}

}

?

The question mark at the end of the system’s response indicates that there may
be more answers to the query. Typing a semi-colon will cause the system to
attempt to compute the next answer. What has been computed here is the full
result definition for the query. The result definition can be viewed as a partial
trace of the computation. More details are given in Section 3. As with most
examples adopted from GCLA, the result definition is of no particular interest
in this case. Therefore, we ask the system to display only the computed answer
substitution and re-run the query:

G3> restype(vars_only).

G3> lra(diseases){disease(X) = symptom(high_temp)}.

X = pneumonia

? ;

X = plague

? ;

no

5

On GCLA, Gisela, and MedView

The answer tells us that high_temp could be caused by pneumonia or plague.
The method definition lra is actually a reusable method-scheme that can be

instantiated with different data definitions:

method lra:[D].

lra = [lra, l:D] # some l:in_dom(D).

lra = [lra, r:D] # some r:in_dom(D) & all not(l:in_dom(D)).

lra = [D] # all not(l:in_dom(D); r:in_dom(D)).

The first line states that lra is a method definition that takes one parameter, a
data definition D. The remaining lines are three equations that describe the be-
havior implemented by lra. The general form of equations in method definitions
is M = Condition#Guard, where Guard decides if the equation can be applied
and Condition describes possible sequences of operations to perform.

The method lra attempts to replace left and right-hand sides of equations
in the current state definition using the data definition D. If this is not possible,
the third equation of lra will try to unify the left and right-hand side of some
equation in the state definition. If no equation of lra can be applied, the answer
to the query is no.

One way to view lra is as a method definition implementing a subset of
the general inference machinery of GCLA. More on how Gisela can be used for
GCLA-style programming can be found in Section 5.2.

2.2 Logic Programming

Pure Prolog [51] is a subset of Gisela, just as it is a subset of GCLA [29].
Pure Prolog programs can be transformed into valid Gisela definitions simply by
substituting ‘=’ for ‘:-’ throughout.2 Some examples of Prolog-style predicates
are given in the following data definition:

definition lpsample.

permutation([], []).

permutation([X|Xs], [Y|Ys]) =

select(Y, [X|Xs], Zs),

permutation(Zs, Ys).

select(X, [X|Xs], Xs).

select(Y, [X|Xs], [X|Ys]) = select(Y, Xs, Ys).

hanoi(s(0), A, B, C, [mv(A,B)]).

hanoi(s(N), A, B, C, Moves) =

2Actually, Prolog programs can be handled directly, as is, by a special definition class.

6

Gisela—A Framework for Definitional Programming

hanoi(N, A, C, B, Ms1),

hanoi(N, C, B, A, Ms2),

append(Ms1, [mv(A,B)|Ms2], Moves).

append([], Ys, Ys).

append([X|Xs], Ys, [X|Zs]) = append(Xs, Ys, Zs).

The predicate append/3 is the canonical logic programming example of how pred-
icates can be used in several modes. We use a method definition called prolog,
shown below, to try out logic programming in Gisela. Again, we have set the
system to show only the substitution part of the answer:

G3> prolog(lpsample){true = append([a,b],[c],Xs)}.

Xs = [a,b,c]

? ;

no

G3> prolog(lpsample){true = append(Xs, Ys, [a,b])}.

Xs = [],

Ys = [a,b]

? ;

Xs = [a],

Ys = [b]

? ;

Xs = [a,b],

Ys = []

? ;

no

Another query using the definition lpsample and the method prolog is

G3> prolog(lpsample){true = permutation([a,b,c],L)}.

The intended reading of this query is “is there an L such that L is a permutation of
[a,b,c]”. The computed answer substitutions are the six possible permutations
of [a,b,c]. The result definition, again, is of no particular interest.

Finally, the predicate hanoi/5 solves the well-known towers of Hanoi problem.
The problem is to move a tower of n disks from one peg to another with the help
of an auxiliary peg. Only one disk can be moved at a time and a larger disk
can never be placed on top of a smaller disk. The first argument of hanoi is the
number of disks to move. The result is a list of moves where mv(A,B) means
“move the top disk from A to B”.

To solve the problem for 3 disks we run the query

G3> prolog(lpsample){true = hanoi(s(s(s(0))), a, b, c, Moves)}.

7

On GCLA, Gisela, and MedView

Moves =

[mv(a,b),mv(a,c),mv(b,c),mv(a,b),mv(c,a),mv(c,b),mv(a,b)]

? ;

no

which computes a single answer just as we would expect it to do.

The method definition prolog is very simple:

method prolog:[P].

prolog = [] # some r:matches(true).

prolog = [prolog, r:P] # all not(r:matches(true)).

Note that it is assumed that the initial state definition used contains only one
equation. Otherwise, the query does not correspond to a Prolog query. What
prolog, parameterized with the program definition P, does is simply to apply the
correct computation rule (see Sections 3.5.1 and 4.2) to the right-hand side of
the the single equation of the state definition as long as it does not equal true.
When the right-hand side equals true the query is proved and evaluation stops.

2.3 Functional Evaluation

As in GCLA, a kind of (first-order) functional programming is possible in Gisela.
If we have the data definitions

definition nats:matching.

zero = zero.

s(X) = s(X).

definition plus:matching.

plus(zero, N) = N.

plus(s(M), N) =

(plus(M, N) -> K)

-> s(K).

and a method definition fun, which takes two parameters, a definition defining
data objects and a definition defining functions, the query

G3> fun(nats, plus){plus(s(zero),s(zero)) = X}.

8

Gisela—A Framework for Definitional Programming

will compute the expected answer substitution {X = s(s(zero))}. The slightly
complex method definition fun is not shown here. If we combine logic program-
ming with functional evaluation we get functional logic programming. General
programming methodology and method definitions for functional logic program-
ming using the Gisela framework are discussed in Section 5.5.

2.4 Hamming Distance

All the examples above are adopted from GCLA programs. Since GCLA is
essentially an extension to logic programming, the interesting part of the answer
is the computed answer substitution for variables in the initial state definition.
One of the objectives of Gisela is to allow for other ways of computing with
definitions, where the computed result definition is the interesting part of the
answer. Studying properties of definitions, such as similarity, is an example of
this.

Hamming distance is a notion generally used to measure difference with re-
spect to information content. The Hamming distance between two code-words,
for example 001001110110 and 101100101100, is the number of positions where
the words differ, in this case six. If the Hamming distance between two words is
d it takes d simple bit-transformations to transform one word into the other.

In this example we let each code-word be represented by a data definition.
Thus, the word 1101 is represented by

definition w1.

w(0) = 1.

w(1) = 1.

w(2) = 0.

w(3) = 1.

and the word 0110 by:

definition w2.

w(0) = 0.

w(1) = 1.

w(2) = 1.

w(3) = 0.

To compute the Hamming distance between w1 and w2 we ask the query

G3> lr(w1,w2){w(0)=w(0), w(1)=w(1), w(2)=w(2), w(3)=w(3)}

which computes the result definition {1=0, 1=1, 0=1, 1=0}. What we have
computed is, so to speak, how similar w1 and w2 are. From this similarity measure,

9

On GCLA, Gisela, and MedView

it is easy to see that the Hamming distance is 3. Definitional similarity measures
are described in [20], another example using Gisela can be found in Section 5.4.

The method lr expands the initial state definition as far as possible by re-
placing atoms according to the actual data definitions used. When a state where
no equation can be changed is reached the computation stops:

method lr:[L,R].

lr = [lr,l:L] # some l:in_dom(L).

lr = [lr,r:R] # (all(not(l:in_dom(L))) & some(r:in_dom(R))).

lr = [] # all((not(l:in_dom(L)) , not(r:in_dom(R)))).

The first equation of lr can be read as follows: ”If the left-hand side of some
equation in the current state definition is in the domain of the definition L, then
use L to replace the left-hand side of some equation by its definiens and continue
the computation using the method definition lr”.

2.5 Database Search

Imagine a database built as a large number of data definitions:

definition record1.

id = t(14).

status = active.

definition record2.

id = t(23).

status = passive.

definition record3.

id = t(11).

status = active.

...

A suitable method definition here will be one that replaces right-hand sides in
the state definition until both sides are equal in some equation:

method sri:[Record].

sri = [sri, r:Record] # some r:in_dom(Record) & all not(identity).

sri = [] # some identity.

The guard of the first equation of sri holds if the right-hand side of some equation
in the state definition is in the domain of Record and no equation is an identity.
The guard of the second equation holds if some equation in the state definition
is an identity.

10

Gisela—A Framework for Definitional Programming

Now, if we wish to find all records in the database which have the value active
for the attribute status we can instantiate a method-scheme with a parameter
set instead of, as in earlier examples, with a single definition. This will have the
effect that all the definitions in the parameter set are used to create instances of
the method sri. A query could be:

sri(R <- records){active = status}.

The query has the answers:

{active = active}, R = record1,

{active = active}, R = record3

which tells us that record1 and record3 are the ones we are looking for.
We conclude this section by showing how the above query can be setup and

run in Objective-C using the Gisela framework. Assuming that sri is an object
representing the method-scheme sri, recordDB contains all the records in the
database, and that state is the initial state definition, the following will collect
all matching records (definitions) in the array matches:

// (1) Some declarations

DFDMachine *dMachine;

DFQuery *query;

DFAnswer *answer = nil;

NSMutableArray *matches = [NSMutableArray array];

// (2) Create Gisela machine.

dMachine = [[DFDMachine alloc] init];

// Create query.

query = [[DFQuery alloc] initWithMethodScheme:sri

stateDefinition:state

andParameterSets:recordDB];

// (3) Set query and run while there are answers.

[dMachine setQuery:query];

while (answer = [dMachine nextAnswer]) {

[matches addObject:[[answer parameterValues] objectAtIndex:0]];

}

All entities used in definitional computations can be represented using objects of
various classes provided by the Gisela framework. A small subset of these classes
are used in the present example. For example, the code following (2) creates a
machine for definitional computations and a query object set up to represent the
database search query shown above. The code following (3) tells the definitional
machine to use the created query and run it as long as more answers can be
computed.

11

On GCLA, Gisela, and MedView

3 Computing with Definitions

In this section we present the basic notions of definitions and computations using
definitions which form the basis of Gisela. Many notions are shared with previous
work on PID and definitional programming. However, the differences compared
to earlier work with respect to both terminology, ideas, and presentation are
significant enough to motivate a separate description. The presentation used is
one without variables and is in many ways similar to those in [20, 22, 27, 28],
with some significant extensions. In Section 4 variables are introduced and the
system refined to provide an operational semantics for Gisela.

In computations we will consider three different kinds of definitions: data
definitions, state definitions, and method definitions. We first describe what a
definition is, generally, and then proceed to describe the different definition types
and their respective roles in computations.

3.1 Definitions

A definition D is given by

1. two sets: the domain of D, written dom(D), and the co-domain of D,
written com(D), where dom(D) ⊆ com(D),

2. and a definiens operation: D : com(D) → P(com(D)).

Objects in dom(D) are referred to as atoms and objects in com(D) are referred
to as conditions.

A natural presentation of a definition is that of a (possibly infinite) system of
equations

D

a0 = A0

a1 = A1
...

an = An

...

n ≥ 0,

where atoms, a0, . . . , an, . . . ∈ dom(D), are defined in terms of a number of con-
ditions, A0, . . . , An, . . . ∈ com(D), i.e., all pairs (ai, Ai) such that Ai ∈ D(ai),
and ai ∈ dom(D). Note that an equation a = A is just a notation for A being
a member of D(a). Expressed differently, the left-hand sides in an equational
presentation of a definition D are the atoms for which D(ai) is not empty.

Given a definition D the presentation as a system of equations is unique
modulo the order of equations. However, given an equational presentation of a
definition it is not generally possible to determine which definition the equations
represent. The reason for this is that it is not possible to decide the domain and
co-domain of a definition from its equational presentation. When an equational

12

Gisela—A Framework for Definitional Programming

presentation of a definition D is given without further specifying dom(D) and
com(D), it is assumed that the definition is uniquely determined by its presenta-
tion.

Intuitively, the definiens operation gives further information about its argu-
ment. For an atom a, D(a) gives the conditions defining a, that is, D(a) =
{A | (a = A) ∈ D}. For a condition A ∈ com(D) \ dom(D), D(A) gives the
constituents of the condition. For example, D((A → B)) = {A, B}.

It should be kept in mind that although we frequently use equational presen-
tations of definitions, a definition is any object which adheres to 1 and 2 above.

3.1.1 Operations on Definitions

We will use some primitive operations on definitions:

• (A/B)D, is the definition given by replacing all left-hand sides of D identical
to B with A.

• D(A/B), is the definition given by replacing all right-hand sides of D iden-
tical to B with A.

• D ↓ A. If A is a condition and D a definition, then if D 6= ∅ then D ↓ A is
the definition given by:

1. dom(D ↓ A) = dom(D) ∪ {>}, com(D ↓ A) = com(D) ∪ {A},

2. D ↓ A(a) = {A} for all a ∈ dom(D) such that D(a) 6= ∅,

else D ↓ A is {> = A}.

• A 	 D. If A is a condition and D a definition then A 	 D is the definition
given by:

1. dom(A 	 D) = dom(D), com(A 	 D) = com(D),

2. A 	 D(A) = ∅, A 	 D(C) = D(C) for C 6= A.

• A⊕D. If A is a condition and D is a definition then A⊕D = >	 (A⊕′ D)
where A ⊕′ D is the definition given by

1. dom(A ⊕′ D) = dom(D) ∪ {A}, com(A ⊕′ D) = com(D) ∪ {A},

2. A ⊕′ D(A) =
⋃

b∈dom(D) D(b), A ⊕′ D(B) = D(B) for B 6= A.

• D1 + D2. If D1 and D2 are definitions then D1 + D2 is the definition given
by:

1. dom(D1 + D2) = dom(D1) ∪ dom(D2), com(D1 + D2) = com(D1) ∪
com(D2),

2. D1 + D2(A) = D1(A) ∪ D2(A).

13

On GCLA, Gisela, and MedView

3.2 Data Definitions

Data definitions are used to model declarative knowledge. These definitions are
the building blocks which computations operate on.

In principle there could be a great number of different kinds of conditions. In
the present work we will use the following to define the set C of all conditions:

1. all atoms are conditions,

2. > and ⊥ are conditions,

3. if A and B are conditions then (A, B) and (A → B) are conditions.

For any data definition D, the definiens of A ∈ (com(D) \ dom(D)) is defined as
follows:

1. D(>) = ∅,

2. D(⊥) = ∅,

3. D((A, B)) = {A, B},

4. D((A → B)) = {A, B}.

3.3 State Definitions

A computation is a transformation of an initial state definition into a final state
definition. State definitions will always be considered with respect to given data
definitions. We make a distinction between ordinary state definitions and result
definitions. State definitions are the initial state definition and all following def-
initions representing the state of a computation. Result definitions are used for
answers.

3.3.1 State Definition Details

The domain and co-domain of state definitions is the union of all the co-domains
of all the data definitions used in a computation. Expressed in another way, all
conditions as described in Section 3.2. We will generally denote state definitions
S, S1, S2 . . . and write them as a sequence of equations:

{e1, e2, . . . , en}.

For example

{a = b, (c, d) = b, e → b = b, f = b}.

14

Gisela—A Framework for Definitional Programming

3.3.2 Result Definitions

All result definitions are uniquely determined by their equational presentations.
In result definitions the right-hand side of an equation can be another result
definition. Thus, a result definition can contain other result definitions nested
within itself. We will use X, X1, X2 . . . to denote result definitions.

In the general case, the result of a computation is rather complex. Not only
does it contain a number of equations that may be viewed as being the answer
to a query, but also information on how the result was computed.

We illustrate with an example, a result definition nested several levels:

X

cmR1 =

white =
{

cmR2 =
{

ε = {white = white

brown =
{

cmR2 =
{

ε = {brown = white
(1)

The right-most equations in (1) are the end-points, or final equations, of the
computation. The rest essentially contains information about where the compu-
tation was split into different branches. The details for how result definitions are
constructed is defined by the computation rules in Section 3.5.1.

In most cases, we are only interested in the final equations, not the complete
structure of the result definition. Thus, result definitions can be transformed
to give the representation most suited for a particular application. Examples
of transformations are flatten(X), which gives a definition containing the leaf
equations of a nested definition only, and null(X) which gives the empty definition
{}. Applying flatten to (1) gives:

X

{

white = white
brown = white

A flattened result definition is a valid state definition and can therefore be used
as the initial state definition for a new computation. Also, flattened result def-
initions where all left-hand sides are atoms are valid data definitions for use in
computations.

3.3.3 Definitions as a Generalization of Sequents

PID and GCLA use sequent calculus notation. In Gisela we try to use definitions
as the only structure wherever possible. Thus, sequents have been replaced by
state definitions. Each sequent of PID or GCLA can be represented as a state
definition. Also, compared to GCLA, state definitions generalize sequents to
include what would be sequents with an arbitrary number of consequents.

Instead of describing how sequents correspond to definitions, we give some
examples from which the general idea should be obvious. The sequent

a ` b

15

On GCLA, Gisela, and MedView

corresponds to the state definition

{a = b}

and the sequent
a, b, c ` d

to the state definition
{a = d, b = d, c = d}.

Along the same lines, a sequent calculus rule such as

a, C ` b

C ` a → b

can be represented as
{a = b, C = b}

{C = a → b} .

We use > to write sequents with an empty set of conditions in the antecedent.
Thus

A ` B
` A → B

yields
{A = B}

{> = A → B}.

Since > simply is the representation corresponding to an empty antecedent it is
not part of the premise of the rule.

3.4 Method Definitions

A method definition describes the sequence of steps to be performed in a com-
putation. The description can be more or less precise. We may have method
definitions that set up general search strategies, or method definitions that in
great detail describe what to do next, given the current state definition. We say
that a method definition defines a computation method.

3.4.1 Method Definition Details

Let V be a set of atoms (computation method names). Given a set of data
definitions D, let O be a set of formal notations D, D, D for all definitions D in
D. Let W be the set of all computation words over V and O: W = (V ∪ O)∗.
The empty word is denoted by ε.

The set of computation conditions, WC, for use in method definitions is de-
fined as follows:

1. All words in W are computation conditions.

16

Gisela—A Framework for Definitional Programming

2. If W1 and W2 are computation conditions then (W1, W2) is a computation
condition.

3. If W1 and W2 are computation conditions then W1W2 is a computation
condition.

A method definition is a definition with V as its domain and WC as its co-domain.
A method definition m can be presented as a system of (guarded) equations:

m

m = W1 # C1

m = W2 # C2
...

m = Wn # Cn

where each condition Wi ∈ WC, and each guard Ci is a boolean function that is
used to decide whether the equation can be applied or not.

Given a data definition, D, we refer to the word constituents D, D, and D
as operations on D. For the sake of simplicity we assume that each computation
method is defined in a method definition with the same name as the method.
That is, the only atom defined in a method named m is m. The meaning of the
operations is given by the calculus in Section 3.5.1.

A method acts on the present state definition. We could think of it as that
there is a hidden argument present in method definitions:

m

m(S) = W1 # C1(S)
m(S) = W2 # C2(S)

...
m(S) = Wn # Cn(S)

3.5 Computations

We now give a presentation of what it means to compute a result definition X
given an initial state definition S and a computation condition W . We write
W : S ⇒ X, meaning “W : S can be computed to X”. We call W : S ⇒ X a
goal. Depending on the application at hand, we will interpret X and W : S in
different ways. For instance, X can be taken as a measure of the distance between
definitions with respect to S and computation methods used, or we can view W:S
as a logic programming goal to be proved, in which case only result definitions
where some right-hand side is > will be accepted. In any case, “W : S can be
computed to X” means that we try to move from the initial state definition S to
a result definition X using W . This may fail, which means that W could not be
used to move from S to X.

The possible computation steps are given using a number of inference rules.
The presentation is aimed mainly at making the intuition of definitional comput-
ing in Gisela clear. A similar, but fully detailed, calculus for Gisela is given in

17

On GCLA, Gisela, and MedView

Section 4.2. An even more fine-grained version, presented as a number of rewrite
rules more suitable as a basis for implementation, is given in Section 6.1.

3.5.1 Computation Rules

In all rules D denotes any data definition and M any computation method.

(1) Termination

ε:S ⇒ S
T .

(2) Method

WW1:S ⇒ X1, . . . , WWn:S ⇒ Xn

WM:S ⇒ X
M

where M(M) = {W1, . . . , Wn}, n ≥ 1. M(M) is the definiens of M in the method
M , that is

{Wi | M = Wi#Ci ∈ M ∧ Ci(S)}

and X is the result definition

X

W1 = X1
...

Wn = Xn

.

(3) Choice

WWi:S ⇒ X

W (W1, W2):S ⇒ X
C

where Wi ∈ {W1, W2}.

(4) Definition Left

Let e ∈ S. Then, depending on the left-hand side of e we have:

(4.1) If e = (a = C)

W: (A1/a)S ⇒ X1, . . . , W: (An/a)S ⇒ Xn

WD:S ⇒ X
DD

where D(a) = {A1, . . . , An} and X is the result definition

X

A1 = X1
...

An = Xn

.

18

Gisela—A Framework for Definitional Programming

(4.2) If e = ((A, B) = C)

W: (C ′/(A, B))S ⇒ X

WD:S ⇒ X
DV

where C ′ ∈ D((A, B)).

(4.3) If e = ((A → B) = C)

W:S1 ⇒ X1 W:S2 ⇒ X2

WD:S ⇒ X
DA

where S1 and S2 are given by

• S1 = ((A → B) 	 S) ↓ A),

• S2 = (B/(A → B))S,

and X is the result definition

X

{

A = X1

B = X2
.

(5) Definition Right

Let e ∈ S. Then, depending on the right-hand side of e we have:

(5.1) If e = (A = a)
W:S(B/a) ⇒ X

WD:S ⇒ X
DD

where B ∈ D(a).

(5.2) If e = (A = (B, C))

W:S(A/(B, C)) ⇒ X1 W:S(B/(B, C)) ⇒ X2

WD:S ⇒ X
DV

where X is the result definition

X

{

A = X1

B = X2
.

(5.3) If e = (A = (B → C))

W:S ′ ⇒ X
WD:S ⇒ X

DA

where S ′ = B ⊕ (S(C/(B → C))).

19

On GCLA, Gisela, and MedView

(6) Identity

Let e ∈ S. If e = (a = a) for some a then:

W:S ⇒ X
WD:S ⇒ X

I .

3.5.2 Comments

Note that the rules (1) through (6) only describe how state definitions and com-
putation conditions connect to each other and that the empty word means that
a computation terminates. In particular, there are no rules for the conditions ⊥
and >. If we wish to interpret these in a special way, for instance as false and
true, the interpretation has to be given in a method definition. Another way to
explain computations is that the given rules describe what state definitions may
be generated given an initial state definition S and a computation condition W .
The rules (4.1) and (5.1) connect computation methods to the data definitions
used in method definitions. The set of definitions that can be generated from a
state definition is thus given by the above inference rules, the form of the method
definitions involved, and the contents of the particular data definitions used in
methods.

The computation system described shares many properties with PID and the
definitional programming system GCLA, most notably the duality between the
left and right-hand sides of equations. Also, the rules are very similar if we look at
which sequents the different state definitions represent. However, state definitions
are more general in nature than sequents, and, as mentioned, a method definition
is necessary to further describe the permitted computation steps.

3.6 An Example

Consider the two data definitions R1 and R2

R1

status = direct
direct = mucos
direct = palpation
mucos = mucos site
mucos = mucos col
mucos site = 112
mucos col = white
mucos col = brown
palpation = palp site
palp site = 112

R2

status = direct
direct = mucos
direct = palpation
mucos = mucos site
mucos = mucos col
mucos site = 232
mucos col = white
palpation = palp site
palp site = 242

,

20

Gisela—A Framework for Definitional Programming

which are adoptions of examination records from the MedView project. We will
investigate the similarity of R1 and R2 with respect to to the attribute mucos col.
To this end we need a computation method. A typical method definition for this
kind of computation using the definitions R1 and R2 is:

cm

cm = cmR1 # ′eq ∈ dom(R1)
cm = cmR2 # eq′ ∈ dom(R2) ∧ ¬′eq ∈ dom(R1)
cm = ε # otherwise

. (2)

If S is the state definition to which cm is applied, we may interpret (2) as follows:
If the left-hand side of some equation in S (′eq) is in the domain of R1, then
replace it with its definiens and continue computing using cm. Otherwise, if the
right-hand side of some equation in S is in the domain of R2, then replace it
with a condition from its definiens and continue computing using cm. Otherwise,
end the computation. Thus, what cm does is to replace atoms according to the
definitions R1 and R2 until the state definition can no longer be changed.

If we apply cm to the state definition {mucos col = mucos col}, that is, we
compute the goal cm : {mucos col = mucos col} ⇒ X, the answer X is the
following result definition:

X

cmR1 =

white =
{

cmR2 =
{

ε = {white = white

brown =
{

cmR2 =
{

ε = {brown = white
.

We also show a derivation. All result definitions are abbreviated with some Xi:

ε:{brown = white} ⇒ X6
T

cm:{brown = white} ⇒ X4
M

cmR2:{brown = mucs col} ⇒ X4

DD

cm:{brown = mucs col} ⇒ X2
M

ε:{white = white} ⇒ X7
T

cm:{white = white} ⇒ X5
M

cmR2:{white = mucs col} ⇒ X5

DD

cm:{white = mucs col} ⇒ X3
M

cmR1:{mucs col = mucs col} ⇒ X1
DD

cm:{mucs col = mucs col} ⇒ X
M

Note that we also allow method-schemes which are parameterized method
definitions. A method-scheme is one that covers all methods differing only with
respect to the data definitions used. The parameterized version of the method
cm with parameters L and R is written

cmL,R

cm = cmL # ′eq ∈ dom(L)
cm = cmR # eq′ ∈ dom(R) ∧ ¬′eq ∈ dom(L)
cm = ε # otherwise

.

At the time of computation, this scheme must be instantiated with particular data
definitions for the parameters. Thus, the instance cmR1,R2

of cmL,R is identical
to the method cm.

21

On GCLA, Gisela, and MedView

4 Gisela—Programs and Computations

Section 3 showed the principles of computations in the Gisela framework. How-
ever, several things were left out, e.g., the treatment of variables and how choices
are made. A more complete description is given here.

The basic computation model provided by the Gisela framework is a very
general one, allowing for several different approaches for how to program using
definitions. In part, this generality is achieved by leaving certain choices in the
description open to be handled by an observer. The observer is an abstract
concept. In any particular case it might be the user running a program, an
intelligent software agent or, as in most applications developed so far, a simple
object returning default choices. The other important thing is that definitions are
described in an abstract way only. Thus, any object which fits into the abstract
description is a valid definition to use in a program.

The main components involved in the description of computations are:

• Data Definitions. Compared to the description above, data definitions in
Gisela allow logical variables. A data definition may be created in several
ways, one of them being the syntactic representations given in Section 5.1.

• State Definitions. As before, but can contain variables.

• Method Definitions. The description of method definitions provided in Sec-
tion 3.4 is sufficient in this section also. Details of how to create method
definitions in the Gisela framework are given in Sections 5.1.2 and 5.6.2.

• Queries.

• An observer. The observer handles choices as mentioned above.

• A D-Machine. Computations are performed by a D-Machine. The behavior
of this machine is given by the operational semantics in Section 4.2. This
operational semantics involves an observer.

Compared to the presentation in Section 3, what is added in this section is vari-
ables in data definitions and state definitions, the notion of an observer, and
information on the order in which things are computed. The rules of the opera-
tional semantics in Section 4.2 together with an observer define how computations
are performed. The default observer is described in Section 4.3.

4.1 Gisela Programs

A program in the Gisela framework consists of a number of data and method
definitions. The data definitions are used to describe the declarative content of an
application and the method definitions define how solutions should be computed.
Expressed differently, the data definitions give connections between atoms and

22

Gisela—A Framework for Definitional Programming

conditions and method definitions describe the possible sequences of operations,
or applications of the built-in computation rules, a program can perform.

To run a program we pose a query M:S ⇒ X. The meaning of this is “can S
be computed to some result system X using the method M”. If the computation
is successful, we take X and any bindings for variables in S to be the answer
to the query. Otherwise, the answer is no. Of course, computations may not
terminate. A computation requires an observer to handle choices left open in
the basic computation rules. The same query run with different observers can
give different sets of answers. The power of the observer is restricted to making
choices. Thus, a complete search through all possible alternatives will include
all answer sets given by different observers. If no particular observer is provided
choices are handled left to right and from top to bottom with backtracking as
discussed in Section 4.3. Since search is performed depth-first with backtracking
the actual computing machinery may fail to find existing solutions.

4.1.1 Data Definitions

We have chosen to define the computation model of Gisela using an abstract
description only of what a data definition is. This is because we want to provide
a framework where users are free to create data definitions with as few restrictions
as possible. Also, a more detailed description is not really needed. Of course,
this means that we cannot here give any details for how the definiens operation
is computed. More details on this for certain definition classes are provided in
Section 5.1 below.

Atoms, Terms, Constants, and Variables We start with an infinite signa-
ture, Σ, of term constructors and a denumerable set, V, of variables. We write
variables starting with a capital letter. Each term constructor has a specific ar-
ity, and there may be two different term constructors with the same name but
different arities. The term constructor t of arity n is written t/n. The arity will
be omitted when there is no risk of ambiguity. A constant is a term constructor
of arity 0. The set T of all terms is built up using variables and constants as
follows:

1. all variables are terms,

2. all constants are terms,

3. if f is a term constructor of arity n and t1, . . . , tn are terms then f(t1, . . . , tn)
is a term.

An atom is a term which is not a variable.

23

On GCLA, Gisela, and MedView

Conditions The set C of all conditions is given by:

1. > and ⊥ are conditions,

2. all terms are conditions,

3. if A and B are conditions then (A, B) and (A → B) are conditions.

Substitutions A substitution is a (possibly empty) finite set of equalities

{(x1 = t1), (x2 = t2), . . . , (xn = tn)}

where each xi ∈ V, ti ∈ T , ∀i(xi 6= ti), and ∀i, j(xi = xj → i = j). We use σ, τ ,
φ, σ1,. . . to denote substitutions.

Definitions To describe data definitions in the presence of variables we make
some minor modifications to the definition given in Section 3. Thus, a definition
D is given by

1. two sets: the domain of D, written dom(D), and the co-domain of D, writ-
ten com(D), where dom(D) ⊆ com(D), also dom(D) ⊆ T and com(D) ⊆ C,

2. and a definiens operation: D : com(D) → P(com(D)).

Let VD be the set of all variables in com(D). We assume that for all data
definitions Di and Dj , i 6= j, (VDi ∩ VDj) = ∅. Further, we assume that the
variables occurring in state definitions are not part of VD for any definition D
and that variables can be renamed to make sure that these conditions hold.

Given a term a, a substitution σ is called a-sufficient if D(aσ) is closed under
further substitution, that is, for all substitutions τ , D(aστ) = (D(aσ))τ .

For any data definition D we assume that the following can be computed:

1. Dsuff(a), which is a sequence of the a-sufficient substitutions for a with
respect to D.

2. Dmgu(a), which is a sequence of the most general unifiers (mgus) [41] be-
tween a and b ∈ dom(D) such that D(b) 6= ∅.

On a-sufficient substitutions Given an a-sufficient substitution the definiens
of a is completely determined. There can be more than one definiens of a however,
since there may be several a-sufficient substitutions.

With the completely abstract and variable-free system used in Section 3 it was
easy to state what D(a) should be. When variables are introduced the situation
becomes more complex. The situation has an exact parallel in GCLA where
the infinitary PID calculus is replaced by a system with variables. The problem
was first investigated in [30] where the notion a-sufficiency was introduced. Algo-
rithms for computing a-sufficient substitutions for definitions based on equational
presentations can be found in [8, 30, 38].

24

Gisela—A Framework for Definitional Programming

4.1.2 Method Definitions

Conceptually, method definitions correspond to the rule definition of GCLAII.
However, they are expressed and operate in a completely different manner. Also,
Gisela works with a fixed set of inference rules given below in Section 4.2. Thus,
what can be expressed in method definitions is which rule or computation method
to use given the current state definition. The description of method definitions
in Section 3.4 is sufficient to describe the operational behavior of Gisela.

Note that there are no variables in method definitions. Instead, in a method-
scheme like

mD

m = mD # ′eq ∈ dom(D)
m = mD # eq′ ∈ dom(D) ∧ ¬′eq ∈ dom(D)
m = D # otherwise

we have a parameter D, see also Section 3.6. Parameters are a notational con-
venience only. Before a computation starts the parameters must be replaced by
the actual data definitions to use in the computation.

4.1.3 State Definitions

State Definitions and result definitions are as in Section 3.3.1, with the addition
of variables. The scope of a variable is the entire goal in which it occurs.

4.1.4 Queries

A query is simply a goal W : S ⇒ X. The answer to the query is the result
definition X and a substitution σ with bindings for variables in the initial state
definition S. The purpose of a query is to compute a result X from W:S.

4.2 Operational Semantics

We give an operational semantics to describe how computations are performed.
The operational semantics is expressed as a number of inference rules operating
on computation states. The following notations are used:

• A computation state is a tuple < Γ, θ > where Γ is a list of goals and θ
a substitution.

• A goal is of the form W:S ⇒ X where W is a computation condition, S is
a state definition, and X is a result definition.

• X · Xs is the list with head X and tail Xs.

• D denotes any data definition and M any method.

25

On GCLA, Gisela, and MedView

• Oseq(S) is an operation where an observer selects a sequence of elements
from a set S.

• Otrans(X) is an operation performed by an observer which transforms the
result definition X.

By using a list of qoals it is possible to write the rules with only one premise,
making them correspond to state transitions.

Note that in rules (5) through (7) it is an observer who selects which equations
of the current state definition S that may be used. Also note that an equation is
selected before it is decided which rule to apply.

(1) Termination

< {}, ∅ >
T .

The inference rules are applied backwards and the computation stops when the
list of goals is empty, thus the name termination.

(2) Empty

< Σ, σ >

< (ε:S ⇒ S) · Σ, σ >
E .

A goal is fully evaluated, or proved, when the computation condition is empty.

(3) Method

< (WW1:S ⇒ X1) · . . . · (WWn:S ⇒ Xn) · Σ, σ >

< (WM:S ⇒ X) · Σ, σ >
M

where M(M) = {W1, . . . , Wn}, n ≥ 1. M(M) is the definiens of the method name
M in the method definition M , that is,

{Wi | M = Wi#Ci ∈ M ∧ Ci(S)},

and X = Otrans(X
′) where X ′ is the result definition

X ′

W1 = X1
...

Wn = Xn

.

Whenever a compound result definition is built, an observer gets a chance to
transform it.

26

Gisela—A Framework for Definitional Programming

(4) Choice

< (WWi:S ⇒ X) · Σ, σ >

< (W (W1, W2):S ⇒ X) · Σ, σ >
C

where Wi is an element of ws = Oseq({W1, W2}). The elements of ws are tried
from left to right by backtracking. The selection ws must not be empty. This
construction lets an observer decide in which order W1 and W2 are tried and to
decide to only use one of them.

(5) Definition Left

Let es = Oseq(S) be the sequence of equations of S considered for rule-application.
All elements of es are tried from left to right by backtracking. Let e be the
currently selected equation. Then, depending on the left-hand side of e we have:

(5.1) If e = (a = C) then

< ((W: (A1/aσ)Sσ ⇒ X1, . . . , W: (An/aσ)Sσ ⇒ Xn) · Σ)σ, θ >

< (WD:S ⇒ X) · Σ, θσ >
DD

where σ ∈ Dsuff(a), D(aσ) = {A1, . . . , An}, and X is the result definition

X

A1 = X1
...

An = Xn

.

Note that we have one instance of this rule for each a-sufficient substitution in
Dsuff(a). All instances are tried by backtracking over these a-sufficient substitu-
tions.

(5.2) If e = ((A, B) = C) then

< (W: (C ′/(A, B))S ⇒ X) · Σ, σ >

< (WD:S ⇒ X) · Σ, σ >
DV

where C ′ is an element of cs = Oseq(D((A, B))). The elements of cs are tried
from left to right by backtracking. The selection cs must not be empty. This
construction lets an observer decide in which order A and B are tried and to
decide to only use one of them.

(5.3) If e = ((A → B) = C) then

< (W:S1 ⇒ X1) · (W:S2 ⇒ X2) · Σ, σ >

< (WD:S ⇒ X) · Σ, σ >
DA

where S1 and S2 are given by

27

On GCLA, Gisela, and MedView

• S1 = ((A → B) 	 S) ↓ A),

• S2 = (B/(A → B))S,

and X = Otrans(X
′) where X ′ is the result definition

X ′

{

A = X1

B = X2
.

(6) Definition Right

Let es = Oseq(S) be the sequence of equations of S considered for rule-application.
All elements of es are tried from left to right by backtracking. Let e be the
currently selected equation. Then, depending on the right-hand side of e we
have:

(6.1) If e = (A = a) then

< ((W:Sσ(B/aσ) ⇒ X) · Σ)σ, θ >

< (WD:S ⇒ X) · Σ, θσ >
DD

where σ ∈ Dmgu(a) and B ∈ D(aσ). All elements of D(aσ) are tried by back-
tracking.

Note that we have one instance of this rule for each element in Dmgu(a). All
instances are tried by backtracking.

(6.2) If e = (A = (B, C)) then

< (W:S(B/(B, C)) ⇒ X1) · (W:S(C/(B, C)) ⇒ X2) · Σ, θ >

< (WD:S ⇒ X) · Σ, θ >
DV

where X = Otrans(X
′) and X ′ is the result definition

X ′

{

B = X1

C = X2
.

(6.3) If e = (A = (B → C)) then

< (W:S ′ ⇒ X) · Σ, θ >

< (WD:S ⇒ X) · Σ, θ >
DA

where S ′ = B ⊕ (S(C/(B → C))).

28

Gisela—A Framework for Definitional Programming

(7) Identity

Let es = Oseq(S) be the sequence of equations of S considered for rule-application.
All elements of es are tried from left to right by backtracking. Let e be the
currently selected equation. Then

< ((W:S ⇒ X) · Σ)σ, θ >

< (WD:S ⇒ X) · Σ, θσ >
I

provided that e = (a = b), and and σ = mgu(a, b).

4.3 The Observer

There are two main motivations for introducing an observer. First, to make it
possible to describe computations in a general manner without making all choices
with respect to execution order explicit. Second, to set up hooks where the user,
or some other process, may interact with computations. The Gisela framework
provides a default observer, which is used if nothing else is stated explicitly. The
default observer implements the following behavior:

• In rule 4, Oseq({w1, w2}) returns [w1, w2].

• In rule 5.2, Oseq({A, B}) returns [A, B].

• The selection of a sequence of equations from the state definition in rules 5,
6, and 7 is handled in the same way. When the guard of an equation in a
method definition is evaluated and holds, it is reasonable to assume that an
equation in the state definition that contributes to making the guard hold
should be considered. The default observer therefore uses the heuristic to
select all equations which make the guard hold. The selected equations are
tried from left to right. If no equation in the state definition can be detected
to make the quard hold all equations are selected.

• The result of Otrans(X) depends on the result type currently set in the
observer. The default observer allows three result types: full, which means
that no transformation is performed, flat, which means that the result
definition is flattened to contain only the leaves of the full definition, and
empty, which returns the empty result definition. The same transformation
is performed throughout the entire computation.

5 Programming in the Gisela Framework

In this section we explain how to use Gisela for different kinds of programming.
So far, only a limited set of programs have been developed using the Gisela

29

On GCLA, Gisela, and MedView

framework. Apart from the examples shown in this paper, and various other
minor programs, we have also built some tools for use in the MedView project.

There are two main approaches to programming in Gisela: to use syntactic
representations (Section 5.1) or to use object representations (Section 5.6). Using
syntactic representations is the easier way and yields readable programs. Using
object representations is appropriate when we need some special kind of definition
or observer. When we use object representations we have full access to programs
written using syntactic representations, thus the two can be mixed freely.

Another view is that when we use syntactic representations only, in particular
in conjunction with the interactive system discussed in Section 5.8, we do in effect
work with a programming language. This programming language is what we get
from specializing the model from Section 4.2 to use only the definition classes and
methods for which we give syntactic representations, plus the default observer.
Using object, or mixed, representations we work with a framework which provides
a customizable model for definitional programming.

5.1 Syntactic Representations

When we use syntactic representations we create data definitions and method
definitions using an equational presentation. The syntax used in Gisela is closely
related to the syntax of GCLA and Prolog.

5.1.1 Terms and Data Definitions

The syntax used for data definitions is as follows:

1. Variables: A variable is a string beginning with an uppercase letter or the
character ‘ ’, for example X, LongVariableName, _Foo.

2. Functors and constants:

• A functor is a string beginning with a lowercase letter, or an arbitrary
quoted string, which can be applied to some number of arguments.
Some examples are p/1, member/2, ’Any name whatever’/0.

• A constant is a functor with no arguments.

• Gisela also allows numbers and strings as special constants. Some
examples are 4, "abc", and 3.76.

3. Terms:

• Each variable and constant is a term.

• If t1, . . . , tn are terms and f is a functor of arity n then f(t1, . . . , tn) is
a term.

30

Gisela—A Framework for Definitional Programming

• Gisela allows the same shorthand notation as Prolog for lists. Thus,
[] denotes the empty list, and the lists [X|Xs] and [a,b,c], the lists
X.Xs and a.(b.(c.nil)) respectively.

• Gisela allows infix notation for the ordinary arithmetic operators, +,
-, *, and /. Thus, 4*5 is shorthand for the term ’*’(4,5).

4. Conditions:

• Each term is a condition.

• true and false are conditions.

• If C1 and C2 are conditions then (C1,C2) and (C1->C2) are con-
ditions. The parentheses may be omitted when there is no risk for
ambiguity.

5. Equations. If a is a term and C is a condition then a = C. is an equation.
The equation a. is shorthand for a = true. .

6. Guards. If t1 and t2 are terms then t1 \= t2 is a guard.

7. Guarded Equations. If G1, . . . , Gn are guards then

a#{G1, . . . , Gn} =C.

is a guarded equation. Currently, guards are only allowed in matching defi-
nitions or equations restricted as matching (see below).

8. Directives. The following are directives:

• definition Name., where Name is a constant denoting the name of
the definition.

• definition Name:Type., where Name is as above and Type is a
constant giving the type of the definition. Currently, possible types
are constant, matching, unifying, fl, and gcla. If no value is given
the type of a data definition defaults to unifying.

• restrict N/A:V al., where V al is one of right and matching.

9. Data Definitions. A data definition is a finite sequence of (guarded) equa-
tions and directives starting with a directive giving the name of the defini-
tion.

The scope of a variable is the equation where it occurs. Comments are allowed
as usual, that is, % or // means that the rest of the line is a comment, arbitrary
comments are enclosed in between /* and */.

Note that each data definition starts with a directive giving its name and
type. With a restrict directive the programmer informs the system that it can

31

On GCLA, Gisela, and MedView

use a simpler algorithm to compute the definiens operation. A right restriction
means that the term will only be used in the right-hand side of equations in com-
putations. A matching restriction tells the system that the definiens operation
will only be applied to fully instantiated terms.

The meaning of the different definition types is as follows:

• A constant definition allows only constants as left-hand sides in equations.
The domain consists of all the constants in the left-hand side of the equa-
tions of the definition.

• A matching definition uses matching only to find the definiens of a term.
Thus, D(a) is only valid for fully instantiated terms. The domain consists
of all terms with the same principal functor as some term occurring as a
left-hand side in an equation.

• A unifying definition is as a matching definition but uses full unification.

• An fl definition uses unification and has as its domain all terms with the
same principal functor as some left-hand side in the definition. The differ-
ence compared to a unifying definition is that for terms in the domain, but
not defined, an fl definition returns {false}, whereas a unifying definition
returns {}.

• A gcla definition has as its domain the set of all terms, uses unification
and returns {false} for terms not defined in the definition.

When a definition is presented as a number of equations using the syntax de-
scribed above, the type of the definition together with the given equations fully
determines which definition the description represents.

5.1.2 Method Definitions

In the description of the syntax used for method definitions we start by describing
the building blocks and then show how they are combined into complete methods:

1. Parameters. A Parameter is a string beginning with an uppercase letter
which denotes any data definition given as parameter to a method.

2. Constants. A constant is a string beginning with a lowercase letter. De-
pending on the context a constant denotes a computation method or a data
definition with the same name.

3. Guard Constraints. A guard constraint is a boolean function which operates
on a single condition C selected from the current state definition. The
provided guard constraints are:

• in_dom(D), which holds if C is in the domain of D.

32

Gisela—A Framework for Definitional Programming

• def_in_dom(D), which holds if some element of D(C) is in the
domain of D.

• in_com(D), which holds if C is in the co-domain of D.

• def_in_com(D), which holds if some element of D(C) is in the co-
domain of D.

• matches(T), which holds if C matches T . No variables are bound.

• var, which holds if C is a variable.

• nonvar, which holds if C is not a variable.

In all cases D may be a parameter or a constant denoting a data definition.

4. Guard Primitives. A guard primitive is a boolean function which oper-
ates on a single equation e selected from the current state definition. The
provided guard primitives are:

• false, which never holds.

• true, which always holds.

• identity, which holds if the left and right-hand sides of e are identical.

• l:GC, which holds if the guard constraint GC holds for the left-hand
side of e.

• r:GC, which holds if the guard constraint GC holds for the right-hand
side of e.

• not(GP), the negation of the guard primitive GP .

• (GP1 , GP2), which holds if both the guard primitives GP1 and
GP2 hold for e.

• (GP1 ; GP2), which holds if any of the guard primitives GP1 or GP2

hold for e.

5. Guards. A guard is a boolean function which operates on the current state
definition S. The following forms are provided:

• some(GP) which holds if the guard primitive GP holds for some
equation of S.

• all(GP) which holds if the guard primitive GP holds for all equa-
tions of S.

• (G1 & G2), which holds if both the guards GP1 and GP2 hold for S.

• (G1 | G2), which holds if any of the guards G1 or G2 hold for S.

33

On GCLA, Gisela, and MedView

6. Equations. A method definition consists of a number of equations which
have the general form

m = W#Guard.

where m is a constant which is the same as the name of the method, W a
computation condition, described below, and Guard a guard as described
above.

7. Word Constituents. Computation words are built from word constituents.
A word constituent is one of the following:

• M , where M denotes any method or method instance in the current
scope. Scoping rules are given below.

• D, where D is any parameter or definition constant.

• l: D, where D is any parameter or definition constant. This is the
concrete syntax for D.

• r: D, where D is any parameter or definition constant. This is the
concrete syntax for D.

8. Computation words. A computation word is a (possibly empty) sequence
of word constituents. A computation word is one of the following:

• [], the empty word.

• [W1,. . . ,Wn], where the Wi are word constituents.

9. Computation Conditions. A computation condition is one of the following:

• All computation words are computation conditions.

• W1 ; W2, where the Wi are computation conditions. This is the con-
crete syntax for (W1, W2).

• [W1,. . . ,Wn], where the Wi are computation conditions.

10. Imports. The following are used to import method and data definitions:

• import_definition(Name)., where Name is the name of the file
where the data definition is stored, or in case of built-in definitions,
simply the name of the definition.

• import_methods(Name)., where Name is the name of the file where
the method definitions are stored.

After a method or a data definition has been imported its name can be used
in subsequent method definitions.

34

Gisela—A Framework for Definitional Programming

11. Instantiations. An instantiation of a method scheme is an equation

Iname= instance(Mname, [D1, . . . , Dn]).

where Iname is the name introduced to be used to denote an instance of the
method-scheme Mname created by instantiating it with the data definitions
D1, . . . , Dn.

12. Method Definitions. A method definition has the following general form:

Imports
method m(D1, . . . , Dn). n ≥ 0
Instantiations

m = W1 # G1.
...

m = Wm # Gm.

Method-schemes are method definitions where n > 0.

13. Scoping rules:

• The scope of a parameter is the method-scheme for which it is a pa-
rameter.

• Defined methods are visible throughout the file where they are defined.

• Imported method and data definitions are visible throughout the file
into which they are imported.

• A method created with an instantiation is visible within the method
definition where it is created.

The syntax for comments is the same as in data definitions.

5.1.3 Queries

We describe the syntax of queries for the interactive system in Section 5.8:

• State Definitions. A state definition is written {e1, . . . , en} where each ei

is an equation. The scope of a variable is the entire state definition. Each
equation is of the form C1 = C2 where the both C1 and C2 are conditions.

• Queries. A query is written m(D1, . . . , Dn)S, n ≥ 0, where m is a method,
D1, . . . , Dn are parameters used to create on instance of m, and S is the
initial state definition.

The answer to a query is the computed result definition and any bindings to
variables occurring in the initial state definition. If no result can be computed
the answer is no.

35

On GCLA, Gisela, and MedView

5.1.4 Computing Definiens and Clause

For a definition represented as a sequence of equations, the definiens, D(a), of an
atom a is the set of all right-hand sides of equations in D whose left-hand sides
matches a, that is {Aσ | (b ⇐ A) ∈ D, bσ = a}. All the different equational
definition types in the Gisela framework order the bodies in D(a) in the order in
which they appear in the definition.

To perform the operation D we need to compute an a-sufficient substitution
for a. In the general case this is a very costly operation which involves finding
a maximal set of left-hand sides in D which can be unified with each other and
with a. To perform the operation D (clause) we only need to find some left-hand
side in D unifiable with a. For constant and matching definitions the compu-
tation of an a-sufficient substitution is not needed which is why they should be
used whenever possible to improve performance. The restrict directive has the
same purpose, to avoid attempts at computing a-sufficient substitutions when-
ever possible. Some more details on how the definiens operation is performed can
be found in Section 7.

5.1.5 A Note on Variables and Completeness

Variables and calculi of PID are covered in [16, 30, 38]. In GCLA explicit
quantification can be used for variables in the bodies of clauses not occurring in
the head. Existential quantification can easily be handled if it occurs in the right-
hand side of an equation in a state definition. Likewise, universal quantification
is easily handled to the left. Gisela has no way to express explicit quantifiers.
Instead it is assumed that users are aware how free variables in bodies of equations
should be understood.

The algorithm used for computing definiens for data definitions which use
unification is not complete since it does not compute all a-sufficient substitutions
as discussed in [7, 38]. Both [7] and [38] present algorithms based on some notion
of guarded variables or disequalities to solve this problem. In Gisela guards
are only allowed in matching definitions. If guards are extended to be allowed in
unifying definitions we will be able to implement some version of these algorithms.
Doing so is not trivial though.

5.2 GCLA-style Programming

In GCLA [11] a program consisted of a single definition. Queries were proved
using a fixed PID-calculus. Some control of the search for proofs of queries
could be given using annotations in the definition, and by setting certain global
parameters. GCLAII [6, 37] introduced a second definition, the rule definition,
which made it possible to describe proof search strategies and inference rules in
a very sophisticated declarative manner. In this section we discuss how Gisela
can be used for GCLA style programming. First we give the basics, which

36

Gisela—A Framework for Definitional Programming

Γ ` Cσ
Γ ` c σ

D-right (b ⇐ C) ∈ D, σ = mgu(b, c)

Γ, A ` Cσ A ∈ D(aσ)

Γ, a ` C σ
D-left σ is an a-sufficient substitution

Γ, a ` c τ
axiom τ = mgu(a, c)

Γ ` true
true-right

Γ, false ` C
false-left

Γ, A ` B

Γ ` A → B
a-right

Γ ` A Γ, B ` C

Γ, A → B ` C
a-left

Γ ` C1 Γ ` C2

Γ ` (C1, C2)
v-right

Γ, Ci ` C

Γ, (C1, C2) ` C
v-left i ∈ {1, 2}

Γ ` Ci

Γ ` (C1; C2)
o-right i ∈ {1, 2}

C1 ` C C2 ` C

(C1; C2) ` C
o-left

Figure 1: GCLA Sequent Calculus Rules.

essentially correspond to GCLA, and then we discuss control issues focusing on
the similarities and differences between GCLAII and Gisela.

5.2.1 Basics

Figure 1 shows a sequent calculus which is essentially the calculus used in GCLA

to prove queries. In GCLA a query is a sequent (Γ ` C), where Γ is a list of
conditions and C is a condition. The meaning of the query is: “Does C follow
from Γ using the given definition”. If the query can be proved the result is an
answer substitution containing the variables in the query, otherwise the answer
is no. The logic used to prove a query is local to the definition D used [25], as
can be seen from the inference rules.

We need to define a computation method and describe how to write the initial
state definition in such a way that running a query in Gisela corresponds to
proving an equivalent query in GCLA. We will base our method on the following
observations and restrictions:

• Programs consist of a single data definition just as in GCLA,

• The data definitions used will be GCLA-definitions, that is, D(a) = false,
for all atoms a not occurring as left-hand sides in D.

• All right-hand sides in the initial state definition must be identical. This
corresponds to the single condition in the consequent of sequents in GCLA.

37

On GCLA, Gisela, and MedView

If all right-hand sides are identical in the initial state definition they will
remain so throughout the computation.

• There is nothing in Gisela corresponding the the rules o-right and o-left.
Indeed, (A; B) is not a condition in Gisela. We note that or in logic pro-
gramming is mainly for convenience. If desired, an extra data definition
defining or could be introduced.

• Gisela has no rules corresponding to the rules false-left and true-right. This
is since Gisela only has a limited number of built in rules providing a number
of ways to transform an initial state definition, but no particular interpre-
tation of true and false. We will have to write method definitions giving
the desired interpretation.

• The rest of the rules in Figure 1 have direct counterparts in Gisela.

An essential difference from the method definitions shown in Section 2 is that a ba-
sic search strategy for GCLA is inherently non-deterministic. Typically, for each
sequent more than one sequent calculus rule apply. In Gisela non-deterministic
method definitions are written by having more than one computation condition
to choose from in an equation of a method definition.

The default behavior of GCLA is to use a search strategy called arl which
first tries the axiom rule, then x-right rules, and finally x-left rules. This behavior
is captured by the following method definitions:

method true_right.

true_right = [] # some r:matches(true).

method false_left.

false_left = [] # some l:matches(false).

method arl:[D].

arl = [D];[true_right];[arl,r:D];[false_left];[arl,l:D].

method gcla:[D].

arl_inst = instance(arl, [D]).

gcla = [arl_inst].

We have defined gcla to be a cover for the computation method arl. Most
interesting is the definition of arl where the computation continues with any of
the computation conditions separated by ‘;’. We assume that the default observer
is used, thus all alternatives are tried from left to right.

Of course, other search orders could be used. For instance, lra and lar:

38

Gisela—A Framework for Definitional Programming

method lra:[D].

lra = [false_left];[lra,l:D];[true_right];[lra,r:D];[D].

method lar:[D].

lar = [false_left];[lar,l:D];[D];[true_right];[lar,r:D].

Typically, too many answers are computed. One of the reasons is that atoms to
the left are reduced to false more often than desired. In GCLA atoms could be
declared total to prevent these reductions. In Gisela we could introduce another
data definition defining such atoms to be regarded as data. More on issues like
this can be found in Section 5.5.

5.2.2 Example: Default Reasoning

Assume we know that an object can fly if it is a bird and if it is not a penguin.
We also know that Tweety and Polly are birds as are all penguins, and finally we
know that Pengo is a penguin. A data definition expressing this information is
the following:

definition birds:gcla.

flies(X) =

bird(X),

(penguin(X) -> false).

bird(tweety).

bird(polly).

bird(X) = penguin(X).

penguin(pengo).

The definition is adopted from [23]. If we want to know which birds can fly, we
pose the query

G3> gcla(birds){true = flies(X)}.

X = tweety

? ;

X = polly

? ;

no

which gives the expected answers. More interesting is that we can also infer
negative information, i.e., which birds cannot fly:

39

On GCLA, Gisela, and MedView

G3> gcla(birds){true = flies(X) -> false}.

X = pengo

? ;

no

This kind of negation has been treated at length in a number of papers on GCLA

for instance [6, 11, 36]. It works the same in Gisela.

5.2.3 Control

Both GCLAII and Gisela separate the declarative and the procedural part of a
program. The way control issues are handled are very different though, as are
parts of the general computation models.

GCLAII has a default set of inference rules similar to the calculus shown in
Section 5.2.1 and a number of search-strategies built from these rules. To pro-
gram the control part, the user could define new search-strategies but it was also
possible to define new inference rules, discarding the default calculus completely if
desired. The system was very powerful and a lot of work was put into developing
suitable programming methodologies [6, 23, 57].

Compared to the rule definitions of GCLAII, method definitions in Gisela are
very restricted. Although most parts of method definitions may be modified using
specialized object representations, the structure, as such, remains very simple. A
method definition is just a number of equations where each equation contains
a computation condition. The conditions are simple flat structures describing a
sequence of actions to perform. It is natural to think of a method definition as
a function which takes an initial state definition and transforms it according to
the actions specified by the computation conditions. On the other hand, proof-
search in GCLAII is really a matter of equation-solving and rules and strategies
are functions which are run “backwards”.

From a practical point of view the key differences are:

• Gisela does not permit us to write new inference rules, e.g., change the set
of ways to move from one state definition to the next one. What we could
do is to write a number of method definitions corresponding to the default
rules in GCLA and use these as a basis for programming control. Such a
set of method definitions is given in appendix A.

• In method definitions in Gisela, it is not possible to control explicitly which
equation of the current state definition an operation should be applied to.
In particular, it is not possible to specify that the next operation should be
applied to the same equation as the current operation.

• In Gisela an arbitrary number of data definitions may be used. This opens
up for new programming methodologies which could be used to regain some

40

Gisela—A Framework for Definitional Programming

power lost in other respects, i.e., splitting a program into several data def-
initions and using method definitions to select between these in different
ways. This approach has been explored to some extent in the setting of
definitional program separation [18, 19].

• Gisela can be programmed using object representations through which method
definitions can be modified in a multitude of ways.

• In Gisela, the observer concept for tuning computational behavior is present.
However, so far this concept is rather unexplored.

5.3 Separated Definitional Programming

Separated definitional programming or definitional program separation has been
discussed in [17, 18, 19, 21, 26]. Gisela is in several ways better suited for this
technique than GCLAII. We give a brief description of the technique and demon-
strate with an example.

5.3.1 Background

The central idea in definitional program separation is a program separation
scheme based on the notions of form and content of an algorithm. Since many
different algorithms can be expressed using the same form and varying the con-
tent, definitional program separation has also been proposed as a candidate for
higher order definitional programming.

Definitional program separation relies heavily on the use of multiple data
definitions. Since GCLAII only supports a single data definition it was not par-
ticularly well-suited for implementing separated programs. In [18, 19] an idealized
definitional programming language based on GCLAII was used. Essentially, this
language augmented GCLAII with the possibility of having multiple data defi-
nitions and a number of provisos like in_dom/1. To test programs an interpreter
was written using GCLAII. The way Gisela supports program separation is closer
to the original descriptions given in [26] than to the GCLA inspired notations of
the idealized language in [18, 19].

When developing a separated version of an algorithm we try to split the
description of the algorithm into its form and content. In other words, we try
to separate the global structure or (recursive) form of the algorithm from the
operations needed to compute the algorithm. One of the interesting things about
this is that many algorithms share the same form, but use different operations.
Thus, it becomes possible to classify algorithms in new ways.

In Gisela the form of an algorithm is expressed using a method definition and
the content in a number of data definitions.

41

On GCLA, Gisela, and MedView

5.3.2 A Separated Algorithm

Consider the primitive recursive definition of addition:

D

{

plus(0, m) = m.
plus(s(n), m) = s(plus(n, m)).

A stepwise description of the intended algorithm computing plus(n, m) associated
with this definition could be:

1. If n = 0, then the result is D(plus(n, m)), that is, m.

2. If n = s(x), then first compute plus(x, m) to y and then apply s to get the
result s(y).

In a separated program the local operations should be separated from the global
content. The operations involved in this example are:

1. From plus(0, m) move to m.

2. From plus(s(x), m) move to plus(x, m).

3. From a number y compute s(y).

Expressed as two simple definitions:

P

{

plus(0, m) = m.
plus(s(n), m) = plus(n, m).

N
{

n = s(n).

Now, given these operations we need a form which will compute the algorithm
implicit in D. Such a form, F , described entirely in definitional terms is:

F

{

F (x) = P (x) #P (x) 6∈ Dom(P).
F (x) = NFP (x) #P (x) ∈ Dom(P).

So, F defines the form of an algorithm adding two natural numbers and P and
N provide the content.

5.3.3 Separated Gisela programs

The examples given in this section are described as functions, that is, what we
want to do is to evaluate a functional expression to a value. Following the ap-
proach in [18, 19, 21], where the expression to evaluate was given in the antecedent
of sequents, the expression to evaluate will be the left-hand side in a state defi-
nition containing a single equation.

First, we look at the separated program discussed in the previous section. We
rename the definitions P and N plus and nats, respectively:

42

Gisela—A Framework for Definitional Programming

definition plus:matching.

plus(zero, M) = M.

plus(s(X), M) = plus(X, M).

definition nats:matching.

zero = s(zero).

s(X) = s(s(X)).

Since in this case we are interested in computing answers only, not solving equa-
tions, we have declared that plus and nats are matching definitions, that is, the
definiens operation can be applied only to fully instantiated terms.

Describing the form F in Gisela is also rather straightforward. F can be
implemented using a method definition with two equations, corresponding to
the two equations of F . The implementation uses the built-in guard constraint
def_in_dom. Also, the data definitions nats and plus are imported into the
method definition, which has no parameters:

import_definition(nats).

import_definition(plus).

method form1.

form1 = [l:plus] # all not(l:def_in_dom(plus)).

form1 = [l:nats, form1, l:plus] # some l:def_in_dom(plus).

What form1 does is to reduce the expression on the left-hand side of the chosen
equation to its value. For instance,

G3> form1{plus(s(zero),s(zero)) = value}.

will compute the flattened result definition {s(s(zero)) = value}.
Of course, things become more interesting if we parameterize the method

definition form1, since then several algorithms sharing the same form can be
computed, simply by switching data definitions. The parameterized version be-
comes:

method form1:[D1, D2].

form1 = [l:D1] # all not(l:def_in_dom(D1)).

form1 = [l:D2, form1, l:D1] # some l:def_in_dom(D1).

With this version of form1 we use a slightly modified query which computes the
same answer as before:

43

On GCLA, Gisela, and MedView

G3> form1(plus,nats){plus(s(zero),s(zero)) = value}.

Although we can tell what the sum of two numbers is from a result such as
{s(s(zero)) = value}, it is arguable that it is not the most intuitive of answers.
An alternative is to use a variable in the right-hand side of the equation and bind
it to the result of the computation. This method is in accordance with the
technique used in GCLA. To be able to do this we modify form1 somewhat and
add an extra step which unifies the left and right-hand sides of the equation after
a result has been computed:

method f1:[D1, D2].

f1 = [l:D1] # all not(l:def_in_dom(D1)).

f1 = [l:D2, f1, l:D1] # some l:def_in_dom(D1).

method form1:[D1, D2].

f = instance(f1, [D1, D2]).

form1 = [D1, f].

In this version form1 simply uses the method f which corresponds to previous
versions of form1 to compute a value and then the two sides of the resulting state
definition are unified with each other. Now, if we decide to view only the answer
substitution, the answer to the query

G3> form1(plus,nats){plus(s(zero),s(zero)) = N}.

is the substitution {N = s(s(zero))}.
We round up the example by showing, len and min, two more recursive func-

tions having the same form as plus but different content. Both can be split in a
manner very similar to plus and use nats to get the successor of a natural num-
ber. We simply show the data definitions providing the content and a sample
query:

definition min:matching.

min(zero,N) = zero.

min(s(M), zero) = zero.

min(s(M), s(N)) = min(M, N).

definition len:matching.

len([]) = zero.

len([X|Xs]) = len(Xs).

44

Gisela—A Framework for Definitional Programming

Compute the length of [a,b,c]:

G3> form1(len,nats){len([a,b,c]) = N}.

N = s(s(s(zero)))

5.3.4 Discussion

Definitional program separation, and especially the way to describe methods and
computations used in [26], has had a major influence on the development of Gisela.
It was a programming technique which required use of several data definitions, a
feature not available in GCLA.

Most of the work on definitional program separation so far is presented in
[18, 19] which goes through a large number of examples and presents a number
of different forms. As mentioned above, all examples are given in an idealized
definitional programming language similar to GCLA.

We have not, as yet, thoroughly tested how well the developed techniques
may be transferred to Gisela. Some examples use specialized provisos testing
properties and performing operations on terms not present in Gisela. However,
in most cases we believe that program separation is handled in a cleaner way
using Gisela.

5.4 Computing Similarity Measures

Assume that we have the following two partial cases adopted from MedView:

definition s1:constant. definition s2:constant.

anamnesis = common. anamnesis = common.

common = drug. common = drug.

common = allergy. common = allergy.

common = smoke. common = smoke.

drug = no. drug = no.

allergy = oranges. allergy = lemons.

smoke = ’8 cigarettes/day’. smoke = ’4 cigarettes/day’.

Suppose we wish to compute somehow how similar the cases are to each other.
One possibility is to compare all the common attributes pair-wise and run the
query

G3> cm(s1,s2){drug=drug, allergy=allergy, smoke=smoke}.

where cm is the same as the method definition used in Section 3.6. The flattened
result definition for this query is

{no=no, oranges=lemons, ’8 cigarettes/day’=’4 cigarettes/day’}

45

On GCLA, Gisela, and MedView

If the interpretation of the result is obvious we can stop here. However, if an
interpretation is not abvious we can use the computed result definition as the
initial state definition in a new query to get a better estimation of how similar s1
and s2 are. For instance, we may have additional knowledge in a data definition
groups:

definition groups:constant.

oranges = citrus_fruits.

lemons = citrus_fruits.

’8 cigarettes/day’ = ’< 10 cigarettes/day’.

’4 cigarettes/day’ = ’< 10 cigarettes/day’.

One way to learn more about the similarity of s1 and s2 is to use the result
definition computed above and a single-stepping method ss which replaces some
left or right-hand side by its definition in groups:

G3> ss(groups){no = no, oranges = lemons,

’8 cigarettes/day’ = ’4 cigarettes/day’}.

{no = no, citrus_fruits = lemons,

8 cigarettes/day = 4 cigarettes/day}

We take the result as the initial state definition in a new computation:

G3> ss(groups){no = no, citrus_fruits = lemons,

’8 cigarettes/day’ = ’4 cigarettes/day’}.

{no = no, citrus_fruits = lemons,

< 10 cigarettes/day = 4 cigarettes/day}

Repeating this process, we will finally arrive at a result definition containing
identities only. Now, the similarity can be defined as follows: The fewer steps we
need to arrive at a definition which consists of identities only, the more similar s1
is to s2. Alternatively, we could use some more complicated method and query
and take the size of the full result definition as a similarity measure.

5.5 Functional Logic Programming

Functional logic programming using GCLA has been covered in depth in [55, 56,
57]. In particular [57] covers a wide range of topics from how to go about writing
functional logic programs to generating specialized rule definitions for efficient
evaluation. The functional logic programming methodology is based on a few
crucial restrictions to the general GCLA machinery, namely:

• at most one condition is allowed in the antecedent,

46

Gisela—A Framework for Definitional Programming

• rules that operate on the consequent can only be applied if the antecedent
is empty,

• the axiom rule, can only be applied to atoms with circular definitions,

• if the condition in the antecedent is (C1, C2) then C1 and C2 are tried from
left to right by backtracking.

With these restrictions, evaluation of functional logic programs becomes deter-
ministic in the sense that only one inference rule can be applied to each sequent.
The functional logic programming methodology following from this is not aimed
at general equation solving, but at combining functions and predicates in a nat-
ural way.

Now, the restrictions above can be directly applied to Gisela:

• each state definition contains exactly one equation,

• rules that operate on the right-hand side of equations can only be applied
if the left-hand side is true,

• the identity rule can only be applied to atoms in the domain of a special
data object definition,

• if the condition in the left-hand side is (C1, C2) then C1 and C2 are tried
from left to right by backtracking.

5.5.1 A Computation Method for Functional Logic Programs

Expressing the above evaluation strategy as a method definition in Gisela is rela-
tively straightforward. To give an illustration of how computations are performed
we give a number of deduction rules in Figure 2 showing state definition trans-
formations in functional logic computations. To distinguish data from functions
and predicates we use one data definition D to define canonical data objects, and
another data definition P to define functions and predicates. A method definition
which implements functional logic computations along the lines of the calculus in
Figure 2 is fl, which takes two parameters, a program definition P, and a data
object definition D:

method fl:[P,D].

// t, done when true to the right.

fl = [] # some l:matches(true) &

some r:matches(true).

// f, both sides false.

fl = [] # some l:matches(false) &

some r:matches(false).

47

On GCLA, Gisela, and MedView

{true = C}

{true = c}
dr c ∈ Dom(P), C ∈ P (c)

{A1 = C} . . . {An = C}

{a = C}
dl a ∈ Dom(P), P (a) = A1, . . . , An

{a = a}
ax a ∈ Dom(D)

{true = true}
t

{false = false}
f

{A = B}

{true = A → B}
ar

{true = A} {B = C}

{A → B = C}
al

{true = C1} {true = C2}

{true = (C1, C2)}
vr

{Ci = C}

{(C1, C2) = C}
vl i ∈ {1, 2}

Figure 2: Schematic state definition transformations for functional logic compu-
tations using a data object definition D and a program definition P .

// ax, data, unify left and right.

fl = [D] # some l:in_dom(D).

// al, vl, conditions to the left.

fl = [fl, l:P] # some l:matches((_, _));l:matches((_->_)).

// ar, vr, conditions to the right.

fl = [fl, r:P] # some l:matches(true) &

some r:matches((_, _));r:matches((_-> _)).

// dl, definiens

fl = [fl, l:P] # some l:in_dom(P).

// dr, clause

fl = [fl, r:P] # some l:matches(true) & some r:in_dom(P).

5.5.2 Writing Functional Logic Programs

As mentioned above, [57] covers functional logic programming using GCLAII in
detail. Among other things, a calculus called FL for handling functional logic
programming is given. The method fl makes it possible to reuse the general
methodology using the Gisela framework. Since most of the basic material on

48

Gisela—A Framework for Definitional Programming

writing functional logic programs carries right over to Gisela we only give a brief
overview and refer to [57] for details. Certain extensions of FL, such as using
generated specialized rule definitions, cannot be applied to Gisela. We discuss
alternative approaches in Section 5.5.3 below.

Queries In the following we use the terminology from [57] and call data canon-
ical objects. Assume that we have a data definition P defining a number of
functions and predicates, and a data definition D defining the canonical objects
of the application domain. Using the method fl there are two kinds of queries:

1. Functional queries:
fl(P, D){FunExp = C},

where FunExp is a condition and C a variable or a (partly instantiated)
canonical object.

2. Predicate (logic) queries:

fl(P, D){true = PredExp},

where PredExp is a condition.

The intended meaning of the functional query is “evaluate FunExp to C”. The
intended meaning of the predicate query is “does PredExp hold?”. We see that
conditions to the left are understood as expressions to evaluate, and conditions
to the right as predicates to be proved.

Canonical Objects The computation method fl is intended for use with data
definitions of type fl (5.1.1). The canonical objects of an application are defined
in a special data definition. Since the only thing this definition is used for is to
test whether a term is in its domain or not, it does not really matter how the
canonical objects are defined. However, following the approach of [57] we use
circular definitions. For instance:

definition nats:fl.

zero = zero.

s(X) = s(X).

Defining Functions A function definition, defining the function F , consists of
a number of equations

F (t1, . . . , tn) = C1.
... n ≥ 0, m > 0.
F (t1, . . . , tn) = Cm.

49

On GCLA, Gisela, and MedView

Two observations of interest are: (i) If the heads of two or more equations are
overlapping then the corresponding bodies must have the same value, (ii) If Ci =
A → B then it is understood as “the value of Ci is B if A holds”.

Defining Predicates The method fl handles pure Prolog programs. Thus,
defining predicates is just like writing a program in pure Prolog. The interesting
thing is how to use functions in predicates. Just as in function definitions the
arrow, ‘→’, works as a switch between functions and predicates. For instance, if
we have an equation like

P = F → C.

in a predicate definition it should be understood as “P holds if F can be evaluated
to C”. The arrow can also be used in the context of negation as in Section 5.2.2.

Examples In [57] a large number of example programs dealing with functional
logic programming in GCLA are given. Most of these can be more or less directly
transferred to the Gisela setting. We show such an example here.

Let the definition nats be as above. We will define a (partial) function
double_odd which doubles all odd numbers but computes no value for even num-
bers. First, we state that if X is odd then the value of double_odd(X) is computed
by the function double/1:

double_odd(X) = odd(X) -> double(X).

Then we define the predicate odd and the function double:

odd(s(X)) = even(X).

even(zero).

even(s(X)) = odd(X).

double(zero) = zero.

double(s(M)) =

(double(M) -> K)

-> s(K).

With this we are done and can proceed to ask queries:

G3> fl(fldemo,nats){double_odd(s(zero)) = X}.

X = s(s(zero))

? ;

no

G3> fl(fldemo,nats){double_odd(zero) = X}.

50

Gisela—A Framework for Definitional Programming

no

G3> fl(fldemo,nats){double_odd(N) = M}.

N = s(zero),

M = s(s(zero))

? ;

N = s(s(s(zero))),

M = s(s(s(s(s(s(zero))))))

?

yes

where all functions and predicates are defined in the data definition fldemo.

5.5.3 Discussion

The most significant restriction on queries imposed in functional logic programs is
that the state definition must contain exactly one equation. Due to the properties
of Gisela and the method fl, this means that all goals throughout the computa-
tion will contain exactly one equation. This of course eliminates the need for an
observer to choose the equation, and makes evaluation very simple indeed.

We have only showed the most basic methods for using Gisela for functional
logic programming here. To test Gisela we have written one major functional logic
program which generates text summaries in HTML or LATEX format from patient
data gathered in the MedView project. The in-depth description of functional
logic programming using GCLA in [57] covers a number of topics not mentioned
here. Some of these are:

• Methodology for writing lazy and strict functions.

• Extensions to FL such as efficient arithmetics, if-then-else, negation as fail-
ure, and IO.

• Generation of specialized rule definitions for management of nested function
calls and more efficient computations.

We discuss how these issues could be handled in Gisela.

Evaluation strategies In [57] programming methods were presented for both
strict and lazy evaluation of functions. In principle, all this material can be
applied to Gisela without modification. It should be noted that “lazy” in this
setting does not mean that expressions are evaluated at most once (sharing), but
simply that they are only evaluated when needed.

51

On GCLA, Gisela, and MedView

Extensions The implementations of if-then-else and negation as failure pre-
sented in [57] rely on a built-in if-then-else at the meta-level of GCLA. This
built-in meta-level if-then-else works as the built-in if-then-else of Prolog, that is,
the if part is only evaluated once if successful. Gisela so far has no such primitive.
We would rather try to find a more declarative solution. From a practcial point
of view, however, the need for an if-then-else construct is obvious. The other
extensions of FL mentioned can be implemented through extra definitions.

Nested Function Calls If we have a data definition like

double(zero) = zero.

double(s(M)) =

(double(M) -> K)

-> s(K).

and try to use it to evaluate double(double(s(zero)) it will not work since
there is nothing in the definition or in the method definition fl which tells us
how to evaluate the argument to double. In GCLA two approaches were used
to handle this. Either adding an extra clause to the definition of double or using
a specialized rule definition which ensured that arguments were evaluated. The
second approach cannot be used in Gisela since it is not within reach of what can
be expressed in method definitions. The first approach can be used, but yields
rather complicated data definitions.

A better alternative might be to use the Gisela framework as a low-level engine
for functional logic programming and build a programming language on top of it.
In its most naive form such a language could simply add clauses for evaluation of
arguments to a definition. For instance, a definition like:

min(zero,N) = zero.

min(s(M), zero) = zero.

min(s(M), s(N)) = succ(min(M, N)).

would become

min(M,N) =

(M -> M1),

(N -> N1)

-> min1(M1, N1).

min1(zero,N) = zero.

min1(s(M), zero) = zero.

min1(s(M), s(N)) = succ(min(M, N)).

From a computational point of view, this corresponds directly to what the spe-
cialized rule definitions used in [57] do. Of course, this is not optimal since it

52

Gisela—A Framework for Definitional Programming

will attempt to re-evaluate already evaluated arguments. However, a lot of work
has been put into finding efficient solutions to this problem, both in the area of
functional [12, 45, 46] and functional logic programming [2, 3, 4, 5, 31, 39, 43],
which could be applied in a translation of a high-level source language into Gisela.

5.6 Object Representations

At a suitably abstract level, a program in the Gisela framework is just a collection
of data and method definitions, plus a query which is evaluated according to the
rules given in Section 4.2. Thus, whether the data and method definitions are
created using syntactic representations or by some other means is not important.
With this in mind, Gisela was from the start designed to make it simple to build
programs directly as objects, from components and classes in the framework,
instead of using traditional syntactic representations. All that is required to use
the Gisela framework in an Objective-C program is to create a new instance of the
class DFDMachine, some data and method definition objects and start computing.

In this section we give an overview of how Gisela can be used in this manner. A
couple of applications are discussed in Sections 5.7 and 5.8. Some more details are
given in Section 7. The examples use Objective-C, an object-oriented extension
to C. A nice introduction to Objective-C and object-oriented programming is
found in [40]. A very brief overview is given in appendix B.

5.6.1 General Idea

The general idea behind the Objective-C interface to Gisela is that each kind of
entity used to build programs, variables, terms, conditions, definitions, guards
etc., is represented by objects of a corresponding class. Thus, a constant is rep-
resented by an object of the class DFConstant, a guard primitive by an object
of the class DFGuardPrimitive and so on. It follows that if we have a conceptu-
ally clear definitional model of a system it can be realized directly using object
representations.

The aim of Gisela is to provide a general framework for implementing defini-
tional models of various kinds of systems. As such, we want as few restrictions
as possible on what the definitional model permits. To allow for flexibility, the
computation model described in Section 4.2 only gives very abstract descriptions
of certain parts of computations. Specifically, data definitions are described in an
abstract manner, guards in method definitions only as boolean functions, and the
behavior of the observer is essentially left open. The syntactic representations
presented above provide specific implementations of these notions. Using object
representations alone does not extend Gisela in any way, apart from providing a
second API. What we can do, however, is to extend the framework by subclass-
ing existing classes or writing new ones which adhere to the restrictions of the
Gisela computation model. It is mainly through the mentioned parameters, data

53

On GCLA, Gisela, and MedView

definitions, guards, and observers, the framework is open for modification. Given
specific implementations of data definitions, guards and observers, the behavior
of the system is fully defined by the model in Section 4.2.

5.6.2 Creating Data and Method Definitions

Since this paper is not a manual or reference for using the Gisela framework we
will only give some brief examples. We start by showing how to build data and
method definitions from objects.

Assume that we want to create a data definition defining the identity function,
id/1, for use as part of a definitional computation in an Objective-C program.
That is, an object representing the data definition having the syntactic represen-
tation:

definition id:matching.

id(X) = X.

There are two ways to create the data definition id of which only one will be
shown here. First, we can use the classes of the Gisela framework and build up
the definition from objects of these classes step by step. Second, it would be
trivial to write a definition class, implementing the required methods, which for
any term id(X) returned {X} as the definiens.

We illustrate the API for building the data definition id from objects of
classes in the framework. The definition is built bottom-up starting with the
variable X:

// Declarations of needed variables.

DFVariable *x;

DFCompoundTerm *idX;

NSArray *eqs;

DFDefinition *idDef;

// Create a new variable.

x = [DFVariable variable];

// Create the term id(X)

idX = [DFCompoundTerm compoundTermWithName:@"id"

andArguments:[NSArray arrayWithObject:x]];

// Create an array containing the equation id(X) = X.

eqs = [NSArray arrayWithObject:[DFEquation equationWithLeft:idX

andRight:x]];

// Create a definition named id from the equations in eqs.

idDef = [[DFMatchingDefinition alloc] initWithName:@"id"

andEquations:eqs];

54

Gisela—A Framework for Definitional Programming

In the current implementation, the definition idDef constructed above is identical
to a definition resulting from parsing a string containing the syntactic represen-
tation. An alternative way to build the definition is therefore:

// Create a parser object.

DFDefinitionParser *parser = [[DFDefinitionParser alloc] init];

DFDefinition *idDef;

// Create the definition from its syntactic representation.

idDef = [parser parseDefinitionWithString:

@"definition id:matching. id(X) = X."

];

To build a method definition is no different, just slightly more cumbersome. As an
example let us create the method definition that has the syntactic representation:

method rightAx.

rightAx = [id,r:id].

The following Objective-C code builds the corresponding object representation:

// Declarations of needed variables.

NSString *rAx = @"rightAx";

DFOperator *anOp;

DFWord *word;

DFDefinition *idDef; // created as above

DFGuardedEquation *eq;

DFMethod *raMethod;

// Create the method definition.

raMethod = [[DFMethod alloc] initWithName:rAx];

word = [[DFWord alloc] initWithCapacity:2];

// Create the operator id used in the syntactic representation.

anOp = [DFOperator operatorWithDefinition:idDef

andOperatorType:DFBothOperator];

[word addConstituent:anOp];

// Create the operator r:id and add it to word.

anOp = [DFOperator operatorWithDefinition:idDef

andOperatorType:DFRightOperator];

[word addConstituent:anOp];

55

On GCLA, Gisela, and MedView

// Create the single equation and add it to the method definition.

eq = [DFGuardedEquation equationWithLeft:

[DFMethodConstant constantWithName:rAx]

andRight:word];

[raMethod addEquation:eq];

The structural similarity between syntactic and object representations should
be clear from the examples. Also, the fact that syntactic representations are
generally easier to handle, which of course is the reason why we use them in the
first place.

5.6.3 Using a D-Machine

The heart of the definitional machinery is the DFDMachine which is a class im-
plementing the calculus in Section 4.2.

The machine may be set up in different ways depending on the context where
it is to be used. It is possible to have a machine that runs in the same thread
as the object creating the machine or in a separate thread, which might be more
appropriate for interactive applications. It is also possible to set the machine’s
observer to any object implementing the appropriate methods. Some of the meth-
ods available to initialize a DFDMachine are:

// Create a machine that uses the default observer.

- (id)initWithDelegate:(id)anObject;

// Create a machine that uses the default observer

// and runs computations in a separate thread.

// Messages from the computation are handled by the delegate.

- (id)initWithInteractiveDelegate:(id)anObject;

// Create a machine that uses a custom observer

// which does not interact with other objects.

- (id)initWithDelegate:(id)anObject

andObserver:(id<DFComputingObserver>)anObserver;

// Create a machine that uses a custom observer

// that may interact with the calling application.

// Computations are run in a separate thread.

- (id)initWithDelegate:(id)anObject

andInteractiveObserver:(id<DFComputingObserver>)anObserver;

// Create a machine where the delegate and the observer

// are the same object.

// Computations are run in a separate thread.

56

Gisela—A Framework for Definitional Programming

- (id)initWithInteractiveObserverDelegate:

(id<DFComputingObserver>)anObserver;

The delegate is an object which handles certain things for the machine and re-
ceives notifications at times. It can be the same as the observer or another object.

5.6.4 Extending the Framework

So, if using object representations is just a more cumbersome way to write pro-
grams, why bother? The answer, of course, is that by providing means to in-
troduce new behavior we can easily extend the framework to allow more general
definitional models. We give a few examples of how this can be done.

Introducing New Data Definitions String constants are allowed in Gisela.
With the current representation, they are just atomic constants which cannot
be modified.3 To handle strings the Gisela framework provides a built-in data
definition class called DFStringsDefinition which implements common string
operations. Some of the operations available are:

// Convert a char code to a string

restrict char_string/1:matching.

char_string(97) = "a"

// Split a string into a list of characters

restrict char_string/1:matching.

explode_string("foo") = ["f","o"."o"]

// Append two strings.

restrict string_append/1:matching.

string_append("foo", "bar") = "foobar"

// Compare two strings

restrict equals_string/1:matching.

equals_string("foo", "foo") = true.

Note that all entities defined have a matching restriction. Recall that a definition
D is given by the sets dom(D) and com(D) and the definiens operation (Section
3.1). Using informal pseudo-code we can describe the definiens operation for a
definition with the four operations above:

def(char_string(N)) = {string_for_char(N)}.

def(explode_string(S)) = {explode(S)}.

3Taking the common approach of letting string constants be syntactic sugar for lists of

characters is an alternative to consider for the future, of course.

57

On GCLA, Gisela, and MedView

def(string_append(A,B)) = {A++B}.

def(equals_string(A,B)) = if A==B

then {true}

else {}.

A good choice for dom(D) is the set of all terms having the same principal functor
as any of the given operations. As com(D) we can use the set of all conditions.
That the class DFStringsDefinition can be implemented in Objective-C should
be obvious. It also fulfills the requirements the computation model sets on def-
initions. Thus, for all purposes, a DFStringsDefinition is no different from a
definition created using syntactic representations or a definition built up from
objects as in Section 5.6.2

Adding a Guard Primitive In the computational model for Gisela, guards
in method definitions are only defined to be boolean functions. The framework
provides a number of classes from which guards corresponding to the description
in 5.1.2 can be built. This provides a reasonable set of building-blocks suffi-
cient for most applications. However, it does not attempt to cover all possible
guards needed. If some new guard is needed it can be programmed using object
representations, preferrably using the provided classes as a basis.

The framework includes a guard primitive which tests if the two sides of an
equation are identical. A more general operation, which is not included, is to test
whether the left-hand side matches the right-hand side. A simple subclass of the
general class DFGuardPrimitive can handle this. In principle we only have to
override the method holds:

- (BOOL)holds:(DFEquation *)eq {

return [[eq right] matches:[eq left]];

}

Another Observer The observer is responsible for selecting the order in which
equations are selected for rule application. If we want to restrict rule application
to the left-most equation only, we can introduce a new observer class. In this class
we override the appropriate method from the default observer to ensure that only
the left-most equation is selected:

// A LeftMostObserver inherits from DFDefaultObserver.

@interface LeftMostObserver:DFDefaultObserver

{

}

@end

@implementation LeftMostObserver

58

Gisela—A Framework for Definitional Programming

- (NSArray *)selectEquationsWithWord:(DFWord *)aWord

stateDefinition:(DFStateDefinition *)stateDef

andHints:(NSArray *)hints

{

return [NSArray arrayWithObject:[NSNumber numberWithInt:0]];

}

@end

The left-most equation is the one at index 0. The power of object-oriented pro-
gramming, in general, and inheritance in particular, lets us experiment with def-
initional computations using the Gisela framework as a basis.

5.6.5 Other Possibilities

Sometimes it might be better to use only part of the Gisela framework and develop
the rest of an application directly in the surrounding programming language. The
typical scenario is that some data definition classes are used to represent domain
knowledge but that the general computing machinery is replaced by hard-wired
behavior.

An example of this is the application MedSummary developed in the Med-
View project. In MedSummary definition classes of Gisela are used to represent
examination records and parts of text templates for text generation. The appli-
cation also implements a number of specialized subclasses for data definitions.
The definition objects are glued together by Objective-C code. The result is a
system with excellent performance partly based on a framework for declarative
programming.

5.7 ExaminationFinder—A Simple Application

In this section we discuss a simple application with a graphical user interface
which uses Gisela for definitional computations.

5.7.1 Using ExaminationFinder

ExaminationFinder, a simple prototype application, lets the user enter a pattern
of attribute-value pairs, and then searches a MedView database for examination
records matching the pattern. The search panel is shown in Figure 3. The selected
records can be used for different tasks by viewing them in different applications.

ExaminationFinder allows two kinds of searches:

1. To look for records having the values of attributes specified in the search
panel. It is possible to look for records matching all or some given criteria.
For instance: “Find all records for patients born in Sweden who have the
diagnosis oral lichen planus”.

59

On GCLA, Gisela, and MedView

Figure 3: ExaminationFinder search panel.

2. To look for records in the same way but using an extra definition which
collects values into different groups. For instance, if we have a definition
where countries are grouped into regions we might try: “Find all records
for patients born in Europe”.

If a search pattern is found useful it can be saved for future use.

5.7.2 Set Up

ExaminationFinder is written in Objective-C using OpenStep’s AppKit frame-
work [44]. An application developed using this framework consists of an exe-
cutable and a number of resources needed by the application. The resources can
be pretty much anything, including text files containing Gisela definitions. Thus,
data and method definitions needed for definitional computations can be put into
the application’s resources folder and then be loaded by the application at run
time.

The general methodolgy to use Gisela to build applications including syntactic
representations is:

• Decide what data and method definitions are needed for the definitional
part of the application.

• Write the syntactic representations of the Gisela program part and add the
resulting files to the application’s resources.

• At run time, load the definitional resources into objects representing them
and create the desired number of DFDMachine objects for running queries.

60

Gisela—A Framework for Definitional Programming

• Build a DFQuery object, representing the query, from user input somehow.

• Send a message with the DFQuery object to a DFDMachine and ask it to run
the query.

• Present the result, represented by a DFAnswer object, to the user somehow.

ExaminationFinder uses a single definitional resource file containing method def-
initions for the computation methods used to search the database.

A MedView database is represented by an object of the class MVDatabase.
This class knows how to read the database from disk and present it as a number
of data definitions, each representing a single examination. ExaminationFinder
uses a multi-document architecture, that is, any number of search panels, or doc-
uments, can be used at the same time. Each search panel has its own DFDMachine

object performing definitional computations.
When a new search panel is opened, its controller object creates a new object

of the DFDMachine class and loads the method definitions to use for computations.
This is done with a few lines of code:

// Create a method definition parser.

DFMethodParser *mParser = [[DFMethodParser alloc] init];

methods = [mParser parseMethodsAtPath:mPath];

// Create and initialize a machine for definitional computing.

dMachine = [[DFDMachine alloc] initWithDelegate:self];

// Use flat result definitions.

[dMachine setResultSystemType:DFFlatSystemResultType];

where methods is an array which holds the loaded method definition objects and
mPath is the path to the text file, in the application’s resources folder, where the
methods are defined.

5.7.3 Finding Matches

In ExaminationFinder, the user enters attribute-pairs using an ordinary table
view. In definitional terms, as used in MedView, that an attribute A has a value
V means that there is a connection from A to V using an examination record
R. To examine if such a connection exists, we use a state definition {V = A}
and reduce the right-hand side as far as possible, or until both sides are equal.
When there are several attribute-value pairs ExaminationFinder creates a state
definition {V1 = A1, . . . , Vn = An} for some queries and a separate state definition
for each attribute-value pair for all queries.

The attributes and values entered by the user are represented by strings and
stored in a special object which works as a data source for the table view. Before
we can send a query to the DFDMachine these strings must of course be turned into

61

On GCLA, Gisela, and MedView

suitable definitional objects. Since Gisela constants are built from strings this is
easy to do. The following code creates an equation from the strings attribute

and value:

eq = [DFEquation equationWithLeft:

[DFConstant constantWithName:value]

andRight:[DFConstant constantWithName:attribute]];

Using other methods from the Gisela frameworks, some of which were shown in
Section 2.5, an object representing the query is constructed.

ExaminationFinder uses two different method definitions, sri shown in Sec-
tion 2.5, and the method definition srfi (for some right filter identity) shown
below. Which method definition to use depends on whether a grouping or fil-
tering of values is used or not. When filtering is on srfi is used. The meaning
of the equations in srfi is: (i) if there is an equation with identical left and
right-hand sides, the computation is finished (ii) if some attribute can be reduced
using Record, reduce it and continue (iii) if a value can be grouped using Filter,
do that and continue.

method srfi:[Record,Filter].

srfi = [] # some identity.

srfi = [srfi, r:Record] # some r:in_dom(Record) &

all not(identity).

srfi = [srfi, r:Filter] # some r:in_dom(Filter) &

all not(identity) &

all not(r:in_dom(Record)).

5.8 An Interactive System

Following the tradition of declarative programming systems, we have written a
(simple) interactive system useful for developing and testing Gisela programs.
Since the framework contains almost all functionality needed, the interactive
system is written using a few hundred lines of code only. Most of the code
is for parsing commands and queries. Parsers for data and method definitions
are provided by the Gisela framework. Also, all classes for terms, conditions,
equations, methods etc. have a method stringValue which gives the syntactical
representation of the object.

The architecture of the interactive system is the same as that for Examina-
tionFinder, e.g. a DFDMachine is created to handle computations. The machine
is connected to a default observer. While simple, the interactive system does
its job. Adding a DFDMachine class suitable for debugging would of course be a
valuable improvement.

62

Gisela—A Framework for Definitional Programming

5.9 Discussion

Of course, most declarative programming languages have foreign-language inter-
faces which allow them to call, or be called from, imperative programming lan-
guages, typically C or Java. There are also several implementations [34, 52, 13]
which compile programs into an object-oriented model, again typically using Java
as the target language. Some of these feature a programming model similar to the
object representations discussed here. Jinni [52, 53, 54] is an interesting attempt
to combine ideas from Prolog and Java into a tool for gluing together knowledge
processing components and Java objects in distributed applications.

The special thing about Gisela is that we take neither representation as be-
ing the language. Instead, there is a framework providing a number of tools to
implement definitional programs. The tools can be used to write programs using
syntactic representations and running them in the interactive system. On the
other hand, they can be used as an extensible API for building definitional com-
ponents in Objective-C programs. How to use the tools is up to the user of the
framework.

More programs must be written to evaluate the system and we might expect
this to lead to some revision of Gisela. To increase the usefulness of the system
we must also provide a suitable set of built-in data definitions and standard
computation methods to build programs from. Generally, this is one of the areas
where existing declarative programming systems are lacking in comparison to
traditional imperative or object-oriented ones.

6 Towards a D-Machine

The set of inference rules given in Section 4.2 is a suitable representation to
provide an understanding of how definitional computing is realized in Gisela.
However, they are at a somewhat too high level to be used as a basis for an
implementation. Therefore, we provide a number of state transition rules, which
at a lower level, describe how an initial state definition is transformed into a
final result definition. The rules describe a machine using depth-first search with
backtracking and are the basis for the actual implementation of Gisela. The most
notable difference compared to the rules in Section 4.2 is that a computation is
described as rewriting an initial goal into a final result definition.

6.1 Rewrite Rules

The notations used are based on the ones in Sections 3 and 4. We only describe
modifications and extensions:

• A goal is of the form W : S where W is a computation condition and S a
state definition.

63

On GCLA, Gisela, and MedView

• An index-set is a sequence {I1, . . . , In} where the elements are conditions
or computation conditions.

• A computation element is either a goal, an equation, or an index set.

• A computation stack is a list of computation elements. We use ∆ to denote
a computation stack. [Y |∆] is the stack with top Y .

• A result stack is a list of result definitions.

• A computation frame is a triple 〈∆, R, θ〉, consisting of a computation stack
∆, a result stack R, and a substitution θ.

• A computation state is a stack F ; Φ of computation frames. F is the active
or topmost frame, and Φ the rest of the stack. Each computation frame
represents an alternative way to compute a solution. We write {} for the
empty computation state.

The final states of the transition system are yes(X, θ), where X is the computed
result definition and θ a substitution, and no which indicates that no answer
could be computed.

(1) Init

M:S → 〈[M:S], [], ∅〉 .

At the top level only a single method is allowed.

(2) Success

〈[], [X], θ〉; Φ → yes(X, θ) .

Alternative solutions are computed by restarting the machine from the state Φ.

(3) Failure

{} → no .

(4) Goal Success

〈[ε:S|∆], R, θ〉; Φ → 〈∆, [S|R], θ〉; Φ .

When a goal is fully evaluated the result S is moved to the result stack.

64

Gisela—A Framework for Definitional Programming

(5) Index

〈[{I1, . . . , In}|∆], [X1, . . . , Xn|R], θ〉; Φ → 〈∆, [X|R], θ〉; Φ ,

where n ≥ 0, X = Otrans({I1 = Xn, . . . , In = X1}). When an index-set is on top
of the computation stack a new result definition is built from pending definitions
previously pushed onto the result stack.

(6) Choice

〈[W (W1, W2):S|∆], R, θ〉; Φ → 〈[WV1:S|∆], R, θ〉; . . . ; 〈[WVm:S|∆], R, θ〉; Φ ,

where {V1, . . . , Vm} = Oseq({W1, W2}), m ∈ {1, 2}.

(7) Method

〈[(WM:S)|∆], R, θ〉; Φ → 〈[(WW1:S), . . . , (WWn:S), {W1, . . . , Wn}|∆], R, θ〉; Φ ,

where M(M) = {W1, . . . , Wn}, n ≥ 1. M(M) is the definiens of the method name
M in the method M , that is

{Wi | M = Wi#Ci ∈ M ∧ Ci(S)}.

If M(M) = {} then
〈[(WM : S)|∆], R, θ〉; Φ → Φ .

Note that the index-set {W1, . . . , Wn} is pushed onto the computation stack to
make it possible to build the desired result definition once the required goals have
been evaluated.

(8) Equation Left

〈[WD:S|∆], R, θ〉; Φ → 〈[e1, WD:S|∆], R, θ〉; . . . ; 〈[en, WD:S|∆], R, θ〉; Φ ,

where {e1, . . . , en} = Oseq(S), n ≥ 1.

(9) Definition Left

〈[(a = B), WD:S|∆], R, θ〉; Φ → 〈[G11, . . . , G1k, I1|∆σ1], Rσ1, θσ1〉; F2; . . . ; Fn; Φ ,

where we have

• Dsuff(a) = {σ1, . . . , σn}, Di = D(aσi) = {Ai1, . . . , Aik}, n ≥ 1, k ≥ 0,

• Gij = W: (Aij/aσi)Sσi,

• Ii = {Ai1, . . . , Aik},

• Fi = 〈[Gi1, . . . , Gik, Ii|∆σi], Rσi, θσi〉.

Note that k can be different for each n.

65

On GCLA, Gisela, and MedView

(10) Vector Left

〈[(A, B) = C), WD:S|∆], R, θ〉; Φ → 〈[W:S1|∆], R, θ〉; . . . ; 〈[W:Sm|∆], R, θ〉; Φ ,

where {C1, . . . , Cm} = Oseq(D((A, B))), m ∈ {1, 2} and Si = Ci/(A, B)S.

(11) Arrow Left

〈[(A → B) = C), WD:S|∆], R, θ〉; Φ → 〈[W:S1, W:S2, {A, B}|∆], R, θ〉; Φ ,

where S1 and S2 are given by

• S1 = ((A → B) 	 S) ↓ A),

• S2 = (B/(A → B))S.

(12) Fail Left

〈[(A = C), WD:S|∆], R, θ〉; Φ → Φ ,

if A is a variable or A = > or A = ⊥.

(13) Equation Right

〈[WD:S|∆], R, θ〉; Φ → 〈[e1, WD:S|∆], R, θ〉; . . . ; 〈[en, WD:S|∆], R, θ〉; Φ ,

where {e1, . . . , en} = Oseq(S), n ≥ 1.

(14) Definition Right

〈[(B = a), WD:S|∆], R, θ〉; Φ → F11; . . . ; Fnkn
; Φ ,

where we have

• Dmgu(a) = {σ1, . . . , σn}, D(aσi) = {Ai1, . . . , Aik}, n ≥ 0, k ≥ 0,

• Gij = W:Sσi(Aij/aσi),

• Fij = 〈[Gij|∆σi], Rσi, θσi〉.

Note that k can be different for each n. If n = 0 or k1 = 0 the rules becomes:

〈[(B = a), WD:S|∆], R, θ〉; Φ → Φ .

(15) Vector Right

〈[(A = (B, C)), WD:S|∆], R, θ〉; Φ → 〈[W:S1, W:S2, {B, C}|∆], R, θ〉; Φ ,

where S1 = S(A/(A, B)) and S2 = S(B/(A, B)).

66

Gisela—A Framework for Definitional Programming

(16) Arrow Right

〈[(A = (B → C)), WD:S|∆], R, θ〉; Φ → 〈[W:S ′|∆], R, θ〉; Φ ,

where S ′ = B ⊕ (S(C/(B → C))).

(17) Fail Right

〈[(A = C), WD:S|∆], R, θ〉; Φ → Φ ,

if C is a variable or C = > or C = ⊥.

(18) Identity Equation

〈[WD:S|∆], R, θ〉; Φ → 〈[e1, WD:S|∆], R, θ〉; . . . ; 〈[en, WD:S|∆], R, θ〉; Φ ,

where {e1, . . . , en} = Oseq(S), n ≥ 1.

(19) Identity

〈[(a = b), WD:S|∆], R, θ〉; Φ → 〈[W:S|∆]σ, Rσ, θσ〉; Φ ,

if σ = mgu(a, b).

〈[(A = B), WD:S|∆], R, θ〉; Φ → Φ ,

if A and B are terms which are not unifiable, or A or B is a condition which is
not a term.

6.2 Result Definitions

A good question is whether there is ever any point in building a full result defi-
nition. The introduction of a complex result definition was motivated by a wish
to study properties of computations and a need to find out from what a spe-
cific equation in a flattened result definition was computed. However, very little
work has been done in this area so far. The developed applications and examples
have been either (functional) logic programs, where the result definition is not
needed at all, or programs where the flattened form of the result definition is the
interesting part of the answer.

From an efficiency point of view, the problem with building full result defini-
tions is that the size grows relative to the number of steps in the computation and
thus consumes a very large amount of memory. Even when all result definitions
are flattened, a large number of index sets are created and put on the compu-
tation stack, only to be discarded later on. Whether full result definitions are
needed and exactly what they should contain is an area for future investigations.
That they are present in Gisela is in line with the goal of providing a framework
useful for several different tasks.

67

On GCLA, Gisela, and MedView

6.3 Discussion

We have chosen to implement Gisela as a system which uses depth-first search and
backtracking to find answers to queries. This choice is debatable since, in general,
the search procedure is not complete and may miss obvious answers implied by
the program.

Historically, using depth-first search is the most common approach in pro-
gramming languages involving search for answers, among them Prolog and Mer-
cury [50]. Today, it is possible to discern a trend where other approaches are
used, e.g. systems like Curry [33], Escher [42], and Oz [48, 49].

Breadth-first search was used in an earlier version of Gisela, see Section 8.
However, it was deemed that for a system with a focus on being practical, such
as Gisela, the efficiency gained by using depth-first search instead was more im-
portant than the loss of completeness.

7 Implementation

The Gisela framework has been implemented in Objective-C using the Founda-
tion framework of OpenStep [44]. The Foundation framework provides a level of
operating system independence, to enhance portability. Thus, Gisela runs on any
platform for which the appropriate OpenStep runtime system is available. We are
considering implementing a version of Gisela in Java for even greater portability.
This should be trivial due to the similarity between Java and Objective-C.

The implementation of Gisela is divided into three frameworks, one for data
definitions, one for method definitions and one implementing computations. A
framework in this setting corresponds to a package in Java and is a collection
of classes that are grouped together, since they conceptually form a unit. This
unit should provide some functionality useful for building other frameworks and
applications. All entities of Gisela are represented by objects of various classes. It
follows that, since a definitional machine is just another object, it can be directly
used in any Objective-C application.

It should be noted that the purpose of this section is not to give a detailed
description of the implementation, but rather to hint at the general ideas and the
design philosophy used. We discuss possible alternatives in Section 7.5 below.

7.1 Overall Structure

The main design goal behind the implementation of Gisela is to create a portable
implementation that can easily be integrated into real-world applications with
graphical user-interfaces. The most practical way to achieve this, in our opin-
ion, is to make it very simple to include Gisela as a component for reasoning
in applications using existing frameworks for GUI, not to provide GUI facil-
ities in Gisela. Thus, we have implemented Gisela as a framework (package)

68

Gisela—A Framework for Definitional Programming

which provides all functionality through a number of objects that can be used in
Objective-C applications.

The three frameworks which together make up Gisela are:

• DFDefinitions, where terms, conditions and data definitions are imple-
mented. This framework is the basis for Gisela and is needed by the other
two.

• DFMethods, which implements all classes needed to build method defini-
tions.

• DFComputing, which uses classes from both DFDefinitions and DFMethods

and implements the classes which manage actual definitional computations.

The main motivation for the separation is that definition classes may be useful
by their own without the rest of the definitional computing machinery. The other
motivation is to have reasonably sized frameworks.

The design of the frameworks is not particularly dependent on any specific
features of Objective-C, thus a port to another object-oriented language should
not be to hard to do.

7.2 Implementing Data Definitions

In terms of lines of code and number of public classes, DFDefinitions is by
far the largest of the three frameworks. In part, this is because DFDefinitions

contains a number of classes needed to handle the files used to store examination
records in MedView. From a design point of view, it can be argued that these
classes should not be part of the basic framework but be defined in an extension.
Nevertheless, since Gisela is intended for use in MedView we have put them into
the framework.

7.2.1 Terms and Conditions

Data definitions are built using terms, conditions, and equations. The common
properties of terms are implemented by the abstract class DFTerm, the common
properties of conditions by the abstract class DFCondition. Both these classes
implement the DFConditionProtocol. A protocol in Objective-C corresponds
to an interface in Java. The DFConditionProtocol in turn inherits a number of
methods from the DFVariableCopyingProtocol which describes different kinds
of copying. Thus:

DFVariableCopying

DFCondition

DFTerm

As an example we show DFTerm.h

69

On GCLA, Gisela, and MedView

#import <Foundation/Foundation.h>

#import <DFDefinitions/DFTermProtocol.h>

@interface DFTerm : NSObject<DFTerm, NSCoding, NSCopying>

{

}

@end

This tells us that DFTerm is a subclass of the root class NSObject which imple-
ments the protocols DFTerm, NSCoding, and NSCopying, but declares no methods
of its own. We have subclasses of DFTerm for constants, variables, and compound
terms, and subclasses of DFCondition for arrow and comma conditions. These
classes are very straightforward. The most interesting is perhaps DFVariable:

@interface DFVariable : DFTerm

{

long timeStamp;

id<DFTerm> value;

}

+(id)variable;

...

@end

The instance variable timeStamp represents the time the variable was bound and
is needed to make it possible to undo variable bindings correctly when back-
tracking occurs. The usage of timestamps like this is standard methodology in
implementations of logic programming languages [59].

The implementation is closely related to the description of terms, conditions,
equations, and data definitions given in Section 4.1.1. The reason for this is, of
course, the idea that it should be possible to use Gisela directly by building data
definitions as objects without using any syntactic representation which is parsed
and compiled into a program.

7.2.2 Data Definition Classes

We have implemented a number of different data definition classes. All share the
methods described in the DFDefinition protocol:

@protocol DFDefinition <NSObject>

- (NSString *)name;

- (BOOL)inDom:(id)anObject;

- (BOOL)inCom:(id)anObject;

- (NSArray *)def:(id)anObject;

- (id)clause:(id)anObject;

70

Gisela—A Framework for Definitional Programming

- (NSArray *)def:(id)anObject evaluator:(id)machine

operationId:(unsigned)opId

redoable:(BOOL *)hasAlts;

- (id)clause:(id)anObject evaluator:(id)machine

operationId:(unsigned)opId

redoable:(BOOL *)hasAlts;

...

@end

For a data definition class to be valid, the methods in this protocol should im-
plement the behavior given by the abstract description of a data definition given
in Section 4.1.1. There are two different versions of the methods for def and
clause. The ones with a single argument may be useful if a definition class
is used without the rest of the machinery for definitional computations. The
two last methods are for enumerating all possible results. The D-Machine de-
scribed in Section 7.4 treats data definitions as black boxes. All it knows about
data definitions is that a definition may be used to find the definiens of an ob-
ject. It also knows that there may, in general, be more than one result. If
def:evaluator:operationId:redoable is called multiple times from a machine
using the same opId, all answers are enumerated.

Currently, all data definition classes inherit from the abstract definition class
DFDefinition but this is not a requirement. Other base classes for data defini-
tions may be written as long as they implement the DFDefinition protocol.

In the general case, computing the definiens of a term with respect to a data
definition is a complex operation involving the computation of a-sufficient substi-
tutions. To avoid unnecessary overhead we have implemented several specialized
data definition classes handling various simpler definitions. We have also sepa-
rated the definition classes into static and modifiable definitions since operations
may be implemented in a more efficient manner if we know that the definition
will not change over time. The most common classes are:

• DFDefinition, abstract definition class from which all other definition
classes in the framework inherits.

• DFConstantDefinition, subclass of DFDefinition, suitable to use when
the left-hand sides of all equations are constants. This class is used when a
data definition is declared constant using the syntactic representations of
Section 5.1.

• DFMatchingDefinition, subclass of DFDefinition, suitable to use when
matching, and not unification, should be applied in the definiens operation.
This class is used when a syntactically represented data definition is declared
as matching.

71

On GCLA, Gisela, and MedView

• DFUnifyingDefinition, subclass of DFMatchingDefinition, used for gen-
eral data definitions. This class also allows specifications which describe
how each equation may be used, e.g., matching only. Therefore a unifying
definition really subsumes the two classes above.

• DFGCLAUnifyingDefinition, subclass of DFUnifyingDefinition. For com-
patibility with GCLA, this class includes all terms in the domain of a data
definition and returns false instead of the empty set for terms not de-
fined. This is the class used when a syntactically described data definition
is declared gcla.

• DFModifiableDefinition, an abstract subclass of DFDefinition which
implements common behavior of mutable definitions.

All of the above definitions are created from a list of equations using the method:

- (id)initWithName:(NSString *)aString

andEquations:(NSArray *)someEquations;

DFUnifyingDefinition also allow directives for how the equations should be
handled:

- (id)initWithName:(NSString *)aString

equations:(NSArray *)someEquations

andDirectives:(NSDictionary *)aDict;

When a definition is created, an internal representation of the equations suitable
for computing definiens and clause of terms is built. The resources required for
building this and the efficiency of the resulting representation are the parameters
to consider when deciding what kind of data definition to use.

DFConstantDefinition uses a simple hash table to find the definiens of a
given constant. DFMatchingDefinition and DFUnifyingDefinition use one
hashtable indexed on the principal functor of a term and then one hashtable
indexed on the first argument of a term. Thus, given a definition like

f(a) = a.

f(b) = b.

f(c) = c.

performing clause(f(b)) is done by two lookups and leaves no choice points.
This is not very complicated. Performing definiens in matching definitions is
not particularly complicated either. Currently, to find D(a), a linear search
among the equations with the same principal functor as a is performed to collect
all matching clauses. The hard part is to implement the definiens operation of
DFUnifyingDefinition in the general case involving computation of a-sufficient
substitutions. Various algorithms for this are described in [7, 30, 38]. To the best

72

Gisela—A Framework for Definitional Programming

of our knowledge, all previous implementations are implemented in Prolog using
built-in unification and backtracking. In addition, the descriptions of algorithms
are expressed in a manner heavily influenced by the intended implementations.

The algorithm currently in use for computing definiens in the general case is
adopted from Algorithm 3, without guards and constraints, in [7]. The general
idea of this algorithm is that it is possible to build a representation of the def-
inition which in essence pre-computes all possible a-sufficient substitutions for
all terms defined in the definition. There are two advantages with this in the
Gisela setting. First, it makes performing definiens more efficient, and second, it
makes it possible for a definition object to tell if there are any more alternatives
to consider. The backside is that creating the representation is exponential with
respect to the number of equations with unifiable heads. For large databases this
is not feasible. Therefore, if a term will only be used to the right in equations it
is possible to turn off the pre-computation of a-sufficient substitutions using the
restrict right directive.

A project for the future is to allow guards in unifying definitions and not only
matching definitions. This would involve implementing some algorithm similar
to Algorithm 3, with guards and constraints, in [7]. The algorithm as such is
quite similar to the current pre-computation of a-sufficient substitutions. The
hard part would most likely be to extend variables to handle constraints in an
efficient manner. The algorithms presented in [7, 38] rely heavily on features of
SICStus Prolog to handle constraints on variables.

Finally, the strictly modular construction of Gisela where data definitions are
treated as black boxes by the rest of the machinery makes it possible to introduce
new improved definition classes without affecting any other part of the framework.

7.3 Implementing Method Definitions

As with data definitions, the implementation of method definitions is closely
related to previous descriptions, particularly the one in Section 5.1.2. The reason
is the same: it should be possible to build method definitions directly using the
various classes in the framework. To achieve this, the framework is built to map
the conceptual description of method definitions directly onto a number of classes.

The general structure of a method definition is that it is a sequence of equa-
tions

M = Word#Guard

where Word is computation condition describing a sequence of operations to per-
form, and Guard contains restrictions with respect to the current state definition
on when the equation may be applied. Guards are built using guard-primitives
describing tests with respect to a single equation. In principle methods are im-
plemented through the classes:

• DFGuardConstraint, tests on a single condition.

73

On GCLA, Gisela, and MedView

• DFGuardPrimitive, tests on a single equation.

• DFGuard, tests on a state definition.

• DFWord, a sequence of operations.

• DFMethodScheme and DFMethod for method definitions with and without
parameters respectively.

The computation model of Gisela really says nothing more about guards than
that they implement tests with respect to the current state definition. Thus,
the framework classes implement all the guard functionality described in Section
5.1.2 but there are no restrictions on the possibility of adding new classes.

All that is required of a class to introduce a new guard primitive is that it
implements the following protocol:

@protocol DFGuardPrimitive<DFMethodObject, NSCopying, NSCoding>

- (BOOL)holds:(DFEquation *)eq;

@end

A new guard class must implement the protocol:

@protocol DFGuard<DFMethodObject, NSCopying, NSCoding>

- (BOOL)isTrue:(DFStateDefinition *)stateDef;

- (BOOL)isTrue:(DFStateDefinition *)stateDef

indexes:(NSMutableArray *)indexes;

@end

The second method of the DFGuard protocol is used to communicate which equa-
tions of the given state definition make the guard hold. This is used in computa-
tions to help the observer select an equation for reduction.

The class DFMethod is a subclass of DFModifiableDefinition. What is spe-
cial about method definitions is that given a method definition M , it is always
used to lookup the definiens of the constant M with respect to a given state
definition. Therefore, two new methods are added:

@protocol DFMethod<DFMethodObject>

- (NSArray *)defWithStateDefinition:(DFStateDefinition *)stateDef;

- (NSArray *)defWithStateDefinition:(DFStateDefinition *)stateDef

indexHints:(NSMutableArray *)idxHints;

@end

As with guards and many other objects, users using the Gisela frameworks may
implement new method definition classes as long as they implement the DFMethod
protocol. Of course subclassing is also possible.

All the classes of DFDefinitions and DFMethods implement the protocol
NSCoding, which means that objects may be archived for permanent storage.

74

Gisela—A Framework for Definitional Programming

7.4 Implementing a D-Machine

The framework DFComputing provides a rather limited number of classes for def-
initional computing, most notably the DFDMachine class. A D-machine is an
interpreter which takes a query, as described in Section 5.1.3 and evaluates it
according to the rewrite rules given in Section 6.1. While an interpreter, we have
tried not to make it unnecessarily inefficient. One exception from this, in the
current implementation, is the heavy use of objects for everything. For example
it would be faster to use C arrays instead of array objects. As the structure of
the implementation stabilizes, we expect to move to a lower level and use more
pure C code. This can be done piecemeal since C is a subset of Objective-C.

The DFDMachine, as such, is only a shell that is used to set up computations
and connections in various ways. The actual computations are performed by
an object of the private class DFComputor. A DFDMachine object connects the
computor object with its observer, decides whether computations should be run in
a separate thread, handles communication between the computor and the calling
application etc.

7.4.1 The Computor

Computing a result definition from the initial goal is handled by a DFComputor.
After some initializations it starts a loop which runs until the goal is stopped for
some reason, e.g., a result is computed or the caller decides that the computation
should stop. In a simplified form the loop looks like this:

- (id)runMainLoopBreakAtAnswer:(BOOL)returnAnswer {

while (continueComputing) {

switch ([self selectRule]) {

case DFSuccessRule:

[self performSuccess];

break;

...

case DFDefiniensRule:

[self performDefiniens];

break;

...

}

return result;

}

The current state of the computation is inspected by the method selectRule,
and depending on this the correct rule (as described in Section 6.1) is applied.
The most important variables describing the state of a computor are:

75

On GCLA, Gisela, and MedView

timeStamp the current timestamp of the computor.
activeFrame a pointer to the current computation frame.
choicePointStack what the name indicates.
trailStack stack with variables which might be undone.
observer a pointer to the current observer.
csReg the element on top of the computation stack
cs2Reg the element below csReg .
wReg pointer to currently selected computation condition.
lcReg pointer to last element of wReg.
iReg selected equation index.
eReg pointer to selected equation.
cReg pointer to selected condition.

The choicePointStack stores DFChoicePoint objects containing all the infor-
mation necessary to create the next frame, in case an alternative should be tried.

7.4.2 Choice Points

When there are alternative paths in a computation, a DFChoicePoint object is
created and pushed onto the choice point stack. The choice point object stores a
copy of the current computation frame, the current timestamp, an index into the
trail stack indicating where to undo variable bindings from, what kind of choice
caused the choice point, and some extra information depending on the kind of
choice point.

A DFChoicePoint object knows how to create the sequence of computation
frames representing all possible alternatives available from the choice point. These
alternatives are enumerated one by one by calling the method nextAlternative.
When the computor needs a new frame to continue computing it uses its method
popFrameStack:

- (void)popFrameStack {

BOOL stillBuilding = YES;

DFFrame *newFrame = nil;

while (stillBuilding && ![choicePointStack isEmpty]) {

DFChoicePoint *currentChoicePoint = [choicePointStack top];

// clear variables bound since current choice

[self untrail:[currentChoicePoint trailStackPointer]];

if (newFrame = [currentChoicePoint nextAlternative])

stillBuilding = NO;

else

[choicePointStack pop];

}

[self pushActiveFrame:newFrame];

}

76

Gisela—A Framework for Definitional Programming

7.4.3 The Observer

The framework provides a default observer as described in Section 4.3. Imple-
menting the default observer is trivial. The methods an observer must implement
are declared in the protocol DFComputingObserver. New observers may be cre-
ated either by subclassing the default observer or by implementing new objects
that adhere to the observer protocol.

7.5 Discussion

The use of a proprietary framework such as OpenStep in the development of
a programming system like Gisela is somewhat unusual. OpenStep was chosen
for two reasons: (i) at the time the implementation was started we believed that
MedView would remain based on OpenStep for at least a few years, (ii) OpenStep
is arguably one of the most well designed object-oriented frameworks around and
provides both access to C and a fully dynamic runtime system. As mentioned
above, the design of the implementation is such that it should be easily portable
to Java, Ada95 or C++. A port to Java would be easiest, and will most likely
be made once the computation model is fixed. So far, Objective-C remains faster
than Java though.

One place where many unnecessary computations are performed is in the eval-
uation of guards in method definitions. Typically, method definitions are written
in such a way that at most one equation can be applied to the current state defini-
tion. However, all guards are always evaluated. Unnecessary computations could
be avoided if it was possible to declare that a method definition was deterministic,
meaning that at most one guard could hold.

8 Conclusions

We have presented the Gisela framework for definitional programming. As any
reasonably ambitious programming system it is a compromise between different,
and, at times, conflicting, requirements. The system has been implemented and
a number of applications have been written to test performance and try out pro-
gramming methodologies. Next, Gisela will be used to re-model the definitional
machinery used in the MedView project. Our belief is that, although some re-
finements will be needed when Gisela is applied to a real-world project such as
MedView, the basic computational machinery will remain.

The Gisela framework is our fourth attempt in a series of experiments for
finding a definitional programming model which can serve both as a successor to
GCLA, allow for new programming methodologies, and be useful for knowledge
representation and reasoning in MedView. The overall idea goes back to [22]
where a model for computing with definitions radically different from the GCLA

77

On GCLA, Gisela, and MedView

approach was described. Another important input were the ideas put forward in
[58].

The first system we built was implemented in Prolog and allowed only compu-
tations using atoms. It was followed by an implementation in Objective-C using
breadth-first search which always computed all answers to queries. Like the Pro-
log system, it did not use any constructed conditions, but did allow matching
in the definiens operation. This second system was discarded due to some fun-
damental flaws due to misunderstandings of the intended behavior. However, it
could be used for things like computing basic separated programs.

A problem during the early phases of development was that it was very unclear
how separated programs, and programs doing things like computing definitional
similarity measures should be understood. Another was that we tried hard to
avoid introducing logical variables. Instead, the vision was to develop a kind
of “declarative assembler” on top of which conditions and variables should be
programmed. The third prototype developed fixed the problems with the second
one and was built on a concept of an abstract search-tree from which different
concrete search algorithms, e.g., depth-first search could be derived by subclassing
the abstract machinery. Actually, a fair amount of code, in particular most of
the code for implementing method definitions and simple data definitions, was
inherited into the Gisela framework from this system.

However, the problems of the “declarative-assembler” approach remained.
There was something which made it very hard to see how it would be possible
to realize the goal of building higher-level programming methodologies on-top of
the basic system in a nice manner. Our goal of building a practical system was
nowhere near being realized.

We then decided to opt for the definitional computing model that we have
described here as the Gisela framework. Compared to the previous attempts, the
difference is the presence of logical variables in data definitions and built-in rules
for handling constructed conditions. The rules for constructed conditions were
modeled after the standard GCLA rules. Finally, we had a system that came
reasonably close to our original goals and which we felt would be possible to use
for building practical applications.

If we look back at the goals set up in Section 1 and in [22, 58] some things
worth noting are:

• Gisela keeps the distinction between declarative and procedural parts used
in GCLAII. Programming Gisela is similar enough to programming GCLA

to allow reuse of many techniques. On the other hand, Gisela is different
enough to allow things like separated programming in a natural way.

• The abstract way in which definitions are introduced solves the problem of
the definiens operation being too general. Gisela does provide several dif-
ferent built-in data definition classes of different complexity. Furthermore,
the framework is open for the addition of new data definition classes.

78

Gisela—A Framework for Definitional Programming

• In [58], an important goal was that computations should be able to inter-
act in a natural way with the outside world. The Gisela framework is less
oriented towards interactive computations than the original vision. Inter-
action can mainly be handled through specialized observers. However, the
observer only gets called at specific points during computations.

• In [58], it was stated that programs should be compiled to C for portability.
What we had in mind was a Gisela to C compiler which would allow easy
porting to essentially any platform. The use of Objective-C instead restricts
portability but has greatly simplified development. Also, the notion of a
compiler does not really apply in the current setting.

• Another goal which has not been realized is to give explicit control of the
system’s general search behavior. In Gisela depth-first search with back-
tracking is always used. Providing means for other search-strategies is an
area for future work.

There are two things that sets Gisela apart from other systems for declarative
programming: (i) Gisela does not attempt to be a general-purpose programming
language, rather it is a system for realizing a certain set of definitional models, (ii)
Gisela is a framework with a rather loose definition, specifically aimed at allowing
experiments and modifications within the general model set up in Section 3. The
aim of declarative systems such as Prolog [15], Haskell [35], Mercury [50], Curry
[33], and Oz/Mozart [48, 60] is to provide full-fledged programming languages
suitable as alternatives to the commonly used imperative and object-oriented
ones. The outspoken aim of Mercury is to provide an alternative to C for large
scale projects. Mozart is geared towards distributed applications. Being general-
purpose languages, they also provide libraries to build GUIs [14, 32]. There is
also a need for sophisticated programming environments and software libraries,
an area where the mentioned systems so far are not on par with imperative
languages. Since Gisela is only aimed at realizing definitional models of systems
we have instead focused on simplifying the use of Gisela in combination with
object-oriented industrial-strength tools for building GUI-based, user-friendly
applications. For our purposes this gives us the most practical set of tools.

Finally, for the future an interesting question is: Will declarative programming
ever be a widespread generally used programming paradigm? We believe that a
crucial factor for the success of declarative programming is easy integration with
commonly used imperative and object-oriented systems and some serious work
on programming environments and library modules. Gisela is our attempt at
providing a useful declarative programming component for, among other things,
future work in the MedView project.

79

On GCLA, Gisela, and MedView

References

[1] Y. Ali, G. Falkman, L. Hallnäs, M. Jontell, N. Nazari, and O. Torgersson.
Medview: Design and adoption of an interactive system for oral medicine. In
Proceedings of Medical Informatics Europe (MIE’00), Hannover, Germany,
August 2000, 2000. To appear.

[2] S. Antoy. Lazy evaluation in logic. In Proc. of the 3rd Int. Symposium
on Programming Language Implementation and Logic Programming, number
528 in Lecture Notes in Computer Science, pages 371–382. Springer-Verlag,
1991.

[3] S. Antoy. Definitional trees. In Int. Conf. on Algebraic and Logic Program-
ming ALP’92, number 632 in Lecture Notes in Computer Science, pages
143–157. Springer-Verlag, 1992.

[4] S. Antoy, R. Echahed, and M. Hanus. A needed narrowing strategy. In Proc.
21st ACM Symposium on Principles of Programming Languages, pages 268–
279, 1994.

[5] S. Antoy and A. Middeldorp. A sequential reduction strategy. Theoretical
Computer Science, To Appear.

[6] M. Aronsson. Methodology and programming techniques in GCLA II. In
Extensions of logic programming, second international workshop, ELP’91,
number 596 in Lecture Notes in Artificial Intelligence. Springer-Verlag, 1992.

[7] M. Aronsson. GCLA, The Design, Use, and Implementation of a Program
Development System. PhD thesis, Stockholm University, Stockholm, Sweden,
1993.

[8] M. Aronsson. Implementational issues in GCLA: A-sufficiency and the
definiens operation. In Extensions of logic programming, third international
workshop, ELP’92, number 660 in Lecture Notes in Artificial Intelligence.
Springer-Verlag, 1993.

[9] M. Aronsson, L.-H. Eriksson, L. H. A. Gäredal, and P. Olin. GCLA-
generalized horn clauses as a programming language. In Proceedings of
SCAI-89, 1989.

[10] M. Aronsson, L.-H. Eriksson, A. Gäredal, L. Hallnäs, and P. Olin. The pro-
gramming language GCLA: A definitional approach to logic programming.
New Generation Computing, 7(4):381–404, 1990.

[11] M. Aronsson, L.-H. Eriksson, L. Hallnäs, and P. Kreuger. A survey of gcla: A
definitional approach to logic programming. In P. Schroeder-Heister, editor,

80

Gisela—A Framework for Definitional Programming

Extensions of logic programming: Proceedings of a workshop held at the SNS,
Universität Tübingen, 8-9 december 1989, number 475 in Lecture Notes in
Artificial Intelligence. Springer-Verlag, 1991.

[12] L. Augustsson. Compiling Pattern Matching. In Proceedings 1985 Conference
on Functional Programming Languages and Computer Architecture, pages
368–381, Nancy, France, 1985.

[13] N. Benton, A. Kennedy, and G. Russel. Compiling Standard ML to Java
bytecodes. In Proceedings of the 3rd ACM SIGPLAN Conference on Func-
tional Programming. ACM Press, 1998.

[14] M. Carlsson and T. Hallgren. Fudgets: A graphical user interface in a lazy
functional language. In FPCA ’93 - Conference on Functional Programming
Languages and Computer Architecture, pages 321–330. ACM Press, 1993.

[15] P. Deransart, A. Ed-Dbali, and L. Cervoni. Prolog: The Standard. Springer-
Verlag, 1996.

[16] L.-H. Eriksson. Finitary Partial Inductive Definitions and General Logic.
PhD thesis, University of Stockholm, May 1993.

[17] G. Falkman. Program separation as a basis for definitional higher order
programming. In U. Engberg, K. Larsen, and P. Mosses, editors, Proceedings
of the 6th Nordic Workshop on Programming Theory. Aarhus, 1994.

[18] G. Falkman. Definitional program separation. Licentiate thesis, Chalmers
University of Technology, 1996.

[19] G. Falkman. Program separation and definitional higher order programming.
Computer Languages, 23(2–4):179–206, 1997.

[20] G. Falkman. Similarity measures for structured representations: a defini-
tional approach. In E. Blanzieri and L. Portinale, editors, EWCBR-2K,
Advances in Case-Based Reasoning, Lecture Notes in Artificial Intelligence.
Springer–Verlag, 2000. To appear.

[21] G. Falkman, L. Hallnäs, and O. Torgersson. Program separation in GCLA. In
A. Momigliano and M. Ornaghi, editors, Proceedings of the Post-Conference
Workshop on Proof-Theoretical Extensions of Logic Programming, pages 31–
37, June 1994.

[22] G. Falkman, L. Hallnäs, and O. Torgersson. Computing equalities.
Manuscript, 1997.

81

On GCLA, Gisela, and MedView

[23] G. Falkman and O. Torgersson. Programming methodologies in GCLA. In
R. Dyckhoff, editor, Extensions of logic programming, ELP’93, number 798
in Lecture Notes in Artificial Intelligence, pages 120–151. Springer-Verlag,
1994.

[24] G. Falkman and J. Warnby. Technical diagnoses of telecommunication equip-
ment: An implementation of a task specific problem solving method (TDFL)
using GCLA II. Research Report SICS R93:01, Swedish Institute of Com-
puter Science, 1993.

[25] L. Hallnäs. Partial inductive definitions. Theoretical Computer Science,
87(1):115–142, 1991.

[26] L. Hallnäs. WM94: program separation in GCLA. In Proceedings of La
Wintermöte 94, pages 93–94. Department of Computing Science, Chalmers
University of Technology, 1994.

[27] L. Hallnäs. Classifying algorithms – definitions, intensionality, algorithms,
the classification problem. Manuscript, 1997.

[28] L. Hallnäs, M. Jontell, and N. Nazari. MEDVIEW – formalisation of clin-
ical experience in oral medicine and dermatology: The structure of basic
data - abstract. In Proceedings of the Das Wintermöte’96. Department of
Computing Science, Chalmers University of Technology, 1996.

[29] L. Hallnäs and P. Schroeder-Heister. A proof-theoretic approach to logic
programming. Journal of Logic and Computation, 1(2):261–283, 1990. Part
1: Clauses as Rules.

[30] L. Hallnäs and P. Schroeder-Heister. A proof-theoretic approach to logic
programming. Journal of Logic and Computation, 1(5):635–660, 1991. Part
2: Programs as Definitions.

[31] M. Hanus. Combining lazy narrowing and simplification. In Proc. 6th Inter-
national Symposium on Programming Language Implementation and Logic
Programming, pages 370–384. Springer LNCS 844, 1994.

[32] M. Hanus. A functional logic programming approach to graphical user inter-
faces. In Proc. of the Second International Workshop on Practical Aspects
of Declarative Languages (PADL’00), volume 1753 of Lecture Notes in Com-
puter Science, pages 47–62. Springer-Verlag, 2000.

[33] M. Hanus, H. Kuchen, and J. Moreno-Navarro. Curry: A truly functional
logic language. In Proc. ILPS’95 Workshop on Visions for the Future of
Logic Programming, pages 95–107, 1995.

82

Gisela—A Framework for Definitional Programming

[34] M. Hanus and R. Sadre. An abstract machine for Curry and its concurrent
implementation in Java. Journal of Functional and Logic Programming, 6,
1999.

[35] P. Hudak et al. Report on the Programming Language Haskell: A Non-
Strict, Purely Functional Language, March 1992. Version 1.2. Also in Sigplan
Notices, May 1992.

[36] P. Kreuger. GCLA II: A definitional approach to control. Licentiate thesis,
Chalmers University of Technology, 1992.

[37] P. Kreuger. GCLA II: A definitional approach to control. In Extensions of
logic programming, second international workshop, ELP91, number 596 in
Lecture Notes in Artificial Intelligence. Springer-Verlag, 1992.

[38] P. Kreuger. Computational Issues in Calculi of Partial Inductive Definitions.
PhD thesis, Department of Computing Science, University of Göteborg,
Göteborg, Sweden, 1995.

[39] H. Kuchen, R. Loogen, J. J. Moreno-Navarro, and M. Rodŕıguez-Artalejo.
Lazy narrowing in a graph machine. In Proceedings of the Second Inter-
national Conference on Algebraic and Logic Programming, number 463 in
Lecture Notes in Computer Science. Springer-Verlag, 1990.

[40] D. Larkin and G. Wilson. Object-Oriented Programming and the Objective
C Language. NeXT Software Inc, 1996.

[41] J. W. Lloyd. Foundations of Logic Programming. Springer Verlag, second
extended edition, 1987.

[42] J. W. Lloyd. Combining functional and logic programming languages. In
M. Bruynooghe, editor, Logic Programming, Proceedings of the 1994 Inter-
national Symposium. MIT Press, 1994.

[43] R. Loogen, F. López-Fraguas, and M. Rodŕıguez-Artalejo. A demand driven
computation strategy for lazy narrowing. In Proc. of the 5th International
Symposium on Programming Language Implementation and Logic Program-
ming,PLIP’93, number 714 in Lecture Notes in Computer Science, pages
184–200. Springer-Verlag, 1993.

[44] NeXT Computer, Inc. OpenStep specification. Available at
http://www.gnustep.org/resources/resources.html, October 1994.

[45] S. L. Peyton Jones. The Implementation of Functional Programming Lan-
guages. Prentice Hall, 1987.

83

On GCLA, Gisela, and MedView

[46] S. L. Peyton Jones and D. Lester. Implementing Functional Languages: A
Tutorial. Prentice Hall, 1992.

[47] H. Siverbo and O. Torgersson. Perfect harmony—ett musikaliskt expertsys-
tem. Master’s thesis, Department of Computing Science, Göteborg Univer-
sity, January 1993. In Swedish.

[48] G. Smolka. The definition of kernel Oz. DFKI Oz documentation series, Ger-
man Research Center for Artificial Intelligence (DFKI), Saarbrücken, Ger-
many, 1994.

[49] G. Smolka. The Oz programming model. In J. van Leeuwen, editor, Current
Trends in Computer Science, number 1000 in Lecture Notes in Computer
Science, pages 441–454. Springer-Verlag, 1995.

[50] Z. Somogyi, F. Henderson, and T. Conway. The execution algorithm of Mer-
cury: an efficient purely declarative logic programming language. Journal of
Logic Programming, 29(1–3):17–64, 1996.

[51] L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, second edition,
1994.

[52] P. Tarau. Jinni: a lightweight Java-based logic engine for internet program-
ming. In K. Sagonas, editor, Proceedings of JICSLP’98 Implementation of
LP languages Workshop, 1998.

[53] P. Tarau. Inference and computation mobility with Jinni. In K. Apt,
V. Marek, and M. Truszczynski, editors, The Logic Programming Paradigm:
a 25 Year Perspective, pages 33–48. Springer, 1999.

[54] P. Tarau. Jinni: Intelligent mobile agent programming at the intersection of
Java and Prolog. In Proceedings of PAAM’99, 1999.

[55] O. Torgersson. Functional logic programming in GCLA. In U. Engberg,
K. Larsen, and P. Mosses, editors, Proceedings of the 6th Nordic Workshop
on Programming Theory. Aarhus, 1994.

[56] O. Torgersson. A definitional approach to functional logic programming. In
R. Dyckhoff, H. Herre, and P. Schroeder-Heister, editors, Extensions of Logic
Programming 5th International Workshop, ELP’96, number 1050 in Lecture
Notes in Artificial Intelligence, pages 273–287. Springer-Verlag, 1996.

[57] O. Torgersson. Definitional programming in GCLA: Techniques, functions,
and predicates. Licentiate thesis, Chalmers University of Technology and
Göteborg University, 1996.

84

Gisela—A Framework for Definitional Programming

[58] O. Torgersson. A note on declarative programming paradigms and the future
of definitional programming. In Proceedings of Das Wintermöte 96. Depart-
ment of Computing Science, Chalmers University of Technology, 1996.

[59] P. Van Roy. 1983–1993: The wonder years of sequential prolog implementa-
tion. Journal of Logic Programming, 1994.

[60] P. Van Roy and S. Haridi. Mozart: A programming system for agent applica-
tions. In International Workshop on Distributed and Internet Programming
with Logic and Constraint Languages, 1999.

A Simulating GCLA

Methods making computations similar to standard GCLA

// Computation methods corresponding to rules

method true_right.

true_right = [] # some r:matches(true).

method false_left.

false_left = [] # some l:matches(false).

method d_right:[D].

d_right = [r:D] # some r:in_dom(D).

method d_left:[D].

d_left = [l:D] # some l:in_dom(D).

method axiom:[D].

axiom = [D].

method v_right:[D].

v_right = [r:D] # some r:matches((A,B)).

method v_left:[D].

v_left = [r:D] # some l:matches((A,B)).

method a_right:[D].

a_right = [r:D] # some r:matches((A->B)).

method a_left:[D].

a_left = [r:D] # some l:matches((A->B)).

85

On GCLA, Gisela, and MedView

// Computation methods corresponding to strategies

method left:[D].

dl = instance(d_left,[D]).

vl = instance(v_left,[D]).

al = instance(a_left,[D]).

left = [dl];[vl];[al].

method right:[D].

dr = instance(d_right,[D]).

vr = instance(v_right,[D]).

ar = instance(a_right,[D]).

right = [dr];[vr];[ar].

method arl:[D].

ax = instance(axiom,[D]).

ls = instance(left,[D]).

rs = instance(right,[D]).

arl = [ax];[true_right];[arl,rs];[false_left];[arl,ls].

method lra:[D].

ax = instance(axiom,[D]).

ls = instance(left,[D]).

rs = instance(right,[D]).

lra = [false_left];[lra,ls];[true_right];[lra,rs];[ax].

method gcla:[D].

arlD = instance(arl,[D]).

gcla = [arlD].

B Objective-C

Objective-C is an object-oriented extension of ANSI standard C. Compared to
other popular object-oriented languages, like C++ and Java, Objective-C can be
said to be more “object-oriented” since it is based on the use of dynamic typing
and dynamic binding. Dynamic typing means that the exact type of an object
is not decided when a program is compiled but at run time. Dynamic binding,
likewise, means that the exact method to use to send a message to an object
is decided at run time. This is in contrast to function calls where the compiler
decides exactly which function to call from the code.

86

Gisela—A Framework for Definitional Programming

We give a very brief introduction to Objective-C here. The main purpose is
to explain common syntactic constructions. We assume some familiarity with C
and will only go into object-oriented extensions to C, such as how classes are
defined etc. For a more in-depth description of Objective-C see [40], which is the
basis for the presentation given here.

B.1 Classes and Objects

An object is an instance of a class. An object associates data with the particular
operations that can use or affect that data. The operations are known as the
object’s methods, and the data they operate on as the object’s instance variables.
The essence of an object is that it bundles a data structure (instance variables)
and a group of procedures (methods) into a self-contained unit.

Objects are defined by defining their class. The class definition is a prototype
for a kind of object; it declares the instance variables that become part of every
member of the class, and it defines a set of methods that all objects in the class
can use. Each object gets its own instance variables but the methods are shared
by all objects in the class. Each object of a class is referred to as an instance of
the class.

B.1.1 Inheritance

Much of the power of object-oriented programming comes from the use of in-
heritance. Class definitions are additive, that is, each new class that is defined
is based on another class from which it inherits methods and instance variables.
Inheritance links classes together in a hierarchical tree with a single class, the
root class at its root. Every class (except the root class) has a superclass from
which it inherits, and any class can be the superclass of any number of subclasses.

B.1.2 Defining a Class

A class definition in Objective-C consists of the two parts: the interface and
the implementation, where the interface declares what has to be known to other
objects about instances of the class.

The structure of the interface part is

#import "MySuperClass.h"

@interface MyClass:MySuperClass

{

// Instance Variable Declarations

}

// Method Declarations

@end

87

On GCLA, Gisela, and MedView

The meaning of MyClass:MySuperClass is that MyClass is defined to be a sub-
class of MySuperClass. The syntax for (instance) variable declarations is the
same as in C. Worth noting is that all objects are of the general type id. This
type is defined as a pointer to an object. Thus, if an (instance) variable can be
an arbitrary object the declaration

id anObject;

can be used. If an (instance) variable is known to be of a certain type, it can be
statically typed. For instance

Rectangle *myRect;

declares an object of the Rectangle class (or more precisely a pointer to an object
of the Rectangle class). Each object has a distinguished instance variable self

which, as the name implies, lets the object refer to itself.
The implementation part has the structure:

@implementation MyClass

// Method Definitions

@end

To get an object to do something, a message is sent to the object telling it to
apply a method. Message expressions are enclosed in square brackets

[receiver message]

where receiver is an object and message tells it what to do. For example, the
following message tells the myRect object to perform its display method, which
causes the object to display itself:

[myRect display];

The method declaration for the display method in the interface part is given as
follows:

- (void)display;

Methods can also take arguments, for instance to set the height and width of
myRect:

[myRect setWidth:10.0 height:5.0];

The name of the method in this case is setWidth:height: and would be declared
as follows in the interface part:

- (void)setWidth:(float)w height:(float)h;

88

Gisela—A Framework for Definitional Programming

That arguments are inserted after the colons, breaking the name apart, is intended
to make messages more self-documenting. The name of a method usually explains
the purpose of all its arguments. Methods can also return values. For example

BOOL isFilled;

isFilled = [myRect isFilled];

where the declaration of the method isFilled is

- (BOOL)isFilled;

Note that a variable and a method can have the same name. Finally, one message
can be nested within another. Here one rectangle is set to the color of another:

[myRect setColor:[otherRect color]];

where the declarations in the interface of the involved methods would be:

- (NSColor *)color;

- (void)setColor:(NSColor *)aColor;

B.1.3 Creating Objects

The compiler creates just one accessible object for each class, a class object that
knows how to build new objects belonging to the class. To create a new instance
of a class an alloc message is sent to the class object. The following code declares
a variable and tells the Rectangle class to create a new Rectangle instance:

Rectangle *myRect;

myRect = [Rectangle alloc];

The alloc method dynamically allocates a new instance. For an object to be
useful, it generally needs to be initialized. Initialization typically follows imme-
diately after allocation:

myRect = [[Rectangle alloc] init];

Initialization methods often take arguments:

myRect = [[Rectangle alloc] initWithWidth:5.0 height:2.0]]:

For convenience, classes may provide methods that combine allocation and ini-
tialization. Such methods typically start with the name of the class:

myRect = [Rectangle rectangleWithWidth:5.0 height:2.0];

89

On GCLA, Gisela, and MedView

B.1.4 Naming Conventions

It is common practice to begin class names with an uppercase letter and names
of variables and methods with a lowercase letter. All names having the prefix NS

are part of OpenStep [44], which provides an extensive set of classes to use as a
foundation for programming. For instance, the root class is called NSObject.

B.2 Protocols

Class interfaces declare methods that are associated with a particular class. A
protocol, on the other hand, declares methods not associated with a class, but
which any class, and perhaps many classes, might implement. Protocols free
method declarations from dependency on the class hierarchy, so they can be
used in ways that classes cannot. Protocols list methods that are (or may be)
implemented somewhere, but the identity of the class that implements them is
not of interest. What is of interest is whether or not a particular class conforms to
the protocol, that is, whether it has implementations of the methods the protocol
declares. Thus, the use of protocols provides (i) a way to declare properties that
an object should have without creating a class, (ii) the possibility for anyone to
create a class that conforms to the protocol without knowing anything about any
particular class.

A protocol declaration is just a list of method declarations. For instance, a
protocol that declares methods related to reference counting could be:

@protocol ReferenceCounting

- (void)setRefCount:(int)count;

- (int)refCount;

- (void)decrementCount;

- (void)incrementCount;

@end

A class is said to adopt a protocol if it agrees to implement the methods the
protocol declares. Class declarations list the names of adopted protocols within
angle brackets after the superclass name. For example, the following states that
the Rectangle class implements the ReferenceCounting protocol:

@interface Rectangle:Shape <ReferenceCounting>

A class that adopts a protocol must implement all the methods the protocol
declares. Adopting a protocol is somewhat similar to declaring a superclass since
both assign methods to the new class. The superclass declaration tells us that
an object of the class has all the methods present in the superclass, the adoption
of a protocol that it has all the methods declared in the protocol.

90

An Overview of MedView

Youssef Ali Göran Falkman∗ Lars Hallnäs Mats Jontell§

Ulf Mattsson§ Nader Nazari
Olof Torgersson

Chalmers University of Technology and Göteborg University
S-412 96 Göteborg, Sweden

Abstract

We give an overview of the MedView project and discuss background,
current status, and future directions. MedView is a joint project with
participants from oral medicine and computer science. The overall aim of
the project is to develop models, methods, and tools to support clinicians
in their diagnostic work. An important part of this is to be able to ef-
ficiently analyze and learn from the monumental amount of information
being gathered in clinical records. In the MedView project, clinical data
is continuously collected into a large knowledge base of formalized patient
examinations. The structure of the knowledge base is based on a formal-
ization of health-care processes and clinical knowledge in oral medicine
harmonized within the network SOMNET (Swedish Oral Medicine Net-
work). A number of tools have been built which enable users to extend,
view, and analyze the contents of the knowledge base. The system per-
mits immediate analysis of information based on the formal model used.
It also well suited for education of dental students. Furthermore, it also
provides a basis for distant consultations and generates a solid foundation
for multicenter trials and activities.

1 Introduction

The MedView project was initiated in 1995 when some researchers at the clinic of
Oral Medicine, faculty of Odontology, Göteborg University, and the department
of Computing Science at Chalmers University of Technology, got together and
started to discuss their respective research interests. They soon found that their
interests had an intersection: The odontologists were looking for ways to use

∗Department of Computer Science, University of Skövde
§Clinic of Oral Medicine, Faculty of Odontology, Göteborg University

1

On GCLA, Gisela, and MedView

computers to improve their daily work and research, and the computer scientists
were looking for an area of knowledge on which to apply ideas on knowledge
representation and exploration. The solution was obvious, start a joint project
aimed at formalizing knowledge in the area of oral medicine, using the mentioned
ideas on knowledge representation, and producing computer based tools for use
in clinical and analytical work. MedView was born.

Since then several years have passed and many hours of work have been put
into the project by various people. The aim of this paper is to give an overview of
the work done in the project, its current status, and hint at directions for future
areas of research.

Already at the outset one thing was clear: The project would only be of
interest from a clinical point of view if it produced tools which improved the
daily work of a clinician in oral medicine. Researchers from the clinic of oral
medicine had been involved in several attempts to build computerized systems
earlier, and deemed them as failures since they did not really do anything for
them, neither as clinicians nor as a researchers. They were more or less just
systems to put on a digital media what they already had on paper records or
photo slides.

A first strategic decision was to not try to build yet another electronic medical
record system, but to focus on knowledge gathering and analysis based on a formal
description of the concept “examination”. This led to the following things to be
done, approximately in the given order:

1. Provide a formal framework and methodology to be used.

2. Formalize the knowledge to be gathered based on this methodology in a
close cooperation between odontologists and computer scientists.

3. Develop tools for entering the information gathered at an examination into
the knowledge base directly in the examination room.

4. Develop tools for viewing the contents of the knowledge base, both for use
in the examination room and later for retrospective studies.

5. Develop tools for analyzing and exploring the knowledge base and for adding
concepts built on top of the basic formal method.

Today, the first three steps are essentially finished, while the fourth and fifth of
course are of the kind where there is always more to be done.

The rest of this article is organized as follows. In Section 2 we give a descrip-
tion of MedView from a medical point of view. Section 3 gives the theoretical
model of MedView from a computer scientist’s point of view, and mentions some
of the areas of computer science to which MedView applies. Section 4 describes
the current status of the project. Section 5, finally, contains ideas and directions
for future work.

2

An Overview of MedView

2 MedView and Oral Medicine

Diagnostic work and clinical decision-making are central items in every field of
medical practice, where clinical experience, knowledge and judgment are the cor-
nerstones of health care management. In order to achieve increased competence,
the clinician is confronted with complex information that needs to be analyzed.
There is considerable evidence that the unassisted human mind is challenged
when exposed with multiple sets of data [13, 20, 44, 71]. Therefore, the clinician
needs tools to improve analysis and visualization of data in the diagnostic and
learning processes.

To support the human mind in extracting valuable patterns in clinical in-
formation, computer technology has been introduced in several areas of modern
medicine with the aim to assist these cognitive processes. The systems provide
a broad functionality, from distant consultations of individual patients to intelli-
gent expert systems, where text and image information is collected and analyzed.
In the elaboration of a computerized system, several critical problems have to be
mastered in order to ensure that conclusions drawn are correct or justified. In
this section, we discuss some issues we have confronted in the MedView project.
We also describe how they are handled.

2.1 Clinical Experience and Diagnostics

2.1.1 Nomenclature and Definition of Clinical Information

The first step in the diagnostic process, illustrated in Figure 1 below, consists
of gathering and storage of clinical information. In order to be meaningful for
interpretation, these data must be recorded in such a way that they can be
understood and interpreted in a precise manner by all members of the health
care system. This means that a formalized and harmonized health care system is
imperative.

The word “formalize”, in this context, means to establish and formally define
basic health care activities that can provide an explicit structure for intelligent
reasoning. This formalization is crucial in order to arrive at a correct diagnosis,
based on an explicit definition [43, 106]. The term “harmonization” refers to the
process of making the formalized activities adapted within a community [22, 29,
79, 82].

The demand and request for formalization and harmonization is certainly not
new, but has frequently been associated with obstacles [43, 56, 86, 120]. Although
several international attempts have been made to establish a congruent medical
nomenclature not many have been successful.

Today, clinical data are frequently expressed in natural language using terms
based on individual subjective assessments or interpretations not defined or har-
monized within the health care system [3, 81]. Several terminologies exist, often
developed within a specific medical discipline, but they are seldom widespread

3

On GCLA, Gisela, and MedView

Figure 1: General description of the decision-making process. The process is a
chronological sequence where each chain of events present obstacles that have to
be controlled in the elaboration of a formalized and harmonized language.

and do not provide a useful international nomenclature system. Furthermore,
most terminologies are not related to definitions of terms. Even when definitions
exist they can be highly ambiguous. An example is the attempt to define oral
leukoplakia. The latest definition reads “a predominantly whitish lesion which
can not be diagnosed as any other definable disorder” [7]. This definition is closely
related to the clinician’s ability to diagnose all other whitish lesions of the oral
mucosa. Thus, to an inexperienced clinician the diagnosis of oral leukoplakia can
involve almost any whitish lesion, while the experienced clinician will use it less
often.

Evaluation of treatment care and scientific analysis is accordingly not mean-
ingful when registered terms are not precisely defined. New computerized tech-
nologies will demand that strategies for clinical registration of data are developed
in order to reduce these considerations. Currently, most systems used in the
health care sector are not dealing with these problems, but are more focused on
transportation and storage of data.

4

An Overview of MedView

2.1.2 Analysis and Classification of Diseases

The second step in the decision-making process is the analysis of gathered data.
The diagnostic process involves the clinician’s ability to put the patient into
a certain class or group [95, 114]. A diagnosis can be considered as a way of
classifying clinical information to facilitate communication between health care
providers and to assist in decisions of treatment strategies. The diagnosis is indeed
only a common identity of a group of patients with similar clinical information
profiles. Consequently, to define a disease it is essential that all patients have an
identical information pattern, not shared by any patients who do not have the
disease. This is rarely the case [72], and a diagnosis is often based on a description
rather than an explicit definition.

The currently used diagnostic system has developed over several centuries.
Diagnoses based on pathological anatomy have sometimes been replaced by di-
agnoses which reflect the introduction of physiology and laboratory research.
Patho-anatomical diagnoses as, for example, ‘gastric ulcer’ was replaced by ‘hy-
peracidity’ to denote the patho-physiological dysfunction of this disease. Another
problem concerning classification of diseases is that the extension of a disease may
change over time along with new discoveries. Lichenoid contact reactions may
serve as an example. The diagnosis oral lichen planus was recently split into oral
lichen planus and lichenoid contact reaction [12]. However, this subdivision is
not yet fully accepted which leaves the diagnostic system in a state of confusion
where oral lichen planus may or may not include lichenoid contact reaction.

All in all, the diagnostic systems of today have different backgrounds and
there are no rules to promote continuous modification to adapt to new scientific
achievements. This lack of harmonization of clinical information will lead to
significant problems when new information technologies are to be used in our
health care system.

The quality of the analysis and classification process mentioned above is thus
influenced by both initial steps in the decision-making process. First, the char-
acter and quality of input data will greatly influence our ability to perform sub-
sequent analysis. Second, the classification process is in itself influenced by our
ability to adopt adequate and reliable inclusion criteria from input data to a
certain disease or diagnosis. Consequently, our knowledge, experience, and treat-
ment strategies of various disorders will be based on conclusions from observations
or studies that may not be comparable due to differences in nomenclature or diag-
nostic criteria. Obviously, it is essential to elaborate routines where these factors
are controlled.

2.1.3 Visualization of Clinical Information and Learning

The third step in the decision-making process is the elaboration of treatment
strategy and follow-up procedure which emanates as a result of the classification
process (Figure 1). From the aspect of treatment strategy, it is common practice

5

On GCLA, Gisela, and MedView

to record treatment rendered, but not the diagnostic basis for these treatment
decisions. This practice may undervalue diagnosis, but also hamper feedback
regarding the effectiveness of treatments relative to specific diagnoses [8].

The fourth and last step can be described as the way we draw conclusions
and learn from performed therapies. These experiences are, within the medical
community, generally presented as scientific articles or books in order to forward
information to increase the knowledge of other clinicians.

Today, the conventional search in index-based volumes has been replaced by
computerized databases available to all members of the scientific community.
However, complex clinical information stored as images, concepts, videos, etc. is
difficult to explore. Concept-based exploration of clinical databases has to be
boiled down to a volume of information that is possible to handle. The potential
risk with this process is that significant information may be overlooked if it is
left outside the search profile. This situation arises especially where clinical hy-
potheses are to be tested and where the search profile, based on a combination of
keywords, will not provide sufficient information. Data with significant interest
to the scientist may therefore exist in the database but be left undetected.

In many respects we confront the same problem in clinical research. Infor-
mation patterns, which may lead to new discoveries, are most likely concealed
in large volumes of clinical information stored in non-transparent conventional
patient records. Essential information which is not frequently encountered will
escape detection as it is hidden in irrelevant information.

Consequently, tools are needed which can intelligently present large volumes
of clinical data and where the capacity of the human brain to recognize signifi-
cant patterns hidden in monumental amount of clinical information is maintained.
Therefore, it is important that the capacity of our cognitive function to recog-
nize relevant information and our ability to make rational verdicts is applied,
an essential function that computers still are lacking. Computer technology can,
however, visualize extractions of complex information as patterns which may ini-
tiate associations to new inquires, that may eventually lead to new knowledge.

2.2 What MedView Offers

In short, MedView offers a model for formalization and tools for knowledge gath-
ering, visualization, and analysis of data. The tools are also aimed at improving
the everyday work of clinicians in oral medicine. The formalization used was
developed in close cooperation between participants from oral medicine and com-
puter science, with the purpose of providing a model suited for both oral medicine
and computerized storage and reasoning. The model of the health-care activi-
ties and medical expertise involved has evolved through collaboration within the
Swedish Oral Medicine Network (SOMNET).

MedView is primarily aimed at increasing the speed by which we may obtain
new and valuable information within the field of oral medicine. A formalization

6

An Overview of MedView

Figure 2: General description of MedView. MedView is used for formalized
registration of clinical text- and image-based information into a knowledge base
(top). The registered clinical information is synthesized into a readable text
and displayed together with clinical images for each patient (bottom left). The
contents of the knowledge base is subsequently used for analysis, evaluation, and
learning (bottom right).

of clinical procedures and visualization of information provide a possibility for
recognizing new trends and patterns otherwise hidden in large amounts of non-
transparent clinical records. With MedView, the knowledge and intuition of the
clinician can be combined with the potential of the computer to promote analysis
and testing of hypotheses in a favorable environment. MedView is also well
suited for educational purposes of dental students and in post-graduate training.
It allows distant consultations and generates a solid foundation for multi-center
trials and activities.

7

On GCLA, Gisela, and MedView

2.2.1 Formalization and Harmonization

When elaborating the MedView system, great care was taken to determine what
clinical information could be defined as useful and constitute the foundation in
the knowledge base. The result from these considerations was standardized proto-
cols for input of clinical information, where the nomenclature used was developed
in close collaboration between the involved clinics. Case history and all clinical
data are entered by use of predefined parameters from the mentioned protocols.
Through this process a solid base for subsequent analysis and intelligible reason-
ing of results is obtained. The nomenclature and information structure is thus
formalized and harmonized within the network. The formalized protocols have a
logic interpretation (see Section 3.1), which make them suitable for automated
reasoning in a computerized system. At the same time, they are simple enough
to have an obvious intuitive reading needing no further explanation.

The protocols defined for collection of data are rather extensive including de-
tailed interviews of disease history and protocols for clinical examinations. Exist-
ing mucosal lesions are described in terms of localization and clinical appearance.
Mucosal lesions are also documented with digital video technique. This tech-
nique offers the advantage that the digitized images are immediately accessible
in the knowledge base, both for analysis and for distant consultations. Results
from biopsies, laboratory tests, and other invasive or non-invasive investigations
are included, as are diagnoses, treatment modalities, and clinical outcomes of
performed therapies. Additional information not included in the protocols but
relevant for the present patient can be included as text.

2.2.2 Everyday Tools

MedView is not all about formalizing and analyzing data. It is also about chang-
ing and improving the everyday work of clinicians by providing tools facilitating
clinical processes. In part, the development of these tools is a necessity for the
success of knowledge gathering: In order to make it possible to collect data in
an efficient manner, it must be possible to enter data into the knowledge base
during examinations. To motivate this extra work, applications are needed that
give immediate feedback in terms of enabling the use of entered data in ways that
improve clinical procedures.

The registration of information based on the formalized protocols is done using
a specialized input application described further in Section 4.3. Each examination
corresponds to a record, including digitized images taken at the examination.
Apart from the input application, there are several output applications or viewers
designed for visualization of obtained information. The viewers are focused on
analysis, interpretation, and evaluation, both of individual patients and of groups
of patients selected from the knowledge base.

Since an extensive amount of information is collected for each patient, the
effect of performing input during examinations is that all information about each

8

An Overview of MedView

Figure 3: Some MedView applications. From top left: Input application, 3D
viewer, bar chart viewer, summary application.

patient is immediately available in a well-organized searchable knowledge base.
When an examination is completed, MedView can generate a summary where
all the contained information is displayed as a readable text, with digitized im-
ages of the mucosal lesions shown simultaneously. The character of the generated
summary is in its layout in most ways similar to the regular patient record encoun-
tered in daily practice. The application and the methods used for generating text
are described further in Section 4.4. When a patient comes back for a follow-up
the system can synthesize a full medical history together with associated images
providing the clinician with all the needed background information. The time
that can be gained by letting the system generate patient record text, instead of
using the traditional method of dictating and typing the text, more than makes
up for the extra time required to gather the information.

2.2.3 Analysis Tools

Once information is gathered the analysis and learning phases begin. Typically,
these tasks are performed at the users desktop computer rather than in the ex-
amination room.

MedView permits selection of patients from the knowledge base according to

9

On GCLA, Gisela, and MedView

any combination of parameters included in the registration protocols. A search
may thus be of a simple nature as, for example, finding all patients with confirmed
”diabetes mellitus”. However, it can also be more complex with several criteria
involved, as finding ”female patients with bilateral lichenoid reactions in buccal
mucosa, treated with local application of clobetasol”. The search profile can be
decided and directed by the user according to the objective or purpose for the
analysis. The system identifies patients that fulfill the chosen criteria and displays
them in various ways for instance in a traditional bar chart. A screen with several
applications, among them a bar chart viewer, is shown in Figure 3.

The selection of patients can be subjected to pattern recognition analysis. An
application enabling a three-dimensional display of a multivariate analysis, where
the result is shown in a cube which may be rotated and viewed from different
angles by the examiner is discussed in Section 4.7. Another, enabling clustering of
patients regarded as similar, in some user-defined way, is described in Section 4.8.
The hierarchical clustering of examinations is displayed in a three-dimensional
tree. The main purpose of these applications is to visualize patterns in a group of
selected patients. They are therefore mainly focused on the possibility of learning
and testing various hypotheses within the created knowledge base.

2.2.4 Extensibility

The formal model used in MedView is such that the currently used formalization
can be easily extended and modified over time. The protocols used can be seen
as a first approximation of the needed knowledge structures. When we learn
more, the protocols can be extended to collect more information and describe
harmonized nomenclature for a larger part of oral medicine. In fact, this process
is in progress all the time. When new values are needed to describe a particular
attribute in a protocol, they can be added directly. To keep a high level of
harmonization it is of course important to communicate such additions within
the network.

Recently, new protocols have been developed which include formalization of
new concepts like tooth-status. With these new protocols MedView can be used
by a broader category of odontologists. Due to the properties of the formal model,
see Section 3.1, old examinations are not made obsolete by the introduction of
new protocols. It’s just that some knowledge available in new examinations might
be missing in the old ones. We hope that it will be possible to formalize and
harmonize larger and larger parts of the health care activities within oral medicine
in the same manner. Then, broaden the view to other parts of odontology.

The formal model of MedView also makes it easy to introduce more complex
concepts based on the basic data collected through the common protocols. For
instance, it might be desirable to introduce concepts that group together a number
of possible values, or to express a new diagnosis in terms of common observations
from a number of cases.

10

An Overview of MedView

2.3 Discussion

MedView addresses the issue of learning from the complex data which originates
from everyday clinical practice in the field of oral medicine. To enable this,
MedView was designed with the ambition to meet the demands for formalization
and harmonization in the decision-making process. In this section we discuss the
project and put it in the context of other medical computer based systems.

2.3.1 Gathering Clinical Information

The first step in the decision-making process constitutes the gathering of clinical
information. Conventionally, the clinician collects data, which are then sum-
marized and written down in a non-transparent record. The registration and
summary applications of MedView resembles the standard way we collect infor-
mation in daily clinical practice and the comparison to the conventional record
is so far obvious. However, all registrations in MedView are performed using
protocols with a formalized nomenclature where data are stored in a computer.
The relevance of individual terms and parameters in the protocols may be de-
bated, but the stringent use of a formalized language creates a basis for reduced
discrepancy in clinical registrations within the network.

If a formalized language can be adopted within a community or network, the
question arises if the use of a computerized record will facilitate subsequent use
of obtained clinical information. Several studies have documented the usefulness
of computerized applications in this context, also within the field of odontology
[19, 28, 34, 83, 94, 112]. The computerized records enable quick access to ref-
erence and educational information [65, 77] and enhanced storage of structured
medical knowledge [53]. The MedView system, using both text- and image-based
information, is in agreement with these studies. Computer records are also in-
troduced for quality assurance, replacing the paper record. These systems are
aimed at assessment and improvement of patient care at the time of treatment,
thus building quality management into the caregiving process [83, 115]. However,
to the best of our experience, the vast majority of commercial systems available
for computerized patient records within odontology are mainly focused on in-
dividual patient care and the possibility to analyze the entire patient material
and visualize clinical patterns is usually rather limited. MedView offers the ad-
vantage of combining the conventional computer record with the possibility for
information visualization and analysis.

2.3.2 Analysis and Classification

The second and third steps of decision-making involve analysis and classification
processes with subsequent treatment and follow-up (Figure 1). Computer systems
may be characterized as active or passive in decision-making [30]. Passive sup-
port occurs when a computer facilitates access to relevant patient data or clinical

11

On GCLA, Gisela, and MedView

knowledge for interpretation by the physician. Active support requires that the
computer processes input data to a higher level of information, e.g., a diagnostic
or expert system. Such models have been developed to enhance clinical security
by facilitating the ability to draw conclusions from background knowledge and
diagnostic hypotheses [50, 96]. Most studies in this field have been written within
medical research, such as dermatology and a rather limited number within odon-
tology [108]. In [108] it was pointed out that a problem with expert systems in
general was the lack of accepted clinical terminology in the medical community.

Systems for computerized support in decision-making processes within odon-
tology can coarsely be classified into four groups:

• The first group consists of studies where a system has been developed as
an aid or tool in a very specific clinical situation such as design of remov-
able dentures [25, 26, 47], artificial tooth form selection [100], objective
assessment of mucosal lesions [67, 68], or surgical operations [31, 98, 99].

• In the second group, computers for decision-making are used in applications
with a somewhat broader perspective. This includes applications where
predefined criteria or a questionnaire are used as decision parameters for
arriving at a correct diagnosis for an individual patient. Applications like
this exist in endodontology [51, 73], oral radiology [15, 27, 113], and oral
pathology [60, 61, 84, 97]. This group also includes computerized systems
for evaluation of diagnostic performance and therapeutic decisions [35, 74]
and studies on how decision analysis in general can be applied to dentistry
[69, 70].

• The third group describes computerized expert systems in odontology with
the characteristics mentioned above. Such systems have been elaborated in
orthodontics [49, 102, 107], endodontology [37], oral pathology [36], cariol-
ogy [10], and oral radiology [1].

• The fourth and last group consists of systems with the purpose of using
the potential of neural networks for analysis of decision-making, therapy
planning, and quality assurance [14, 105].

To conclude, the vast majority of these systems are mainly focused on treat-
ment planning and decision-making for individual patients, rather than on the
possibility to generate further knowledge through analysis of continuously ob-
tained clinical information. However, attempts with this purpose are described
[45, 48]. Furthermore, in oral medicine there are, to the best of our knowledge,
very few papers [104, 121] published with the aim to use computer technology
and database engineering for any of the above mentioned purposes or as a tool
to increase clinical knowledge.

MedView is mainly a passive support system, primarily focused on facilitating
pattern detection where hypotheses can be evaluated in a favorable environment.

12

An Overview of MedView

The knowledge and intuition of the clinician can be combined with the potential of
the computer to promote testing of hypotheses and augment analysis. However,
the standardized collection of data definitely provides a future possibility for
development of active expert systems.

2.3.3 Evaluation and Learning

The last step in the decision-making process is represented by evaluation and
learning and to add to our knowledge and experience. However, the reliability
of any analysis or learning process depends on the quality of input data and
formalization of nomenclature [87, 119]. The same reasoning also applies to the
usefulness of expert systems, which is impaired by incompleteness and inaccu-
racies of the databases. The need and demand to find appropriate standards
and nomenclatures is therefore very important since discrepancies in these fields
will always decrease the reliability of the systems [30]. Similar thoughts were
expressed in [55] where the development of standardized computerized records as
a tool in interdisciplinary communication is advocated. All in all, efforts to draw
conclusions from performed observations are highly commendable, as long as we
remember that the foundation for our analysis is never better than the quality
of input data. Again, formalization represents the initial but also fundamental
part for analysis, decision-making and harmonization and these processes are fa-
cilitated when aided by computer technology. A main purpose with MedView is
therefore to act as a hypothesis generator.

The use of MedView may also be viewed from the view of education. An indi-
vidual clinician may not encounter enough cases to develop adequate experience
of a certain condition. A network, such as SOMNET, is a way to overcome this
problem. All clinics within SOMNET have access to the knowledge base. A
multi-center network, with the combined knowledge of individual clinicians cre-
ating a knowledge base founded on formalized criteria, increases our ability to
reach useful information for education and learning [38, 64, 75, 76]. The formal-
ized protocols generate a possibility for integrated research between clinics. Dis-
tant consultations of individual cases have been successful in several tele-medicine
applications, among them MedView. Used right, computer technology is most
certainly a valuable instrument to increase clinical experience and to promote
learning within the field of oral medicine.

3 MedView and Computer Science

The MedView project involves several areas of computer science, mainly knowl-
edge representation, formal reasoning systems, declarative programming, object-
oriented programming and software development, artificial intelligence (AI), and
human-computer interaction (HCI).

13

On GCLA, Gisela, and MedView

The nature of the project is such that all the above areas are needed and
have to be integrated with each other to produce high-quality software tools.
These tools are then applied continuously in the everyday work of clinicians and
researchers in oral medicine. In addition, hypotheses are directly testable since
there is, and has been from the very beginning, an existing userbase. Both
applications and knowledge models can be put to the test. If knowledge models
cannot be understood and used by the medical experts involved, they are likely
not to be of great value to the project. Likewise, applications developed can be
introduced and tested. If an application does not provide a useful interface or a
meaningful feature set it has to be modified. Examples of applications exist that
have been developed but never used. On the other hand, MedRecords described
in Section 4.3 has been in use for several years and can be said to be proven a
good tool for its task.

A brief description of the basic theoretical model used for knowledge repre-
sentation in MedView is given in Section 3.1. This model has been used as the
basis for a programming system aimed at being the deductive engine of MedView.
Currently, the model is not implemented in a uniform manner across applications
as discussed in Section 4.2.1.

The various topics mentioned above relates to the MedView project in the
following ways:

• Knowledge representation and formal reasoning systems. MedView is based
on a theory of definitions [46]. This theoretic model with connections to
logic and logic programming is used for all knowledge representation.

• Declarative programming. We believe that declarative programming is a
very powerful tool for developing certain kinds of applications, such as
symbol-manipulation, knowledge representation, intelligent reasoning etc.
Furthermore, declarative programming come very close to the theoretical
model used. Consequently, we are developing a declarative programming
system [109] based on the theoretical model used in MedView.

• Object Oriented Programming (OOP). OOP is used as a tool in MedView
to build applications. It is used since it, in our opinion, is the best existing
paradigm for developing modern GUI based applications. The OOP tools
used are interfaced with our own frameworks for integrating declarative
program components. Thus, we can use OOP programming and declarative
programming together and use each paradigm for the task where it’s best
suited.

• Artificial Intelligence. Knowledge based systems such as MedView is an
important part of AI. In particular, case-based reasoning techniques have
been studied [32]. Adding more AI-techniques is an area for future research.

14

An Overview of MedView

• Human-Computer Interaction. The systems developed must interact well
with clinicians, students, and researchers in oral medicine. Also, easy to
handle administrative tools are needed. This makes studies in HCI an
integral part of the project.

Note that both a sound theoretical basis and implementation of knowledge struc-
tures, and real working software solutions to be applied in daily work are equally
important. The development of working high-quality software is necessary to in-
fluence the examination process so that knowledge can be collected and analyzed.
We are also interested in using information technology to improve the healthcare
process. A well-founded theoretical model is necessary, or the mentioned appli-
cations and the data gathered cannot be explained and analyzed in a meaningful
manner.

3.1 Theoretical Model

The basic model of clinical information used in MedView is act-oriented. We
think of explicit clinical information as resulting from acts of defining medical
terms in various situations. A clinical diagnosis, an examination record and so
on, can all be seen as definitions of collections of specific clinical medical terms
[85].

The formalization of definitions as data structures that is used here is based
on the idea that a definition generates a local logic, a reasoning model restricted
to specific terms. These local logics are then the basis for reasoning using given
formal clinical terms.

As a data structure, a definition D can simply be thought of as a collection
of equations

D

a0 = A0

a1 = A1

...
a

n
= A

n

n ≥ 0,

where terms, a0, . . . , an
, are defined in terms of conditions, A0, . . . , An

. The
definiens of a term a, D(a), is then the collection of conditions A that define a in
D. The local logic of D consists of a relation A1, . . . , An

` B, that is, B follows
from A1, . . . , An

according to D, where the two constituting rules are

• A1, . . . , a, . . . , A
n
` B if A1, . . . , A, . . . , A

n
` B for all A defining a in D,

• A1, . . . , An
` a if A1, . . . , An

` A for some A defining a in D.

The logic of D consists of these two rules together with ordinary rules of rea-
soning for given complex defining conditions built up from atomic terms. A full
description is given in [46].

The model we use can be summarized as follows:

15

On GCLA, Gisela, and MedView

• formal clinical data are seen as definitions of clinical terms,

• reasoning is always local to given definitions, there is no single global logic
for formal clinical reasoning.

As a concrete example of a definition we show a small part of an examination
record:

D

status = direct

direct = mucos

direct = palpation

mucos = mucos site

mucos = mucos col

mucos site = 112
mucos col = white

mucos col = brown

palpation = palp site

palp site = 112

In D, the term status is defined by the term direct, which in turn is defined in
terms of mucos and palpation. Thus, D(direct) = {mucos, palpation}. All these
terms are part of the general structure of an examination record, which is shared
by all examinations. In contrast, the term mucos col is defined by the observed
values white and brown, specific for this particular examination record.

4 Current Status

MedView has been developed in an iterative process through close collabora-
tion between experts in oral medicine and computer science, using a mixture of
contextual design [11], user oriented design, and logical analysis of the problem
and required knowledge. Essentially, the analysis and design of the system can
be divided into two sub-problems: knowledge representation and development
of applications for gathering and exploring clinical data. Knowledge represen-
tation issues are discussed above. In this section we describe the status of the
implemented system.

The system is currently in daily use in eight examination rooms at four dif-
ferent clinics. The examination rooms are equipped with a PC on a custom-built
table, shown in Figure 4, and a digital video camera. The collected data are
stored on a server.

A basic assumption underlying the design of MedView is that of separating
the activities of entering information and viewing, or otherwise using, the entered
information. The rationale behind this is that the cognitive tasks involved are
very different. Thus, specialized applications, each described below, have been
developed for each task.

16

An Overview of MedView

Figure 4: Clinician working with MedView. The computer is placed on a custom-
built table aimed at minimizing the interference with the communication between
patient and clinician.

Information is collected in a critical situation, namely during examinations.
For each examination, values for many different attributes describing an examina-
tion must be given. A good deal of effort was therefore put in early in the project
to build efficient tools for knowledge gathering consistent with the underlying
theoretical model.

4.1 Knowledge Base Contents

Currently, (March 2000) the knowledge base built in the MedView project con-
tains approximately 1500 examination records covering more than 700 cases. The
average growth rate is 20 new patients and 30 visits by previously examined pa-
tients a week. The main knowledge base is located at the clinic of oral medicine
in Göteborg. The various clinics within SOMNET have local knowledge bases
containing the examinations made at each clinic. The contents of these local
knowledge bases are added regularly to the knowledge base in Göteborg so that
the entire amount of data collected can be accessed through one common knowl-
edge base. The clinics within SOMNET will have full remote access to this

17

On GCLA, Gisela, and MedView

central knowledge base.
The contents of the knowledge base is mainly used in two ways. First, in

the examination room to display the history of the patient under examination.
Second, to perform analysis, learn from, and search for patterns in the knowledge
base. The second task is typically performed on the clinician’s desktop com-
puter. So far, the most used analytical tool is The Cube discussed in Section 4.7.
However, building more viewers for exploration, search, knowledge extraction,
education, and so on, is an important area for current and future research. We
present a number of more specific suggestions in Section 5.

4.2 Applications Overview

We briefly describe the applications currently used within MedView. Some more
being under development but not yet taken into use within SOMNET are dis-
cussed in [110].

4.2.1 Background

Today, MedView runs on a combination of machines running Windows95/98/NT
and some machines running OpenStep/Mach 4.2 and NextStep 3.3. Originally
the system was developed using NextStep and GCLAII.

The operating system NextStep, used for the first versions of MedView, was
chosen for its advanced GUI, networking capabilities, and object-oriented appli-
cation development environment. The name NextStep usually denotes both the
operating system and the object-oriented application development environment
used to build applications for it. The application development environment later
evolved to OpenStep available for several platforms including Windows NT.

GCLAII [4, 5, 62, 63] is a definitional programming language developed at
the Swedish Institute of Computer Science, (SICS). Due to the similarity with
the definitional model used to represent knowledge it was the natural choice for
implementing the knowledge base and reasoning part of MedView. However, it
was soon discovered that the performance of GCLAII was not sufficient for use
in MedView. This led to the development of a simple object-oriented definitional
machinery called DefinitionG.

DefinitionG implements the most important features of the definitional knowl-
edge base model and can be subclassed if needed to add more. While DefinitionG
lacks both purity, as a definitional representation of the knowledge base, and fea-
tures, it has nevertheless been crucial for the development of working software
solutions within MedView. Currently, we are in the process of replacing Defini-
tionG with a more fully-fledged object-oriented framework for definitional com-
puting called Gisela [109]. One way to view Gisela is as a successor to GCLAII.
Gisela has from the start been designed to better fit the demands on a definitional
machinery to be applied within MedView.

18

An Overview of MedView

Figure 5: A traditional form. Data is entered using a number of standardized
widgets. Clicking the button labeled Continue will show the next screen.

Originally, MedView had only a small number of users, all active within in
SOMNET. With the desire to increase the userbase, it became obvious that
it was not possible to require the use of the rare operating system NextStep.
Therefore, during 1998 and 1999 a transition was made to the Windows fam-
ily of operating systems. The development platform NextStep was replaced by
OpenStep and in some cases Java to enable the transition.

4.3 MedRecords

MedRecords (MR) is the input application used by clinicians to enter detailed
formalized examination data during patient visits. Although the version of MR

used today has some special features for use within MedView it is best seen as a
general-purpose program useful for entering many different kinds of data.

The most common way today to design an application where data needs to
be entered is to use forms [39]. The forms are typically built from objects such as
text-fields, pull-down lists, and check-boxes. An example of such a form is shown
in Figure 5. In MR we have developed a technique for entering data where the
forms are replaced by a specialized text-editor, coupled with hypertext links for
navigation, and easily scrollable text lists containing possible values.

19

On GCLA, Gisela, and MedView

The design goal behind MR was to create an unobtrusive, easy-to-use, space
efficient, and scalable method for entering data, where the forms used can be
created by users without requiring any programming knowledge. Here we describe
the interaction technique and our experiences from it for entering information
about a large number of patient examinations over a period of about two years.

4.3.1 Analysis

MR was conceived as a solution for entering data based on an analysis of the
constraints given. The analysis describes a conceptual model of the act of entering
data. It also lists external requirements describing the environment in which data
is to be entered.

The conceptual model of the knowledge base used in MedView is that of a
collection of definitions, where each definition describes one medical examination.
Each such definition can be pictured as a collection of equations as described in
Section 3.1. Thus, in the MedView setting, entering data is the act of creating
a definition. Therefore, our goal was to support the act of defining, in a precise
manner, a particular medical examination. MR aims to mirror this view of the
knowledge base, while keeping a non-technical interface to the user.

The environment for which MR was developed introduces a number of re-
quirements that had to be satisfied. Some of the more important ones are:

• Data is entered by the clinician him/herself while a patient is being exam-
ined.

• Each record in the knowledge base can have a large number of different
attributes and each attribute can have a very large number of possible
values.

• Values for attributes are most often taken from formalized lists of valid
values. However, free text and digitized images may also be included.

• When a new value is encountered it must be easy to add it to the list of
valid values.

• The protocols or forms used are developed by the expert users themselves
without requiring any programming knowledge.

• The layout of forms should be configurable by each user.

Since the act of entering data is separated from viewing data, MR was designed
for entering data only. It is not intended for viewing examination records.

20

An Overview of MedView

Figure 6: MedRecords Form. At the top left is the navigation area which is used
to navigate into the appropriate part of the input view at the bottom. To the
right is a list of values linked to the attributes in the input view.

4.3.2 Design

Following the analysis of entering information as the act of defining records, MR

was designed to display partial definitions and to provide efficient techniques for
completing them.

The user interface of MR consists of one window divided into three views as
shown in Figure 6. At the top left is a navigation area, below it is the input view
where data is entered, and to the right is a list of commonly used values. Apart
from auxiliary windows for editing preferences and the like, all work is performed
within this single window. The contents of each view is taken from template
files in Rich Text Format (RTF). Thus, the contents of a form can be replaced
completely without any modification to the program. Further, the layout of each
view can be designed using all common features found in word-processors with
respect to font, colors, tabbing, etc. In addition, each user may customize the
layout.

21

On GCLA, Gisela, and MedView

The interaction paradigm is based on a small number of basic operations found
in many applications. The input view at the bottom left works as a specialized
text-editor. It displays an incomplete definition or a ”form” which is edited
when data is entered. The form contains arbitrary lead texts and a number of
knowledge base attributes, each followed by an equals sign. The equals sign marks
the beginning of an implicit input textfield where the value of the attribute is
entered, see Figure 6. Only these implicit input fields in the input view may be
edited by users. All other parts of the displayed text are fixed.

Navigating within the input view can be done by tabbing between the different
attributes, scrolling, using standard navigation keys, or by following the links in
the navigation view at the top. The navigation view typically displays links into
all the main sections of the input view. Clicking a link has the expected effect:
focus is moved to the corresponding area of the input view.

Values may be entered in several ways. First, by simply typing the value. As a
value is being typed, the first matching value in the list to the right is highlighted.
Pressing the completion key or clicking on the highlighted value inserts it into
the form. Second, by following a link from an attribute to its value list to the
right and clicking on the desired value. The value is then inserted into the input
view. Additional documents related to a record, such as images, may be included
by dragging and dropping them on the input view.

Thus, MR is based on a simple flow of actions from navigation view, to input
view, to value list view and back. All the actions involved are simple and well
known to most users. Data may be entered in any order and all attributes in the
input view are instantly accessible via the navigation view.

4.3.3 Discussion

MR has evolved through a continuous interaction between users and developers.
Starting from when the first prototype was stable enough, it has been in use to
enter data during clinical examinations. First, a prototype was built to test the
concept. Based on the success of the prototype, a more complete application was
built together with an editor that is used to create new forms. Today, a third
version, which runs on Windows and Mac OS X systems, is in use.

MR has been used as the input application to enter data for all the records
in the MedView knowledge base. All this data has been entered by the clinician
performing the examination while talking to and examining the patient. The
interaction paradigm based on well-known components such as keyboard, mouse,
hypertext links, drag & drop, and ordinary text editing works very well.

Current forms consist of about 100 attributes and a large number of values,
e.g., lists of different drugs and diseases. The navigation tools are sufficient
although some fine-tuning of the systems scrolling behavior is called for.

Compared to traditional form-based interfaces we believe that MR scales
very well. Having 100 different readily available attributes in one screen poses no

22

An Overview of MedView

problem. Displaying traditional forms for the same amount of attributes would
require navigating between many different screens, typically in some fixed order.

A recent form covering more than 1000 different attributes in the area of oral
medicine has been tested. The value lists associated with this form contains more
than 12 000 distinct values. The initial experiments with this form indicate that
MR works as well as with smaller forms. Another aspect is the simplicity with
which new forms may be created. New forms are created using InterfaceMaker,
see Section 4.5, an editor comparable to HTML-editors. No programming is
required.

The success of MR shows that focusing on simplicity and long-time usefulness
instead of elaborate GUIs can be a good thing indeed. Testing the concepts of
MR on a large number of different kinds of forms remains an area for future
work.

4.4 MedSummary

The first, and so far most used, knowledge base viewer is MedSummary (MS).
MS is used in conjunction with MR in the examination room, but also to display
detailed information during analysis of the material in the knowledge base.

The view of the knowledge base presented by MS is that of a textual sum-
mary of one or more examination records together with any associated images
as shown in Figure 7. The purpose is to display in a format suitable for viewing
the information collected in MR. While it is possible to view data using MR it
is not a recommendable way to learn what an examination record is all about.
Instead of showing the form or screen used to collect data, we use Natural Lan-
guage Generation (NLG) to generate from the collected data a comprehensible
summary of all or parts of the examination(s).

4.4.1 Working with MedRecords and MedSummary

As mentioned earlier, we make a clear distinction between input applications and
viewers. While this may sound obvious, the electronic medical record systems
we have encountered use the same display to input information and to view it.
Consequently, the displays used are optimized neither for entering nor for viewing
information.

When working with MR and MS these two activities are separated. New
examination data is entered with MR, the contents of existing examination data
is viewed using MS. The main window of MS shown in Figure 7 contains a listing
of selected examinations to the right, thumbnails of images in the middle and the
generated medical record text to the left. Clicking on a thumbnail image will show
it full-sized in a separate window. Different texts can be generated by selecting
between the headings shown at the top left.

When a previously examined patient comes back for a follow-up, the user

23

On GCLA, Gisela, and MedView

Figure 7: MedSummary: main and preferences windows. Different texts may be
generated by selecting from the headings at the top left. Clicking on a minimized
image will show it full-sized in a separate window.

can create a suitable background text. To do this, the user selects the desired
previous examinations, and then clicks on a heading to show a summary together
with existing images. Once a summary has been created it can be edited as any
ordinary text-document if necessary. The text can then be printed and used for
things like providing a detailed medical history if the patient is sent to another
clinician.

The text-generation used is very flexible and can be adjusted easily both with
respect to contents and formatting. Thus, different users may have different
summary texts based on the same database if desired. Apart from values of
attributes that allow free text, generating summaries in different languages poses
no special problems.

4.4.2 Natural Language Generation

Natural Language Generation is the activity of generating text from some kind
of sources. A good overview of the area can be found in [23, 24]. In principle,
there are two approaches to generation, the deep and shallow approach. A deep
system builds on a deep understanding of linguistics whereas shallow systems use

24

An Overview of MedView

simpler methods to generate text. The advantage of deep text-generators is that
they are more domain independent and thus can be applied to various areas with
relative ease. However, building a deep system requires a lot of knowledge and
resources. Shallow systems are typically specialized for a particular task and need
not be more complicated than the task demands. On the other hand, they are
less reusable for another task. Some deep systems are described in [9, 42, 80, 92],
examples of shallow systems can be found in [17, 40, 91]. Discussions of the two
approaches can be found in [17, 23, 89, 90].

Typically, a NLG system is divided into three phases [88]

• Content Determination

• Sentence Planning

• Surface Realization

performed in sequence. Thus, the system first decides what the text should
contain, then plan the general structure at sentence level, and finally, realize the
desired structure into text. Other approaches are used as well. For instance,
[78, 103] propose an integrated constraint-based method that performs all three
activities at the same time. The RAGS project [18] is an attempt to develop a
reference architecture for NLG systems.

4.4.3 Text Generation In MedSummary

The main focus during the development of MS and the text-generation used has
been to create a very flexible system where users can experiment with different
texts without having any linguistic expertise. Thus, from a NLG point of view
the system is a basic shallow system. Close to a simple mail-merge system, it can
be classified as a slot-and-filler, or canned-text with knowledge base references
system [17].

Although the text-generator used is very simple it can be clarifying to describe
it using the three standard phases mentioned above. Examination summaries
have a structure based on the formalization of examinations used in MedView.
An examination record forms a tree structure with top level nodes representing
the different main tasks from which information is gathered at examinations.
Text can be generated for all tasks performed at an examination, for a particular
task, or any desired combination of tasks. It is also possible to generate a text
covering several examinations. In terms of the phases above:

• Content planning. Depending on the user’s choice it is decided what parts
of a text template should be used in the resulting text and for which exam-
inations summary text should be created.

• Sentence planning. Depending on which attributes of an examination record
have values, it is decided which sentences of the selected template should
be included in the text. Sentences for which values are missing are omitted.

25

On GCLA, Gisela, and MedView

• Surface Realization. Depending on the values for attributes in the database
particular text-fragments are selected and used to fill slots in sentence tem-
plates.

The text-generator takes as input a template describing the texts to generate.
This template consists of a number of files providing (i) an RTF template text
with slots to be filled in depending on the values for attributes in an examination
record, (ii) a file describing the connections between slots in the template text
and attributes in the knowledge base, (iii) a file that classifies the attributes of
the knowledge base into a number of groups, (iv) a file that defines the text-
fragments to use as slot-fillers for attribute values. The last file does not simply
list value-text pairs, but allows some slightly more complex substitution patterns
as well.

The text generator parses the template files into a number of definition ob-
jects. Most notably, each attribute gets its own definition object describing text
fragments for all possible values of the attribute. Formatting information is kept
from the RTF template. To modify the look of generated texts each user may
freely change all formatting attributes, font, color, aligning etc. without affecting
the actual contents of summary texts.

With the syntax currently used, part of a template could be:

§DISEASE HISTORY§

Age year old Sex $Occup$ who is referred by $RefIn$ because of
a $RefCause$. The patient is $CivStat$ and comes originally from
$Born$. $Checkup$.

Now, if part of the definition of an examination is

Occup = Lärare.

Ref-in = Tandläkare.

Ref-cause = Slemhinneförändring.

Civ-stat = Gift.

Born = Sverige.

Checkup = Ja.

and the value-text maps include the following:

Occup:

Lärare = teacher.

Ref-in:

Tandläkare = a general dentist.

Ref-cause:

Slemhinneförändring = mucosal lesion.

26

An Overview of MedView

Civ-stat:

Gift = married.

Born:

Sverige = Sweden.

Checkup:

Ja = Attends medical check-ups regularly.

the generated text for DISEASE HISTORY becomes:

DISEASE HISTORY

58 year old female teacher, who is referred by a general dentist because
of a mucosal lesion. The patient is married and comes originally from
Sweden. Attends medical check-ups regularly.

Since most values in the MedView knowledge base are in Swedish they have to be
given a translation to generate English text. However, if values had been given a
neutral language independent coding instead, it would still have been necessary
to translate from these codes into English text.

4.4.4 Implementation

MedSummary is written in Objective-C. The text templates used are parsed
into a number of definition objects, which were developed as an early part of
the Gisela project [109]. There are two versions of the generator, one that uses
an RTF template and produces output in RTF format and one that uses an
HTML template and produces HTML output. The HTML generator makes it
very simple to produce summary texts for web publication, see Section 4.9. The
performance of the text-generator is quite sufficient, the desired summary text is
displayed immediately.

4.4.5 Discussion

In [90], the term automatic text generation (ATG) is used to refer to any com-
puter program that automatically produces texts from some input data. ATG

systems are then divided into NLG systems and template systems. A template
system is defined as a system that simply manipulates character strings using
little, if any, linguistic knowledge. From this point of view, the current MS appli-
cation should be seen as a template system. However, we find it useful to discuss
the system in the light of NLG and we are moving towards including more NLG

techniques into the system.
As stated earlier, ease of use by non-experts has been deemed more important

than producing optimal text quality or using linguistically motivated methods.

27

On GCLA, Gisela, and MedView

The template files forming the basis for generation should best be seen as the
user interface to the system for content management. By this we mean that it
should not be regarded as the representation of the framework used but rather as
an interface to enter information into the system from which a suitable internal
representation can be built. This internal representation could be something with
a deeper basis in NLG than the current system. If a more sophisticated system
should be introduced it must not be at the expense of the possibility for users to
design their own summary texts.

It is interesting to note that several choices made in the development of MS

are essentially orthogonal to the approaches suggested for NLG systems. We
discuss some issues below. We also mention where NLG techniques would be
appropriate in MedSummary and related systems.

Creating a Corpus The corpus-based approach [23] advocates that the first
step in the construction of a NLG system is to build a corpus of example texts.
This corpus, which should cover the full range of texts the system will produce, is
then analyzed for linguistic and information content. Our approach has instead
been to build a system where the users, through experiments with given tools, can
decide the texts themselves. Actually, an initial prototype for MS was built using
something of a corpus-based approach. A number of templates were extracted in
collaboration with a domain-expert and realized into an application. However, it
was soon discovered that a system that required the assistance of a programmer to
alter the contents of summary texts was not appropriate. Therefore, the current
system where texts can be continuously refined was developed. By now, after a
couple of years of use, it would probably be possible to take a number of generated
texts from the system, check them for errors, and use them as a corpus.

Flexibility It is often argued that a major advantage of sophisticated NLG over
template systems is that deeper systems are more flexible and easier to maintain.
Exactly why this is the case is not always clear. It is interesting that in the
development of MS we have selected to use a simple template approach to achieve
great flexibility. Of course, this is related to the fact that it is necessary that the
end-users themselves can modify what the text generated from examination data
should be. The text-files used as templates for text-generation are simple enough
to be modified by end-users. To expect that they would be able to easily control
the workings of a sophisticated NLG system is not realistic.

Text quality Systems building on linguistic knowledge are generally able to
produce text of higher quality compared to template based systems. Whether
this higher quality is needed depends on what the texts should be used for and
on the complexity of the generated texts.

The structure of medical record text is typically very static and uses a rather
formal language. Furthermore, there is no need to produce text with great vari-

28

An Overview of MedView

ation. On the contrary, too much variation might be disturbing since clinicians
reading the texts expect them to follow certain patterns. Most of the texts gen-
erated by MS are read once in the examination room and then discarded. It
is also more important that the summary is displayed immediately than that
text quality is optimal. This indicates that for the MS application domain a
template-based approach is sufficient.

Since the templates used for generation have been refined repeatedly for sev-
eral years, the quality of the generated texts is in most cases sufficient for their
task. In case further refinements are needed, the text may be edited by the user.

Recently, we have put together a web application where summaries, together
with images, for selected patients can be viewed. Text can be generated in either
English or Swedish. Adding more languages is a simple matter of modifying the
text templates. However, in this context it is not possible for users to create new
templates. It could therefore be appropriate to use a more complex system since
it will be maintained by experts and not by end-users.

Hybrid Approaches While a deep NLG system does not appear to be needed
in MS, using a hybrid system would be quite useful. Several hybrid systems have
been developed which combine templates with deeper NLG techniques [16, 57,
93].

One obvious technique being a candidate for inclusion in a future version of
MS is aggregation. Aggregation is used to combine related phrases and sentences
together in a linguistically correct manner. Some basic aggregation can be per-
formed in an experimental text-generator we have implemented using the Gisela
framework [110]. In MS sentences are either included or omitted depending on
whether all attributes needed to generate the sentence have values or not. In the
Gisela-based generator the choice is made at a higher level; this, among other
things, allows the combination of two sentences into one in certain cases.

Finally, we note that multi-modality is of increasing importance in document
generation. We need to be able to include diagrams, tables, and other graphics
into patient summaries. The images displayed along with the generated text in
MS are as important for the clinician as the generated text. Support for tables
is present in the Gisela-based generator mentioned above. Creating fully multi-
modal documents is an interesting challenge for the future.

4.5 InterfaceMaker

Both MR and MS are developed to allow that the contents of the forms or proto-
cols used and the text generated is completely replaceable without changing the
application itself. To aid in creating new forms there is a tool called Interface-
Maker (IM). IM is similar to HTML-editors. The user writes the various texts
of the new form and adds tags to create links, see Figure 8. IM also supports the
creation of text templates for MS.

29

On GCLA, Gisela, and MedView

Figure 8: InterfaceMaker: main window.

IM is more of an administrator tool than a user tool. The general methodology
developed within MedView suggests that new forms or protocols are created only
when the contents have been formalized and harmonized. Thus, creating new
forms should be done by authorized persons only, at the time when a new protocol
is to be adopted within the user community.

4.6 Basic Visualizations

The very first visualization of the knowledge base developed was an application
that shows ordinary 2D views of data in the knowledge base. The user can view
data in a scatter-plot as shown in Figure 9 or as a bar chart. Values for any
number of attributes can be displayed simultaneously to let the user look for
interesting groups of patients. In Figure 9 the upper left corner shows a cluster of
patients born in Sweden who have been referred by their general dentists because
of a mucosal lesion.

The application also allows the user to view only a restricted part of the
knowledge base by first making a selection based on any combination of the
attributes in the knowledge base. Furthermore, details for any particular dot in

30

An Overview of MedView

Figure 9: A scatter-plot showing values in the knowledge base.

the display can be shown. So far, the 3D visualizations discussed below have been
preferred by the clinicians. We will investigate the reasons for this and ways to
build better 2D viewers in the future.

4.7 The Cube

The most used visualization of the knowledge base so far is called The Cube.
The Cube has been developed to enhance the clinician’s ability to intelligibly
analyze the patient material within the knowledge base and to allow for pattern
recognition and statistical analysis. The Cube is based on the idea of using
parallel coordinates [52] as a solution to multidimensional data analysis [6, 21].
The visualization of parallel coordinates is discussed in [111, 117, 118].

The starting point was the formalization of the notion of a clinical examination
as a definition. A formal examination is seen as a set of definitions of specific
examination terms. An excerpt of such a definition was shown in Section 3.1.

Clearly, for a given collection of examinations, such a term can be viewed
using a simple scatter plot with the x-axis as a sort of time line, e.g. ordered
by examination date, and with the values of the term on the y-axis. Thus, if
we want an overview of the total set of terms it is natural to think in terms of
multiple parallel diagrams (this is similar to the scatter matrix of [21]). This
view was then generalized into dynamic 3D parallel diagrams with support for
direct manipulation, a 3D cube. The idea is similar to the concept of 3D parallel
coordinates, e.g., the casement displays used in [111]. The reason for using 3D
was that the notion of 3D parallel diagrams was conceptually very natural from
a clinical point of view; it seemed to be a natural model of the raw material
of clinical experience. The idea of investigating such a 3D object to learn from

31

On GCLA, Gisela, and MedView

Figure 10: All diagnoses related to the number of cigarettes/day.

clinical data was very appealing.

4.7.1 Defining The Cube

An examination record consists of a number of examination terms (attributes).
The user must first decide how many 3D parallel diagrams should be used, and
which attribute should be displayed in which diagram.

The total set of attributes in the knowledge base is displayed in a panel and
the user simply selects the desired attributes from this list. An attribute can also
be marked to be used as the unit on the z-axis.

4.7.2 Viewing The Cube

The Cube consists of a number of planes, one for each attribute that was selected
when The Cube was defined. These planes are presented along the x-axis. The
z-axis is typically used as a timeline, i.e., as an ordering on the examination
identification attribute, but an arbitrary attribute can be used as the unit on
this axis. The y-axis then lists the values for the attribute of the corresponding

32

An Overview of MedView

plane in some order, e.g., in alphabetical or numerical order. In any case, each
examination is represented by a line connecting individual values in the different
attribute planes. If an examination has more than one value for an attribute, the
values are connected with a line in the plane. A picture of The Cube with two
planes can be seen in Figure 10.

The user can observe The Cube from any desired direction, either by dragging
or rotating The Cube with the mouse, or by using the controls at the bottom of
the main window.

The appearance of The Cube can be changed in various ways: a strictly
parallel projection can be used, the elements of The Cube, e.g., the lines, points,
and planes, can temporarily be hidden, the user can change the colors of the
elements, elements can be set to be transparent, etc.

If the user finds some lines, i.e., examinations, particularly interesting, these
lines can be selected and then opened in a separate window for closer inspection.
Similarly, if some lines are blocking the view of others, these lines can temporarily
be removed. To get a summary of a number of examinations, the user can select
the lines and then open the corresponding examination files in MS.

It is also possible to get statistics about a selected plane: for each value in the
plane, the number of examinations with that value is displayed using an ordinary
bar chart.

4.7.3 Grouping of Attributes

When data from thousands of examinations are displayed in The Cube, the dis-
play will be filled with lines and it may be difficult to recognize clinically meaning-
ful patterns. To solve this problem two techniques can be applied: either showing
only a subset of the knowledge base based on a selection made before defining
The Cube, or grouping values into classes in a hierarchical manner. For example,
a number of diseases can be grouped into viral diseases. Such classifications of
attribute values reduce the complexity of the display and facilitate the detection
of interesting patterns.

Groups can be created and stored in a library for future use. From a theoretical
point of view, a group is simply a definition relating values to groups. Examples
of existing simple groups are a division between smokers and non-smokers and
between patients with oral lichen planus and patients which do not have oral
lichen planus. Combining various groups gives new interesting patterns to explore.

4.7.4 An Example

The Cube is used for finding patterns and correlations. The typical question
posed is ”How does a certain set of attributes relate to each other for the entire
patient material?” or simply viewing a single attribute. If the patient material
is homogenous from the aspect of parameters chosen in the analysis, the lines
will appear parallel to each other within The Cube. Heterogeneity and outliers

33

On GCLA, Gisela, and MedView

Figure 11: The picture in Figure 10 has been simplified by grouping values.

in the patient material for a certain parameter will, consequently, cause the lines
to diverge from each other in the corresponding plane. By using the various
selection possibilities, a step-wise procedure may be performed where hypotheses
are continuously refined.

Oral lichen planus (OLP) is a disease with unknown etiology that effects the
oral mucosa. In its most severe form, the disease presents with erosions and
ulcerations, which interfere with, for example, eating of citrus fruits and spicy
food. Some of the OLP lesions transform into a malignant disease of the oral
mucosa.

In this example, The Cube was used to examine drug and smoking habits for
symptomatic (ulcerated) and non-symptomatic (non-ulcerated) OLP, informa-
tion that has not previously been reported. A cube with two planes was defined:
on the first plane the smoking habits of the patients were presented and on the
other plane the different diagnoses of the patients were displayed, see Figure 10.
The display was then simplified by classification of smoking habits into three

34

An Overview of MedView

groups: non-smokers, patients smoking less than 10 cigarettes/day, and patients
smoking more than 10 cigarettes/day, and by changing the color for the two
different forms of OLP, see Figure 11.

It was revealed that patients with symptomatic OLP (OLP-symp) were non-
smokers (100%) compared to patients affected by non-symptomatic OLP (OLP-
nonsymp; 81% non-smokers; 11% more than 10 cigarettes/day; 8% less than 10
but more than 1 cigarette/day). The opposite was found for medication where
only 47% of the OLP-nonsymp used drugs compared to 65% of the OLP-symp.

These findings raise thoughts about how different factors may influence the
development of the two clinical forms of the disease. The reported observations
have now to be statistically evaluated and further investigations by using The
Cube have to be conducted to examine if patients with OLP-symp take other
types of drugs than patients with OLP-nonsymp.

4.7.5 Discussion

A basic metaphor in MedView is that clinical experience can be viewed geo-
metrically as a space of interconnected atomic points of knowledge. Using The
Cube in clinical practice has shown that the tool works well conceptually, as an
implementation of this idea.

It is interesting to note that, although 2D visualizations such as scatter-plots
and bar charts are more obvious and may appear to be easier to understand, the
clinicians prefer working with The Cube. One reason for this is that it is the better
tool for viewing the collected clinical experience. It is more of a visualization of
the space of interconnected points forming clinical experience.

The grouping, or aggregation, of values has been proven very useful to achieve
better results with The Cube.

In the future we need to add more tools for direct manipulation of the, often
very complex, displays. Examples of such tools are better and more powerful tools
for selecting and, temporarily, discarding or hiding various elements of The Cube,
and methods and algorithms for minimizing problems with disorientation and
occlusion of elements. Parallel diagrams take practice for users to comprehend
[101]. Therefore, the work on a methodology for clinical use of The Cube will be
extended and carried further.

4.8 SimVis

Similarity assessments play an important role in most cognitive activities. For
example, a clinician examining a patient wants to know if there are previous
examination records that are similar to the current one, hoping that these might
help him, or her, in the diagnosis of the new patient. However, before we can ask
for “similar examination records” we must define what “similar” means. SimVis
is a tool designed to allow and encourage clinicians to classify and cluster clinical

35

On GCLA, Gisela, and MedView

data in different ways, i.e., a tool that enables them to interactively construct
and try out new similarity measures.

Much effort have been spent on studying similarity measures within the med-
ical domain, especially in the area of case-based reasoning (CBR) [41]. This
includes work on using CBR-techniques in the retrieval of images from image
databases [66] and knowledge mining [54]. In [2] clustering was used to find
higher conceptual structures of medical data.

4.8.1 Definitional Similarity Measures

Since examination records are given as definitions, it follows that we must first
study how to measure the similarity between these definitions in order to be able
to classify clinical data.

A similarity measure consists of a definition, E, a computation method, M ,
and a number of definitions, D1, . . . , Dn

. One may think of E as a set of test
points, a number of properties of D1, . . . , Dn

, on which the similarity measure is
based. The result of the application of M to E and D1, . . . , Dn

, the similarity
value, is a new definition, V , which describes both structural and computational
similarities between D1, . . . , Dn

. The computation of V is really only the first
step in a more general estimation process. If an interpretation of V cannot
immediately be found, it can be used as the starting point for further estimation.
The result of this second step can, if necessary, be used as the starting point
for a third step etc. The process usually ends when V equals a test-definition,
S, indicating that the interpretation of V is clear to us. More on definitional
similarity measures can be found in [32].

All parts of the similarity measure, including the data structures, the compu-
tation method and the estimation process, are given as definitions. Since all parts
of the model are given as definitions, the user can, in principle, use the output of
the model, i.e., the similarity value, as an input in any other part of the model.

Through experimentation with SimVis, a similarity measure can be found
that, for instance, captures the characteristics of a certain diagnosis. This mea-
sure can then be used for finding records with this diagnosis, and, indeed, the
similarity measure can be said to define this diagnosis.

4.8.2 The SimVis Tool

The general framework for computing similarity measures can be used as a basis
for different information visualization models, where each model gives a different
visual interpretation of the underlying similarity measures. What is required
is a mapping from the results of the estimation process to the visual model. In
SimVis a visualization model based on a three-dimensional hierarchical clustering
is used. With SimVis, a clinician can interactively construct a similarity measure
between examination records, apply the measure to a knowledge base of records,
and visualize the resulting classification.

36

An Overview of MedView

Figure 12: SimVis: the panel for constructing similarity measures (left), the
visualization of clusters (middle), and the visualization of individual similarity
values, i.e., cluster points (right).

SimVis consists of three modules, which are shown in Figure 12. The first
module is used for constructing similarity measures and estimations. On the basis
of the similarity values, a three-dimensional hierarchical clustering is created,
visualized, and examined using the second module of SimVis. The similarity
values themselves can be examined in detail using the third module.

Constructing Similarity Measures To construct a similarity measure, the
user starts off by choosing one of many predefined computation methods. Each
method has its own characteristics and parameters. These can, for instance, be
the weights assigned to the different attributes of the examination records, if the
length of the estimation process should be taken into account or not etc.

The user then defines which attributes of the examination records that should
be taken into account. It is also possible to save the similarity measure for future
use.

Visualization Model The user can apply the current similarity measure (or
one saved from a previous session) to the knowledge base. From the resulting
similarity matrix, a hierarchical cluster is constructed. A 3D visualization of the
cluster can then be examined using the second module of SimVis (the middle
window in Figure 12). To facilitate the exploration of data, clusters can be
visualized in different ways: various parameters controlling the visualization could
be modified, color codes could be used, the dynamics of the computation could
be simulated by animating the construction of the clusters. If the user finds some

37

On GCLA, Gisela, and MedView

sub-clusters particularly interesting, these can be selected and then opened in a
separate window for closer inspection. Similarly, if some sub-clusters are blocking
the view of others they can be temporarily removed.

The underlying similarity measures can be analyzed in detail as well using 3D
parallel diagrams (the right window in Figure 12). The details of this visualization
are described in Section 4.7.

4.8.3 Discussion

The theory for similarity measures underlying SimVis could be used as a basis for
different classification and visualization models, not just hierarchical clustering.
An alternative clustering could be the self-organizing map [58]. Apart from being
tested in MedView, SimVis has also proved itself useful in the area of functional
genomics, where it has been applied to problems connected to the analysis of
expression data from proteome analysis of yeast [33].

Compared to the Cube and the simple 2D visualization tested, SimVis is a
step towards a more active system, that is, a system performing tasks for the
user, not just an exploration tool. The measures constructed could be used for
exploration of data in the knowledge base.

In the future SimVis will be extended into a general case-based reasoning
(CBR) system [59, 116] that should provide assistance to clinicians within the
field of oral medicine.

4.9 Web Applications

The real treasure of MedView is the knowledge base being built. An obvious step
to give clinicians and researchers worldwide access to the data collected is to use
the Internet. We are currently considering various web-applications that would
allow exploration of the knowledge base using a Web-browser.

To setup a static website with information from the knowledge base would
not be very interesting. Instead, we will build dynamic web-applications. Since
essentially all the code written so far can be reused, the main problem will be
design of an appropriate web-based user-interface.

So far, we have built two simple web applications: One that makes it possible
to view patient summaries in the same way as in MedSummary, and one to search
the knowledge base for images, see Figure 13. In the search for images each image
is indexed by all the information collected at the examination when the image
was taken. For example, a query might be “Find all lesions with Mucos-colr red
and white and Mucos-txtur plaque”. This is possible since images taken at an
examination are part of the total knowledge collected at the examination and the
knowledge base can be searched for examinations matching any combination of
attribute-value pairs.

38

An Overview of MedView

Figure 13: Searching for images over the Internet.

5 Future Directions

We believe that MedView is a project that is worth continuing. The foundation
for building a large knowledge base in the field of oral medicine has been laid
down. Tools that have been put to the test at more than 1500 examinations
have been developed and proven useful. Some analysis tools are in use, although
in a smaller circle of users. However, to find areas that would be interesting to
investigate further is not hard. We mention some of these in no particular order
below.

5.1 Foundations

The theoretical model of MedView as a knowledge base containing definitions
of examinations is not expected to change. However, some details may need
further attention. Examples of such details are the way values are built-up and
used. Today all values are atomic. This means that a value, say “2 times a
day”, is represented by the atom ’2 x/day’. There are several reasons for this:
First, the basic definitional model used does assume that all values are atomic.
Second, ’2 x/day’ does not require any special knowledge about atoms, terms
etc. which makes it easier to understand for clinicians. Third, DefinitionG used in
some applications to model definitions does only allow atomic values. Of course,

39

On GCLA, Gisela, and MedView

an atom like this, which does possess an inherent structure, would be better
represented as a compound term that makes it easy to access the components 2

and x/day, say times_day(2).

We are currently working on using the Gisela framework as a replacement for
DefinitionG as the tool for computing with definitions in MedView. Gisela is a
much more flexible tool for programming with definitions than DefinitionG. As
such, it is also less efficient and it remains to be seen how much more work is
needed before it will reach the level where it can be used as the deductive engine
and knowledge representation language of MedView.

With Gisela in place, it will be time to look further into knowledge representa-
tion and more advanced computations over basic data and knowledge structures
built on top of it. Examples are defining new diagnoses based on data in the
knowledge base, searching for patterns or similar cases, building a set of useful
query filters, such as looking for patients with specific properties instead of ex-
aminations etc. Our belief is that Gisela will provide a definitional framework to
do the things we need in a sufficiently clean and efficient manner.

5.2 Collaboration

There are several directions in which MedView can benefit from collaborations of
various kinds. Some collaborative efforts, considered or ongoing, are mentioned
here.

First, extending SOMNET is considered as a way to both increase the expert
knowledge within the network, and speeding up knowledge gathering through a
larger userbase. Since SOMNET is not about MedView only, this has to be a
process where clinics are gradually assimilated. On a related note is letting general
practitioners use MedView tools for evaluation and testing. The next extension
would be to create an international network building a common knowledge base.
Such a venture would of course demand serious efforts in the formalization and
harmonization phases.

An international collaboration with Eastman Dental Institute in London is
being initialized. There are strong relations between MedView and the work
done at Eastman, both theoretically and practically. We hope that this will
bring up interesting research opportunities.

Yet another important thing would be to have better cooperation with experts
in information visualization, database mining, and pattern recognition. Finally,
to further develop the NLG used in MedSummary collaboration with experts in
computational linguistics is needed. We hope to be able to start work on this in
the near future.

40

An Overview of MedView

5.3 Applications

As we have mentioned several times before, we are only at the beginning of
building tools for exploration of the information that has been collected over the
years in MedView. Some ideas for future tools are:

• Database management. The definitional knowledge base model used in
MedView needs computerized tools to monitor entered values, add value
filters, corrections and so on. Some experiments in this direction are men-
tioned in [110].

• MedRecords with expert knowledge. Currently, MedRecords simply collects
data. An interesting extension would be to add an intelligent agent that aids
the user. The agent could provide suggestions for values, verify that entered
values are consistent in some manner, or simply rearrange the value-lists so
that the values deemed most likely by the agent occurs at the top.

• Combining MedRecords with graphical input devices. Although the basic
paradigm used in MedRecords works very well in most cases it is sometimes
better to enter data through a graphical user interface. To add a plug-in
architecture that would allow various extra input methods would not be
very complicated.

• Improved Visualizers. The name MedView indicates that viewing visually
what is in the knowledge base is an important part of the project’s goals.
What the best tools for visualizing various aspects of the collected knowl-
edge should be needs some serious work.

• Interactive Distant Consultations. Currently the members of SOMNET

send patient information, including images, to each other via email. A bet-
ter approach would be to build tools for real-time communication using
audio/video such that the expert asked for advice can view the patient di-
rectly. With both parties having access to the common MedView knowledge
base similar cases could be viewed and discussed in relation to the current
patient.

• Educational tools. Using the collected material in MedView for education
is an obvious application. Educational tools could be of various kinds and
directed at different groups, students, graduate students, practitioners, re-
searchers etc. We are currently investigating the possibilities of building an
Electronic Handbook of Oral Medicine. An idea of this handbook would be
to combine general rules given by experts with actual examples from the
MedView knowledge base.

• Web Tools. Related to the above is accessing the MedView database using
the World Wide Web. A web application for MedView could combine sev-
eral of the suggestions above in a MedView web portal. By logging into this

41

On GCLA, Gisela, and MedView

the user would have access to distant consultations, image search, patient
summaries, electronic handbooks and tutorials, and so on. Once the basics
of the various functions are in place, allowing access using the Internet is
essentially a matter of programming and user interface design.

• Searching for patterns. Related to the need for visualizations aiding the
user is automated database searches. A data-mining program could be
constructed to search the knowledge base for patterns that could be reported
to an expert for further evaluation. This approach is the dual to letting the
user search for patterns using visualizations and direct manipulation.

The list could be made much longer but we stop here for now.

References

[1] L. M. Abbey. An expert system for oral diagnosis. J Dent Educ, 51:475–480,
1987.

[2] F. Alte da Veiga. Structure discovery in medical databases: A conceptual
clustering approach. Artificial Intelligence in Medicine, 8:473–491, 1996.

[3] R. Armstrong, J. Lesiewicz, G. Harvey, L. Lee, K. Spoehr, and M. Zultak.
Clinical panel assessment of photodamaged skin treated with isotretinoin
using photographs. Arch Dermatol, 128:352–356, 1992.

[4] M. Aronsson. Methodology and programming techniques in GCLA II. In
Extensions of logic programming, second international workshop, ELP’91,
number 596 in Lecture Notes in Artificial Intelligence. Springer-Verlag,
1992.

[5] M. Aronsson. GCLA, The Design, Use, and Implementation of a Program
Development System. PhD thesis, Stockholm University, Stockholm, Swe-
den, 1993.

[6] D. Asimov. The grand tour: A tool for viewing multidimensional data.
SIAM J. Sci. Stat. Comp., 1(6):128–143, 1985.

[7] T. Axell, J. Pindborg, C. J. Smith, and I. van der Waal. Oral white lesions
with special reference to precancerous and tobacco-related lesions: conclu-
sions of an international symposium held in Uppsala, Sweden, May 18-21
1994. International Collaborative Group on Oral White Lesions. Journal of
Oral Pathology, 25(2):49–54, 1996.

[8] J. D. Bader and D. A. Shugars. A case for diagnoses. J Am Coll Dent,
(64):44–46, 1997.

42

An Overview of MedView

[9] J. Bateman. Enabling technology for multilingual natural language genera-
tion: the KPML development environment. Natural Language Engineering,
(3):15–55, 1997.

[10] D. K. Benn, D. D. Dankel, D. Clark, R. B. Lesser, and A. B. Bridgewater.
Standardizing data collection and decision making with an expert system.
J Dent Educ, 61:885–894, 1997.

[11] H. Beyer and K. Holtzblatt. Contextual Design: Defining Customer-
Centered Systems. Morgan Kaufmann: San Francisco, CA, 1998.

[12] J. Bolewska, H. Hansen, P. Holmstrup, J. Pindborg, and M. Stangerup.
Oral mucosal lesions related to silver amalgam restorations. Oral Surg Oral
Med Oral Pathol, 70:55–58, 1990.

[13] B. Brehmer. Dynamic decision making human control of complex systems.
Acta Psychol Amst, 81:211–241, 1992.

[14] M. R. Brickley, J. P. Shepherd, and R. A. Armstrong. Neural networks: a
new technique for development of decision support systems in dentistry. J
Dent, 26:305–309, 1998.

[15] S. L. Brooks. Computed tomography. Dent Clin North Am, 37:575–590,
1993.

[16] B. Buchanan, J. Moore, D. Forsythe, G. Carenini, and S. Ohlsson. Using
medical informatics for explanation in a clinical setting. Technical Report
93-16, Intelligent Systems Laboratory, University of Pittsburg, 1994.

[17] S. Busemann and H. Horacek. A flexible shallow approach to text gener-
ation. In E. Hovy, editor, Proceedings of the Nineth International Natural
Language Generation Workshop (INLG’98), pages 238–247, 1998.

[18] L. Cahill, C. Doran, R. Evans, C. Mellish, D. Paiva, M. Reape, D. Scott, and
N. Tipper. Towards a reference architecture for natural language generation
systems. Technical Report ITRI-99-14, University of Brighton, March 1999.

[19] J. Chasteen. A computer database approach for dental practice. J Am Den
Assoc, 123:26–33, 1992.

[20] V. Chinburapa, L. Larson, M. Brucks, J. Draugalis, J. Bootman, and
C. Puto. Physician prescribing decisions: the effects of situational involve-
ment and task complexity on information acquisition and decision making.
Soc. Sci. Med., 36:1473–1482, 1993.

[21] T. Chomut. Exploratory data analysis in parallel coordinates. Research
report, IBM Los Angeles Scentific Center, 1987.

43

On GCLA, Gisela, and MedView

[22] J. J. Cimino, P. D. Clayton, G. Hripcsak, and S. B. Johnson. Knowledge-
based approaches to the maintenance of a large controlled medical termi-
nology. J. Am. Med. Inform. Assoc., 1:35–50, 1994.

[23] R. Dale and E. Reiter. Building applied natural-language generation sys-
tems. Journal of Natural Language Engineering, 3:55–87, 1997.

[24] R. Dale and E. Reiter. Building Natural-Language Generation Systems.
Cambridge University Press, 2000.

[25] J. C. Davenport and P. Hammond. The acquisition and validation of re-
movable partial denture design knowledge. I. Methodology and overview. J
Oral Rehabil, 23:152–157, 1996.

[26] J. C. Davenport, P. Hammond, and P. Hazlehurst. Knowledge-based sys-
tems, removable partial denture design and the development of RaPiD.
Dent Update, 24:227–233, 1997.

[27] D. N. Davis and D. Forsyth. Knowledge-based cephalometric analysis a
comparison with clinicians using interactive computer methods. Comput
Biomed Res, 27:210–228, 1994.

[28] M. Diehl. Developing the american dental association concept model for
the standard computer-based oral health record. J Am Coll Dent, 62:30–32,
1995.

[29] C. Dragula and G. Burin. International harmonization for the risk assess-
ment of pesticides results of an IPCS survey. Regul. Toxicol. Pharmacol.,
20:337–353, 1994.

[30] R. B. Elson and D. P. Connelly. Computerized decision support systems in
primary care. Prim Care, 22:356–384, 1995.

[31] G. Enislidis, I. V. Wagner, O. Ploder, and R. Ewers. Computed intraoper-
ative navigation guidance–a preliminary report on a new technique. Br J
Oral Maxillofac Surg, 35:271–274, 1997.

[32] G. Falkman. Similarity measures for structured representations: a defi-
nitional approach. In E. Blanzieri and L. Portinale, editors, EWCBR-2K,
Advances in Case-Based Reasoning, Lecture Notes in Artificial Intelligence.
Springer–Verlag, 2000. To appear.

[33] G. Falkman, J. Norbeck, L. Hallnäs, and A. Blomberg. The use of similarity
measures and three-dimensional hierarchical clustering for the analysis of
expression data from proteome analysis of Saccharomyces cerevisiæ. Pre-
sented at Bioinformatics’99, Lund, Sweden, June 1999, June 1999.

44

An Overview of MedView

[34] C. Farr. Million-dollar files: adding up the benefits of computerized patient
records. Dent Today, 14:72–79, 1995.

[35] A. R. Firestone, D. Sema, T. J. Heaven, and R. A. Weems. The effect of a
knowledge-based image analysis and clinical decision support system on ob-
server performance in the diagnosis of approximal caries from radiographic
images. Caries Res 32, 32:127–134, 1998.

[36] F. J. Firriolo and B. A. Levy. Computer expert system for the histopatho-
logic diagnosis of salivary gland neoplasms. Oral Surg Oral Med Oral Pathol
Oral Radiol Endod, 82:179–186, 1996.

[37] F. J. Firriolo and T. Wang. Diagnosis of selected pulpal pathoses using
an expert computer system. Oral Surg Oral Med Oral Pathol, 76:390–396,
1993.

[38] D. Fontaine, C. Riou, and C. Jacquelinet. An intelligent computer-assisted
instruction system for clinical case teaching. Methods Inf Med, 33:433–445,
1994.

[39] M. R. Frank and P. Szekely. Adaptive forms: An interaction paradigm for
entering structured data. In Proceedings of the 1998 International Confer-
ence user interfaces, San Fransisco, CA USA, 1998.

[40] S. Geldof and W. V. de Velde. An architecture for template based (hy-
per)text generation. In Proceedings of the 6th European Workshop on Nat-
ural Language Generation-EWNLG’97, pages 28–37, 1997.

[41] L. Gierl, M. Bull, and R. Schmidt. CBR in medicine. In Case-based reason-
ing technology: From foundations to applications, volume 1440 of Lecture
Notes in Artificial Intelligence, pages 273–297. Springer-Verlag, 1998.

[42] E. Goldberg, N. Driedger, and R. Kittredge. Using natural-language pro-
cessing to produce weather forecasts. IEEE Expert, 9(2):45–53, 1994.

[43] W. T. Gossen, P. J. Epping, and I. L. Abraham. Classification systems
in nursing: Formalizing nursing knowledge and implications for nursing
information systems. Methods Inf Med, 35(1):59–71, 1996.

[44] L. Green and M. Becker. Physician decision making and variation in hos-
pital admission rates for suspected acute cardiac ischemia. A tale of two
towns. Med. Care, 32:1086–1097, 1994.

[45] T. A. Gregg and D. H. Boyd. A computer software package to facilitate
clinical audit of outpatient paediatric dentistry. Int J Paediatr Dent, 6:45–
51, 1996.

45

On GCLA, Gisela, and MedView

[46] L. Hallnäs. Partial inductive definitions. Theoretical Computer Science,
87(1):115–142, 1991.

[47] P. Hammond, J. C. Davenport, and A. J. Potts. Knowledge-based design
of removable partial dentures using direct manipulation and critiquing. J
Oral Rehabil, 20:115–123, 1993.

[48] R. M. Hammond and T. J. Freer. Application of a case-based expert system
to orthodontic diagnosis and treatment planning: a review of the literature.
Aust Orthod J, 14:150–153, 1996.

[49] R. M. Hammond and T. J. Freer. Application of a case-based expert system
to orthodontic diagnosis and treatment planning. Aust Orthod J, 14:229–
234, 1997.

[50] V. Hasselblad and D. McCrory. Meta-analytic tools for medical decision
making: a practical guide. Med Decis Making, 15:81–96, 1995.

[51] J. J. Hyman and W. Doblecki. Computerized endodontic diagnosis. J Am
Dent Assoc, 107:755–758, 1983.

[52] A. Inselberg. The plane with parallel coordinates. The Visual Computer,
1:69–91, 1985.

[53] R. A. Jenders, M. Morgan, and G. O. Barnett. Use of open standards to
implement health maintenance guidelines in a clinical workstation. Comput
Biol Med, 24:385–390, 1994.

[54] I. Jurisica, J. Mylopoulos, J. Glasgow, and H. Shapiro. Case-based rea-
soning in IVF: Prediction and knowledge mining. Artificial Intelligence in
Medicine, 12(1):1–24, 1998.

[55] D. Kalra. Electronic health records the European scene. Bmj, 309:1358–
1361, 1994.

[56] M. A. Kamrin. Environmental risk harmonization federal/state approaches
to risk assessment and management. Regul Toxicol Pharmacol, 25:158–165,
1997.

[57] A. Knott, C. Mellsih, J. Oberlander, and M. O’Donnell. Sources of flexi-
bility in dynamic hypertext generation. In Proceedings of the International
Workshop on Natural Language Technique, pages 64–71, 1996.

[58] T. Kohonen. Self-organizing maps. Springer-Verlag, 2nd edition, 1997.

[59] J. L. Kolodner. An introduction to case-based reasoning. Artificial Intelli-
gence Review, 6(1):2–34, 1992.

46

An Overview of MedView

[60] I. Kramer, N. el Labban, and S. Sokodi. Further studies on lesions of the
oral mucosa using computer-aided analyses of histological features. Br J
Cancer, 29:223–231, 1974.

[61] I. R. Kramer. Computers in clinical and laboratory diagnosis. Int Dent J,
30:214–225, 1980.

[62] P. Kreuger. GCLA II: A definitional approach to control. In Extensions of
logic programming, second international workshop, ELP91, number 596 in
Lecture Notes in Artificial Intelligence. Springer-Verlag, 1992.

[63] P. Kreuger. GCLA II: A definitional approach to control. Licentiate thesis,
Chalmers University of Technology, 1992.

[64] M. J. Lincoln, C. W. Turner, P. J. Haug, J. W. Williamson, S. Jessen,
R. M. Cundik, and H. R. Warner. Iliad’s role in the generalization of
learning across a medical domain. In Proc Annu Symp Comput Appl Med
Care, pages 174–178, 1992.

[65] H. J. Lowe, B. G. Buchanan, G. F. Cooper, and J. K. Vries. Building a
medical multimedia database system to integrate clinical information an ap-
plication of high-performance computing and communications technology.
Bull Med Libr Assoc, 83:57–64, 1995.

[66] R. Makura and T. Makura. MACRAD: Radiology image resource with a
case-based retrieval system. In M. Veloso and A. Aamodt, editors, Case-
based reasoning research and development: Proceedings of the first inter-
national conference, ICCBR-95, volume 1010 of Lecture Notes in Artificial
Intelligence, pages 43–54. Springer-Verlag, 1995.

[67] U. Mattson, G. Heyden, A. Chodorowski, T. Gustavsson, M. Jontell, and
F. Bergquist. Computer analysis in oral lichenoid reactions. Acta Odont
Scand, 52:86–92, 1994.

[68] U. Mattson, A. Jönsson, M. Jontell, and J. Cassuto. Digital image analysis
(DIA) of colour changes in human skin exposed to standardized thermal
injury and comparison with laser doppler measurements. Comput Methods
Programs Biomed, 50:31–42, 1996.

[69] A. M. McCreery and E. Truelove. Decision making in dentistry. Part I: A
historical and methodological overview. J Prosthet Dent, 65:447–451, 1991.

[70] A. M. McCreery and E. Truelove. Decision making in dentistry. Part II:
Clinical applications of decision methods. J Prosthet Dent, 65:575–585,
1991.

47

On GCLA, Gisela, and MedView

[71] J. Merz, M. Small, and P. Fishbeck. Measuring decision sensivity: A com-
bined Monte Carlo-logistic regression approach. Med Decis Making, 12:189–
196, 1992.

[72] N. Mohl and R. Ohrbach. Clinical decision making for temporomandibular
disorders. J Dent Educ, 56:823–833, 1992.

[73] B. D. Monteith. Computerized expert system for the diagnosis of pulp-
related pain. Int J Prosthodont, 4:30–36, 1991.

[74] R. Mulligan and G. J. Wood. A controlled evaluation of computer assisted
training simulations in geriatric dentistry. J Dent Educ, 57:16–24, 1993.

[75] E. Munch. P.A.I.S., a personal medical information system. A comprehen-
sive medical knowledge base. Hno, 42:355–373, 1994.

[76] L. Nicholson and I. Beaulieu. Interactive multimedia learning systems in
oral medicine: experiences at the Faculty of Oral Medicine of Laval Uni-
versity. J Can Dent Assoc, 63:819–821, 1997.

[77] C. Nielson, C. S. Smith, D. Lee, and M. Wang. Implementation of a rela-
tional patient record with integration of educational and reference informa-
tion. In Proc Annu Symp Comput Appl Med Care, pages 125–129, 1994.

[78] J. Nivre and T. Lager. Constraint-based text realization. Submitted to
Natural Language Engineering, 1999.

[79] S. P. Nolan. The search for standards. J .Heart .Valve. Dis., pages 7–9,
1995.

[80] Penman. The Penman documentation. Technical report, USC/Information
Sciences Institute, 1989.

[81] D. Perednia, J. Gaines, and A. Rossum. Variability in physician assessment
of lesions in cutaneous images and its implications for skin screening and
computer-assisted diagnosis. Arch Dermatol, 128:357–364, 1992.

[82] P. E. Petersen, L. B. Christensen, I. J. Moller, and K. S. Johansen. Contin-
uous improvement of oral health in Europe. J Ir Dent Assoc, 40(4):105–107,
1994.

[83] L. C. Peterson, D. S. Cobb, and D. C. Reynolds. ICOHR: intelligent com-
puter based oral health record. Medinfo, 2, 1995.

[84] R. W. Priddy and L. Yip. ORPAMS: a data-management system for oral
pathology. Oral Surg Oral Med Oral Pathol, 61:590–596, 1986.

48

An Overview of MedView

[85] A. L. Rector and W. A. Nowlan. The GALEN project. Computer Methods
and Programs in Biomedicine, 45:75–78, 1993.

[86] J. L. Reginster. Harmonization of clinical practice guidelines for the pre-
vention and treatment of osteoporosis and osteopenia in Europe a difficult
challenge. Calcif Tissue Int, 59:24–29, 1996.

[87] Y. Reisman. Computer-based clinical decision aids. A review of methods
and assessment of systems. Med Inf, 21:179–197, 1996.

[88] E. Reiter. Has a consensus NL generation architecture appeared, and is it
psycholinguistically plausible? In Proc of the Seventh International Work-
shop on Natural Language Generation (INLGW-1994), pages 163–170, Ken-
nebunkport, Maine, USA, 1994.

[89] E. Reiter. NLG vs templates. In Proc of the fifth European Workshop on
Natural-Language Generation, Leiden, The Netherlands, 1995.

[90] E. Reiter. Shallow vs. deep techniques for handling linguistic constraints
and optimisations. In Proceedings of the KI-99 Workshop on May I Speak
Freely: Between Templates and Free Choice in Natural Language Genera-
tion, 1999.

[91] E. Reiter, C. Mellish, and J. Levine. Automatic generation of technical
documentation. Applied Artificial Intelligence, 9, 1995.

[92] E. Reiter, C. Mellsih, and J. Levine. Automatic generation of on-line docu-
mentation in the IDAS project. In Proceedings of the Third Conference on
Applied Natural Language Processing (ANLP-1992), pages 64–71, 1992.

[93] E. Reiter, R. Robertson, and L. Osman. Types of knowledge required to per-
sonalise smoking cessation letters. In Artificial Intelligence and Medicine:
Proceedings of AIMDM-1999, pages 389–399, 1999.

[94] P. R. Rhodes. The computer-based oral health record exploring a new
paradigm. J Calif Dent Assoc, 22:29–33, 1994.

[95] D. Rizzi. Medical diagnosis. Ugeskr Laeger, 153:694–697, 1991.

[96] G. Rolfe. Science, abduction and the fuzzy nurse an exploration of expertise.
J Adv Nurs, (25):1070–1075, 1997.

[97] J. L. Rudin. DART (diagnostic aid and resource tool): a computerized
clinical decision support system for oral pathology. Compendium, 15, 1994.

[98] S. Seipel, I. V. Wagner, S. Koch, and W. Schneider. Three-dimensional
visualization of the mandible: a new method for presenting the periodontal
status and diseases. Comput Methods Programs Biomed, 46:51–57, 1995.

49

On GCLA, Gisela, and MedView

[99] S. Seipel, I. V. Wagner, S. Koch, and W. Schneider. A virtual reality
environment for enhanced oral implantology. Medinfo, 1995.

[100] P. N. Sellen, D. C. Jagger, and A. Harrison. Computer-generated study
of the correlation between tooth, face, arch forms, and palatal contour. J
Prosthet Dent, 80:163–168, 1998.

[101] B. Shneiderman. Designing the User Interface: Strategies for Effective
Human-Computer Interaction. Addison-Wesley Longman, Inc, Reading,
MA, USA, 3rd edition, 1998.

[102] J. H. Sims-Williams, I. D. Brown, A. Matthewman, and C. D. Stephens.
A computer-controlled expert system for orthodontic advice. Br Dent J,
163:161–166, 1987.

[103] H. Somers, B. Black, J. Ellman, L. Giardoni, T. Lager, A. Multari, J. Nivre,
and A. Rogers. Multilingual generation and summarization of job adverts:
The TREE project. In Proceedings of the Fifth Conference on Applied
Natural Language Processing, 1997.

[104] S. T. Sonis and K. A. Costello. A database for mucositis induced by cancer
chemotherapy. Eur J Cancer B Oral Oncol, 31B:258–260, 1995.

[105] P. M. Speight, A. E. Elliot, J. A. Jullien, M. C. Downer, and J. M. Za-
kzrewska. The use of artificial intelligence to identify people at risk of oral
cancer and precancer. Br Dent J, 179:382–387, 1995.

[106] J. Stempczynska and E. Kacki. Problems of knowledge acquisition automa-
tion in medical expert systems. Medinfo, 1:857–860, 1995.

[107] C. D. Stephens, N. Mackin, and J. H. Sims-Williams. The development and
validation of an orthodontic expert system. Br J Orthod, 23:1–9, 1996.

[108] S. E. Stheeman, P. F. van der Stelt, and P. A. Mileman. Expert systems in
dentistry: Past performance—future prospects. J Dent, 20:68–73, 1992.

[109] O. Torgersson. Gisela—a framework for definitional programming, 2000.

[110] O. Torgersson. MedView and Gisela, 2000.

[111] J. W. Tukey. Exploratory Data Analysis. Addison-Wesley, Reading, MA,
USA, 1977.

[112] J. A. Valenza. Medical risk report: improving patient management and
record keeping through a problem-oriented approach. J Gt Houst Dent
Soc, 65:46–48, 1994.

50

An Overview of MedView

[113] P. F. van der Stelt. Computer-assisted interpretation in radiographic diag-
nosis. Dent Clin North Am, 37:683–696, 1993.

[114] V. Velanovich. Bayesian analysis in the diagnostic process. Am J Med Qual,
9:158–161, 1994.

[115] I. V. Wagner and W. Schneider. Computer based decision support in den-
tistry. J Dent Educ, 1991.

[116] I. D. Watson. An introduction to case-based reasoning. In I. Watson,
editor, Progress in case-based reasoning, volume 1020 of LNAI, pages 3–16.
Springer-Verlag, 1995.

[117] E. J. Wegman. Hyperdimensional data analysis using parallel coordinates.
Journal of the American Statistical Association, 85(411):664–675, 1990.

[118] E. J. Wegman. The grand tour in k-dimensions. In Computing Science and
Statistics. Statistics of Many Parameters: Curves, Images, Spatial Modes.
Proceedings of the 22nd Symposium on the Interface, pages 127–136, New
York, 1992. Springer-Verlag.

[119] S. C. White. Decision-support systems in dentistry. J Dent Educ, 60:47–63,
1996.

[120] P. J. Whitehouse, C. G. Sciulli, and R. M. Mason. Dementia drug devel-
opment use of information systems to harmonize global drug development.
Psychopharmacol Bull, 33:129–133, 1997.

[121] N. Zhizhina, A. A. Prokhonchukov, I. M. Rabinovich, and V. Pelkovskii. A
computerized automated system for the differential diagnosis and treatment
of oral mucosal diseases. Stomatologiia, 77(1):55–61, 1998.

51

MedView and Gisela

Olof Torgersson

Department of Computing Science
Chalmers University of Technology and Göteborg University

S-412 96 Göteborg, Sweden
oloft@cs.chalmers.se

Abstract

In the MedView project knowledge representation is based on a theory

of definitions. In the initial phases of the project, definitions and com-

putations over definitions have been represented using classes customized

for a special task. Gisela is an object-oriented framework for definitional

programming suitable for knowledge representation in MedView. We show

how it can be used in MedView to replace the current ad-hoc implementa-

tions of definitions and reasoning.

1 Introduction

In the MedView project [1], clinical examination data are collected at examina-
tions for subsequent use for analysis and learning. The collected data from each
examination is stored into a knowledge base currently containing about 1500
records. Apart from using the knowledge base for analytical studies, it is also
used at examinations to view disease history for the patient being treated.

The information in the knowledge base is stored in a formalized format to
facilitate computerized reasoning. The formalization used is based on a theory of
definitions [10]. Each examination performed by a clinician results in a new defi-
nition, or examination record, which is added to the knowledge base. Apart from
data from examinations, the knowledge base also contains additional definitional
knowledge structures not related to any particular patient or examination.

An early decision in the MedView project was to build applied software, for
use in the clinical setting, in parallel with the development of theory and imple-
mentation of tools for knowledge representation and reasoning. Another early de-
cision was to use an industrial-strength object-oriented commercial development
environment (NextStep) to build the applications aimed for use in the clinical
setting. These decisions made it possible to implement a system that has been
in use for several years for gathering data during examinations.

1

On GCLA, Gisela, and MedView

While the object-oriented development environment used provided excellent
support for rapid application development, it did, of course, lack support for
the definitional knowledge representation model used in MedView. Therefore,
specialized classes were developed to handle exactly the needed definitional com-
putations. In the long run it was obvious that another, more general, solution
was needed for knowledge representation and reasoning.

A necessary requirement for a suitable knowledge representation tool for the
MedView project was that it should be possible to integrate the tool in a seam-
less manner into the object-oriented application development environment used
in the project. Another, that it should be as flexible as possible, since the def-
initional models used are still under development. The result of the efforts to
produce such a tool is the Gisela framework for definitional computing [17]. In
the present setting Gisela is best viewed as an object-oriented framework that
makes it possible to represent the MedView knowledge base in a natural way and
to build various knowledge structures and search methods on top of the basic
database of examination records. With Gisela in place it is time to start looking
into how it can be used to implement knowledge representation and reasoning
in MedView in a coherent manner. In this paper we will discuss how this can
be done. We will describe both things that have already been implemented and
general ideas for future use of Gisela in the MedView project. In addition, some
details about the implementation of the current MedView system will be given as
well. However, it should be noted that the work on applying Gisela in the Med-
View project is still very much work in progress. Thus, what is given here is not
a complete description of how to use Gisela in MedView but rather a collection
of ideas and examples.

The rest of this paper is organized as follows. In Section 2 we discuss knowl-
edge representation issues in MedView and how the knowledge base can be real-
ized using Gisela. Section 3 concerns finding information in the knowledge base
in different ways. In Section 4 the general architecture of applications in the
MedView system is described. In Section 5 we give a more detailed overview of
how Gisela is, or can be, used in a number of applications related to MedView.
Section 6 concerns an application of functional logic programming methodology
in Gisela and describes a program that can be used to generate summaries in
natural language from examination records. Finally, in Section 7 we give some
concluding remarks and discuss a number of problems encountered.

2 Knowledge Representation

MedView is based on a definitional formalization of medical data and knowledge.
Entering data into the knowledge base is an act of creating definitions. Retrieving
information involves computations using definitional structures. Using definitions
to formulate both data and computations is intended to make the basic model

2

MedView and Gisela

conceptually simple and uniform. The definitions used have a precise interpre-
tation, which make them suitable for automated reasoning in a computerized
system. At the same time, they are simple enough to have an obvious intuitive
reading needing no further explanation.

2.1 Preliminaries

We review the basics of the definitional model used here. For a more complete
description see [17].

2.1.1 Definitions

In both MedView and Gisela the concept of a definition is given by:

1. two sets: the domain of D, written dom(D), and the co-domain of D,
written com(D), where dom(D) ⊆ com(D),

2. and a definiens operation: D : com(D) → P(com(D)).

It is natural to present a definition as a system of equations

D

a0 = A0

a1 = A1

...
an = An

n ≥ 0,

where atoms, a0, . . . , an ∈ dom(D), are defined in terms of a number of conditions,
A0, . . . , An ∈ com(D). Note that the equation a = A is just a notation for A being
a member of D(a).

2.1.2 Computation Methods

A computation method is a definition that contains procedural knowledge. A
computation method describes how the declarative knowledge in definitions in
the knowledge base should be used to perform computations. All computation
methods presented in this paper will be of the form

method m(D1, . . . , Dn). n ≥ 0

m = C1 # G1

...
m = Ck # Gk

where m is the name of the computation method, D1, . . . , Dn, parameters rep-
resenting the actual definitions used in computations, each Ci is a computation
condition describing a number of operations to perform, and the Gis are guards
restricting the applicability of equations.

3

On GCLA, Gisela, and MedView

2.1.3 Definitional Computations

A computation is a transformation of an initial state definition into a final result
definition. To compute a query, a computation method is applied to an initial
state definition. We will write the initial definition as a sequence of equations.
The general form of a query is

m{e1, . . . , en}.

where m is a computation method and each ei an equation. If the computation
method applied cannot be used to transform the initial state definition into an
acceptable result definition the computation fails. If the computation succeeds
we take the result definition and any bindings of variables in the initial state
definition as the answer to the query. Note that the computation method m
provides the particular definitions describing declarative knowledge to use in the
computation. Depending on the context the result of a computation can be
interpreted in different ways. One commonly used method in this paper is to test
if some definitions fulfill criteria given by the initial state definition by testing
if an answer can be computed from the initial state definition using the given
definitions.

2.2 Knowledge Base Structure

The structure of knowledge representation in MedView is based on the assump-
tion that a natural basic concept to use is that of an “examination”. Thus, each
examination generates a unique definition, which is entered into the knowledge
base. The general idea behind this approach is that a collection of examinations
correspond closely to the gathered medical expertise of an experienced clinician.
The mind of the clinician is, so to speak, thought of as being filled with a cloud
of points representing distinct examinations. Of course, the expert knowledge of
a clinician also consists of generalizations made from the clinicians total clinical
experience. Consequently, definitions expressing other kinds of knowledge, not
related to any particular examination record, can also be stored in the knowledge
base. In addition, we make a distinction between declarative and procedural
knowledge, where the procedural knowledge describes how to perform computa-
tions, or retrieve facts from the knowledge base. Both declarative and procedural
knowledge is expressed in terms of definitions, as mentioned above.

The general structure of the knowledge base is pictured in Figure 1. It consists
of the following:

• A collection of examination records, where each examination is represented
by a definition.

• Additional definitions describing different kinds of general knowledge.

4

MedView and Gisela

Defined Knowledge

Examinations

Methods

Figure 1: Schematic view of the MedView knowledge base. The knowledge base
consists of a collection of examination records on top of which extra knowledge
may be added. To perform computations, methods, shown to the right, are
needed.

• Procedural knowledge represented by definitions in terms of computation
methods.

Furthermore, the knowledge base contains a large number of digitized images
taken at examinations. Each image is associated with a particular examination
and can be retrieved by searching the collection of examination records.

2.2.1 Representing Basic Data

The formalization of basic data in MedView is centered around the concept “ex-
amination”. Assembling information at examinations is modeled as defining a
series of descriptive parameters, such as disease history (anamnesis), status, di-
agnosis, and so on. Thus, each examination generates a definition containing a
number of equations describing the examination.

All examination definitions share a common structure, which so to speak
defines the basic concept “examination”. A small part of this structure is:

E

examination = anamnesis
examination = status
anamnesis = common
status = direct
common = drug
common = smoke
direct = mucos
direct = palpation
mucos = mucos site
mucos = mucos col
palpation = palp site

(1)

5

On GCLA, Gisela, and MedView

As can be seen from the example, the general structure is hierarchical. An ex-
amination consists of anamnesis, status, etc. Each of these in turn consist of a
number of parts, which consist of a number of parts, and so on until we reach the
actual attributes for which values are collected at an examination. The attributes
in (1) are, drug, smoke, mucos site, mucos col, and palp site.

Important things to note are:

• All values are atomic.

• All examination records share the same structure.

• Not all attributes must be given values. A missing value simply indicates
that we know nothing about it.

• The structure may be changed as long as it is extended, since then old
records will remain valid, it is simply that they may have a larger number
of attributes without values.

It is natural to view an examination record as being the sum of two definitions.
One definition, E, describing the concept examination, and one definition, R, pro-
viding data collected at a particular patient visit. Thus, a complete examination
is given by E + R.

For instance, a set of equations that together with (1) define a particular
examination could be

R

drug = losec
drug = dermovat
smoke = no
mucos site = l122
mucos col = white

Note that there is no value given for the attribute palp site since nothing is known
about it.

2.2.2 Additional Knowledge Structures

On top of the basic collection of examination records additional definitions may
be created to represent different kinds of knowledge. While a large number of
examinations have been collected in MedView, the work on additional knowledge
structures is still in an early phase. In part, this depends on that, prior to the
development of the Gisela framework, each kind of new definitional computa-
tion to be performed required the development of new specialized procedures for
computing with definitions. Accordingly, trying out new ideas in practice was
a cumbersome process that required a lot of work. With the Gisela framework
different kinds of definitions and computation methods can be expressed easily,
something we hope will speed-up the process of trying out new ideas on how to
explore the MedView knowledge base.

6

MedView and Gisela

A number of different additional knowledge structures have been tested how-
ever. We describe some of them here. The definitions are presented using the
syntax for equational representations of definitions used in Gisela. Algorithms,
that is, computation methods, for computing based on the presented structures
in conjunction with examination definitions are given in Section 3.

Value Corrections In the MedView project new values for attributes may
be freely added by any user. This is necessary since we cannot anticipate all
possible values. Also, it is not possible to wait for approval when a new value is
encountered, since data is entered during examinations. There are of course at
least two major problems with this practice: (i) letting all users add new values
might lead to confusion and a less harmonized terminology within the network
of users involved, (ii) misspelled words may be introduced into the lists of valid
values.

One solution to the problem is to monitor the values in the knowledge base
regularly and add extra definitions that can be used to find replacements for
incorrect values. These definitions can then be used by other applications to
ensure that a harmonized terminology is used. It is natural to use one definition
with corrections for each attribute in the general examination structure that has
incorrect values. Which values are correct and which are not is decided by the
network of clinicians working with MedView. Note that solving the problem by
making changes in the examination definitions directly is not a viable solution for
several reasons, one being the general rule stating that medical record information
may not be changed.

As an example, when the values used for the attribute ’Chld-dis’ (Child
Disease) were inspected, it was found that both “Mässlingen” and “Mässling”
were used to denote the same disease (Measles). It was also found that in a num-
ber of examinations the disease “Röda Hund” (Rubella) was misspelled “Ruda
Hund”.

A Gisela definition that describes how to correct values for the attribute
’Chld-dis’ is the following:

definition ’Chld-dis’:constant.

’Mässling’ = ’Mässlingen’.

’Ruda hund’ = ’Röda Hund’.

It was decided that “Mässlingen” was preferred over “Mässling”. Therefore, the
value ’Mässling’ is defined to be equal to the correct value ’Mässlingen’. Note
that only values that are regarded as incorrect are defined in this definition. For
simplicity, the name of the definition is the same as the name of the attribute
it gives corrections for. That a definition is declared as being constant means
that all left-hand sides are constants and that the domain and co-domain of the
definition are given by its equational presentation. An application that can be

7

On GCLA, Gisela, and MedView

used to create value corrections, or localizing all values to different languages, is
discussed in Section 5.5.1.

Value Classes As the number of examinations in the knowledge base grows, it
becomes increasingly important to group related values into classes in a hierarchi-
cal manner. For example, diseases such as Herpes labialis, Herpetic gingivostoma-
tis, Shingles etc., can be classified into viral diseases. Such classifications facilitate
the detection of interesting patterns in the data. Value classes, or groups, are
given as definitions and can be stored in the knowledge base for future use. The
use of grouping, or aggregation, of values has proven invaluable in the MedView
project to achieve better results with visualization tools such as The Cube [6, 8].
Examples of existing simple value classes are a division between smokers and
non-smokers and between patients with oral lichen planus and patients that do
not have oral lichen planus.

A Gisela definition that classifies smoking habits into three groups is:

definition smoke_3:constant.

’1 cigaretter utan filter/dag’ = ’< 10 cigarettes/day’.

’4 cigaretter utan filter/dag’ = ’< 10 cigarettes/day’.

’6 filtercigaretter/dag’ = ’< 10 cigarettes/day’.

’10 filtercigaretter/dag’ = ’> 10 cigarettes/day’.

’10-15 filtercigaretter/dag’ = ’> 10 cigarettes/day’.

’40 filtercigaretter/dag’ = ’> 10 cigarettes/day’.

’Nej’ = ’non smoking’.

Of course, as the knowledge base grows so will the number of equations in the
definition smoke_3. To further categorize smoking habits into smokers and non-
smokers another definition can be used:

definition smoke_2:constant.

’< 10 cigarettes/day’ = smoking.

’> 10 cigarettes/day’ = smoking.

Note that in the definition smoke_2 it is assumed that smoking habits have already
been grouped using smoke_3. A complete value class definition is derived by
adding together smoke_2 and smoke_3, that is, conceptually smoke = smoke 2+
smoke 3.

More on computations using value classes and definitions of value classes is
given in Section 3.2.

Search Patterns As mentioned, the collection of examination definitions is
viewed as a space of clinical experience where each point represents a particular

8

MedView and Gisela

examination. A natural structure can be imposed on this space, based on clas-
sifications of the given points, e.g., the notion of a patient, different diagnostic
patterns etc. Classifications like these can be given by defining a pattern where
particular values for some subset of the total attributes are given. The exami-
nations belonging to a certain class are the ones for which the actual values for
attributes match those given in the pattern. As any other knowledge structure a
pattern is expressed using a definition.

A very basic pattern is to classify the patient material with respect to each
examination’s personal identification code. For instance

definition ’G10029110’:constant.

’P-code’ = ’G10029110’.

identifies examinations with the personal identification code ’G10029110’. A
slightly more interesting pattern might be patients born in Sweden having a
mucosal lesion colored red (Röd) or white (Vit):

definition sample_pattern:constant.

’Born’ = ’Sverige’.

’Mucos-col’ = ’Röd’.

’Mucos-col’ = ’Vit’.

To find really interesting patterns it is necessary to provide means that let experts
experiment with different patterns in a flexible way. A tool that, among other
things, is intended to facilitate the process of finding interesting patterns in the
MedView knowledge base is SimVis [6, 7]. Different ways to interpret search
patterns computationally are given Section 3.1.

Combined Attributes In certain cases it might be desirable to view several
attributes as one to find everything that can be derived from these attributes. If
the attributes are found in the same branch of the general examination structure
we can use this structure to find values by looking at a higher level. If we wish to
combine two attributes that are not close to each other in the general examination
structure this is not a good approach. The problem that occurs is that if attributes
are far apart in different branches of the hierarchical examination structure, a very
large part of this structure, containing irrelevant information, has to be searched.

A possible alternative is to introduce a new definition, which so to speak
defines a new attribute in terms of existing ones.

For instance, in the general examination structure there are four different
attributes ‘Diag-tent’, ’Diag-def’, ‘Diag-hist’, and ‘Diag-nr’, which are
used to define various aspects of the notion diagnosis. Now, if we want to find,
say all images related to lichen planus in some way, it would be easier to just

9

On GCLA, Gisela, and MedView

state the query “find examinations with diagnosis lichen planus” than specifying
that all the attributes related to diagnosis should be examined. Therefore, we
create a new definition diagnosis to bring together all the related attributes.
Expressed as a Gisela definition we get:

definition diagnosis:constant.

diagnosis = ‘Diag-tent’.

diagnosis = ‘Diag-hist’.

diagnosis = ’Diag-def’.

diagnosis = ’Diag-nr’.

Now, instead of using all the various attributes to form a query, a simple query
such as

m(exam){lichen_planus = diagnosis}.

can be used to examine if any of the diagnosis-attributes are related to lichen
planus. Of course, a definition that groups different kinds of lichen planus is also
needed, something like:

definition lichen_planus:constant.

’Atrofisk lichen planus’ = lichen_planus.

’Retikulär lichen planus’ = lichen_planus.

...

More on computations using combined attributes can be found in Section 3.2.3.

Miscellaneous The basic model of data used in MedView is very much one
where all definitions are simple systems of equations with atoms both to the left
and to the right in equations. In the early object-models used so far in the project
this was also the only kind of definition supported by the computational machin-
ery. With Gisela however, compound conditions and definitions being similar to
ordinary logic or functional programs can be used as well. The introduction of
these new possibilities means that it is time to reconsider the current model. This
is an area for future work.

As an example of a more complex definition we show a definition that can be
used to find values for an attribute with restrictions with respect to gender and
age. The definition consists of a query predicate and some auxiliary definitions.

definition sample_query.

query(Attr, Gender, Min, Max, Date, Value) =

db(’P-code’, PC),

10

MedView and Gisela

db(’Datum’, Date),

db(Attr, Value),

get_gender(PC, Gender),

get_age(PC, Date, Age),

between(Min, Max, Age).

get_gender(PC, Gender) =

gender(PC) -> Gender.

get_age(PC, Date, Age) =

age(PC, Date) -> Age.

between(Min, Max, Mean) =

Min =< Mean,

Mean =< Max.

db(Att, Val) =

Val -> Att.

Note the resemblance with an ordinary logic program. Worth noting in this
example is that gender/1 and age/2 are defined in another definition written
using Gisela’s Objective-C API. A possible query could be

m(gender_age, exam){true = query(’Allergy’, male, 40, 60, D, V}.

where gender_age defines gender/1 and age/2 and exam is an examination
record. An example of how the definition gender_age can be implemented is
given in Appendix B.

2.2.3 Computation Methods

The various classes of definitions discussed above define declarative knowledge
useful in the MedView domain. To be able to perform computations using these
definitions it is also necessary to define procedural knowledge that describes how
to use the declarative knowledge to perform computations. Previously in the Med-
View system all procedural knowledge has been expressed using object-oriented
programming. In principle, a specialized search algorithm, or inference machine,
has been implemented for each kind of computation needed.

In Gisela procedural knowledge is expressed using computation methods.
Computation methods are definitions just like everything else. Generally, there
can be computation methods expressing common search strategies and computa-
tion methods specialized to handle a particular kind of query. We will present a
number of different computation methods in Section 3. Since the Gisela frame-
work provides all the basic machinery needed to perform definitional computa-
tions different kinds of procedural knowledge can be expressed with ease.

11

On GCLA, Gisela, and MedView

KB.mvd

Exams.forest Pictures MVManagement MedViews

Swedish English

Figure 2: General file structure of current knowledge base.

Here we demonstrate the general nature of computation methods with an
example method that can be used in conjunction with basic search patterns. The
method is called sli (for some-left-identity) and takes one definition parameter
D:

method sli:[D].

sli = [sli, l:D] # some l:in_dom(D) & all not(identity).

sli = [] # some identity.

In the MedView setting, the computation method sli can be used to test if
an examination record fulfills a simple search pattern. For instance, does the
examination exam have the value ’G10039110’ for the attribute ’P-code’:

sli(exam){’P-code’ = ’G10039110’}.

The computation method replaces some left-hand side in the state definition
according to the examination definition given for the parameter D until some
equation in the state definition is an identity. If no equation in the state definition
can be reduced and no equation is an identity the computation fails, which means
that the examination definition does not match the given pattern.

2.3 Current Realization

The general organization of the knowledge base was shown in Figure 1. Currently,
the file-system is used to implement the knowledge base as shown in Figure 2. A
knowledge base is stored into a directory with the following main sub-directories:

• Exams.forest contains all the examination data. Each examination is
stored into its own text-file representing a definition.

• Pictures contains all images related to the examinations in Exams.forest.

• MedViews contains RTF-files that are the actual forms completed during
examinations. This part of the knowledge base is obsolete since the data
stored in it can be retrieved from the information in Exams.forest.

12

MedView and Gisela

• MVManagement contains correction definitions for all attributes that have
corrections. It also contains some other files related to administrative tasks.

The MedView system permits the use of several different knowledge bases. There-
fore, it is most practical not to store definitions such as value classes and com-
putation methods directly into the knowledge base. The general organization of
how data is stored and administered is subject to change.

For historical reasons examination definitions are stored in what is called a
“tree-file”. Part of such a file might be:

NPATIENTUPPGIFTER

NP-code

LM04119410##

NName#

NRef-in

LTandläkare##

NRef-cause

LSlemhinneförändring##

NBorn

LSverige##

NOccup

LSjukpensionär##

NCiv-stat

LGift##

NNote01##

Each tree-file encodes both the structure common to all examinations and the
individual values for the present examination. A tree-file reflects the hierarchical
tree-structure of examination definitions. Lines starting with an N are nodes in
the tree and lines starting with an L are leaves, that is, values for some attribute
registered at the examination.

2.3.1 Definitions as Objects

The conceptual model of the MedView knowledge base is that of a large collec-
tion of definitions of different kinds. These definitions are abstract objects as
described in Section 2.1. So far, we have only shown equational representations
of definitions. However, in the implementation of MedView applications it is
often better to work with definitions as objects directly. The Gisela framework
provides a number of different definition classes appropriate for various tasks.
Among them, the class DFTreeDefinition and its subclass DFLeafDefinition

can be used to read examination data stored in tree-files into objects suitable for
definitional computations.

13

On GCLA, Gisela, and MedView

Since the structure is shared among all records, the Gisela representation of
tree-files by default only contains attribute-value pairs. The standard syntac-
tic representation as a Gisela definition of the above tree-file without structural
information is:

definition M04119410_990604102247:constant.

’P-code’ = ’M04119410’.

’Ref-in’ = ’Tandläkare’.

’Ref-cause’ = ’Slemhinneförändring’.

’Born’ = ’Sverige’.

’Occup’ = ’Sjukpensionär’.

’Civ-stat’ = ’Gift’.

In the following, when we speak of definitions representing examination records
we generally mean a definition like the one above containing only attribute-value
pairs.

Definition objects can be created either by parsing syntactic representations
or by programming directly in Objective-C using the Gisela API. Furthermore,
Gisela is open for modification, which means that new definition classes can be
created at will. From the view of definitional computations, new definitional
classes are no different from the predefined ones, as long as they adhere to the
restrictions set up by the framework.

2.3.2 The MVDatabase Class

Each definition used in the conceptual model of knowledge is represented as an
object of some definition class in a Gisela realization. An object of the class
MVDatabase is used to read examination data from disk and represent them in
a manner suitable for definitional computations. The current realization of this
class is the result of the need to represent examination records in various appli-
cations developed within MedView.

An MVDatabase is initialized by providing the path to the directory where the
knowledge base is stored. The database object creates one Gisela definition object
of the class DFLeafDefinition for each examination record in the knowledge
base. It also does some basic indexing of the examinations needed to present the
contents and iterate over examinations. While these could be defined in terms of
Gisela computations it is a more pragmatic approach to include this functionality
in the database class. Some of the more important methods provided by an
MVDatabase object are:

• - (NSArray *)allExaminations, returns an array with all definition ob-
jects representing the examinations in the knowledge base.

• - (unsigned int)personCount, returns the number of distinct patients
currently in the knowledge base.

14

MedView and Gisela

• - (NSString *)pCodeAtIndex:(unsigned)index, returns the value for the
attribute giving the patient identification code of the examination at index.
The index must be less than the number of different persons in the knowl-
edge base.

• - (NSArray *)examinationsForPCode:(NSString *)aPCode, returns all
examination definitions sharing the value aPcode for the patient identifica-
tion code attribute.

• - (NSArray *)allAttributes, returns an array with all the attributes,
that is, all leaves of the general examination structure.

• - (NSArray *)formalizedAttributes, returns an array with all attributes
that have formalized values. This essentially excludes free text values, doc-
ument links, and image names.

• - (NSArray *)topLevelAttributes, returns an array with all attributes
at the top level of the general examination structure. This can be useful
for unfolding the examination structure.

• - (DFDefinition *)correctionsForAttribute:(NSString *)attrib,
returns the correction definition for the attribute attr, or nil if the at-
tribute has no correction definition.

The main use of an MVDatabase object is to read examinations in a knowledge
base, use allExaminations to iterate over the examinations in the knowledge
base in definitional search queries (Section 3), and to use some of the other
methods to be able to present GUI, for instance, a list of all persons or attributes.

2.4 Discussion

The general model of the knowledge base as a large collection of definitions is a
very flexible one and makes it easy to add knowledge structures and to combine
existing definitions in different ways. Compared to the MedView system in clin-
ical use, the introduction of Gisela as a representation framework for definitions
facilitates the implementation of the basic knowledge model and makes it much
easier to express additional structures and procedural knowledge in a coherent
way.

An open issue in the current implementation is how large the knowledge base
can become before Gisela gets too slow. At some point we will have to start
looking into new definition classes, more tuned towards database management.
One solution could be to implement definition classes which act as covers for
high-performance relational database systems, that is, as a definitional database
adaptor, thus giving the relational database a definitional programming interface.

15

On GCLA, Gisela, and MedView

A related problem is that the realization with one definition for each examina-
tion record is inherently inefficient in many ways. To find records fulfilling some
given criteria it is necessary to perform a linear search among all the records.
This problem is not easily solved by using another media for permanent storage.
Instead it will be necessary to revise the general model for knowledge represen-
tation. This is an area for future work though.

3 Structured Search

In the previous section we presented the basic organization of knowledge and
data used in MedView. Here we build on this material and present how various
kinds of definitions can be used to retrieve information and search the knowledge
base. Generally, this means to program Gisela to search for definitions fulfilling
some given criteria. Of course, this might be done in many different ways, some
examples are given here.

3.1 Using Search Patterns

In Section 2.2.2 we discussed how to classify the examination material by defining
various search patterns. Schematically, a search pattern is a number of equations
specifying the specific criteria that identifies the group of examinations defined
by the pattern:

Attribute1 = V alue1

...
Attributen = V aluen

In the sequel we call a definition like this a pattern definition. The intuitive
understanding of a pattern definition is that it identifies a number of examination
records where the value given for Attributei is equal to V aluei. Note that it
is not required that Attributei 6= Attributej for i 6= j, nor is it required that
V aluei 6= V aluej . While a set of equations is a natural conceptual view of a
pattern definition, it is not clear if all or some equations must be fulfilled or
whether V aluei should be the only value given for Attributei. In addition, using
a pattern definition as is, as the initial state definition in a query, is not likely to
correspond to the most intuitive understanding of the pattern.

Instead, we will use the pattern definition as the basis to form a query def-
inition that is used to pose queries to the system. To make this clear, we give
a description in definitional terms of different ways that a pattern definition can
be used to identify a certain class of examinations.

As mentioned above, the set of equations given in a pattern definition leaves
us with two choices that must be handled:

1. Any or all equations must be fulfilled,

16

MedView and Gisela

2. For any attribute, either some or exactly the values given are required.

Obviously, this gives us four combinations, which we will call all-all, all-some,
some-all, and all-all. The equations of a pattern definition will be used to
build a customized query definition through which we can pose all the four pos-
sible queries represented by the equations.

As our running example we will use the following pattern definition that was
also given in Section 2.2.2:

definition pattern_sample:constant.

’Born’ = ’Sverige’.

’Mucos-colr’ = ’Röd’.

’Mucos-colr’ = ’Vit’.

To build the query definition we first group together equations which have the
same left-hand side. Thus, if the pattern definition contains the equations

a = v1

...
a = vn

we get the new equations

avals = v1

...
avals = vn

in the query definition. We then replace each set of equations a = v1, . . . , a = vn

in the pattern definition with a single equation a = avals. In our example we then
get

’Born’ = ’Sverige’.

’Mucos-colr’ = mucos_vals.

and add the equations below to the query definition:

mucos_vals = ’Röd’.

mucos_vals = ’Vit’.

When the equations in the pattern definition have been grouped together, we cre-
ate the conditions ai → wi and wi → ai for each equation ai = wi in the modified
set of equations. Finally, we put different combinations of these conditions into
the query definition to form the basis for the four kinds of queries describe above,

17

On GCLA, Gisela, and MedView

thus:
q(all− all) = a1 → w1, . . . , am → wm.
q(all− some) = w1 → a1, . . . , wm → am.
q(some− all) = a1 → w1.

...
q(some− all) = am → wm.
q(some− some) = v1 → a1.

...
q(some− some) = vn → an.

Note that for some-some queries the original equations from the pattern definition
are used to form a number of conditions.

The complete query definition for our example becomes:

definition qdef:matching.

q(all-all) = ’Born’ -> ’Sverige’, ’Mucos-colr’ -> mucos_vals.

q(all-some) = ’Sverige’ -> ’Born’, mucos_vals -> ’Mucos-colr’.

q(some-all) = ’Born’ -> ’Sverige’.

q(some-all) = ’Mucos-colr’ -> mucos_vals.

q(some-some) = ’Sverige’ -> ’Born’.

q(some-some) = ’Röd’ -> ’Mucos-colr’.

q(some-some) = ’Vit’ -> ’Mucos-colr’.

mucos_vals = ’Röd’.

mucos_vals = ’Vit’.

That a definition is declared as matching means the definiens operation is only
implemented for ground terms. The domain of consists of all terms with the same
principal functor as some term occurring as a left-hand side in an equation.

To look for examinations matching search criteria defined in the manner shown
above, a computation method with two parameters, the query definition, Q, and
an examination record, E, is used:

qdm(Q, E){true = q(Pattern)}.

The method qdm expands the initial state definition according to the definitions
Q and E and the built-in computation rules for constructed conditions (such as
the arrow). The method is defined in such a way that a computation succeeds
if all equations can be reduced to the identity equation. A possible definition of
the computation method qdm is:

method qdm:[QDef,Exam].

// Stop when identity.

18

MedView and Gisela

qdm = [] # some identity.

// Exam definition left, replace and continue.

qdm = [qdm, l:Exam] # some l:in_dom(Exam) & all not(identity).

// Exam definition right, replace and continue.

qdm = [qdm, r:Exam] # some r:in_dom(Exam) & all not(identity).

// Constructed conditions, expand and continue.

qdm = [qdm, r:QDef] # some r:matches((A,B));r:matches((C->D)).

// QDef definition left. Will only be used for grouped values.

qdm = [qdm, l:QDef] # some l:in_dom(QDef) & all not(identity).

// QDef definition right. Computation will start here..

qdm = [qdm, r:QDef] # some r:in_dom(QDef) & all not(identity).

The nature of the intended queries and the constructed query definition is such
that the state definition only contains a single equation. Searching for records
fulfilling the query is performed by iterating over all examination definitions in
the knowledge base and collecting the ones for which the query succeeds.

The most important difference between the different query types is whether
the attribute A occurs to the left or right of the arrow in the query definition. If
it occurs to the left the reading is “all values of A must be identical to the given
value”, if it occurs to the right the reading is “some value of A must be identical
the given value”.

To illustrate, we show the expansion of the query

qdm(qdef,exam){true = q(all-some)}.

where qdef is our example query definition and exam an examination record
containing the equations:

’Born’ = ’Sverige’.

’Mucos-colr’ = ’Röd’.

’Mucos-colr’ = ’Vit’.

’Mucos-colr’ = ’Gul’.

To save space some names have been abbreviated.

{sv = sv}

{sv = born}

{true = sv → born}

{rd = rd}

{rd = mucolr}

{vt = vt}

{vt = mucolr}

{muvals = mucolr}

{true = muvals → mucolr}

{true = sv → born, muvals → mucolr}

{true = q(all− some)}

19

On GCLA, Gisela, and MedView

The technique described above can be summarized as follows: Using a number
of equations is an intuitive way to define a pattern. To get meaningful queries
from a number of equations a query definition is created describing the possible
queries. We then use the possibility in Gisela to combine several definitions to use
the query definition in conjunction with an examination record to pose a query.
How computations should be performed on the basis of these two definitions is
described in a specialized computation method.

3.2 Using Value Classes

In Section 2.2.2 value classes and various other kinds of definitions for combining
values or attributes were discussed. Here we will look closer into how such defini-
tions can be used in computations. We will only study queries where the initial
state definition contains a single equation V = A. V is the value we are looking
for and A is some kind of attribute, not necessarily part of the basic examination
structure. An examination record fulfills the demands of the query if the single
equation in the initial state definition can be reduced to identity.

3.2.1 Using Basic Value Class Definitions

In its most basic form a value class definition is simply a number of equations
that collects together different values into groups:

a = v1

b = v1

c = v2

d = c2

...

As discussed in Section 2.2.2, we can have any number of such value class defini-
tions and they can be combined in different ways to form more complex groups.

To test if an examination definition fulfills a simple equation V = A we can
use the computation method

method sri:[Exam].

sri = [sri, r:Exam] # some r:in_dom(Exam) & all not(identity).

sri = [] # some identity.

in a query. For instance

sri(exam){’Sverige’ = ’Born’}

will succeed if the examination exam contains the value ’Sverige’ for the at-
tribute ’Born’. To use value classes we instead use a computation method with

20

MedView and Gisela

two parameters: the examination record and the definition of value classes to use.
It is natural to think of this definition as a filter that maps values into groups. A
possible method definition is:

method srfi:[Exam,Filter].

srfi = [] # some identity.

srfi = [srfi, r:Exam] # some r:in_dom(Exam) &

all not(identity).

srfi = [srfi, r:Filter] # some r:in_dom(Filter) &

all not(identity) &

all not(r:in_dom(Exam)).

The meaning of the equations in srfi is: (i) if there is an equation with identical
left- and right-hand sides, the computation is finished, (ii) if some attribute can
be reduced using Exam, reduce it and continue, and (iii) if a value can be grouped
using Filter, do that and continue.

Now, if we have a definition classifying countries into geographical regions

definition geo_regs.

’Sverige’ = western_europe.

’Norge’ = western_europe.

’Tyskland’ = western_europe.

...

’Polen’ = eastern_europe.

...

we can run a query such as

m(geo_regs,exam){western_europe = ’Born’}

to check if a patient is born in western Europe. Computationally, ’Born’ is first
replaced with the country where the patient is born, which can be found in the
definition exam, and then this country is replaced by the geographical region as
given by the definition geo_reg.

Grouped values can be combined into value classes, which can be combined
into new value classes etc. For example:

definition continents.

western_europe = europe.

eastern_europe = europe.

.....

The definitions geo_regs and continents can be used with a computation
method with three parameters in queries such as

21

On GCLA, Gisela, and MedView

m(geo_regs, continents, exam){europe = ’Born’}.

to check if a patient is born in Europe. Alternatively, several value class definitions
can be added together to form more complex groups.

Another approach is to view the value class definition as an extension to the
examination record. In this case, checking if a patient is born in Europe can be
done with the query:

sri(exam+geo_regs+continents){europe = ’Born’}.

That is, the definitions exam, geo_regs, and continents are added together to
a new definition that is used in the computation.

3.2.2 Using Custom Value Class Definitions

A problem with using basic value class definitions is that all values must be listed
to create a group. For some kind of values, typically numerical, this is not feasible.
To solve this problem somewhat more complex value class definitions are needed.
For instance, to group values for the attribute ’Vas-life’, which can be any
number between 0.0 and 10.0, we could use:

definition vas_groups.

X = vas_group(X).

definition vas_group:matching.

vas_group(X) = 0.0 =< X, X < 3.0, bad.

vas_group(X) = 3.0 =< X, X < 6.0, ok.

vas_group(X) = 6.0 =< X, X =< 10.0, nice.

The definition vas_groups needs some explanation. It cannot be written textu-
ally as shown in Gisela, since a variable is not allowed as the right-hand side of
an equation in any of the definition classes the framework provides. However,
since Gisela is a framework open for extensions, and the only requirements on
definitions are that they implement certain operations, a new kind of definition
with the desired properties can be created.

In this case, what we want is a definition whose domain is all numbers in the
proper range and where D(N) = {vas_group(N)} for any element in the domain.
Building on the classes of the framework this can be accomplished with a few
lines of Objective-C code. Once this is done we can run queries like

vgroup(vas_groups, vas_group, exam){ok = ’Vas-life’}.

The definition vas_groups can be avoided by writing a different query, but that
is another story. The interesting thing here is that when the definition classes
provided by the Gisela framework are not sufficient, the framework can easily be
extended with new definition classes that implement the desired behavior.

The computation method vgroup could be implemented as follows:

22

MedView and Gisela

method vg.

import_definition(g3arithmetics).

vg = [] # some r:matches(true).

vg = [] # some identity.

vg = [vg, r:g3arithmetics] # some r:matches((A,B)).

vg = [vg, r:g3arithmetics] # some r:in_dom(g3arithmetics).

method vgroup:[D1, D2, E].

vgroup = [vg, r:D2, r:D1, r:E] # some r:in_dom(E).

The computation method vgroup checks that the right-hand side of the equation
is in the domain of the definition E (the examination record). If that is the
case, the right-hand side is replaced using the definitions D1 and D2 and then the
auxiliary method vg is used to handle the rest of the computation.

Of course, having one specialized computation method for each kind of query
might be considered somewhat cumbersome. Below we show a more general
method, group, that could be used for all queries shown so far in this section.
For the method to work correctly the initial state definition used in the query
must contain exactly one equation.

method group:[A1,A2,E].

import_definition(g3arithmetics).

group = [] # some r:matches(true).

group = [] # some identity.

group = [group, r:g3arithmetics] # some r:matches((_,_)).

group = [group, r:g3arithmetics] # some r:in_dom(g3arithmetics).

group = [group, r:E] # some r:in_dom(E) &

all not(identity).

group = [group, r:A1] # some r:in_dom(A1) &

all not(identity).

group = [group, r:A2] # some r:in_dom(A1) &

all not(identity).

To use the method group to check if a patient is born in Europe we use the query:

group(continents, geo_regs, exam){europe = ’Born’}.

To check if a patient’s value for ’Vas-life’ is ok the query to use becomes:

group(vas_group, vas_groups, exam){ok = ’Vas-life’}.

23

On GCLA, Gisela, and MedView

3.2.3 Combined Attributes

In Section 2.2.2 we showed an example where several different attributes related
to diagnosis were grouped into one. This combination of attributes used in con-
junction with a value class as proposed in Section 2.2.2 is from a computational
point of view the same as the use of two value class definitions discussed in the
previous section. Therefore, the computation method group can be used in a
query like:

group(diagnosis,lichen_planus,exam){lichen_planus = diagnosis}.

If efficiency is important, and we know that all relevant values in the knowledge
base for lichen planus are found in the definition lichen_planus, it is possible
to hard-wire the exact sequence of operations that are performed in a successful
computation into a new computation method:

method combine:[A1, E, A2]

combine = [E, r:A2, r:E, r:A1];

The proper query to check if the examination exam is connected to lichen planus
then becomes:

combine(diagnosis,lichen_planus,exam){lichen_planus = diagnosis}.

3.3 Further Examples

In the current MedView knowledge base all values are atomic. Whether this is
a flaw or a feature is not something we will go into here. Instead, we look into
ways of finding the implicit subparts of atomic values.

Values for the attribute ’P-code’ encode in an atom, unique for each patient,
the identity of the clinician who performed the examination, when the patient was
born, and whether the patient is male or female. To find, for instance, all female
patients we have to take this atom apart. In Section 2.2.2 we showed a definition
written in a logic programming style that could be used to make selections based
on age and gender. Furthermore it used a definition class written in Objective-C
to inspect the implicit components of a personal code.

Here we show an alternative solution which does not use Objective-C and is
more in-line with the general style of most examples. What we do is to introduce
a new defined concept gender which will enable queries like

m(gender,exam){female = gender}.

A possible definition is shown below. The definition makes use of a number of
built-in functions for converting between atoms and strings:

24

MedView and Gisela

definition gender.

gender = PC -> ’P-code’, get_gender(PC, G), G.

get_gender(PC, G) =

constant_string(PC) -> PS,

explode_string(PS) -> [_,_,_,_,_,_,_,_,C],

string_constant(C) -> CC,

gender_code(CC, G).

gender_code(0, female).

gender_code(1, male).

We show a partial expansion of a query using this definition:

PC = a19231
{PC = a19231, fm = a19231}

{PC = pcode, fm = pcode}

{fm = PC → pcode}

G = fm
...

{fm = get gender(a19231, G)} {fm = fm}

{fm = get gender(PC, G), G}

{fm = PC → pcode, get gender(PC, G), G}

{fm = gender}

Computing the age of a patient can be done in a similar way but will use the
Date attribute of an examination also.

3.4 Discussion

A thorough investigation of various search methods compared both to relational
databases and to deductive databases, e.g., Datalog, is something which must be
done in the future. At the same time we expect to (re-)organize the knowledge
base structure and methodology for building new concepts on top of basic data.
With Gisela we have the tools needed to carry out such an investigation.

4 System Architecture

The initial version of the MedView system was implemented in Objective-C using
the NextStep application program interface (API). The current system is also
written in Objective-C, but most NextStep applications have been ported to use
the OpenStep [13] APIs instead. OpenStep is a more platform independent
successor to NextStep.

The implementation is divided into a number of applications for specific tasks
and a number of frameworks containing things that are commonly used by several
applications. The main part of these are the ones that implement Gisela. The
current frameworks and their tasks are:

25

On GCLA, Gisela, and MedView

• DFDefinitions implements definitions,

• DFMethods implements computation methods,

• DFComputing implements definitional computations,

• MVDatabase implements classes to manage MedView knowledge bases,

• MVAppKit implements extensions to OpenStep’s AppKit used to build ap-
plications. This includes things such as common user interface elements
etc.

All classes defined in these frameworks can be reused to build different kinds of
MedView software, e.g., command line tools, desktop applications, web applica-
tions etc.

4.1 Using Gisela in Applications

When Gisela is used for definitional computations in Objective-C programs the
interface to the definitional machinery is an object of the DFDMachine class. This
object performs definitional computations by providing answers to queries posed
by some other object. A DFDMachine requires an observer to handle certain
choices in computations. If no observer object is given, a default observer is used.
If the definitional computation should be run in a separate thread, a DFDMachine

object sends its answers to a delegate object. The delegate is also responsible for
ending the computation etc. The API for using a DFDMachine is very simple. In
the most basic case it consists of the methods:

// Create a machine that uses the default observer.

- (id)initWithDelegate:(id)anObject;

// Set the query to evaluate.

- (void)setQuery:(DFQuery *)aQuery;

// Returns the next answer if there is one or nil otherwise.

// Use this as an enumerator to get all answers.

- (DFAnswer *)nextAnswer;

// Returns an array with all the possible

// answers for the current query.

- (NSArray *)findAllAnswers;

If the machine should run its computations in a separate thread, the API becomes
somewhat more complicated.

26

MedView and Gisela

4.2 Model-View-Controller

The general design approach used in most applications is to use the Model-View-
Controller (MVC) paradigm. MVC is a commonly used object-oriented software
development methodology. When MVC is used, the model, that is, data and
operations on data, is kept strictly separated from the view displayed to the user.
The controller connects the two together and decides how to handle user actions
and how data obtained from the model should be presented in the view. Applied
to the MedView and Gisela setting, the model of what an application should do
is implemented using definitional programming in Gisela. The view displayed
to the user can be of different kinds, desktop applications, web applications etc.
In between the view presented to the user and the Gisela machinery there is
a controller object which manages communication between the two parts. One
advantage of this approach is, of course, that different views may be used without
changing the model.

4.3 Application Architecture

An application developed using the OpenStep API is really a directory Name.app,
which contains the application binary and a resources folder containing all sorts
of resources needed by the application. The items in the resources folder can be
easily loaded into the application at run time using methods provided by the API.
Applied to the use of Gisela in MedView this means that it is straightforward
to have text-files in the resources folder representing definitions and computa-
tion methods. These text-files can be parsed into definition objects at run time
using the API provided by the Gisela framework. Consequently, any Gisela pro-
gram developed using equational presentations can smoothly be integrated into
an Objective-C application.

To make things a little bit more precise we will show an example model that
provides data suitable for drawing simple visualizations of the MedView knowl-
edge base. We also demonstrate how definitional resources are loaded into appli-
cations.

4.3.1 An Example Model Class

A basic visualization of the knowledge base is to display ordinary bar charts and
scatter-plots. An application based on Gisela that does this is discussed in Sec-
tion 5.4.1. Part of the general organization of this application is shown in Figure
3. At the center is a Document object, which manages an on-screen window dis-
playing graphs and all resources needed to perform computations. In Figure 3
the view is represented by the object at the top-left. All definitional computa-
tions are embedded into a model consisting of an object of the DataProvider

class. An object of this class creates a DFDMachine to perform computations and
fetches data from an MVDatabase. The MVDatabase in turn is provided by an

27

On GCLA, Gisela, and MedView

Persistent Store

MVDatabase

MVDatabaseManagerDFDMachine

Methods

Document

View

DataProvider

Figure 3: An example data model.

MVDatabaseManager, which is responsible for things like loading databases and
sharing them among objects.

To access data, that is, to perform definitional computations, the following
methods are provided by a DataProvider object:

// Collect, group and count all values for attr

- (NSCountedSet *)barChartValuesForAttribute:(NSString *)attr;

// Collect, group and count all values for attr.

- (NSCountedSet *)barChartValuesForAttribute:(NSString *)attr

withGroups:(NSDictionary *)groupDefs;

// Provide data for a scatter-plot

- (NSDictionary *)scatterValuesForAttribute:(NSString *)attr;

// Provide data for a scatter-plot using groups

- (NSDictionary *)scatterValuesForAttribute:(NSString *)attr

withGroups:(NSDictionary *)groupDefs;

To be able to draw a bar chart we need to find all values for a certain attribute,
and count them. A suitable data structure for this is a counted set, also known
as a bag or a multi-set. Note that methods that use value classes (groups) are
provided.

When a new DataProvider object is created it must be initialized with the
path to the knowledge base to use. It then creates a DFDMachine object and loads
the required computation methods:

28

MedView and Gisela

-(id)initWithPath:(NSString *)dbPath {

if (self = [super init]) {

database = [MVDatabaseManager databaseAtPath:dbPath];

dMachine = [[DFDMachine alloc] initWithDelegate:self];

[self loadComputationMethods];

}

return self;

}

More details on how a DataProvider object performs its definitional computa-
tions are given in Section 5.4.1.

All details about how to compute data to draw graphs is encapsulated in
the model. Therefore, it can be reused without any modifications, with another
controller and view, to write, for instance, a web application displaying graphs in
a web-browser.

4.3.2 Loading Definitional Resources

OpenStep provides an API to read files stored in an application’s resources folder
at run time. The Gisela framework in turn, provides an API to parse equational
representations of definitions and computation methods into the corresponding
object representations. Thus, very little code is required to load definitional
resources for use in applications. The following code is enough to read some
method definitions stored in the file methods.dxt in an application’s resources
folder:

- (void)loadComputationMethods {

NSString *tmpString;

DFMethodParser parser = [[DFMethodParser alloc] init];

// Get full path to methods.dxt

tmpString = [[NSBundle mainBundle]

pathForResource:@"methods"

ofType:@"mxt"];

// Read methods.dxt

tmpString = [NSString stringWithContentsOfFile:tmpString];

// Parse methods.dxt into an array of method objects.

methods = [parser methodsFromString:tmpString];

// Dispose parser object.

[parser release];

}

What the example illustrates is the relative ease with which definitional resources
can be loaded for use in applications. Once loaded, definitional objects can be
used like any other object in programs.

29

On GCLA, Gisela, and MedView

Figure 4: Left: MedRecords main window. Right: MedSummary main window.

4.4 Discussion

To use a state-of-the-art object-oriented programming environment was an early
decision in MedView. The choice was obvious since object-oriented programming
provides the natural setting today for the development of a system heavily de-
pendent on advanced graphical user interfaces and the obvious need for interfaces
to various standards for data and knowledge bases etc.

On the other hand, knowledge representation and reasoning is a key part of the
project, an area where declarative languages are the natural choice. Therefore,
an integration of the two paradigms was deemed to be the best approach. While
the necessary declarative programming tools were being developed temporary
solutions were used to implement definitional computations. By now, the efforts
are beginning to pay off. A number of useful applications have been developed
and the declarative system is complete enough to start replacing older versions.

The division of code into frameworks simplifies the reuse of components in
different kinds of applications. Of course, this is standard software engineering
technique but it is anyway a good thing to notice how much less effort is needed
to build new software today, as compared to the early days of the project.

5 Applications

In this section we discuss how existing MedView applications would have to be
modified to use the Gisela framework. We also give brief presentations of some
tools that have been developed using Gisela but that have not yet been used in
the clinical setting.

30

MedView and Gisela

5.1 MedRecords

MedRecords (MR) is the application used to enter data at examinations (Figure
4, left picture). In definitional terms, MR is best thought of as displaying an
incomplete examination definition. The task of entering examination data is thus
to complete this examination definition. The result of each examination is a new
tree-file that is stored into the knowledge base. The current version of MR does
not use the Gisela framework in any way. Possible future plans for including
Gisela features are:

• To change the storage format used to native Gisela syntax instead of tree-
files.

• To store the result from an examination as a binary definition object. This
requires no special coding since all definition objects provided by the Gisela
framework can be archived (serialized).

• To use Gisela to build an intelligent agent that can help the user. The idea
behind such an agent is that it should monitor the contents of the knowledge
base and the user’s actions and come up with suggestions, warnings etc.
Since the entire knowledge representation theory is based on definitional
terminology it should be easier to code such an agent in Gisela than in
Objective-C.

5.2 MedSummary

In the MedView project an application called MedSummary (Figure 4, right
picture) is used to generate natural language summaries of patient data from
the formalized examination definitions in the knowledge base [1]. The code in
use to generate summaries is based on an early version of the definition classes
found in the Gisela framework. However, the definitions are used only as a kind
of high-level data containers in what is otherwise an Objective-C program. More
specifically, all examination data and the various parts of the text-templates used
are represented using definition objects, but all communication between these
objects, and also the top-level text-generation machinery, is written in Objective-
C.

There are at least two ways that the Gisela framework could be used to
improve MedSummary:

• Replace the definition classes used with the Gisela framework. This reduces
the amount of code to maintain and will be done in a near future.

• Use the Gisela framework to implement a better text-generator based on
declarative programming methods. A prototype for such a text-generator
is discussed in Section 6.

31

On GCLA, Gisela, and MedView

Figure 5: QueryTools in browser mode. The path from the left-most to the
right-most column illustrates a part of the examination structure.

5.3 Query Tools

QueryTools is an application that was developed to simplify testing of different
ways to enter search queries and find matching examination records. An example
of a search window is shown in Figure 5. To the left is a list of all available
attributes in the knowledge base and a circle indicating how many records are
currently selected. Clicking on an attribute will generally insert it into a query.
Depending on what kind of tool is used for entering queries, the view to the right
varies. In Figure 5 a query tool that displays the formal structure of an examina-
tion at the top of the window, using a browser, is shown. The user can navigate
through the browser and add attribute-value pairs to the query by clicking on
leaves in the browser. QueryTools was designed to make it straightforward to
add more views to test new query devices.

Any number of search windows may be open at the same time and queries
found useful can be saved for future use. Each search window has an associated
DFDMachine object handling definitional computations over the knowledge base.
The search mechanisms used are those described in Section 3. The selected
examinations may be opened for further study using some other application.

Figure 6 shows an example of how QueryTools may be used in conjunction
with other applications. At the top left is a QueryTools window where a previ-
ously created query has been opened and used to select a number of examinations.
At the top right, the selection is viewed using an application that shows all im-
ages related to a number of examinations. At the bottom, the selection has been
opened using MedSummary, and a text summarizing all the known information
about one of the examinations has been generated.

32

MedView and Gisela

Figure 6: QueryTools in use.

5.4 Visualization Tools

Information visualization is an integral part of the MedView project. Some of
the work done is described in [1, 6, 7, 8]. The applications developed so far do
not use the Gisela framework. Instead, specialized classes are implemented to
collect answers to queries. We have started work on how Gisela can be used to
retrieve data for visualizations from the knowledge base. We describe the required
computations here. Most of the actual drawing code can be reused from earlier
implementations.

5.4.1 Basic Graphs

Figure 7 shows Charts, an application that can be used for displaying bar charts,
scatter-plots, and the like, visualizaing MedView data. Charts is based on one
of the first applications developed in MedView but uses the Gisela framework to
perform definitional computations.

The views of the knowledge base provided by Charts are bar charts, pie charts
and scatter-plots. All parts of the definitional computations performed in the ap-
plication are embedded in an DataProvider object, which was introduced briefly
in Section 4.3.1. The application allows the use of correction definitions, as well
as value class definitions to enhance visualizations.

33

On GCLA, Gisela, and MedView

Figure 7: Gisela enabled basic visualization of data.

Computing Bar Chart Data To provide data suitable for drawing a bar
chart, all that has to be done is to retrieve all values for an attribute in the
knowledge base and count them. A query suitable for finding values for an at-
tribute, say ’Drug’, is

ra(exam){X = ’Drug’}.

The computation method ra is very simple. It replaces the right-hand side of the
single equation in the initial state definition according to the current examination
and then unifies the left and right-hand sides:

method ra:[Exam].

ra = [Exam, r:Exam].

If the attribute given in the right-hand side of the initial state definition has
no value in Exam the query fails. All values are collected by iterating over all
examinations in the knowledge base.

Charts uses the correction definition for an attribute if there is one. When
corrections are used the query to ask for values instead becomes

filter(exam, drugs){X = ’Drug’}.

where drugs is a definition with corrections for the attribute ’Drug’. The com-
putation method currently used in Charts for this kind of query is:

method f1:[F].

f1 = [F,r:F] # some r:in_dom(F).

34

MedView and Gisela

f1 = [F] # all not(r:in_dom(F)).

method filter:[E,F].

f = instance(f1,[F]).

filter = [f, r:E].

The method filter uses the auxiliary method f1. The idea is that filter is
used to look up a value for the current attribute. If a value is found the method
f1 will apply the correction if there is one. Otherwise the left and right-hand
sides are unified with each other.

To compute bar chart data using an extra definition defining value classes
it is possible to use the same computation method as for corrections. The only
difference is that a value class definition is used instead of a definition giving
corrections.

Scatter-plot Data To compute values for display in a scatter-plot some more
information is needed. Charts displays patient identification codes along the
x-axis and all values for the desired attribute along the y-axis. To be able to
retrieve the examination in the knowledge base corresponding to a certain dot
in the plot we also need the value for the attribute ’Date’ which is unique
for each examination. The easiest way to retrieve the desired values is to use
the methodology with a query definition discussed in Section 3. The DataModel

object performing calculations in Charts uses the following query definition, which
is read from the application’s resources folder at run time:

definition scatter_data.

query(Attribute, Value, PCode, Date) =

Value -> Attribute,

PCode -> ’P-code’,

Date -> ’Date’.

The method definition for general query definitions shown in Section 3 provides
the necessary procedural knowledge.

5.4.2 The Cube

The Cube [8] offers a 3D visualization of a number of attributes in the knowl-
edge base. The visualization consists of a number of planes, where each plane in
principle displays a scatter-plot of the values for an attribute. The current imple-
mentation uses a hard-wired definition object capable of performing the required
computations.

35

On GCLA, Gisela, and MedView

Figure 8: MVDManager: The value “Mässlingen” is used as correction for
“Mässling”.

If Gisela is used instead the values for each plane can be computed using
the methods used in Charts described above. The use of value classes in the
current version of The Cube is implemented by adding a number of extra hash-
tables to the machinery for retrieving values from the knowledge base. With
Gisela, value classes can be cleanly represented as definitions, which are invoked
in computations through the use of a suitable computation method.

We see that the definitional computations required to be able to display basic
graphs are very simple. The only issue is for how large data-sets the performance
of Gisela will be sufficient.

5.5 Administrative Tools

There is an obvious need for applications aimed at administrative tasks. For in-
stance, it is necessary to be able to monitor the values entered into the knowledge
base and create suitable correction definitions. Another important task is to be
able to create value classes in an easy way. Here we describe a simple tool to
manage correction definitions and discuss the issue of creating value classes.

5.5.1 MVDManager

In Section 2.2.2 we discussed how extra definitions could be used to model cor-
rections of values in the knowledge base. Even if no modifications are needed, it
is important to be able to regularly inspect new values added to the knowledge
base. To enable this practice we have written a simple tool called MVDManager
(MM).

The tool reads a MedView knowledge base and displays information about
its contents as shown in Figure 8. To the left is a list of all attributes in the
knowledge base. If any new values have been added since the last time the
knowledge base was opened in MM the attribute is highlighted (e.g., shown in
red). When a user selects an attribute all values for this attribute are listed to

36

MedView and Gisela

the right together with any defined corrections. In Figure 8 both “Mässlingen”
and “Mässling” denote the same disease (Measles). We decide that “Mässlingen”
is the correct value and add a correction. This information is then stored as a
correction definition into the knowledge base.

MM makes rather little use of the Gisela framework. The only definitional
computation used is to read all values for each attribute in the knowledge base.
The same method ra as in Charts is used for this purpose. However, the inter-
esting thing about MM is the output, which provides important information for
Gisela computations in other applications.

MM can also be used for localizing the values in a knowledge base to different
languages. In this case we simply add replacements for all values that need to be
localized.

5.5.2 Creating Value Classes

Creating values classes is in many ways similar to creating correction definitions.
A first prototype for a tool to aid the user in the process of creating value classes
has been implemented. It is important to be able to organize value classes in
some way that makes it easy to have a library of useful groups for different tasks.
It is also important to be able to easily combine different value classes into new
ones. Furthermore, different kinds of definitions are needed , e.g., for numerical
values it should be possible to create value classes by providing ranges. As with
MM, the most interesting thing from a definitional point of view with a tool
for creating value classes is not the computations it performs but the resulting
definitions.

6 Generating Examination Summaries

In this section we describe an implementation of a Gisela program for generating
texts in natural language from examination records. The text generator has
been written to test functional logic programming methodology in Gisela on a
larger example. Texts can be created in HTML or LATEX format. The generator
is written using equational presentations of definitions that can be parsed into
definition objects using classes present in the framework. The generator does not
modify or extend the framework in any way through the Objective-C API. Thus,
in this application, we can say that Gisela is used as a definitional programming
language. We present the methods used and some problems encountered.

6.1 Another View of the Knowledge Base

The functional logic programming methodology used to build the text generator
is based on functional logic programming methodologies developed for GCLA

37

On GCLA, Gisela, and MedView

[15, 16]. When this methodology is used, function calls will always appear in the
left-hand sides of equations in state definitions and predicates in right-hand sides.

Typical examples of simple functions, predicates, and combinations of both
are:

definition samples.

len([]) = zero.

len([_|Xs]) = (len(Xs) -> N) -> s(N).

length(Xs, N) = (len(Xs) -> N).

member(X, [X|_]).

member(X, [_|Xs]) = member(X, Xs).

mem(Xs) = member(X, Xs) -> X.

Note how the predicate length calls the function len to compute a value and
how the non-deterministic function mem uses the predicate member to enumerate
all members of a list.

When a summary text is to be generated from an examination record we
typically want to find all values of an attribute. That is, if an examination
record contains the equations

’Drug’ = ’Losec’.

’Drug’ = ’Dermovat’.

we want to generate something like “Currently, the patient takes Losec and Der-
movat”.

However, there is really no way to pick up all values defining an attribute
which works in conjunction with the functional logic programming methodology
used. Since the main objective of our text-generating program was to write a
larger functional logic style application we decided to view the knowledge base in
another way instead of trying to solve this problem.

Describing the view of data in the knowledge base used is very simple. Each
set of equations with the same head

a = v1.
...

a = vn.

occurring in an examination record definition, is replaced by a single equation
where all the values are put in a list, thus:

a = [v1, . . . , vn].

38

MedView and Gisela

On the one hand, with this representation it is easy to find all values for a given
attribute. On the other hand, the hierarchical structure of examination records
becomes somewhat hidden. Reading the tree-files used to store examinations into
this kind of definition can easily be done by subclassing the DFLeafDefinition

class in the Gisela framework which is otherwise used to represent examination
records.

6.2 Describing Summaries

The basis for any Natural Language Generation (NLG) system is to study what
kinds of texts should be generated [4, 5]. In MedView, the MedSummary applica-
tion has been in use over a period of several years to generate patient overviews.
During this period, the users have gradually refined the structure and contents of
the texts being generated. The Gisela generator described here is based on these
experiences. In the following, it should be kept in mind that the purpose of the
described system is to test functional-logic programming in Gisela on some larger
example, applying sophisticated NLG techniques is a project for the future.

6.2.1 Text Structure

We have tried to distinguish textual building blocks which could form the basis
for an authoring tool that could be used to create various text templates. The
idea behind such a tool would be to provide a hierarchical view of the building
blocks. A similar idea is presented in [12]. It should then be possible to move
parts around, and add and group blocks to form complete text templates for
different purposes. Essentially, the building blocks form a tree structure with
canned text in the nodes, something which is in line with several more ambitious
projects [3, 9, 14]. We believe that the division into reusable building blocks
would be useful also in a system with a more sophisticated NLG kernel.

We have chosen to structure summary texts into the following:

• Summary. A summary is the top level unit that creates a complete doc-
ument from a number of components. The idea is that a user should be
able to select from a number of different summary documents tailored for
different tasks.

• Component. A component is a reusable unit, approximately corresponding
to a section of text. A component is built from a number of blocks.

• Block. A block is another reusable unit that corresponds to a paragraph of
text. A block is made up of a number of segments.

• Segment. A segment is yet another reusable unit. Each segment has a num-
ber of associated attributes. These attributes are used to find information

39

On GCLA, Gisela, and MedView

from the examination record needed to generate the appropriate text for
the segment. Segments are built from sentences and phrases.

• Sentence. A sentence is built from canned text and strings from phrases
which depend on the database.

• Phrase. A phrase consists of an attribute-value pair. It is replaced with a
string that depends on the particular value present. Generally, a value can
be a list of atoms. The string can be a simple replacement for the value or
an arbitrarily complex string created in some way, for instance by inserting
the value into a template or combining a number of values into a string.

To construct a summary we define all the various parts in Gisela definitions.
When these are complete, a text may be generated using some generator functions
and data taken from an examination record. Note that only the two last categories
above depend on the language used for generation.

6.2.2 Formatting

In MedSummary a text-template in Rich Text Format (RTF) is used as the basis
for generation. The generator parses the template into a number of sentences but
keeps all formatting information from the original template and uses it to correctly
format the resulting text. While this approach makes it very simple for users to
modify the look of the template text it relies heavily on the particular classes
used to represent text in the implementation and is not very general.

In the Gisela generator we have instead used logical text-formatting which
does not depend on the particular format of the resulting text. That is, when a
template is defined, a set of predefined commands are used to describe formatting
information. These commands do not describe the exact result, but are of the
kind “emphasize this part of the text” or “make this a first level heading”. The
actual output is defined in a separate formatting definition. We have implemented
formatters for HTML and LATEX. Other formats like XML, RTF, or plain text
are possible, of course.

Examples of commands available for formatting are:

• heading1(Item),. . . ,heading5(Item), different levels of headings.

• new_paragraph, start a new paragraph.

• emphasis(Item), strong(Item), small(Item), underline(Item), some
font related commands.

• unordered_list(Items), ordered_list(Items), list_item(Item), used
to build lists.

There are also commands for things like building tables. The number and com-
plexity of formatting commands would be larger in a complete system.

40

MedView and Gisela

6.2.3 Methodology

The system described implies a certain methodology for developing summary
templates. Text generated from examination records can be used for several
different purposes, for example for a quick overview in the examination room, a
complete description with all details to use if the patient should be sent to another
clinician, a text tailored towards education, a text intended for the patient to read
etc. Although these are not identical they are likely to share some components.
These components may be of varying size, from a component providing a full
disease history, to a table which displays values from blood-tests. Since texts are
split into subparts, which are split into subparts, and so on, all different parts
can be stored and combined in new ways for a different purpose. The quality
of text resulting from combining subparts in new orders might vary. A deeper
NLG system would inspect the parts and try to improve text quality, e.g., by
combining two sentences into one.

To write a definitional description of a summary is a very time-consuming
activity and requires too much programming knowledge to be considered as a
user-friendly approach. However, as with MedSummary used in MedView today,
very little formal linguistic knowledge is needed. Also, the code used to generate
text is rather simple and follows certain patterns again and again. It should
therefore be possible to build, as discussed above, a GUI where users can create
new blocks and combine existing ones in new ways. This authoring tool could
then generate Gisela definitions. Such a tool could also allow for users with more
linguistic knowledge to create more sophisticated templates for generation. As is
the case with the text-generation itself, this is a project for the future.

6.3 Defining a Summary

As mentioned, to define a summary we have to give definitions for all the parts
the summary is built from. We start with the top level:

% summary_components(SummaryName, Components)

summary_components(anamnes, [anamnes]).

summary_components(anamnes_diary, [anamnes,diary]).

Here we we have given the components for two summary types. Next, the com-
ponents are defined by declaring which blocks they are built from:

% component(ComponentName, Title, ShowsTitle, Blocks)

component(anamnes, Title, titled, [introblock,commonblock]) =

component_title(anamnes, Title).

component(diary, Title, titled, [diary_block]) =

component_title(diary, Title).

41

On GCLA, Gisela, and MedView

The title of a component is defined separately to simplify localization into different
languages. Along the same lines, blocks are defined by declaring the segments
they are built from:

% block(BlockName, Segments)

block(introblock, [intro0,intro1]).

block(commonblock, [common1,common2]).

block(diary_block, [diary1,diary2,diary3]).

% segment(SegmentName, Attributes)

segment(intro0, [adv_drug]).

segment(intro1, [pc_age,pc_sex,occupation,ref_in,ref_cause]).

segment(diary1, [vis_cause]).

Note that at the segment level, the set of attributes in the knowledge base needed
to generate text are given. Thus, the segment intro0 needs the value of the
attribute adv_drug.

When an attribute is missing no text can be generated for the part of the
text that depends on it. When a segment has only one attribute this means that
the empty string is returned. When there are many attributes and only some are
missing, as many as possible are used to provide as much information as possible.
As an example, for the segment intro0 there are only two cases:

% segment_intro0(Attributes, Values, Text)

segment_intro0([adv_drug], [AD],

concat(text_color(red,

sentence(["Hypersensivity: ", phrase(adv_drug, AD)])),

new_paragraph)).

segment_intro0([], [], empty_string).

% adv_drug_phrase(Value, Text)

adv_drug_phrase([’Nej’], "0").

adv_drug_phrase([’Inga’], "0").

adv_drug_phrase(Xs, S) = value_list(Xs) -> S.

The third argument of the predicate segment_intro0 is an expression which is
evaluated to a string on request. The actual strings to use for different values
are given by adv_drug_phrase. In the third clause of this predicate the function
value_list is used to create a comma-separated string from a list of atoms. A
small part of the definition of phrase/1 is:

phrase(adv_drug, Xs) = adv_drug_phrase(Xs, S) -> S.

which illustrates a connection between the predicate adv_drug_phrase/2 and the
function phrase/1.

42

MedView and Gisela

�������������� �	

��	

�������

��������������� ! "�#�$�%�&

'(()*+,-

./012345627845892:23;<=6<=63;64>>;32><2?>27@892:23;A9=3 �B��� �C D2>4;7>;7923 54A> =EF 923 2?G75;3<:> G3<H3G75C D2>4;7>;7275;3 <47 84?<:?284>;> <=65=@
;7845> IJKC L2HH=3>;323 92?;7 27@32 <M6H>=6A3127FG?G@0F28<3;54=7;7C N4>;
>;O> 4 7=>7G66;3;>>C

'(()*+,+,+),PQ
RHH8;?;3<454288>?92<;7>845>AG88>A34<:C S7523;5;8TG7@72892:23:=7>3=88;3CRHH5;3
<45F2T;<?923 A3127G7@;384?;>C

U V4@4523;<WG:@=623X NG7547Y2662>4=7=EFZ=>A32:>G3C
U J:>G;88 6;@4E47;3475X N=<;E=EFV3;=C
U J88;354;3X H=88;7=EF79=>>;3C
U J8:=F=8X [C
U L9=:?27=3X \H2:;>]@25C

_̂)̀ -a)bP(+-Pb+cPd̀ èfg-Pbh D2>4;7>;7275;3A9=37923?2327@;T;<?9236;@
6;>288<62:C i;<?923;7532@;32<>488 847@3452;7845>IJKCD2>4;7>;7GHH8;?;32>>
T2727 =EF ;7 A9=3:M87475 474>4;32@; <M6H>=6;7C RHH5;3 <45 >4@4523; F2 F2A>
T;<?923 A31276G7<8;6F47727<=6;7845>IJK?23 <?1232C V;O>;74 7=>/jT82T82C

D12 A312527 =6?2@ <=69=:23 <M6H>=6;7 275;3 H2>4;7>;7 T;F27@8475 6;@
k=3<=@M8j @923;6=> <12647<:23 <M6H>=6;77923 H2>4;7>;727?927@;36G7?2>>;7C9J?;7H2>4;7>;7<6=3T3=3=EF6=<>;3F23F2A> 84:727@;T;<?923C

\

Figure 9: An example summary generated using the LATEX formatter.

The complete definition of a summary consists of a large number of clauses
similar to the ones given above. In principle, predicates are used to store data,
like the blocks of a component, and functions to evaluate the stored units into
text.

6.4 Generating Text

To actually compute something using a definition we must have a method which
specifies how Gisela should proceed to evaluate a query. In our text generator
we use a slightly extended version of the method for functional-logic program-
ming given in [17]. The method has three parameters, a summary definition, a
formatting definition, and an examination record. To compute a short summary
in LATEX format from the examination exam1 we ask the query

medsum(sum,latex,exam1){summary(short_summary) = S}.

which will give the summary as a binding of the variable S. If we instead want a
summary in HTML format for exam2 we ask the query:

medsum(sum,html,exam2){summary(short_summary) = S}.

The function summary/1 is just a cover for the function mk_summary/2 which
starts the generation process:

43

On GCLA, Gisela, and MedView

summary(Name) = mk_summary(Name, no_navigation).

mk_summary(Name, IncludeNavigation) =

(summary_components(Name, Components),

anchor_names(Components, AnchorTitles))

-> mk_summary(IncludeNavigation, AnchorTitles, Components).

For use in hyper-text formats, it is possible to generate navigation links to the
different parts of a text. The function summary turns off this feature. The function
mk_summary/2 picks up values from the predicates summary_components and
anchor_names before evaluation continues with mk_summary/3. Then it is simply
a matter of unfolding the parts down to the bottom level and combining the results
together. For instance, to generate text for all components:

make_components([]) = "".

make_components([C|Cs]) =

concat(make_component(C), make_components(Cs)).

To make a segment it is necessary to first find the values for the attributes required
by the segment:

make_segment(Name) =

(segment(Name, Attributes),

values(Attributes, FoundAtts, AttVals),

segment_text(Name, FoundAtts, AttVals, Text))

-> Text.

restrict values/3:right.

values([], [], []).

values([A|As], [A|As1], [V|Vs]) =

(db_vals(A) -> V),

values(As, As1, Vs).

values([A|As], As1, Vs) =

values(As, As1, Vs).

Here make_segment is a function and values a predicate. The predicate values

has a problem: If the second clause succeeds, the third should not be tried. In
Prolog a cut would be inserted into the second clause. In Gisela there is really
no way to express what we want. To make Gisela more efficient a solution to this
problem is needed in the future.

The function db_vals, used to find values from an attribute, is defined in a
separate definition:

definition dbase:matching.

db_vals(A) = A.

44

MedView and Gisela

Evaluation of this function is hard-wired in the computation method medsum:

medsum = [medsum, E, l:E, l:dbase] # some l:matches(db_vals(A)).

The purpose of the above is to make sure that the examination record E given
as an argument to medsum is used to find the values of an attribute. It works
as follows: When the left-hand side of an equation matches db_vals(A), the
definition dbase is used to start evaluation of db_vals. To complete evaluation,
the computation continues using the definition E to find values in the examination
record. The left-hand side is then unified with the right-hand-side of the equation
and the computation continues using the method medsum.

Finally, we show some HTML formatting functions. Most HTML envi-
ronments are defined using the function generic_block/3, which in turn calls
concat/2:

heading1(Heading) = generic_block("<H1>", Heading, "</H1>").

emphasis(Item) = generic_block("", Item, "").

generic_block(StartTag, Contents, EndTag) =

concat(StartTag, concat(Contents, EndTag)).

concat(X, Y) =

((X -> X1),

(Y -> Y1))

-> g3strings_append(X1, Y1).

What concat does is to force evaluation of its arguments to canonical values
(strings). It then calls g3strings_append/2, defined in the definition g3strings,
to concatenate the resulting strings. The built-in definition g3strings defines a
number of useful string operations.

To sum it all up, we have as an experiment implemented a complete summary
text generator as a functional logic program in Gisela. Due to the large number
of attributes and values present, the complete definition of this generator consists
of approximately 2300 lines of code (including comments and blank lines). The
program runs well but not really fast enough—generating a complete examination
record text takes several seconds.

6.5 Alternative Approaches

Declarative programs are often a compromise between beauty and efficiency. It
is not unusual that one has to rewrite code in a less declarative way to increase
performance. Looking at the text generator in hindsight, from a programming
point of view, we can see that there are a number of such cases, mostly related
to whether to express something using a function or a predicate.

45

On GCLA, Gisela, and MedView

We have used a number of predicates to define all subparts of the texts and
then a number of functions working on these structures to create a text. One
reason for the use of predicates instead of functions in some places is not that a
predicate is more natural, but that a predicate is assumed to be more efficient.
The reason for this is the complexity of the full definiens-operation [2, 11]. How-
ever, Gisela allows us to state that a function will only be used using matching,
not unification, in which case a lot of the complexity can be avoided. Many
predicates could therefore be replaced by functions using matching.

In principle, the following might be a better general structure:

anamnes = gen([block1,block2,block3]).

block1 = gen([seg1, seg2]).

seg1 = db([a,b,c], V) -> seg1(V). % V list [Att-VList...

seg1([A-V]) =

concat(text_color(red,

sentence(["Hypersensivity: ", phrase(A, V)])),

new_paragraph).

seg1([]) = empty_string.

where gen is a generator function that expands all parts of a list and combines
them into a string. This approach is also much more similar to the way grammar
rules are usually written which is an advantage from a conceptual point of view.

The main advantage of the generator we have written using Gisela compared
to the one in use in MedSummary is that it is completely implemented using
definitional programming. For experimenting with different text generation tech-
niques we feel that high-level declarative programming is more appropriate than
Objective-C used in MedSummary.

7 Discussion

One of the main objectives behind the development of Gisela has been to provide
a framework that can be used for knowledge representation and reasoning in
MedView applications. So far, it has not been introduced in the applications
actually in use in clinical work. However, the experiments carried out indicate
that Gisela integrates well with the tools used in the MedView project to build
GUI applications, and that it makes the definitional parts of applications clearer
and easier to implement.

We plan to gradually introduce Gisela into the real-world applications devel-
oped within MedView to model definitional content. However, we have currently
no plans to extend Gisela to handle sophisticated interaction with the user. In-
stead, we advocate an approach with a definitional model programmed in Gisela

46

MedView and Gisela

and an interface part programmed using other, more suitable, tools. This ap-
proach is in line with the Model-View-Controller paradigm, where Gisela is used
to build the model, and the controller and view are constructed using standard
programming tools.

Most of the applications developed so far are very simple. A question could
be whether an application like MVDManager, which only uses Gisela to read a
database into memory is of any interest. In accordance with the above discus-
sion, it is definitely relevant since it is an example of an application that uses
Gisela to implement the model part of an MVC-based application. Also, using
MVDManager results in new definitional structures useful for other applications.

As the database is approaching a size where it might be meaningful to apply
data mining techniques to search for patterns it will become increasingly impor-
tant to have a tool that is tailored for definitional computing.

A problem with the programming techniques for search discussed in Section 3
is that it is difficult to combine computations from within Gisela. Typically, we
have to provide the connections between computations externally. For instance,
we cannot easily describe things like “find all examinations having property a and
then use aggregate b to find the examinations among these having property c”.
Instead we have to run three separate queries connected through glue-code written
in Objective-C. How to handle this issue is an important problem to solve. The
essential question is whether the basic knowledge representation with separate
definitions for each examination should be changed in some way, or whether
there is a clean way to extend Gisela to solve the problem. On a related note,
in the MedView database all values are atomic with no internal structure. Since
Gisela can handle compound terms and variables, introducing more structure into
values should be considered.

For now, we conclude that Gisela does reasonably well for its intended tasks
in MedView. However, some performance improvements are needed or we cannot
justify the use of pure Gisela for applications such as the text-generation discussed
in Section 6.

References

[1] Y. Ali, G. Falkman, L. Hallnäs, M. Jontell, N. Nazari, and O. Torgersson.
Medview: Design and adoption of an interactive system for oral medicine. In
Proceedings of Medical Informatics Europe (MIE’00), Hannover, Germany,
August 2000, 2000. To appear.

[2] M. Aronsson. GCLA, The Design, Use, and Implementation of a Program
Development System. PhD thesis, Stockholm University, Stockholm, Sweden,
1993.

47

On GCLA, Gisela, and MedView

[3] S. Busemann and H. Horacek. A flexible shallow approach to text generation.
In E. Hovy, editor, Proceedings of the Nineth International Natural Language
Generation Workshop (INLG’98), pages 238–247, 1998.

[4] R. Dale and E. Reiter. Building applied natural-language generation systems.
Journal of Natural Language Engineering, 3:55–87, 1997.

[5] R. Dale and E. Reiter. Building Natural-Language Generation Systems. Cam-
bridge University Press, 2000.

[6] G. Falkman. Information visualization in clinical odontology: multidimen-
sional analysis and interactive data exploration. Artificial Intelligence in
Medicine. Accepted for publication.

[7] G. Falkman. SimVis: an interaction model for exploring clinical data. In
G. Szwillus and T. Turner, editors, CHI 2000 Extended Abstracts. Conference
on Human Factors in Computing Systems, 1–6 April 2000, The Hague, The
Netherlands, pages 319–320. ACM Press, New York, 2000.

[8] G. Falkman, M. Jontell, and N. Nazari. Information visualisation in clinical
medicine using 3D parallel diagrams: a case history. In Proceedings of Medical
Informatics Europe (MIE’00), Hannover, Germany, August 2000, August
2000. To appear.

[9] S. Geldof and W. V. de Velde. An architecture for template based (hyper)text
generation. In Proceedings of the 6th European Workshop on Natural Lan-
guage Generation-EWNLG’97, pages 28–37, 1997.

[10] L. Hallnäs. Partial inductive definitions. Theoretical Computer Science,
87(1):115–142, 1991.

[11] L. Hallnäs and P. Schroeder-Heister. A proof-theoretic approach to logic
programming. Journal of Logic and Computation, 1(5):635–660, 1991. Part
2: Programs as Definitions.

[12] G. Hirst, C. DiMarco, E. Hovy, and K. Parsons. Authoring and generating
health-education documents that are tailored to the needs of the individ-
ual patient. In Proceedings of the Sixth International Conference on User
Modeling, 1997.

[13] NeXT Computer, Inc. OpenStep specification. Available at
http://www.gnustep.org/resources/resources.html, October 1994.

[14] E. Reiter, R. Robertson, and L. Osman. Types of knowledge required to
personalise smoking cessation letters. In Artificial Intelligence and Medicine:
Proceedings of AIMDM-1999, pages 389–399, 1999.

48

MedView and Gisela

[15] O. Torgersson. A definitional approach to functional logic programming. In
R. Dyckhoff, H. Herre, and P. Schroeder-Heister, editors, Extensions of Logic
Programming 5th International Workshop, ELP’96, number 1050 in Lecture
Notes in Artificial Intelligence, pages 273–287. Springer-Verlag, 1996.

[16] O. Torgersson. Definitional programming in GCLA: Techniques, functions,
and predicates. Licentiate thesis, Chalmers University of Technology and
Göteborg University, 1996.

[17] O. Torgersson. Gisela—a framework for definitional programming, 2000.

A Method Used by Text Generator

import_definition(canonicals).

import_definition(g3arithmetics).

import_definition(g3strings).

import_definition(’dbase.dxt’).

method medsum:[S, F, E].

// Right rules tried only when left empty (true).

// stop if true.

medsum = [] # some l:matches(true) & some r:matches(true).

// something proved false.

medsum = [] # some l:matches(false) & some r:matches(false).

// axiom only when left-hand side atom. X = a not accepted.

medsum = [canonicals] # some l:in_dom(canonicals).

// constructed conditions to the left.

medsum = [medsum, l:canonicals] # some l:matches((A,B));

l:matches((C->D)).

// constructed conditions to the right

medsum = [medsum, r:canonicals] # some l:matches(true) &

some r:matches((A,B));

r:matches((C->D)).

// Remaining, definitionals

// first left

medsum = [medsum, E, l:E, l:dbase] # some l:matches(db_vals(A)).

medsum = [medsum, l:g3arithmetics] # some l:in_dom(g3arithmetics).

medsum = [medsum, l:g3strings] # some l:in_dom(g3strings).

medsum = [medsum, l:S] # some l:in_dom(S).

medsum = [medsum, l:F] # some l:in_dom(F).

49

On GCLA, Gisela, and MedView

// then right

medsum = [medsum, r:g3arithmetics] # some l:matches(true) &

some r:in_dom(g3arithmetics).

medsum = [medsum, r:g3strings] # some l:matches(true) &

some r:in_dom(g3strings).

medsum = [medsum, r:S] # some l:matches(true) &

some r:in_dom(S).

medsum = [medsum, r:F] # some l:matches(true) &

some r:in_dom(F).

B Implementation of GenderAgeDefinition

#import <DFDefinitions/DFDefinition.h>

// GenderAgeDefinition is a subclass of DFDefinition.

@interface GenderAgeDefinition : DFDefinition

{

// Returns a shared GenderAgeDefinition object.

+ (id)sharedGenderAgeDefinition;

}

@end

@implementation GenderAgeDefinition

+ (id)sharedGenderAgeDefinition {

// Details omitted

}

// Initialization methods are omitted.

// The domain consists of all terms with principal

// functor gender/1 or age/2.

- (BOOL)inDom:(id)anObject {

id refered = [anObject dereference];

if ([refered isKindOfClass:[DFTerm class]]) {

NSString *termName = [refered fullname];

return [termName isEqualToString:@"gender/1"] ||

[termName isEqualToString:@"age/2"];

}

return NO;

}

50

MedView and Gisela

// def is defined in terms of clause.

- (NSArray *)def:(id)anObject {

return [NSArray arrayWithObject:[self clause:anObject]];

}

- (id)clause:(id)anObject {

id refered = [anObject dereference];

if ([refered isKindOfClass:[DFCompoundTerm class]]) {

NSString *termName = [refered fullname];

if ([termName isEqualToString:@"gender/1"]) {

return [self getGender:[refered argumentAtIndex:0]];

}

else if ([termName isEqualToString:@"age/2"]) {

return [self getAge:refered];

}

}

return [DFFalseCondition falseCondition];

}

// Find gender from P-code and return male or female.

- (id)getGender:(id)anObject {

// Get string representation.

NSString *pnr = [[anObject dereference] stringValue];

if ([pnr length] > 8) {

if([[pnr substringWithRange:NSMakeRange(8,1)] intValue] % 2)

return [DFConstant constantWithName:@"male"];

else

return [DFConstant constantWithName:@"female"];

}

return [DFFalseCondition falseCondition];

}

- (id)getAge:(id)anObject {

// Details omitted

}

51

