
Safety at Speed
In-place array algorithms from pure functional programs by safely re-using storage

Markus Aronsson
Koen Claessen
Mary Sheeran

Nicholas Smallbone
{mararon,koen,ms,nicsma}@chalmers.se

Chalmers University of Technology
Gothenburg, Sweden

ABSTRACT
We present a purely functional array programming language that
offers safe, purely functional and crash-free in-place array trans-
formations. The language supports high-level abstractions for pure
and efficient array computations that fully support equational rea-
soning. We show how to execute selected parts of these computa-
tions safely in-place, with the compiler guaranteeing that in-place
execution does not change the computation’s result. Correctness
is ensured by using an off-the-shelf-theorem prover to discharge
safety conditions. Our main contribution is the idea of virtual copies
for expressing re-use of arrays, and techniques for verifying their
safety, which allow a pure language to include in-place transforma-
tions without weakening its transparency or reasoning power.

ACM Reference Format:
Markus Aronsson, Koen Claessen, Mary Sheeran, and Nicholas Smallbone.
2019. Safety at Speed: In-place array algorithms from pure functional pro-
grams by safely re-using storage. In FHPNC ’19: ACM SIGPLAN International
Workshop on Functional High-Performance and Numerical Computing, August
18, 2019, Berlin. ACM, New York, NY, USA, 13 pages. https://doi.org/???

1 INTRODUCTION
Functional programmers define their array programs as pure func-
tions operating on immutable arrays. By doing so, they can program
by composing high-level combinators such as map—and compilers
can transform this high-level pure code into efficient, low-level,
mutating code.

When writing code in this style, the programmer loses control
of memory allocation and evaluation order, which is left to the
compiler. This makes it impossible to define in-place array algo-
rithms. Many pure array functions can be safely computed in place,
but to do so correctly the programmer must closely control the
order in which reads and writes are executed. Since this is at odds
with the normal style of functional array programming, in-place
algorithms are written in a low-level imperative style. The result

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
FHPNC 2019, August 18, 2019, Berlin
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN ???. . . $???
https://doi.org/???

is that writing in-place algorithms is a difficult, error-prone job: it
is easy to overwrite the input data too early, but the programmer
gets no help avoiding such mistakes.

In this paper we present a high-level, functional approach to
defining in-place array algorithms. The programmer first writes
their algorithm in a normal, functional style, as a pure function.
They then specify which computations should be done in place, and
any special evaluation order that is needed. The compiler checks
that performing the computations in place does not change the
behaviour of the program. We have implemented our approach
in the co-Feldspar [2] language, but the ideas can be used in any
array language that compiles to imperative code. We validate our
approach by using it to safely define an in-place FFT, an algorithm
that requires an unusual evaluation order.

1.1 A First Example
We start by showing how the programmer can use our system to cre-
ate an in-place array algorithm. We will use the following running
example, a co-Feldspar program which combines two arrays:

example :: IArr Int32 → IArr Int32 → M (IArr Int32)
example arr1 arr2 =

manifestFresh (zipWith (∗) (map succ arr1) (reverse arr2))

The manifestFresh combinator evaluates its argument and stores
the result into a freshly-allocated array. In co-Feldspar, memory
allocation is made explicit by combinators like manifestFresh, and
all other array operations are fused—so this program compiles to
the following efficient imperative code:

result := new int32[n]; -- assume len(arr1) = len(arr2) = n
for i := 0 to n − 1 do

result[i] := (arr1[i] + 1) ∗ arr2[n − i − 1]

Looking at the imperative code, this function could just as well run
in place, writing the result back to arr1 instead of a new array. To
specify this, we replace the use ofmanifestFreshwithmanifestReuse
arr1:

example :: IArr Int32 → IArr Int32 → M (IArr Int32)
example arr1 arr2 =

manifestReuse arr1
(zipWith (∗) (map succ arr1) (reverse arr2))

The manifestReuse combinator evaluates its second argument and
stores the result into the array given in the first argument, re-using

https://doi.org/???
https://doi.org/???

FHPNC 2019, August 18, 2019, Berlin Aronsson et al.

the first array instead of allocating fresh storage. But it also makes
sure that this storage re-use is safe, by checking that the program
behaves as if a fresh array had been allocated. If the compiler
accepts a use of manifestReuse, it is guaranteed to have the same
semantics as manifestFresh. The compiler accepts the safety of the
program above (provided that the caller of example doesn’t use arr1
afterwards), and then emits the following code:

for i := 0 to n − 1 do
arr1[i] := (arr1[i] + 1) ∗ arr2[n − i − 1]

If we instead wrote manifestReuse arr2, then the compiler would
reject the program, because the resulting code would not calculate
the same function as the original program:

for i := 0 to n − 1 do
arr2[i] := (arr1[i] + 1) ∗ arr2[n − i − 1]

In order to safely reuse arr2, the generated loop must write arr2[i]
and arr2[n − i − 1] simultaneously, much like the algorithm for in-
place array reversal.We specify this write orderwith the combinator
pairwise (λi. (i, n − i − 1)):

example :: IArr Int32 → IArr Int32 → M (IArr Int32)
example arr1 arr2 =

manifestReuse arr2
(pairwise (λi. (i, n − i − 1))
(zipWith (∗) (map succ arr1) (reverse arr2)))

The compiler verifies that this code can safely be executed in place,
and then emits the following code, in which indexes i and n− i−1 of
the result array are first computed and then simultaneously written:

for i := 0 to (n − 1) / 2 do begin
x := (arr1[n − i − 1] + 1) ∗ arr2[i];
y := (arr1[i] + 1) ∗ arr2[n − i − 1];
arr2[i] := y;
arr2[n − i − 1] := x

end

Here is the point: even though this function is executed in place, it
is still pure. Since the compiler checks that executing our function
in place does not change its semantics, we can mentally replace
all occurrences of manifestReuse with manifestFresh when reason-
ing about the program. We can freely use equational reasoning
to understand or develop our program, without worrying about
side effects. The semantics of the in-place example function above
is precisely that of zipWith (∗) (map succ arr1) (reverse arr2): the
extra annotations are guaranteed not to change its meaning.

We believe this gives a compelling approach to developing in-
place array algorithms:
• Start with a clear, correct, functional algorithm.
• Tell the compiler how the output array should be populated
in order for in-place execution to work.

When in-place algorithms are defined imperatively, getting the
order of operations right is delicate and a major source of bugs.
With our approach, the order of operations is cleanly separated
from the semantics of the function, and is guaranteed to introduce
no bugs into the code.

The rest of the paper describes the technical details of our de-
sign. We start by describing the intermediate imperative language
which co-Feldspar compiles to (Section 2), which also supports
the safe re-use of storage, and how to check that storage is safely
re-used (Sections 3–4). We then present co-Feldspar itself (Section
5), the user-facing combinators for storage re-use, and how they
are compiled to the intermediate language. We validate our method
by evaluating an in-place FFT (Section 6) and finally describe the
implementation of co-Feldspar in more detail (Section 7).

2 AN IMPERATIVE LANGUAGE FOR
VERIFICATION

We do not attempt to check the safety of co-Feldspar programs
at the source level. Instead, we first compile them into imperative
code and then verify the safety of that code.

The intermediate imperative language is mostly very ordinary
and provides arrays, loops, assertions and so on. It also adds one,
crucial, new feature: virtual copying.

Virtual copying is the mechanism that allows us to express
safe re-use of storage. Given an array arr1, the statement arr2 :=
vcopy(arr1) creates an array arr2 that gives the illusion of being a
copy of arr1. Semantically, it is as if we had written:

arr2 := new int[len(arr1)];
for i := 0 to len(arr1) − 1 do arr2[i] := arr1[i]

However, arr2 := vcopy(arr1) does not really make a copy of arr1.
Rather, it makes arr2 be an alias of arr1, a second pointer to the
same underlying array. The compiler makes sure that the program
behaves the same as if a real copy had been made.

To adapt the example from the introduction towork in place, writ-
ing its result to arr1, we just replace the line result := new int32[n]
with result := vcopy (arr1). This gives the following program:

result := vcopy(arr1);
for i := 0 to n − 1 do

result[i] := (arr1[i] + 1) ∗ arr2[n − i − 1]

In this program, result and arr1 refer to the same underlying storage,
but the compiler checks that they can safely share storage—that the
program would work the same if the vcopy were replaced with a
physical copy. This is a whole-program property—in this case, the
vcopy is safe provided that a) arr1 is not used in the remainder of
the program, and b) arr1 and arr2 do not share storage. In the next
section we will see how to check safety.

Finally, note that new and vcopy bind their result, rather than
assigning it. That is, they create a new variable rather than updating
an existing variable. This is important for verification because it
makes alias analysis trivial: given any array variable, we can easily
see exactly which other arrays it shares its underlying storage with.

3 REDUCING SAFETY TO ASSERTION
CHECKING

In this section we show how to reduce safety checking to a standard
program verification problem. The next section describes how we
solve the resulting verification problem.

Safety at Speed FHPNC 2019, August 18, 2019, Berlin

We verify a whole, closed program, not a function with inputs
and outputs. Let us wrap the running example to make it a complete
program:

arr1 := new int[n];
arr2 := new int[n];

-- code to populate arr1 and arr2 omitted
result := vcopy(arr1);
for i := 0 to n − 1 do

result[i] := (arr1[i] + 1) ∗ arr2[n − i − 1];
for i := 0 to n − 1 do print(result[i]) -- consume the result

Recall that a vcopy creates an alias of an array but gives the illusion
of copying the array. The compiler’s job is to make sure that this
illusion is preserved, by checking that the program behaves the
same as if a real copy had been made. In fact, the illusion can only
be broken in one specific case: if two arrays share the same storage,
writing some index idx in one array and then reading index idx in
the other will give the wrong result. All we have to do is check that
this situation is impossible.

Imagine that we want to check that the illusion holds for a single
value of idx, say checkedidx. We can do this by transforming the
program in the following way:
• For each array arr , we introduce a new Boolean variable
readablearr . This variable is going to be true if it is safe to
read arr[checkedidx].
• After we write to arr [i], we check if i = checkedidx. If it is,
reading arr[checkedidx] is safe (it will return the value that
was just written), but reading any of its aliases is unsafe. We
therefore set readablearr to true, and set the readable flag of
all arr’s aliases to false. (Recall from the previous section
that we can determine an array’s aliases syntactically.)
• Before we read arr[i], we check if i = checkedidx. If it is, we
assert that readablearr is true. (If it is false, the illusion is not
preserved: the value returned by arr[i] would not be taken
from this array but from one of its aliases.)
• When creating an array, we set its readable flag to true.When
copying an array, we copy the new array’s readable flag from
the old array’s.

For the program above, only arr1 and result are aliases. The
transformation results in the following program:

arr1 := new int[n]; readablearr1 := true;
arr2 := new int[n]; readablearr2 := true;

-- code to populate arr1 and arr2 omitted
result := vcopy (arr1); readableresult := readablearr1;
for i := 0 to n − 1 do begin

if i = checkedidx then assert readablearr1;
if n − i − 1 = checkedidx then assert readablearr2 ;
result[i] := (arr1[i] + 1) ∗ arr2[n − i − 1];
if i = checkedxix then begin
readableresult := true;
readablearr1 := false

end
end;

for i := 0 to n − 1 do begin
if i = checkedidx then assert readableresult ;
print(result[i])

end

Now we send this transformed program to a program verifier, and
ask it to check that the generated assertions pass for all possible
values of checkedidx. (To quantify over all values of checkedidx,
we can for example make checkedidx be an extra argument to the
program.) If the verifier reports that all assertions always pass, then
the use of vcopy is safe. Otherwise, there may be a safety bug and
the program is rejected. Once the transformed code is verified, it is
discarded: only the original code is compiled to machine code for
execution.

Let us work through the transformed program above. Initially,
all the readable variables are true. At first, we are running loop iter-
ations where i < checkedidx; all the readable variables remain true
this whole time. At some point, we reach the loop iteration where
i = checkedidx. The first assertions pass, and then readablearr1
is set to false. This means that it is no longer allowed to read
arr1[checkedidx]. However, from now on we have i > checkedidx
so none of the assertions are triggered. We can therefore see that all
the assertions in this program pass, and the original use of vcopy
was safe.

Let us see what happens if we introduce a safety error into the
program above:
• If we change the final printing loop so that it prints arr1[i]
instead of result[i], then the transformed programwill check
that readablearr1 holds. This will fail at the iteration i =
checkedidx because, as discussed above, the first loop sets
readablearr1 to false.
• If we change the line result := vcopy (arr1) so that it reads
result := vcopy (arr2), then the assertion will fail for all
values of checkedidx less than n / 2. For example, in the case
checkedidx = 0, the iteration i = 0 will set readablearr2 to
false. When i = n − 1 we have n − i − 1 = checkedidx and so
the line assert readablearr2 will fail. The verifier will thus fail
to prove that the assertions pass for all values of checkedidx
and the program will be rejected.

4 VERIFYING THE SAFETY CONDITIONS
The job we have left is to verify that all the assertions in the trans-
formed program pass. Of course, this is an undecidable problem;
solving it in general requires reasoning about loop invariants. The
approach we take is fairly standard and combines two techniques:
satisfiability modulo theories (SMT) solvers for reasoning about
straight-line code, and predicate abstraction [15] for discovering
loop invariants.

SMT solvers such as Z3 [11] check if a first-order formula is
satisfiable with respect to some logical theory. SMT solvers sup-
port many theories that are useful for program verification, such
as arrays, bit vectors and integers. Formulas using these theories
provide a rich modeling language that can be used to reason about
for example bounds checks and bit-twiddling code.

We use an SMT solver to reason about straight-line code, and
code where loop invariants have already been inferred. Our verifier
maintains a context, which is a mapping from program variables

FHPNC 2019, August 18, 2019, Berlin Aronsson et al.

to symbolic SMT values. We then step through the program, using
the SMT solver as a sort of souped-up symbolic evaluation engine.
When we reach an assignment statement, we update the context;
when we reach an if-then-else, we locally assert the value of the
if-test in each branch; when we reach a loop, we ask the SMT solver
to prove that the invariant is initially true and preserved by the loop
body. This approach is quite standard and modelled on Flanagan
and Qadeer [15].

We also use the SMT solver to optimise away assertions present
in the program. When we reach an assertion, we evaluate the ex-
pression in the current context to get a Boolean formula, and ask
the SMT solver to prove this formula true. If the SMT solver finds a
proof, we remove the assertion, since it must always hold.

We use predicate abstraction to compute loop invariants. Predi-
cate abstraction takes as input a set S of “interesting” Boolean ex-
pressions. It computes the strongest invariant that can be expressed
as a Boolean combination of the expressions in S . For example, to
discover an invariant such as i > 0 ∧ (j ⩽ i ⇒ arr [j] < arr [i]),
the set S would need to contain the formulas i > 0, j < i and
arr [j] < arr [i].

Predicate abstraction is useful because finding interesting Boolean
expressions is often easier than finding a whole invariant. It is also
modular: we can add Boolean expressions from many sources and
let the predicate abstraction algorithm find the right way to com-
bine them. Co-Feldspar allows the user to give “hints”, Boolean
expressions which are added to the set S , and verification of combi-
nators is often simpler when the combinators define appropriate
hints.

We have two automatic heuristics for populating the set S of of
Boolean expressions:
• When accessing an array arr[i], the formulas i ⩽ checkedidx
and i ⩾ checkedidx are added to S .
• For any array arr , the variable readablearr is added to S .

For our example program, these two heuristics add (among oth-
ers) the expressions i ⩽ checkedidx and readablearr1, from which
predicate abstraction finds the loop invariant i ⩽ checkedidx ⇒
readableinput for the main loop of the program. This invariant is
proved to hold, and the SMT solver is then able to verify the safety
of the program. This process is entirely automatic.

4.1 Invariantless Verification for For-Loops
Consider the variant of our example where we store the result
(safely) in arr2:

-- initialisation of arr1, arr2 elided
result := vcopy (arr2);
for i := 0 to (n − 1) / 2 do begin

x := arr2[i];
y := arr2[n − i − 1];
result[i] := (arr1[i] + 1) ∗ y;
result[n − i − 1] := (arr1[n − i − 1] + 1) ∗ x

end

Verifying the safety of this vcopy requires discovering a rather com-
plex invariant (the reader may like to puzzle it out). As mentioned
in the last section, the user can give “hints” for suitable invariants,
but it is not practical to expect the user to give reasonable hints. It

may be possible for the pairwise combinator to supply such a hint,
but currently it does not.

Instead, we are able to prove the safety of this loop without
finding a loop invariant. The idea is as follows. Suppose we are
given a for-loop of the form

for i := 1 to n do S

and that, in this for-loop, there is an array read arr[j] which we
want to verify. Now, suppose that this array read is unsafe. This
means that readablearr must be false during the unsafe loop itera-
tion. Furthermore, one of the following must be true:

(1) readablearr was false before starting to execute the for-loop;
(2) Some iteration of the for-loop set readablearr to false, and

the same iteration performed the unsafe read;
(3) Some iteration of the for-loop set readablearr to false, and a

later iteration performed the unsafe read.
If we can show that none of these three cases can occur, then

the read arr[j] must in fact be safe. We eliminate the first case by
asking the SMT solver if readablearr is true at the current program
point. We eliminate the second case by asking the SMT solver to
verify that the following program does not trigger an unsafe read:

havoc;
assume (readablearr);
S

where havoc is an operation that puts the SMT solver into an arbi-
trary state satisfying the loop invariant, and assume (readablearr)
allows the SMT solver to assume that readablearr is true.

The third case is the most complicated. We eliminate it by consid-
ering two loop iterations, not necessarily consecutive, and checking
that it cannot be the case that the first iteration sets readablearr to
false and the second iteration triggers an unsafe read. This amounts
to checking that the following program does not trigger an unsafe
read:

-- First put the program into an arbitrary state
-- satisfying the loop invariant

havoc;
oldi := i;

-- Assume that readablearr is initially true
-- but made false by the loop body

assume (readablearr);
S;
assume (¬ readablearr);

-- Now go into a later loop iteration, in which readablearr must
-- still be false and the loop counter must have increased

havoc;
assume (¬ readablearr);
assume (i > oldi);
S

If all three verification problems pass, the read in question is safe.
This technique works well for loops where distinct iterations read
and write to disjoint sets of array indices. In particular, it works
for the example above. The SMT solver reasons as follows for the
three cases:

Safety at Speed FHPNC 2019, August 18, 2019, Berlin

(1) readablearr cannot be false before executing the loop.
(2) In each loop iteration, the reads to arr2 come before the

writes, so this cannot fail.
(3) From the loop invariant we know that 0 ⩽ i < n/2. Hence if

i < j then the sets {i,n − i − 1} and {j,n − j − 1} are disjoint,
and it is not possible to have a write to result[checkedidx]
followed by a read from arr2[checkedidx].

Hence the SMT solver verifies the safety of the vcopy here. Note
that verifying safety requires reasoning about arithmetic to see
that distinct loop iterations work on disjoint parts of the array.
The fact that the SMT solver understands arithmetic makes this
problem possible to verify. The same method proves safety of the
FFT example in Section 6, but there the SMT solver needs to use its
knowledge of bitvectors to understand the bit-twiddling that goes
on in the array indexing.

4.2 Static Verification of Assertions
In Feldspar, array accesses generate bounds checks, which are ex-
pressed as assertions in the generated imperative code. The user
can also add their own assertions, which can be useful to express
function preconditions or invariants. The program verifier tries to
prove each assertion it comes across; if it can prove the assertion, it
removes the assertion. Assertions left in the generated code that are
not function preconditions often indicate potential runtime errors.

5 CO-FELDSPAR
In this section we give a brief overview of the co-Feldspar language,
in which we have implemented our verifier. co-Feldspar is a do-
main specific language for the design of digital signal processing
algorithms, embedded in Haskell and capable of generating code
in C. Its roots in signal processing are reflected by the fact that
it is an array programming language at its core: it is deliberately
minimal and based on a low-level, but functional, representation
of imperative programs. Although it is small, its core permits the
addition of higher-level interfaces.

Statements in co-Feldspar are terms in its Prog monad, whereas
expressions are pure; operations with side effects, such as those
utilizing memory access, must take place at the statement level
in the context of Prog. Memory is manipulated via non-nullable
references that, in the case of arrays, are created, read and written
using newArr, getArr, and setArr statements:

newArr :: Exp Length → Prog (Arr a)

getArr :: Arr a → Exp Ix → Prog (Exp a)

setArr :: Arr a → Exp Ix → Exp a → Prog ()

Where Exp is some expression type—as our focus will be on the
verification of statements, we simply assume Exp supports whatever
functionality we require.

As an example, the following function generates a program snip-
pet that modifies a specific value in a given array:

inc :: Arr Int32 → Exp Ix → Prog ()

inc arr ix = do

val ← getArr arr ix

setArr arr ix (val + 1)

To compile inc, we first wrap it in a program that reads the index
and array length from standard input. This wrapper is then given
to the compiler’s icompile:

icompile :: Prog () → IO ()

which generates and prints the following C (some variable declara-
tions are omitted for brevity):

int main() {

fscanf(stdin , "%u", &v0);

fscanf(stdin , "%u", &v1);

uint32_t _a2[v0];

uint32_t *a2 = _a2;

assert(v1 < v0 && "getArr out of bounds.");

v3 = a2[v1];

assert(v1 < v0 && "setArr out of bounds.");

a2[v1] = v3 + 1;

...

}

Note the two assertions generated in the above C for each of the
two potentially unsafe array operations: the correctness of inc
depends on the length of arr being greater than the index ix. This
condition is not explicitly stated by inc and the internal assertions
for getArr and setArr are thus necessary to check that inc does
not index arr out of bounds.

Conditions and assumptions can be introduced with the assume,
which ensures that a program simply does not execute if its as-
sumption is wrong, and assert, which are checked each time it
is executed and, in contrast to assumptions, can be removed by
the verifier if its condition is found to always hold. For example,
adding the assert (ix ⩽ length arr) to the wrapper of inc
ensures its index will stay within bounds and allow the verifier
to discard the two internal assertions before any C is generated.
The verifier is typically called with iverify, which attempts to
statically verify assertions and invariants and prints the resulting
program; if assertions cannot be verified, or a potential crash is
detected, the assertions are left in place and errors are printed for
whatever statements it found to be unsafe.
iverify :: Prog () → IO ()

Other than the mutable arrays presented so far, co-Feldspar also
supports immutable arrays and includes statements for converting
between mutable and immutable arrays as well as expressions for
indexing into immutable arrays. Two such statements are provided:
unsafeFreeze which turns a mutable array into a immutable one,
and unsafeThaw which turns an immutable array back into a mu-
table one.
unsafeFreeze :: Arr a → Prog (IArr a)

unsafeThaw :: IArr a → Prog (Arr a)

The above two statements are labeled as unsafe since no copies
are created in the conversion—the converted array is actually a
reference to the original array, with a new type. The intention is,
of course, that the original array should not be mutated while the
converted array is alive, and the co-Feldspar verifier will check
that this is the case: unsafeFreeze and unsafeThaw are imple-
mented directly using vcopy. (The “unsafe” epithet is historical,

FHPNC 2019, August 18, 2019, Berlin Aronsson et al.

since co-Feldspar originally had no safety verifier.) We can combine
unsafeFreeze and unsafeThaw to create a user-level vcopy:

vcopy :: Arr a → Prog (Arr a)

vcopy = unsafeThaw . unsafeFreeze

5.1 Array Abstractions
As far as array computations go, the program type and its array
instructions impose a fairly low-level, imperative style with explicit
memory usage. In order to get back a higher-order compositional
style of array programming, co-Feldspar provides pull arrays: a
functional abstraction of arrays built on top of the core language
that, as its name implies, excel at pulling out values from an array,
and the operations it can efficiently implement are examples of
this property. By the time the compiler is called, pull arrays are
all but evaluated away and leave behind low-level programs with
optimized loops. A pull array consists of a length and a function
from indices to values:
data Pull a where

Pull :: Exp Length → (Exp Ix → a) → Pull a

Pull arrays are notable for their non-recursive definition, which
enables aggressive fusion; the composition of two pull arrays will
not allocate any intermediate memory at run-time. As an example,
consider a function which calculates differences between adjacent
elements of a pull array:

diff (Pull l f) = Pull (l-1) (λi → f(i+1)-f(i))

Composing two or more applications of diff will result in a func-
tion that, once evaluated, returns a single pull array where all
intermediate arrays have been eliminated:

diff (diff (Pull l f))

⇒ diff (Pull (l-1) (λi → f(i+i)-f(i))

⇒ Pull (l-2) (λi → f(i+2)-f(i+1)-f(i+1)+f(i))

While fusing away intermediate arrays is often what we want
when composing array functions, it is sometimes important to
compute and store such arrays in memory, for example, to facilitate
their sharing—even in diff there are two duplicate calls to f(i+1)
as a result of fusion. Therefore, co-Feldspar provides the manifest
function which stores a pull array in a given array:

manifest :: Arr a → Pull a → Prog (Arr a)

manifest arr (Pull len f) =

for (0, 1, min (length arr) len) $ λix →
setArr arr ix (f ix)

Using manifest, both manifestFresh and manifestReuse can
be defined:
manifestFresh :: Pull a → Prog (Arr a)

manifestFresh pull = do

arr ← newArray (length pull)

manifest arr pull

manifestReuse :: Arr a → Pull a → Prog (Arr a)

manifestReuse arr (Pull len f) =

copiedArr ← vcopy arr

manifest copiedArr pull

Manifesting pull arrays into mutable ones allows us to arbitrarily
split up an array computation into a sequence of intermediate arrays.
As an example, consider the following program snippet:

vec :: Prog (Exp Int32)

vec = sum $ map (*2) $ (1...10)

First, (...) generates a pull array over all values in the range from
one to ten. Then a mapping is applied with map to double the pull
arrays’ values before they are summed together with sum (these
are pull array variants of the common list operations with similar
names). We can split this computation into its three steps with a
single array to hold each intermediate array:

vec :: Prog (Exp Int32)

vec = do

arr ← newArr 10

brr ← manifest arr $ (1...10)

crr ← manifest arr $ map (*2) brr

return $ sum crr

There are however cases where a single pull array is not enough
to safely express a vector computation, even when intermediate
arrays are manifested. For instance, consider the following example:

bad :: Prog (Exp Int32)

bad = do

arr ← newArr 10

brr ← manifest arr $ (1...10)

crr ← manifest arr $ reverse brr

return $ sum crr

First the array arr is allocated and initialized into brr, after which
the reverse of brr is computed and also stored in arr. Given that
reverse is implemented as:

reverse vec = Pull len (λi → vec ! len -i-1)

where len = length vec

Manifesting crr into arr creates a for loop that will read indices
out of arr that has already been modified, which leads to quite
unexpected results.

co-Feldspar provides a safer alternative to the single array mani-
festation above with its double buffered storage type Store. A store
is simply a pair of arrays, one marked as active and another as
free, and each manifestation updates the active buffer and swaps
it out for the free one. That way, a computation does not run the
risk of overwriting the previous one. The price of a buffer is that it
allocates twice as much memory as the single array solution.

Stores are defined and created as follows:
data Store a = Store (Arr a) (Arr a)

newStore :: Exp Length → Prog (Store a)

newStore l = Store <$> newArr l <*> newArr l

And the manifestation of pull arrays into stores is given by store:

store :: Manifestable vec ⇒ Store a → vec a →

Prog (Arr a)

which writes the contents of a vector to its input buffer, swaps the
buffers, and reads it back as an array, without making any copies.
In contrast to the previous manifest function, store accepts any

Safety at Speed FHPNC 2019, August 18, 2019, Berlin

Manifestable array, that is, any array type that can be stored in
Arr array. Rewriting bad to make use of stores, instead of a single
array, makes the program behave as expected:

good :: Prog (Exp Int32)

good = do

st ← newStore 10

arr ← store st $ (1...10)

brr ← store st $ reverse arr

return $ sum brr

Not all cases where a single array is used for storage are however
necessarily bad. In fact, they can be used to implement in-place
updates if done correctly. Single arrays stores can be implemented
for Store as well, we simply give it a single fresh array and a virtual
copy of it:

newInPlaceStore :: Exp Length → Prog (Store a)

newInPlaceStore do

arr ← newArr l

brr ← vcopy arr

return (Store arr brr)

As with every use of vcopy, inplaceStore creates a proof obliga-
tion that the store is used safely; it is not enough to replace the
previous store in good with an in-place store, since reverse would
exhibit the same problems as with a single array.

The problem is that reverse is simply not suited for in-place
updates with its current implementation. For reversing arrays in-
place, the common solution is to only traverse the array up to
its half-way point and update elements at both the current index
and the index at the opposite side simultaneously. This pattern is
actually quite common and can be generalized into a form of pair-
wise traversal over an immutable array, where each index consumes
some two values, as long as the first value is at a smaller index than
the second one. In co-Feldspar, the pairwise function implements
the pattern:

pairwise :: Immutable vec ⇒

(Exp Ix → (Exp Ix, Exp Ix)) →

vec a → Prog (Arr a)

Which makes use of a function to determine which two values to
consume for each index; the Immutable constraint accepts both
immutable and pull arrays.

With in-place stores and the pair-wise traversal of arrays it is
possible to define a in-place version of good as follows:

inplace :: Prog (Exp Int32)

inplace = do

st ← newInPlaceStore 10

arr ← store st $ (1...10)

brr ← store st $ reverse arr

return $ sum brr

where

reverse = pairwise (λix → (ix, 10-ix -1))

Connecting inplace to a simple wrapper lets us verify the program
as correct and generate the following C code (as before, definitions
are omitted for brevity):

int main() {

for (v1 = 0; v1 ⩽ 9; v1++)

a0[v1] = v1 + 1;

for (v2 = 1; v2 ⩽ 10 / 2; v2++) {

r3 = a0[v2 - 1];

r4 = a0[10 - (v2 - 1) - 1];

a0[v2 - 1] = r3;

a0[10 - (v2 - 1) - 1] = r4;

}

state5 = 0;

for (v6 = 0; v6 < 10; v6++)

state5 = a0[v6] + state5;

...

}

6 A CASE STUDY: FFT
The Discrete Fourier Transform (DFT) is specified as:

Xk =
n−1∑
j=0

x jW
jk
n

where Wn = e−2πi/n is an nth root of unity. There are n sum-
mations, each of n elements, resulting in O(n2) complexity. Any
algorithm that brings the complexity down to O(n loд n) is known
as a Fast Fourier Transform (FFT) and plays a central role in digital
signal processing [12].

Cooley and Tukey’s radix 2 Decimation in Frequency FFT (DIF)
algorithm is one of the simplest and best known [10]. It consists
of n = loд N stages, each of which is made up of different arrange-
ments of 2 input DFT components along with some multiplications
by twiddle factors. A final permutation called bit reversal produces
an output array identical to that produced by DFT. That one can
make such a reduction in complexity is due to the rich algebraic
properties of theW j

n terms—commonly referred to as twiddle fac-
tors, and the sharing of intermediate expressions. Various simple
FFT implementations were explored in a paper about an early ver-
sion of the Feldspar DSL [5], arriving at one that precomputed the
twiddle factors, placing them in an array of length N /2 [6]. We
rewrite the resulting FFT of that earlier exploration here, with the
more explicit memory management of the newer co-Feldspar.

In the DIF algorithm, for input of length N , the even and odd-
numbered parts of the output are each computed by a DFTwithN /2
inputs. The inputs to those two half-sized DFTs can be computed by
N /2 two-input DFTs. These smaller DFTs are then combined via but-
terfly networks, which themselves are size-2 DFTs pre-multiplied
by twiddle factors. Nevertheless, a group of butterflies with length
2k+1 can be defined as follows:
bfly :: Immutable vec ⇒ Exp Ix → vec →

Pull (Exp Complex)

bfly k as = Pull (length as) $ λi →
let a = as ! i

b = as ! flipBit i k

in (testBit i k) ? (b-a) $ (a+b)

flipBit i k = k `xor ` (1 .<<. (i2n i))

testBit a i = i2b (a .&. (1 .<<. i2n i))

FHPNC 2019, August 18, 2019, Berlin Aronsson et al.

For each index i , the kth bit of the indexed is used to determine
if this output is to be given by an addition or a subtraction. The
Immutable constraints is simply a collection of properties that
immutable arrays display, such as supporting the pure indexing
of (!), and accepts both pull arrays and regular immutable arrays.
i2b and i2n are used to convert an integer to a boolean and an
integer to a floating-point number, respectively.

Multiplication by twiddle factors for an n input FFT, which takes
place only on the second half of the input, is again determined by
the kth bit of index i and defined as:
twids :: (Immutable tws , Immutable vec) ⇒

tws → Exp Ix → Exp Ix → vec →

Pull (Exp Complex)

twids tws n k vec = Pull (length vec) $ λi →
let j = (leastBits k' i) .<<. (n'-1-k')

in (testBit i k) ? (tws!j * vec!i) $ (vec!i)

where

n' = i2n n

k' = i2n k

leastBits i a = a .&. complement (ones .<<. i)

Note that twids only handles the multiplication of twiddle factors
with the input vec, the terms themselves are given through the
parameter tws. By factoring out the terms we avoid unnecessary
recomputation and can precompute the terms elsewhere.

The composition of bfly and twids makes out a step in the
iterative DIT algorithm. To recover the bit-order of the original
DFT algorithm we must perform a bit-reversal permutation of the
final output. For blocks of length 2k , the bit-reversal will reverse
the k least significant bits of the binary representation of each index
of the array, leaving all other bits alone. However, for the sake of
clarity of our example, we will leave the output in its bit-reversed
form and focus on the butterfly networks.

We define core of the FFT algorithm as a loop, where each a
iteration takes one step in the iterative DIT algorithm:

fftCore st n tws vec =

let step i = return . twids tws n i . bfly i

in loopStore st (low ,-1,0) (step . i2n) vec

where low = i2n n - 1

The first argument is a double buffered store used to hold the
intermediate arrays in each step of loopStore, a loop reminiscent
of the standard for-loop but each iteration produces an update of
an initial array and stores them in a buffer to avoid unnecessary
copies:

loopStore :: Immutable vec ⇒ Store a → Range →

(Exp Ix → Arr a → Prog (vec a)) → vec a →

Prog (Arr a)

The second argument of fftCore is a vector of precomputed twid-
dle factors–as the twiddle factors don’t change once computed
they can be shared across multiple FFT runs as arguments. n is the
number of stages needed in the FFT and vec the input vector, it is
assumed that l = 2n where the length of vec.

fftCore is typically called for an input vector vec as follows:

fft :: Immutable vec ⇒ vec (Exp Complex) →

Prog (Arr (Exp Complex))

fft vec =

do st ← newStore (length vec)

n ← shareM (ilog2 (length vec))

ts ← manifestFresh $

Pull (twoTo (n-1)) (tw (twoTo n))

fftCore st n ts vec

twiddle n k = polar 1 (-2 * pi * i2n k / i2n n)

twoTo n = 1 .<<. i2n n

That is, the first line allocates a new double-buffered store of the
appropriate length, and the next line computes the number of stages
using the integer base-2 logarithm. The third line precompute the
twiddle factors, which is fed to fftCore in the fourth line. That is,
fft takes care of an FFT’s setup phase.

Here is the inner loop of the generated C (local variable declara-
tions, assertions, and type casts are omitted for brevity):

for (v11 = 0; v11 ⩽ v0 - 1; v11++) {

...

if (v11 & 1 << v10) {

if (v11 & 1 << v10) {

b13 = a2[v11 ^ 1 << v10] - a2[v11];

} else {

b13 = a2[v11] + a2[v11 ^ 1 << v10];

}

b12 = a6[(v11 & ∼(4294967295 << v10))

<< v1 - 1 - v10] * b13;

} else {

if (v11 & 1 << v10) {

b14 = a2[v11 ^ 1 << v10] - a2[v11];

} else {

b14 = a2[v11] + a2[v11 ^ 1 << v10];

}

b12 = b14;

}

a3[v11] = b12;

}

Note that the same conditional is repeated twice as a consequence
of testBit being called twice, once in twids and once in bfly.
Had we joined twids and bfly into one function this could have
been avoided, but most clever C compilers will optimize away the
inner if-statements regardless.

A similar FFT to the above one has been benchmarked previously
and the generated C was found to perform reasonably well [3]. In
order to achieve its speed, however, the compiler was explicitly told
to not generate any assertions—sacrificing safety for performance.
We repeat the earlier benchmarks here but instead rely on the
verifier to safely improve the performance.

We start by replacing the out-of-place store with an in-place
one: the butterfly networks, and subsequent multiplication with
twiddle factors, form a bijective mapping that can be structured
such that no input is read after its output has been set. That is,
for a step at size i, if we consider for each index k together with
flipBit k i then pairwise can be used to consume the inputs.

Safety at Speed FHPNC 2019, August 18, 2019, Berlin

To implement the change we first replace the double-buffered store
with an in-place one:

fft vec = do

st ← newInPlaceStore (length vec)

...

The introduction of pairwise is then straightforward:

fftCore st n tws vec =

let step i =

return

. pairwise (λk → (insertZero i k,

insertOne i k)

. twids tws n i

. bfly i

...

where insertZero i k inserts a 0 at bit i of the binary repre-
sentation of k , and insertOne i k inserts a 1.

We also add two assertions to fft that ensure that the input
array’s length is a power of two and that it has at least two elements:

fft vec =

let len = length vec

assert (1 `shiftL ` n == len) "length is 2^n"

assert (len ⩾ 2) "length is large enough"

st ← newInPlaceStore (length vec)

...

The verifier automatically proves the safety of the in-place store,
and removes all generated bounds check assertions from the FFT.
To do so, it makes essential use of the two assertions: the bounds
checks fail if the array size is not a power of two or less than two.
The verifier took about 10 minutes to run, but we believe it can be
made much faster by careful engineering.

The program used to benchmark the FFT is built on the same
principles advocated by FFTW [16]: twiddle factors and number
of stages are precomputed before the measurement starts, the in-
put data is complex data in interleaved format, i.e., as arrays of
complex numbers. To report FFT performance, the mflops of each
FFT is plotted, which is a scaled version of the speed, defined by:
mflops = 5 ∗ N ∗ loд2(N)/T , where N is the number of data points
and T the time for one execution of the FFT in microseconds. The
results of our benchmarks are given in figures 1 and 2. Each line rep-
resents one variant of the FFT and is identified by a two-character
string consisting of in-place/out-of-place (I /O) and assertion re-
moved/assertions retained (A/N). For example, IA denotes the speed
of our in-place FFT when the verifier has not been permitted to
remove provable assertions. Figure 1 shows the raw speed of each
version, while figure 2 shows the speed relative to IN .

For smaller arrays, there is no big difference between the in-
place and out-of-place FFTs, but eliminating assertions increases
speed by about 15%. This indicates that gcc was not able to elim-
inate all bounds checks by itself. This is not surprising, since to
discharge them the compiler must reason about bit-level properties
of numbers and use the fact that the array size is a power of two.

As the input array size approaches the machine’s L2 cache size,
which was 8 MB, running the FFT in place becomes more important:

Figure 1: double-precision complex transforms (x-axis
shows size of input array)

Figure 2: relative performance of FFT variants (x-axis shows
size of input array)

the out-of-place FFT suddenly drops to 80% of the speed of the in-
place FFT. The difference between IN andOA is almost 30%. As the
array size becomes bigger still, both versions of the FFT suffer from
cache pressure, but the in-place version is still faster.

7 IMPLEMENTATION
Our copy verification is built on top of co-Feldspar, which in turn
is embedded in Haskell. co-Feldspar relies on Haskell to parse,
typecheck, and desugar programs into its internal representation,
which we then traverse to generate first-order logic and invoke
a theorem prover for. This internal representation of co-Feldspar
is a model of imperative programs. The general idea is that the
monadic programs we write in Haskell can be viewed as sequences
of primitive instructions, which makes their translation into first-
order logic straightforward.

7.1 Programs
At the core of co-Feldspar is an abstract data type called Program,
which captures imperative programs as monadic computations [1,

FHPNC 2019, August 18, 2019, Berlin Aronsson et al.

14]. Programs in co-Feldspar are parameterized on the primitive
instructions that make out their statements. The instructions are
themselves higher-order functors and can be parameterized on the
programs they are part of to facilitate instructions with complex
control flow. Programs are implemented as follows:

data Program i a where

Return :: a → Program i a

Instr :: i (Program i) a → Program i a

Bind :: Program i a → (a → Program i b)

→ Program i b

The gist of the idea behind separating the instructions of pro-
grams from its monadic constructs is that an instruction’s effect
will only depend on its interaction with other instructions, which
permits their sequencing to be handled separately. Also, with the
aid of data types à la carte [22] and its type compositions opera-
tor (:+:), defining a instruction set for a program can be further
seperated into individual instructions. As an example, we define
part of the array language from section 2:

data Array m a where

NewArr :: Exp Length → Array m (Arr a)

GetArr :: Arr a → Exp Ix → Array m (Val a)

SetArr :: Arr a → Exp Ix → Exp a → Array m ()

data IArray m a where

UnsafeFreeze :: Arr a → IArray m (IArr a)

UnsafeThaw :: IArr a → IArray m (Arr a)

data Control m a where

Ife :: Exp Bool → m () → m () → Control m ()

For :: Range → (Val Ix → m ()) → Control m ()

data Assert m a where

Assert :: Maybe (Exp Bool) → Assert m ()

Assume :: Exp Bool → Assert m ()

Here Exp is some expression type, and Range is a tuple of the for
loop’s lower bound, step size, and higher bound, in that order. As
before, we focus on the statements and simply assume Exp supports
whatever functionality we might need.

Array and IArray provide primitives for the management of
mutable and immutable arrays. Control and Assert include prim-
itives for control statements and assertions. Note that Val play
a particular role: it is used whenever a value is produced by an
instruction and represents a value in any expression—an abstract
representation of values makes it easier to reuse instructions for
verification and ensures that noone, other than built in condition-
als, can pattern-match on values. Arr and IArr are used for similar
reasons but represents mutable and immutable arrays.

We define our array language by putting these instructions to-
gether and instantiating a program with them:

type Ins = Array :+: IArray :+: Control :+: Assert

type Prog = Program Ins

Functions for adding statements to a program are then defined by
injecting a statement from one of the smaller sets into a program:

newArr :: Exp Length → Prog (Arr a)

newArr = Instr . inj . NewArr

Code is generated from Prog by specifying the operational se-
mantics of each instruction in Ins and interpreting Prog [4]. For
the purpose of simplicity, however, consider the program type and
its instructions as compiled code, even though a few more steps are
actually required to run a program on a machine.

7.2 Verification
The Program type is somewhat unorthodox in that it includes a
bind, since it is difficult to analyze the part of a program that is
hidden behind its function. We therefore flatten a program into
a sequence of instructions without binders before it is verified—a
flat representation ensures a program’s syntax tree is static during
verification and allows our verifier to view the entire tree. The
sequence type is defined as follows:

data Sequence ins a where

Val :: a → Sequence ins a

Seq :: b → ins (Sequence ins) b →

Sequence ins a → Sequence ins a

Val lifts values into the sequence, and Seq takes a name and the
instruction it binds and a sequence of previous instructions.

Programs are transformed into sequences through a traversal
where embedded values are kept and binds are flattened and turned
into a sequential composition. Any instruction encountered dur-
ing this traversal are themselves converted into a first-order form,
flattening or removing any higher-order functions and programs
it contains, if any. For example, Control from section 7.1 uses a
function to model the body of a for loop, and is thus converted into
a equivalent, but first-order, form when lowered:

data FControl inv m a where

FFor :: Maybe inv → Range → Val Ix → m () →

FControl inv m ()

. . .

Note that not only did we flatten the function, but FControl is
also parameterized with a loop invariant; if a loop invariant is
added to a for loop, it is required to hold in the beginning of each
iteration. The remaining instructions from section 7.1 can be reused
for sequences:

type FIns = FControl :+: Array :+: IArray . . .

type Seq = Sequence FIns

The verification of a sequence of instructions like Seq is remi-
niscent of symbolic execution, except that an SMT solver is used
to do the symbolic reasoning: the state of a program is modeled
as the state of the SMT solver plus a context, which is a mapping
from variable names to SMT values. Symbolically executing a state-
ment modifies this state to become the state after executing the
statement. Typically, this modifies the context—when a variable
has changed—or adds new axioms to the SMT solver.

Verification is performed within a monad that facilitates the
manipulation of the underlying SMT solver and its context. The
monad supports branching on the value of a formula, executing one
branch if the formula is true and the other if the formula is false.

Safety at Speed FHPNC 2019, August 18, 2019, Berlin

It also takes care of merging the contexts from the two branches
afterwards, as well as making sure that any axiom added inside
a branch is only assumed conditionally. The monad is based on
a combination of the reader, writer, and state monads with the
following components:

type Verify = RWST

([SMTExp], Mode)

([SMTExp], [Warn], [Hint], [Name])

Context

SMT

Where SMTExp is the expression type of the underlying SMT solver
and SMT its monad type.

The reader monad in the Verify monad stack takes a list of
formulas that are true in the current branch and a mode setting
which determines whether the verifier should try to prove anything
or just evaluate programs. The writer monad takes a disjunction
which is true if the program has called break to exit the surrounding
loop and lists for the warnings, hints, and names generated to detect,
for example, a read of an uninitialized reference. The state monad
takes the context—a map from variables to SMT values.

As an example, the verification of assertions will evaluate its
condition within the current context of the monad and attempt
to prove that it holds. If the condition can be shown to hold, the
assertion is marked as unnecessary. On the other hand, if the con-
dition could be falsified, the condition is kept and is assumed for
the remaining verification. Such proof attempts are relayed to the
verifier through prove, and the whole verification of assertions is
defined as:
vAssert :: Assert m a → a → Verify (Assert m a)

vAssert (Assert (Just cond)) () = do

bool ← toSMT <$> eval cond

ok ← prove bool

if ok then do

return (Assert Nothing)

else do

assume bool

return (Assert (Just cond))

Instructions that manage data types, either references or arrays,
are verified by mapping its type to a corresponding representa-
tion in SMT types. In the case of arrays, two such types are used:
ArrCont and ArrBind. The first type, ArrCont, consists of two SMT
expressions that hold values for the array and its bounds. The sec-
ond type, ArrBind, consists of a name, for the source of the array,
and three SMT expressions that keep track of whether the array is
currently accessible, readable, and if it has previously been accessed
in an unsafe way. It is during the verification of NewArr that these
types are initialized and added to the context:

vArray :: Array m a → a → Verify (Array m a)

vArray (NewArr len) name = do

lenE ← eval len

var ← fresh name

poke name (ArrCont var lenE)

poke name (ArrBind name true true false)

Where poke writes a type to the context under a given name, and
fresh generates a new name.

The context and its two array types are queried whenever the
verifier needs to check if an array update is safe or not. For instance,
before an array value can be read the verifier must check that
the array is accessible and that the given index is safe to read. If
these conditions are not met, the array, and potentially its aliases,
are marked as having been accessed in an unsafe manner. This
procedure is implemented as:

vArray (GetArr arr ix) name = do

ixE ← eval ix

arr ← peek name

ok ← prove (accessible arr)

if ok then do

ok ← prove $

not (ix .==. skolemIx) .||. readable arr

unless ok $ do

warn "unsafe to read as frozen array"

unsafe arr

else do

warn "unsafe use of inaccessible array"

mapM_ unsafe (aliases arr)

hint ixE

poke name (ValueBind (value arr .!. ixE))

The second proof attempt, for skolemIx, performs the vcopy index
verification outlined in section 3. If any of the two proof attempts
fails, the array and possibly ins aliases are marked as unsafe with
unsafe, which sets the array’s unsafe access flag to true. The veri-
fication of the remaining instructions are implemented in a similar
manner.

Recall that verification is not only meant to identify unsafe in-
dexing into virtual array copies, but also to improve the original
program, as in the case of assertions that have been marked as
unnecessary. A re-functionalization is therefore included, which
turns our now improved first-order sequences back into higher-
order programs, which can then be included in other programs and
developed further. The verification of individual instructions, such
as the above vArray function, are put together into a verifier for
the instruction set FIns by a type class that distributes over data
types à la carte type compositions operator (:+:).

8 RELATEDWORK
A common approach for handling in-place updates in functional
languages is linear types [23]. Values belonging to a linear typemust
used exactly once, they cannot be duplicated or destroyed. Such
values can safely admit in-place array updates, and have inspired
the reference ownership typing of Rust. Linear Haskell [8] is an
extension of Haskell’s typing system to include linear types where
every function arrow can be declared linear to ensure functions and
constructors really only do consume its argument once. Although
linear types can make sure that an entire array is never read after
being destroyed, it is not able to reason about individual array
indexes, as this paper does.

Another language we should a mention is Futhark [17], a purely
functional data-parallel array language aimed at GPU programming.
Futhark employs a simple type system based on linear types that,

FHPNC 2019, August 18, 2019, Berlin Aronsson et al.

together with a restricted language of primitives, facilitates in-place
updates while still supporting equational reasoning about functions
and referential transparency. Combinators such as map are assigned
linear types, but there is no support for checking that a custom
array operation can be executed in place.

Rust [19] is another safe C language for developing reliable and
efficient systems. Rust’s static and affine type system is safe and
expressive and prevents pointer aliasing errors as well as provid-
ing strong guarantees about isolation, concurrency, and memory
safety. Its new type system enforces safe use of heap-based data
structures, hygienic macros, and reference counting garbage collec-
tion as a library. Rust has a framework for property based testing,
but lacks support for verification and static analysis of its pro-
grams. Spark/Ada [7] is language similar to Rust and provides
high-assurance embedded programming, with a contract language
and verification tools to prove invariants. While the language is pro-
grammed at a higher-level than typical C, it is also more restrictive
than Rust, in particular, there are no references in Spark.

Liquid Types [20] is a call-by-value functional language with a
similar goal to ours for verification. They offer a type system that
combines the classical Hindly-Miller type inference with predicate
abstraction to automatically infer dependent types that can be used
to prove safety properties for its programs. Functions are given
the usual types together with a refinement in a fixed language
of predicates and the extracted conditions are discharged by an
SMT-solver. Because the language of predicates is fixed, predicate
abstraction can accurately infer precise refinements, and hence
the burden for writing refinements on the programmer is quite
low. This language of predicates is however fixed, whereas our
verification method allows us full access to SMT theories at the
cost of some overhead for translating the statement. The other
major difference is that Liquid Types verify a single function at a
time, whereas our approach verifies the whole program. This means
that we get less precise error messages, but are able to verify code
whose correctness argument is nonmodular, important for in-place
algorithms.

Another, rather different, approach to refinement types is Dmi-
nor [9], which targets first-order functional languages instead and
combines the ideas of refinement types with a type-test—a boolean
expression testing whether a value belongs to a type. Their idea
is to allow refinements to be written in the same programming
language as programs are written; they formulate a semantic in
which expressions denote terms and types are interpreted as first-
order formulas. Expressions are however required to be pure, that
is, they must all terminate, and have a unique denotation; expres-
sions cannot depend on the current state of the store. Verification
conditions are derived and discharged automatically with the help
of Z3 [11]. The F* [21] language is similar in spirit to Dminor, as it
utilizes value dependent types to guide an automatic extraction of
verification conditions that discharged using theorem provers.

Ivory [13] is another language that is also similar to ours, and
enforces memory safety and tries to avoid most undefined behavior
while still providing low-level memory control. Ivory is embedded
in Haskell and capable of expressing pre- and post-conditions, it
can also emit run-time assertions to enforce them or use a model
checking back-end to statically verify that they hold. Type-level

regions are used to ensure memory references do not persist beyond
the scope of their containing region.

The general idea of safe languages is not exclusive to functional
languages and Cyclone [18] has done pioneering work in order
to create a safe dialect of C. Cyclone is designed from the ground
up to prevent the buffer overflows and memory management er-
rors that are common in C programs, while retaining C’s syntax
and semantics. Most of Cyclone’s language design indeed comes
directly from C; Cyclone uses the C pre-processor, and, with few
exceptions, follows C’s lexical conventions and grammar. In con-
trast to co-Feldspar, Cyclone does not provide macro-programming
facilities beyond its C pre-processor. The memory safety of Cyclone
is verified by both static analysis and run-time checks, dynamic
garbage collection is also offered with the help of memory regions.

9 CONCLUSIONS AND FUTUREWORK
We have presented an approach for improving the efficiency of
functional array languages without sacrificing safety. The approach
uses virtual copies of arrays to express in-place array transforma-
tions functionally, and a program verification engine to make sure
that the virtual copies are used safely. The programmer can define
array algorithms at a high level of abstraction and compile them
down to efficient in-place code with mutations and minimal bounds
checks. In the case study we performed, the combination of in-place
updates and bounds check removal increased performance by 30%
in some cases, without harming safety.

By using an embedded domain specific language co-Feldspar,
and Haskell’s type classes, we retain the elegance and modularity of
traditional functional array programming. We are mainly interested
in using co-Feldspar as the source language; however, the general
idea of virtual copies and their verification is not dependent on
co-Feldspar, and so may be of interest to other developers of array
languages.

We would like to improve upon the generation of invariant hints
for the solver, in order to speed up the verification of larger exam-
ples with a complex control structure. By evaluating virtual copies
on other signal processing algorithms, we plan to find useful in-
place execution strategies along the lines of pairwise. We would
also like to explore the use of virtual arrays as an automatic opti-
misation, for example, turning copies and allocations into virtual
copies where safe.

ACKNOWLEDGMENTS
The authors acknowledge the contributions to this work made by
Emil Axelsson and Anders Persson in the development of Feldspar
and its FFT library. This work was supported by the Swedish Re-
search Council (VR) grant 2016-06204, Systematic testing of cyber-
physical systems (SyTeC).

REFERENCES
[1] Heinrich Apfelmus. 2010. The Operational monad tutorial. The Monad. Reader

15 (2010), 37–55.
[2] Markus Aronsson and Mary Sheeran. 2017. Hardware software co-design in

Haskell. In ACM SIGPLAN Notices, Vol. 52. ACM, 162–173.
[3] Emil Axelsson. 2016. Benchmarking FFT in Feldspar. http://fun-discoveries.

blogspot.com/2016/11/benchmarking-fft-in-feldspar.html
[4] Emil Axelsson. 2016. Compilation as a Typed EDSL-to-EDSL Transformation

(Blog post). http://fun-discoveries.blogspot.se/2016/03/.

http://fun-discoveries.blogspot.com/2016/11/benchmarking-fft-in-feldspar.html
http://fun-discoveries.blogspot.com/2016/11/benchmarking-fft-in-feldspar.html
http://fun-discoveries.blogspot.se/2016/03/

Safety at Speed FHPNC 2019, August 18, 2019, Berlin

[5] Emil Axelsson, Koen Claessen, Mary Sheeran, Josef Svenningsson, David Eng-
dal, and Anders Persson. 2010. The design and implementation of Feldspar. In
Symposium on Implementation and Application of Functional Languages. Springer,
121–136.

[6] Emil Axelsson and Mary Sheeran. 2011. Feldspar: Application and implementa-
tion. In Central European Functional Programming School. Springer, 402–439.

[7] John Gilbert Presslie Barnes. 2003. High integrity software: the spark approach to
safety and security: sample chapters. Pearson Education.

[8] Jean-Philippe Bernardy, Mathieu Boespflug, Ryan R Newton, Simon Peyton Jones,
and Arnaud Spiwack. 2017. Linear Haskell: Practical linearity in a higher-order
polymorphic language. Proceedings of the ACM on Programming Languages 2,
POPL (2017), 5.

[9] Gavin M Bierman, Andrew D Gordon, Cătălin Hriţcu, and David Langworthy.
2010. Semantic subtyping with an SMT solver. In ACM Sigplan Notices, Vol. 45.
ACM, 105–116.

[10] James W Cooley and John W Tukey. 1965. An algorithm for the machine cal-
culation of complex Fourier series. Mathematics of computation 19, 90 (1965),
297–301.

[11] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In
International conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 337–340.

[12] Pierre Duhamel and Martin Vetterli. 1990. Fast Fourier transforms: a tutorial
review and a state of the art. Signal processing 19, 4 (1990), 259–299.

[13] Trevor Elliott, Lee Pike, Simon Winwood, Pat Hickey, James Bielman, Jamey
Sharp, Eric Seidel, and John Launchbury. 2015. Guilt free ivory. In ACM SIGPLAN

Notices, Vol. 50. ACM, 189–200.
[14] Emil Axelsson. [n. d.]. A version of Operational suitable for extensible EDSLs.

http://hackage.haskell.org/package/operational-alacarte
[15] Cormac Flanagan and Shaz Qadeer. 2002. Predicate abstraction for software

verification. ACM. https://www.microsoft.com/en-us/research/publication/
predicate-abstraction-software-verification/

[16] Matteo Frigo and Steven G Johnson. 2005. The design and implementation of
FFTW3. Proc. IEEE 93, 2 (2005), 216–231.

[17] Troels Henriksen, Niels GW Serup, Martin Elsman, Fritz Henglein, and Cosmin E
Oancea. 2017. Futhark: purely functional GPU-programming with nested paral-
lelism and in-place array updates. ACM SIGPLAN Notices 52, 6 (2017), 556–571.

[18] Trevor Jim, J Gregory Morrisett, Dan Grossman, Michael W Hicks, James Cheney,
and Yanling Wang. 2002. Cyclone: A Safe Dialect of C.. In USENIX Annual
Technical Conference, General Track. 275–288.

[19] Nicholas D Matsakis and Felix S Klock II. 2014. The rust language. In ACM
SIGAda Ada Letters, Vol. 34. ACM, 103–104.

[20] Patrick M Rondon, Ming Kawaguci, and Ranjit Jhala. 2008. Liquid types. In ACM
SIGPLAN Notices, Vol. 43. ACM, 159–169.

[21] Nikhil Swamy, Juan Chen, Cédric Fournet, Pierre-Yves Strub, Karthikeyan Bharga-
van, and Jean Yang. 2011. Secure distributed programming with value-dependent
types. In ACM SIGPLAN Notices, Vol. 46. ACM, 266–278.

[22] Wouter Swierstra. 2008. Data types à la carte. Journal of functional programming
18, 4 (2008), 423–436.

[23] PhilipWadler. 1990. Linear types can change the world. In IFIP TC, Vol. 2. Citeseer,
347–359.

http://hackage.haskell.org/package/operational-alacarte
https://www.microsoft.com/en-us/research/publication/predicate-abstraction-software-verification/
https://www.microsoft.com/en-us/research/publication/predicate-abstraction-software-verification/

	Abstract
	1 Introduction
	1.1 A First Example

	2 An imperative language for verification
	3 Reducing Safety to Assertion Checking
	4 Verifying the safety conditions
	4.1 Invariantless Verification for For-Loops
	4.2 Static Verification of Assertions

	5 co-Feldspar
	5.1 Array Abstractions

	6 A case study: FFT
	7 Implementation
	7.1 Programs
	7.2 Verification

	8 Related Work
	9 Conclusions and Future Work
	Acknowledgments
	References

