Low Power, Low Delay: Opportunistic Routing meets Duty Cycling

Olaf Landsiedel

Joint work with: Euhanna Ghadimi, Simon Duquennoy, Mikael Johansson
Unicast Routing in Duty-Cycled WSNs

- Routing protocol: selects next hop
- MAC: wait for next hop to wakeup
 - Duty cycling: ensures lifetime
 - Assume: no synchronization: wakeups not aligned
Unicast Routing in Duty-Cycled WSNs

- Routing protocol: select next hop
- MAC: Wait for next hop to wakeup
 - Duty cycling: ensures lifetime
 - Assume: no synchronization: wakeups not aligned
Our Approach: Opportunistic Forwarding

Forwarder: The node that
1. wakes up first,
2. successfully receives the packet,
3. provides routing progress.
Expected Benefits

Compared to traditional unicast routing

• Energy: Less transmissions ➔ less energy
• Delay: Less transmissions ➔ less delay
• Resilience
 – Not bound to single forwarder
 – Increased resilience to link dynamics / churn
Outline

• Motivation and basic concept
• System design
• Evaluation
• Conclusion
System Design

• Anycast routing metric
 – Radio-on time as metric

• Unique forwarder selection
 – Avoid duplicates

• Link estimation and neighbor discovery
 – Tailored to opportunistic routing: overhearing
Routing Metric in a DODAG

• Topology: DODAG
 – Destination Oriented Directed Acyclic Graph
 – Per packet dynamics

• Need for routing metric
 – Builds DODAG: Loop free
 – Energy as metric: key in duty-cycled settings
EDC: Expected Duty Cycled Wakeups

- Goal: Minimize energy, delay
 - Minimize “radio-on time”
 - Named EDC: Expected Duty Cycled Wakeups
EDC: Expected Duty Cycled Wakeups

• Parent / forwarder set
 – Use more neighbors
 • Reduce time until one wakes up
 – Too many neighbors
 • Harm overall progress
 • Some neighbors provide less progress than others
EDC: Expected Duty Cycled Wakeups

• Parent set of a node
 – Subset of neighbors
 – Minimal radio-on time

• EDC
 – Avg. time to forward a packet
 – Avg. EDC of the parent set
 • Weighted by link quality

• EDC: tailoring of ETX
 – To anycast
 – To radio-on time

$$EDC = \frac{1}{\sum_{i \in P} PRR_i} + \frac{\sum_{i \in P} EDC_i PRR_i}{\sum_{i \in P} PRR_i}$$

P: Parent Set
PRR_i: Packet Receive Ratio
Unique Forwarders

- Probability of duplicates
 - < 20% for 10 potential forwarders
- Allows lightweight approach
Unique Forwarders

• Avoid / detect duplicates
 – Duplicate acknowledgements
 – Detect duplicates during forwarding
 • While waiting for clear channel
 – Up stream: duplicate packet detection
 • Sequence numbers

• Evaluation:
 – Duplicate rate similar to unicast routing

Dup. data: Ack with 50%
Link Estimation

- Opportunistic routing
 - Hide failure of individual links
 - Increases resilience
 - Interference, fading, node failure, ...

- Link estimation tailoring
 - Temporally unavailable links
 - Keep in neighbor set
 - Remove after long-term failure

- Our approach: Overhearing
 - Data packet overhearing
 - Beaconing: Only when no parents
System Design

• Anycast routing metric
 – Radio-on time as metric

• Unique forwarder selection
 – Avoid duplicates

• Link estimation and neighbor discovery
 – Tailored to opportunistic routing: overhearing
Outline

• Motivation and basic concept
• System design
• Evaluation
• Conclusion
Evaluation

• Implementation: Opportunistic Routing in WSNs (ORW)
 – TinyOS, default BoX-MAC

• Goals (compared to unicast routing, CTP)
 – Improve on energy, delay, resilience
 – Achieve similar reliability

• Scenarios
 – Two testbeds:
 • Indriya (Singapore): 120 nodes
 • Twist (Berlin): 96 nodes
 – Two TX power levels each

Today only: Indriya
0 dBm TX power
Delay and Energy

Energy: avg. -50%
 Doubles life time

Delay: -30% to -90%
 Depending on deployment

Tx: Slightly higher

Indriya:
- 3 story office building
- At National University of Singapore (NUS)
- 120 sensor nodes
Wakeup Interval

- ORW: Highest benefits at low wakeup rates
Churn and Stability

Churn: ORW stable (duty cycle, delay)

ORW: sparse networks
Outline

• Motivation and basic concept
• System design
• Evaluation
• Conclusion
Summary and Conclusion

• Opportunistic routing tailored to duty cycled WSNs
 – Forwarder: First awoken neighbor
 • that provides routing progress
 • and successfully receives packet

• Insights
 – Strong improvements: energy, delay, stability
Thanks! Questions?