THESIS FOR THE DEGREE OF LICENTIATE OF ENGINEERING

Property-based testing for functional
programs

NICHOLAS SMALLBONE

CHALMERS | GOTEBORG UNIVERSITY

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY AND GOTEBORG UNIVERSITY
Goteborg, Sweden 2011



Property-based testing for functional programs
NICHOLAS SMALLBONE

(© 2011 NICHOLAS SMALLBONE

Technical Report 76L

ISSN 1652-876X

Department of Computer Science and Engineering
Research group: Functional Programming

Department of Computer Science and Engineering

CHALMERS UNIVERSITY OF TECHNOLOGY and GOTEBORG UNIVERSITY
SE-412 96 Goteborg

Sweden

Telephone 446 (0)31-772 1000

Printed at Chalmers
Goteborg, Sweden 2011



Abstract

This thesis advances the view that property-based testing is a powerful way
of testing functional programs, that has advantages not shared by traditional
unit testing. It does this by showing two new applications of property-based
testing to functional programming as well as a study of the effectiveness of
property-based testing.

First, we present a tool, QUICKSPEC, which attempts to infer an equational
specification from a functional program with the help of testing. The resulting
specifications can be used to improve your understanding of the code or as
properties in a test suite. The tool is applicable to quite a wide variety of
situations.

Second, we describe a system that helps to find race conditions in Erlang pro-
grams. It consists of two parts: a randomised scheduler to provoke unusual
behaviour in the program under test and allow replayability of test cases, and
a module that tests that all of the functions of an API behave atomically with
respect to each other.

Finally, we present an experiment we carried out to compare property-based
testing against test-driven development. The results were inconclusive, but
in the process we developed a black-box algorithm for automatically grading
student programs by testing, by inferring for each program a set of bugs that
the program contains.
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Introduction

Much of the effort in developing software goes into finding and fixing bugs.
A 2002 study [Tassey, 2002] found that software bugs cost the US economy
$60 billion a year. Bugs are, as they have always been, a thorn in the side of
software developers.

In traditional unit testing, we write down a set of test cases by hand that we
hope will expose any bugs in the software. For example, a test suite for a
stack might check that pushing an element onto the stack and then popping it
doesn’t alter the stack, with assertions such as:

pop (push 1 empty) == empty

pop (push 3 (push 2 empty)) == push 2 empty

pop (push -1 (push 3 (push 2 empty))) ==
push 3 (push 2 empty)

In our opinion, writing test cases by hand like this has a number of drawbacks:
e Coming up with individual test cases is a chore.

e There is a high risk that we will forget to test some edge case or other.

We might guard against this by using some coverage metric to check
that the test suite exercises the program in enough ways. However, such
metrics are only heuristics: a test suite with 100% coverage might still be
missing an important test case, and code coverage can give a false sense
of security [Marick, 1999].

e We should not add redundant test cases to our test suite, but it is not
clear how to tell if a test case is redundant. In the example above, since
we have a test case pop (push 1 empty) == empty we should probably
not include the similar test case pop (push 2 empty) == empty, because
both are likely to exercise the code in exactly the same way, and the only
effect of including the second test case will be to make the author of the
test suite type more.

The author of the test suite has to use their ingenuity to notice when
a test case is not needed, and if we mistakenly identify a test case as
redundant then we will end up with an incomplete test suite and may
miss a bug.



e If we want to have more confidence that the program is correct, it is not
possible to just tell the computer to run more tests: we have to come up
with and write down some more tests ourselves.

e Such test suites are of little use when testing concurrent programs, as we
will see later on.

Practitioners of property-based testing argue that writing properties instead
of test cases avoids all these problems, and we agree. The idea of property-
based testing is to write a specification of the system under test in a suitable
language, which is then tested using a large collection of test data invented by
the computer.

In functional programming the most popular tool for property-based testing is
QuickCheck [Claessen and Hughes, 2000], which we use throughout this thesis.
The user writes properties that can universally quantify over the set of test
data; QuickCheck then generates random test data to check the property. For
example, we can test the stack example above by writing a Haskell predicate
of type Stack -> Elem -> Bool:

prop stack elem = top (push elem stack) == stack
which corresponds to the logical property
Vstack Velem top(push(elem, stack)) = stack

QuickCheck will test the property by generating random stacks and random
things to push on them.

Because it automatically and unbiasedly generates test cases from a property,
QuickCheck isn’t prone to any of the problems we mentioned above: we can
test the property as thoroughly as we want, and QuickCheck will not “forget”
an edge case like a human tester might.

However, QuickCheck is more than just a tool for generating test cases:

1. QuickCheck properties are really specifications, which can be tested but
just as well model-checked [QCM] or, in principle, given to a theorem
prover [Cov]. Thus property-based testing can help to bridge the gap
between formal verification and unit testing. We do not explore this
further in the thesis, though.

2. QuickCheck properties are really programs, so we have the ability to write

more sophisticated tests than are common in traditional unit testing.
Using the terminology of software testing, a QuickCheck property is a
test oracle that has the freedom to decide whether or not the test case
passed.
This helps greatly with testing nondeterministic programs, where it’s not
possible to write down a single correct answer for each test case. Our
paper on finding race conditions relies on this ability, which is not really
present with “traditional” unit testing.

A recent paper not involving the author of this thesis [Hughes et al.,
2010] uses the power of QuickCheck properties to find concurrency bugs in



ejabberd, a popular instant messaging server. The kind of bugs found can
not really be tested for using traditional test cases, because it’s necessary
to analyse the test results extensively to tell if the test passed or failed.

The main aim of this thesis is to show that property-based testing has real
extra power over traditional unit testing when it comes to testing programs,
and is not just a convenient way to avoid writing test cases.

Random testing or exhaustive testing? QuickCheck generates its test
data at random: rather a scattershot approach to testing. This is frowned upon
by software testing people, who tend to prefer a more systematic approach to
test data generation.

The tool SmallCheck uses a property language similar to QuickCheck but gen-
erates test data exhaustively, up to a certain size bound, instead of at random.
This has the advantage that you have a stronger guarantee of what has been
tested once your property passes. It also becomes possible to extend the prop-
erty language by adding existential quantification, which is not really desirable
in QuickCheck: we would not really learn anything if a property Va3yP(z,y)
failed, because it might just mean that we weren’t able to guess the value of
the witness y; with SmallCheck, we know that there is no witness up to the
size bound.

It is not really clear if one method is better. Exhaustive testing is more pre-
dictable, but suffers from exponential blowup: we can only try small test cases.
By constrast, with random testing we can try much bigger test cases but can’t
explore the space of test cases as thoroughly. If a property only has one coun-
terexample then exhaustive testing is the best way to find it; but, normally
there is enough symmetry in the problem that if there is one counterexample
to a property then there are many similar counterexamples, in which case ran-
dom testing works well. With exhaustive testing we need to be careful not to
generate too many redundant test cases, just like when testing by hand, but
with random testing there is no harm unless the redundancy disturbs the dis-
tribution of test data: we are just sampling the set of test data and it makes
no difference how big that set is.

Hamlet [2006] studies the advantages and disadvantages of random testing and
concludes that, contrary to popular opinion, there are occasions when random
testing gives the best test data. The examples he points out are when the
input domain is large and unstructured, and when generating a sequence of
imperative commands to be executed. Ciupa et al. [2007] shows experimentally
that random testing works fine on object-oriented software, and that the worries
that random testing is too indiscriminate are unfounded.

Functional programming and testing We agree with the widely-held be-
lief that functional programs ought to be easier to test than imperative ones:

e They are easier to reason about and specify, and this advantage carries
over directly when testing functional programs using properties, which
are after all specifications.



e They tend to be more modular, as Hughes [1989] argues, so we ought to
be able to test them at a finer-grained level.

A recurring theme of the papers in this thesis is that avoiding side effects
has serendipitous effects on testing. As discussed below, the tools in the first
two papers are very much intended for a programming style with sparse side
effects—do the same thing in an imperative language, and the tools would lose
a lot of their power.

Paper I: QuickSPEC: Formal Specifications for Free!

It is all very well to trumpet the merits of property-based testing, but real
code often comes with no test-suite at all, let alone a nice set of properties.
QUICKSPEC is our tool that takes a side-effect-free module of a functional pro-
gram and, by testing it, produces equations that describe the functions of that
module, which can be turned into properties for testing or just used as an aid
for understanding the module.

For example, Hughes [1995] describes a library for pretty-printing that includes
the following functions:

($$), (<>») :: Layout —-> Layout -> Layout
nest :: Int -> Layout -> Layout
text :: [Char] -> Layout

A Layout is roughly a combination of text to be printed and layout information.
The text function turns any string into a trivial Layout; the nest function
takes any Layout and causes it to be indented when it’s printed; the $$ operator
combines two Layouts vertically, placing one on top of the other, whereas <> will
put one Layout next to the other, on the same line. The pretty-printing library
also includes a sep operator, which combines two Layouts either horizontally
or vertically: horizontally if there is enough space to do so, vertically otherwise.
This function is really where the power of the library comes from, but we leave
it out here for simplicity.

To run QUICKSPEC, we simply give the list of functions we want to test, in
this case the ones above. We also give QUICKSPEC any auxiliary functions and
constants that we think may be useful for specifying the API:

0 :: Int

(+) :: Int -> Int -> Int

" :: [Char]

(++) :: [Char] -> [Char] -> [Char]

In the current implementation, we also have to give a collection of variables
that the equations may quantify over:

i, j, k :: Int
X, ¥, z :: Elem
d, e, £ :: Layout
s, t, u :: [Char]



Once we have done this, QUICKSPEC finds the following equations (and no
others), all tested on several hundred randomly-generated test cases:

1: nest 0 4 ==

2: nest j (nest i d) == nest i (mest j d)
3: d<>nest i e == d<>e

4: nest (i+j) d == nest i (mest j d)

5: (d$$e)$$f == d$$(e$s$t)

6: nest i d<>e == nest i (d<>e)

7: (d$$e)<>f == d$$(e<>f)

8: (d<>e)<>f == d<>(e<>f)

9

: nest i d$¥nest i e == nest i (d$$e)
10: text s<>text t == text (s++t)
11: d<>text "" == d

These laws give us some insight into the behaviour of the pretty-printing library.
For example, law 3 tells us that horizontally composing two layouts, d<>e,
ignores the indentation level of e—in other words, only the indentation of the
first thing on each line counts. Law 9 tells us that when indenting a multi-line
layout, each line is individually indented. (If only the first line were indented,
we would instead see the law nest i d$$e == nest i (d$$e).) Line 10 tells
us that the characters in a string are composed horizontally when we use text.

In his paper, Hughes gives a list of 11 axioms that characterise the pretty-
printing combinators. 10 of these 11 are also found by QUICKSPEC! (The 11th,
which gives conditions when it is possible to push a <> inside a $$, is a little
too complicated for QUICKSPEC to find.) So QUICKSPEC redeems itself well in
this case when compared to a manually-written specification.

Related work Henkel et al. [2007] describe a similar system for Java pro-
grams. Their system also uses testing to generate equations that seem to hold
for a collection of functions. The existence of such a system might be surpris-
ing: after all, equations seem ill-suited to reasoning about imperative programs,
which are normally specified using pre- and postconditions.

Henkel et al. work around this by only dealing with programs that they know
how to model functionally. They do this by imposing a syntactic restriction
on the program fragments that can appear in their equations: the only thing
a program fragment can do is to invoke several methods of a single object, one
after the other. The arguments to the method calls must be atomic—variables
or constants.

This restriction means that each program fragment will only mention one ob-
ject, which neatly rules out aliasing. Because of this, they can model their
stateful methods by pure functions taking the “old” object to the “new” ob-
ject. This allows them to safely use equational reasoning.

Unfortunately, this restriction severely limits the scope of their tool: they are
not able to deal with nested method calls (calling a method and using the
result as the argument to another method) or indeed anything other than a
flat sequence of method calls. Similarly, they do not support binary operators:
if testing, say, a “set” class with their tool, they can find laws about insert



and delete but not union, since this will take a set as a parameter and their
tool can only deal with programs that mention just one set. Testing something
such as the pretty-printing library above is out of the question.

It is hard to see how to fix their tool to remove these restrictions.

Side effects are trouble All of their problems come from the fact that their
tool has to deal with side effects, which is unavoidable since a Java program
consists of nothing but side effects chained in the right order. By contrast, large
parts of functional programs are side-effect-free—even in an impure language—
so that we are able to completely disallow side effects in our equations and still
have a convincing tool.

We have considered adding support for code with monadic side effects to
QUICKSPEC, but it would indeed cause lots of complications. We would need
support for A-abstraction so that we could have equations containing monadic
bind. (We've attempted to represent program fragments without using A-
expressions but the resulting equational theory doesn’t seem to be strong
enough.) Aliasing might also cause trouble, although there is an equational
specification for mutable references that might help [Plotkin and Power, 2002].
What is clear is that this kind of tool is much more plausible in a functional
setting than an imperative one.

Paper II: Finding Race Conditions in Erlang with QuickCheck
and PULSE

Our second paper concerns finding race conditions in Erlang programs.

In our opinion, writing single test cases by hand is hopeless when it comes to
testing concurrent programs for race conditions, for two reasons:

1. Concurrent programs tend to be highly nondeterministic. Thus a single
test case may have several plausible correct outcomes, depending on what
order everything happened to execute in. The larger the test case, the
more possible outcomes, and there is often no obvious way to systemati-
cally enumerate those outcomes. Therefore, it can be hard even to say if
a test passed or failed.

2. Race conditions are famously hard to reproduce, and may reveal them-
selves only under very particular timing conditions. In order for a test
case to provoke such a race condition, you often need to “massage” the
test case by inserting carefully-chosen delays. Such test cases depend
heavily on the exact timing behaviour of the code under test and may
become ineffective if you even make the code a little faster or slower—
hardly a basis for a good test suite!

When debugging a race condition, you might want to add print state-
ments to see what is going on—but that often has the effect of skewing
the timing and making the race condition vanish again!

These problems make testing concurrent programs in a traditional way a night-
mare. We present an approach based around QuickCheck to alleviate the



problems. Our approach has two parts, eqc_par_statem (short for “Erlang
QuickCheck parallel state machine”) to help in writing the tests and PULSE to
make test cases repeatable.

eqc_par_statem The idea behind eqc_par_statem is to test for one partic-
ular property of a concurrent API: namely, that all the functions of that API
behave atomically. This is by no means the only property we might want to
test of a concurrent API, but is normally a desirable property: after all, a
concurrent API whose operations don’t behave atomically will tend to drive its
users mad.

How do we test for atomicity? First, the user must supply a sequential specifi-
cation of the API, giving preconditions, postconditions etc. for each operation.
Erlang QuickCheck already supports these specifications for the purposes of
testing sequential imperative code [Arts et al., 2006].

Using the sequential specification we can generate processes that invoke the
API. We generate a pair of such processes; they consist of a sequence of API
commands. Then we run the two processes in parallel and observe the results.
Finally, we have to check if in this particular run of the system, the API
functions behaved atomically.

We do this by trying to linearise [Lamport, 1979] the API calls that were made:
we search for an interleaving of the two command sequences that would give
the same results that we actually observed. In other words, we work out if the
system behaved as if only one command was running at a time. If there is no
such interleaving, then the only possible explanation is that the two processes
interfered with each other, and we report an error.

PULSE The second component of our approach is PULSE, a replacement for
the standard Erlang scheduler.

The standard Erlang scheduler suffers from two problems when testing concur-
rent code:

e [t leads to nondeterministic behaviour: running the same test several
times may result in a different outcome each time, because the order that
processes run in is partly a result of chance. This leads to unrepeatable
test cases.

e Paradoxically, it is also too deterministic: the Erlang scheduler preempts
processes at regular intervals, so that each test case will have a similar
effect each time we run it. This might result in the system behaving
differently when idle and when under load, for example. Thus a property
we test may be false but might never be falsified if we do not test it in
exactly the right circumstances.

PULSE is intended to take over scheduling decisions from the standard Erlang
scheduler. Whenever there is a choice to be made—which process should exe-
cute next, for example—it chooses randomly. This exposes as wide a range of
behaviour as possible from the program under test.



PULSE also records the choices it made into a log. Should we wish to repeat a
test case, we can give the log to PULSE and it will make the same scheduling
choices again, thus giving us repeatability. We can also turn this log into a
graphical trace of the system’s behaviour, to help with debugging.

Case study We applied our tools to a piece of industrial Erlang code with
a mysterious race condition, which is described in the paper. We indeed found
the race condition; unfortunately, it turned out to be a subtle design fault and
impossible to fix without redesigning the API!

Related work It should be no surprise that researchers in imperative pro-
gramming have already worked on tools to make debugging of concurrent pro-
grams more tractable. Related work includes Chess for .NET [Musuvathi et al.,
2008] and RaceFuzzer for Java [Sen, 2008b].

When comparing PULSE to these tools, the most surprising thing is how much
simpler our approach is. We speculate that this is due to the fact that Java
and .NET use shared memory concurrency. Because of this, almost any line of
code can potentially participate in a race: every operation has an effect that
can be observed by other processes, making the problem of finding the real race
conditions harder. By contrast, Erlang uses message passing concurrency and
only provides shared state in the form of a mutable map library, ets. PULSE
only needs to preempt a process when it sends a message or performs a genuine
side effect, rather than on every variable access, so there are far fewer ways to
schedule any program and PULSE has an easier time finding the schedules that
provoke bugs. In other words, just as with QUICKSPEC, we gain an advantage
by working in a setting where side effects are only used when actually useful.

The other main difference between our work and that for Java and .NET is that
they don’t have any equivalent of eqc_par_statem for atomicity testing. Chess
requires the user to state a property they want to hold: for example, that
the system must never deadlock. RaceFuzzer checks that there are no data
races: where one thread accesses a variable at the same time as another thread
is writing to it. However, since this is a very low-level property, sometimes
harmless data races are found.

PULSE versus model checking Model checking can also be used to provoke
race conditions: a model checker will systematically enumerate all possible
schedules of a system, so guaranteeing to find a race condition in a particular
test case if one exists. In fact, Chess is designed as a model checker, and
there is already a model checker for Erlang [Fredlund and Svensson, 2007]. So
why do we need PULSE at all? The answer is that model checking suffers from
exponential blowup. Although when it does work we get a stronger guarantee
than PULSE, for larger examples using a model checker is just infeasible but
PULSE will work perfectly happily. The tension is similar to that between
random and exhaustive test data generation that was mentioned earlier.



Paper III: Ranking Programs using Black Box Testing

Empirical studies have demonstrated that test-driven development can be more
effective than test-after methods [Canfora et al., 2006],

We ran an unsuccessful experiment hoping to compare so-called “property-
driven development” against test-driven development: do you get better results
from test-driven development if you write properties instead of individual test
cases? Since property-based testing is itself quite a niche area, we didn’t find
any previous experiment testing this. We took a group of 13 students and got
each of them to solve some programming problems and test their code as they
went: half using QuickCheck and the other half using HUnit, a traditional
unit testing tool. Afterwards, we analysed the results to try to answer two
questions:

1. Did the programs that were tested with QuickCheck work better than
the ones that were tested with HUnit?

2. Were the QuickCheck test suites more effective at finding bugs than the
HUnit test suites?

It quickly became apparent that the number of subjects who took part in the
experiment (13) was too small for us to draw any firm conclusions. For the
first question the situation was entirely hopeless. When considering the second
question we did spot something curious: half of the QuickCheck test suites were
worthless (they failed to detect a single bug in any student’s submission) but
the other half were among the best test suites submitted—they were as good
as or better than all of the HUnit test suites. All of the students using HUnit
missed some edge case or other, whereas the QuickCheck properties, although
harder to write in the first place, did not have any “blind spots”. However, the
sample size was too small for us to judge whether this is the case in general.
We hope, however, to perform a larger-scale experiment in the future that will
fix the flaws in this one.

The ranking algorithm When marking the students’ submissions we were
wary of introducing bias in the scores, which led to the real contribution of the
paper: an algorithm to automatically “grade” a collection of programs.

At our disposal we have the student submissions, all trying to implement the
same specification, and a QuickCheck property to test an implementation’s
correctness. We might think to just generate a lot of test cases and count
how many each submission passes to get a score for the submission, but this
introduces a possible bias: the exact distribution of test data we use will affect
the scores given to the students.

Instead, we found a way to infer a set of bugs from the test results. We assume
that each test case provokes some number of bugs, each program has some set
of bugs, and a program will fail a test case if the test case provokes a bug
and the program has that bug. We show in the paper how to infer a relation
between test cases and bugs, satisfying the requirements above, that gives us
the smallest number of bugs. Finally, the score of each program is simply the
number of bugs in our inferred set that the program doesn’t have.
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We found that the set of bugs inferred does not depend much on the particular
test data generated, a good sign. The algorithm only works because we are
able to generate a huge amount of test data: if we only had a manually-written
test suite, the choice of test suite would bias the scores; for example, if the test
suite was not complete then some bugs would not be found at all!

We found that the set of bugs inferred by our algorithm was not exactly the
same as the set we intuitively would choose. This happened because some bugs
interfere: a test case may provoke two bugs A and B in such a way that a
program with bug A or bug B will fail the test, but a program with both bugs
will somehow pass it! Our algorithm will then count the test case as a bug in its
own right. This leads to a curious observation: this test case can detect bug A,
but only in programs that do not have bug B. If you are writing a test suite for
your program, including this test will give you a false sense of security—you
may think you have a test case for bug A, but it might not always work! We
came across more than one such test case, and they all looked like reasonable
tests—a reason to be suspicious of handwritten test cases!

Conclusions

We hope that this thesis supports the view that property-based testing is a
powerful way to test programs, that it can test things that traditional unit
testing cannot easily, and that it applies especially well to functional programs.
The contributions of this thesis are:

e A tool that automatically infers specifications from pure functional pro-
grams.

e A tool that provokes and then flags race conditions in concurrent func-
tional programs, a task which seems impossible to do without the help of
properties.

e An algorithm for automatically grading a large set of programs (such as
student assignments). Unlike the first two contributions, this works even
if the programs tested are not functional, but it does rely on having a
specification and the ability to generate large amounts of test data.

The development of the last algorithm arose from an unsuccessful attempt
to determine experimentally how well property-based testing works, which we
hope might form the basis of a future experiment along the same lines.



Paper 1

QUICKSPEC: Formal Specifications for Free!

This paper was originally presented at TAP 2010 in Malaga, under the ti-
tle “QUICKSPEC: Guessing Formal Specifications using Testing”. This is an
extended version which has been submitted to a special issue of the Software
Quality Journal.

11
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QUICKSPEC: Formal Specifications for Free!

Koen Claessen, Nicholas Smallbone and John Hughes

Abstract

We present QUICKSPEC, a tool that automatically generates algebraic
specifications for sets of pure functions. The tool is based on testing,
rather than static analysis or theorem proving. The main challenge
QUICKSPEC faces is to keep the number of generated equations to a min-
imum while maintaining completeness. We demonstrate how QUICKSPEC
can improve one’s understanding of a program module by exploring the
laws that are generated using two case studies: a heap library for Haskell
and a fixed-point arithmetic library for Erlang.

1 Introduction

Understanding code is hard. But it is vital to understand what code does in
order to determine its correctness.

One way to understand code better is to write down one’s expectations of
the code as formal specifications, which can be tested for compliance, by us-
ing a property-based testing tool. Our earlier work on the random testing
tool QuickCheck [Claessen and Hughes, 2000] follows this direction. However,
coming up with formal specifications is difficult, especially for untrained pro-
grammers. Moreover, it is easy to forget to specify certain properties.

In this paper, we aim to aid programmers with this problem. We propose an
automatic method that, given a list of function names and their object code,
uses testing to come up with a set of algebraic equations that seem to hold for
those functions. Such a list can be useful in several ways. Firstly, it can serve
as a basis for documentation of the code. Secondly, the programmer might
gain new insights by discovering new laws about the code. Thirdly, some laws
that one expects might be missing (or some laws might be more specific than
expected), which points to to a possible mistake in the design or implementation
of the code.

Since we use testing, our method is potentially unsound, meaning some equa-
tions in the list might not hold; the quality of the generated equations is only
as good as the quality of the used test data, and care has to be taken. Nonethe-
less, we still think our method is useful. However, our method is still complete
in a precise sense; although there is a limit on the complexity of the expres-
sions that occur in the equations, any syntactically valid equation that actually
holds for the code can be derived from the set of equations that QUICKSPEC
generates.

Our method has been implemented for the functional languages Haskell and
Erlang in a tool called QUICKSPEC. At the moment, QUICKSPEC only works
for purely functional code, i.e. no side effects. (Adapting it to imperative and
other side-effecting code is ongoing work.)
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1.1 Examples

Let us now show some examples of what QUICKSPEC can do, by running it on
different subsets of the Haskell standard list functions. When we use QUICK-
SPEC, we have to specify the functions and variable names which may appear
in equations, together with their types. For example, if we generate equations
over the list operators

(++) :: [Elem] -> [Elem] -> [Elem] -- list append

(:) :: Elem -> [Elem] -> [Elem] -- list cons

0 :: [Elem] -- empty list

using variables x,y,z :: Elem and xs,ys,zs :: [Elem], then QUICKSPEC

outputs the following list of equations:

xs++[] == xs

[Q++xs == xs

(xs++ys) ++zs == xs++(ys++zs)
(x:x8)++ys == x:(xs++ys)

We automatically discover the associativity and unit laws for append (which
require induction to prove). These equations happen to comprise a complete
characterization of the ++ operator. If we add the list reverse function to the
mix, we discover the additional familiar equations

reverse [] == []

reverse (reverse xs) == Xxs

reverse xs++reverse ys == reverse (ys++xs)
reverse (x:[]) == x:[]

Again, these laws completely characterize the reverse operator. Adding the
sort function from the standard List library, we compute the equations

sort [1 == []

sort (reverse xs) == sort xs
sort (sort xs) == sort xs
sort (ys++xs) == sort (xs++ys)

sort (x:[1) == x:[]

The third equation tells us that sort is idempotent, while the second and fourth
strongly suggest (but do not imply) that the result of sort is independent of
the order of its input.

Adding the usort function (equivalent to nub . sort), which sorts and elim-
inates duplicates from its result, generates the same equations together with
one new one:

usort (xs++xs) == usort xs

which strongly suggests that the result of usort is independent of repetitions
in its input.

If we add a merge function for ordered lists, then we obtain equations relating
merge and sort:
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merge [x] (sort xs) == sort (x:xs)
merge (sort xs) (sort ys) == sort (xs++ys)

We also obtain other equations about merge, such as the somewhat surprising
merge (xs++ys) xs == merge Xs xs++ys

Note that this holds even for unordered xs and ys, but is an artefact of the
precise definition of merge.

We can deal with higher-order functions as well. Adding the function map
together with a variable f :: Elem -> Elem, we obtain:

map £ [] == []

map f (reverse xs) == reverse (map f xs)
map f xs++map f ys == map f (xs++ys)
f x:map f xs == map f (x:xs)

Because our signature concerns sorting and sorted lists, there may be laws
about map f that only hold when f is monotone. Although QUICKSPEC does
not directly support such conditional laws, we can simulate them by adding a
new type Monotonic of monotone functions. Given an operator that applies a
monotone function to its argument...

monotonic :: Monotonic -> Elem -> Elem
...and a variable £ :: Monotonic, we obtain

map (monotonic f) (sort xs) == sort (map (monotonic f) xs)
merge (map (monotonic f) xs) (map (monotonic f) ys) ==
map (monotonic f) (merge xs ys)

The latter equation is far from obvious, since it applies even to unordered xs
and ys.

All of the above uses of QUICKSPEC only took a fraction of a second to run,
and what is shown here is the verbatim output of the tool.

1.2 Queues

The Erlang standard libraries include an abstract datatype of double-ended
queues, with operations to add and remove elements at the left and the right
ends, to join and reverse queues, and so on. The representation is the well-
known one using a pair of lists, which gives amortized constant time for many
operations [Burton, 1982]. Running QUICKSPEC on a signature including

new() -> queue()

tail(queue()) -> queue()

liat (queue()) -> queue()
reverse(queue()) -> queue()
in(elem() ,queue()) -> queue()
in_r(elem() ,queue()) -> queue()
join(queue(), queue()) -> queue()
to_list(queue()) -> list()
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with the variables

X, Y, Z :: elem()
Q, Q2, Q3 :: queue()

we obtain equations such as

join(new(),Q) == Q

join(Q,new()) == Q

join(join(Q,Q2),Q3) == join(Q,join(Q2,Q3))
to_list(Q) ++ to_list(Q2) == to_list(join(Q,Q2))

which tell us that the join operator is very well-behaved, and

reverse(in(X,Q)) == in_r(X,reverse(Q))
tail(reverse(Q)) == reverse(liat(Q))

which relate the insertion and removal operations at each end of the queue to
each other in a pleasing way. On the other hand, we also obtain

to_list(Q) ++ [X] == to_list(in(X,Q))
[X|to_list(Q)] == to_list(in_r(X,Q))

which reveal that if we thought that in_r inserted an element at the right or
the rear of the queue, then we were wrong! The in function inserts elements
on the right, while in_r inserts them on the left, of course.

However, some of the generated equations are more intriguing. Consider this
one:

tail(in_r(Y,Q)) == tail(in_r(X,Q))

It is not unexpected that this equation holds—it says that adding an element
to the front of a queue, then removing it again, produces a result that does not
depend on the element value. What is unexpected is that our tool does not
report the simpler form:

tail(in_r(X,Q)) ==

In fact, the reason that we do not report this simpler equation is that it is
not true! One counterexample is Q taken to be in(0,new()), which evaluates
to {[0],[1}, but for which the left-hand side of the equation evaluates to
{[1,[0]1}. These are two different representations of the “same” queue, but
because the representations do differ, then by default QUICKSPEC considers the
equation to be false.

We can also tell QUICKSPEC to compare the contents of the queues rather
than the representation, in which case our equation becomes true and we get
a slightly different set of laws.

1.3 Arrays

In 2007, a new library was added to the Erlang distribution supporting purely
functional, flexible arrays, indexed from zero [Carlsson and Gudmundsson,
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2007]). We applied QUICKSPEC to subsets of its API. Using the following sig-
nature,

new() -> array()

get(index() ,array()) -> elem()
set(index () ,elem() ,array()) -> array()
default_element() -> elem()

with variables

X, Y, Z :: elem()
I, J, K :: index()
A, B, C :: array()

we obtained these laws:

get(I,new()) == default_element()

get(I,set(I,X,h)) ==

get(I,set(J,default_element() ,new())) == default_element()
get(J,set(I,X,new())) == get(I,set(J,X,new()))
set(I,X,set(I,Y,A)) == set(I,X,A)

set(J,X,set(I,X,A)) == set(I,X,set(J,X,A))

The default_element () is not part of the arrays library: we introduced it and
added it to the signature after QUICKSPEC generated the equation

get(I,new()) == get(J,new())

Since the result of reading an element from an empty array is constant, we
might as well give it a name for use in other equations. When we do so, then
the equation just above is replaced by the first one generated.

Some of the equations above are very natural: the second says that writing an
element, then reading it, returns the value written; the fifth says that writing
to the same index twice is equivalent to just writing the second value. The
sixth says that writing the same value X to two indices can be done in either
order—but why can’t we swap any two writes, as in

set(J,Y,set(I,X,A)) =7= set(I,X,set(J,Y,A))

The reason is that this equation holds only if I /= J (or if X == Y, of course)!
It would be nice to generate conditional equations such as

I /=7 ==> set(J,Y,set(I,X,A)) == set(I,X,set(J,Y,A)).

Presently we have a prototype version of QUICKSPEC that can generate such
laws (and indeed generates the one above), but it is rather preliminary and
there are several creases to be ironed out yet. The version of QUICKSPEC that
we discuss in this paper doesn’t generate conditional laws.

The fourth equation

get(J,set(I,X,new())) == get(I,set(J,X,new()))
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is a little surprising at first, but it does hold—either both sides are the default
element, if I and J are different, or both sides are X, if they are the same.

Finally, the third equation is quite revealing about the implementation:
get(I,set(J,default_element () ,new())) == default_element()

A new array contains the default element at every index; evidently, setting an
index explicitly to the default element will not change this, so it is no surprise
that the get returns this element. The surprise is that the second argument of
get appears in this complex form. Why is it set (J,default_element () ,new()),
rather than simply new(), when both arrays have precisely the same elements?
The answer is that these two arrays have different representations, even though
their elements are the same. That the equation appears in this form tells us,
indirectly, that

set(J,default_element () ,new()) /= new()

because if they were equal, then QUICKSPEC would have simplified the equa-
tion. In fact, there is another operation in the API, reset(I,A), which is
equivalent to setting index I to the default element, and we discover in the
same way that

reset(J,new()) /= new()

set and reset could have been defined to leave an array unchanged if the
element already has the right value—and this could have been a useful opti-
mization, since returning a different representation forces set and unset to
copy part of the array data-structure. Thus this missing equation reveals a
potentially questionable design decision in the library itself. This is exactly the
kind of insight we would like QUICKSPEC to provide!

The arrays library includes an operation to fiz the size of an array, after which
it can no longer be extended just by referring to a larger index. When we add
fix to the signature, we discover

fix(£ix(A)) == fix(A)
get(I,fix(new())) == undefined()
set(I,X,fix(new())) == undefined()

Fixing a fixed array does not change it, and if we fix a new array (with a size
of zero), then any attempt to get or set an element raises an exception®.

When we include the array resizing operation, we obtain a number of new laws:

get(I,resize(J,new())) == default_element ()
get(J,resize(J,A)) == get(I,resize(I,A))
resize(I,resize(I,A)) == resize(I,A)

resize(J,fix(C)) == fix(resize(J,C))
set(I,X,resize(I,new())) == set(I,X,new())

The first reveals, indirectly, that

LWe consider all terms which raise an exception to be equal—and undefined() is a built-
in-to-QUICKSPEC term that always does so.
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resize(J,new()) /= new()

which is perhaps not so surprising. The second equation is interesting: it holds
because the I'th index is just beyond the end of resize(I,A), and so the result
is either the default element (if A is a flexible array), or undefined() (if A is
fixed). The equation tells us that which result we get depends only on A, not
on I or J. It also tells us that the result is not always the default element,
for example, since if it were, then we would have generated an equation with
default_element () as its right-hand side.

The reader may care to think about why the third equation specifies only that
two resizes to the same size are equivalent to one, rather than the more general
(but untrue)

resize(I,resize(J,A)) =7= resize(I,A)

The fourth equation tells us that resizing and fixing an array commute nicely,
while the fifth gives us a clue about the reason for the behaviour of set discussed
earlier: setting an element can clearly affect the size of an array, as well as its
elements, which is why setting an element to its existing value cannot always
be optimized away.

1.4 Main related work

The existing work that is most similar to ours is Henkel et al. [2007]. They
describe a tool for discovering algebraic specifications from Java classes using
testing, using a similar overall approach as ours (there are however important
technical differences discussed in the related work section later in the paper).
However, the main difference between our work and theirs is that we gener-
ate equations between nested expressions consisting of functions and variables
whereas they generate equations between Java program fragments that are
sequences of method calls. The main problem we faced when designing the al-
gorithms behind QUICKSPEC was taming the explosion of equations generated
by operators with structural properties, such as associativity and commutativ-
ity, equations that are not even expressible as equations between sequences of
method calls (results of previous calls cannot be used as arguments to later
ones).

1.5 Contributions

We present a efficient method, based on testing, that automatically computes
algebraic equations that seem to hold for a list of specified pure functions.
Moreover, using two larger case studies, we show the usefulness of the method,
and present concrete techniques of how to use the method effectively in order
to understand programs better.

2 How QUuICKSPEC Works

The input taken by QUICKSPEC consists of three parts:
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e the compiled program,
e a list of functions and variables, together with their types, and

e test data generators for each of the types of which there exists at least
one variable.

2.1 The method
The method used by QUICKSPEC follows four distinct steps:

1. We first generate a (finite) set of terms, called the universe, that includes
any term that might occur on either side of an equation.

2. We use testing to partition the universe into equivalence classes; any two
terms in the same equivalence class are considered equal after the testing
phase.

3. We generate a list of equations from the equivalence classes.

4. We use pruning to filter out equations that follow from other equations
by equational reasoning.

In the following, we discuss each of these steps in more detail, plus some refine-
ments and optimisations to the basic method. As a running example we take a
tiny signature containing the boolean operator && and the constant false, as
well as boolean variables x and y.

2.2 The universe

First, we need to pin down what kind of equations QUICKSPEC should generate.
To keep things simple and predictable, we only generate one finite set of terms,
the universe, and our equations are simply pairs of terms from the universe.
Any pair of terms from the universe can form an equation, and both sides of
an equation must be members of the universe.

What terms the universe should contain is really up to the user; all we require
is that the universe be subterm-closed. The most useful way of generating the
universe is letting the user specify a term depth (usually 3 or 4), and then
simply produce all terms that are not too deep. The terms here consist of the
function symbols and variables from the specified API.

The size of the universe is typically 1000 to 50,000 terms, depending on the
application.

To model exceptions, our universe also contains one constant undefined at each
type. The behaviour of undefined is to throw an exception when you evaluate
it. This means that we can also find equations of the form t == undefined,
which is true if t always throws an exception.

In our tiny boolean example, supposing that our maximum term depth is 2, the
universe consists of the following terms (we leave out undefined for clarity):
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X
y

false

x&&x

x&&y
x&&false
y&&x

y&&y
y&&false
false&&x
false&&y
false&&false

2.3 Equivalence classes

The next step is to gather information about the terms in the universe. This
is the only step in the algorithm that uses testing, and in fact makes use of the
program. Here, we need to determine which terms seem to behave the same,
and which terms seem to behave differently. In other words, we are computing
an equivalence relation over the terms.

Concretely, in order to compute this equivalence relation, we use a refinement
process. We represent the equivalence relation as a set of equivalence classes,
partitions of the universe. We start by assuming that all terms are equal,
and put all terms in the universe into one giant equivalence class. Then, we
repeat the following process: We use the test data generators to generate test
data for each of the variables occurring in the terms. We then refine each
equivalence class into possibly smaller ones, by evaluating all the terms in a
class and grouping together the ones that are still equal, splitting the terms
that are different. The process is repeated until the equivalence relation seems
“stable”; if no split has happened for the last 200 tests. Note that equivalence
classes of size 1 are trivial, and can be discarded; these contain a term that is
only equal to itself.

The typical number of non-trivial equivalence classes we get after this process
lies between 500 and 5,000, again depending on the size of the original universe
and the application.

Once these equivalence classes are generated, the testing phase is over, and the
equivalence relation is trusted to be correct for the remainder of the method.

For our tiny example, the non-trivial equivalence classes are as follows:

{x, x&&x}

{y, y&&y}

{false, false&&x, false&&y, x&&false, y&&false,
false&&false}

{x&&y, y&&x}
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2.4 Equations

From the equivalence classes, we can generate a list of equations between terms.
We do this by picking one representative term r from the class, and producing
the equation ¢t = r for all other terms from the class. So, an equivalence class
of size k produces k — 1 equations. The equations look nicest if r is the simplest
element of the equivalence class (according to some simplicity measure based
on for example depth and/or size), but which r is chosen has no effect on the
completeness of the algorithm.

However, this is not the full story. Taking our tiny boolean example again, we
can read off the following equations from the equivalence relation:

1. x&&x == x

2. y&&y ==y

3. x&&y == y&&x

4. x&&false == false

5. y&&false == false

6. false&&x == false

7. falsek&y == false

8. false&&false == false

This is certainly not what we want to present to the user: there is a mass
of redundancy here. Laws 2, 5 and 7 are just renamings of laws 1, 4 and 6;
moreover, laws 1, 3 and 4 together imply all the other laws. Our eight equations
could be replaced by just three:

1. x&&x == x
2. x&&y == y&&x
3. x&&false == false

Whittling down the set of equations is the job of the pruning step.

2.5 Pruning

Pruning filters out redundant laws from the set of equations generated above,
leaving a smaller set that expresses the same information. That smaller set is
what QUICKSPEC finally shows to the user.

In a real example, the number of equations that are generated by the testing
phase can lie between 1,000 and 50,000. A list of even 1,000 equations is
absolutely not something that we want to present to the user; the number of
equations should be in the tens, not hundreds or thousands. Therefore, the
pruning step is crucial.

Which laws are kept and which are discarded by our current implementation
of QUICKSPEC is in some ways an arbitrary choice, but our choice is governed
by the following four principles:

1. Soundness: we can only remove a law if it can be derived from the
remaining laws. In other words, from the set of equations that our pruning
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algorithm keeps we should be able to derive all of the equations that were
deleted.

2. Conciseness: we should remove all obvious redundancy, for a suitably
chosen definition of redundant.

3. Implementability: the method should be implementable and reason-
ably efficient, bearing in mind that we may have thousands of equations
to filter.

4. Predictability: the user should be able to draw conclusions from the
absence or presence of a particular law, which means that no ad-hoc
decisions should be made in the algorithm.

We would like to argue that the choice of which laws to discard must necessar-
ily be arbitrary. The “ideal” pruning algorithm might remove all redundant
laws, leaving a minimal set of equations from which we can prove all the rest.
However, this algorithm cannot erist, because:

e Whether an equation is redundant is in general undecidable, so a pruning
algorithm will only be able to detect certain classes of redundancy and
will therefore print out more equations than we would like.

e There will normally not be one unique minimal set of equations. In
our boolean example, we could take out x&&false == false and replace
it by false&&x == false and we would still have a minimal set. Any
algorithm must make an arbitrary choice between these two sets.

There is one more point. We do not necessarily want to produce an absolutely
minimal set of equations, even if we could. Our tool is intended for program
understanding, and we might want to keep a redundant equation if it might help
understanding. This is another arbitrary choice any pruning algorithm must
make. For example, in the domain of boolean expressions, from the following
laws...

x| |true == true
x&&true ==
x&&(yl2z) == (x&&y) || (x&&z)

...we can actually prove idempotence, x||x == x! (Take the third law and
substitute true for y and z.) So a truly minimal set of equations for booleans
would not include the idempotence law. However, it’s quite illuminating and
we probably do want to include it.

In other words, we do not want to consider x| |x == x redundant, even though
it is possible to prove it. After long discussions between the authors of the
paper on examples like this, it became clear to us that the choice of what is
redundant or not is not obvious; here there is another arbitrary choice for our
algorithm to make.

Eventually we settled on the following notion of redundancy: we consider an

equation redundant if it can be proved from simpler equations, where we mea-
sure an equation’s simplicity in an ad hoc way based on the equation’s length,



23

number of variables (which is an approximate measure of generality) etc. (For
example, we will keep the idempotence law above because you cannot prove it
without invoking the more complicated distributivity law.) Our justification
for this choice is that a simple, general law is likely to be of interest even if it
can be proved from more complex principles; in our experience, this seems to
be broadly true.

Once we decide to use this “simplicity” metric most of our choices vanish and
it becomes clear that our pruning algorithm should work broadly like this:

1. Sort the equations according to “simplicity”.
2. Go through each equation in turn, starting with the simplest one:

e If the equation cannot be proved from the earlier equations in the
list, print it out for the user to see: it will not be pruned.

e If it can be proved, do nothing: it has been pruned.

So now the shape of the pruning algorithm is decided. The problem we are left
with is how to decide if a equation is derivable from the earlier equations.

Since derivability is undecidable, we decided to define a decidable and pre-
dictable conservative approrimation of logical implication for equations. The
approximation uses a congruence closure data-structure, a generalization of a
union/find data-structure that maintains a congruence relation” over a finite
subterm-closed set of terms. Like union/find, it provides two operations: unify-
ing two congruence classes, and testing if two terms are in the same congruence
class. Congruence closure is one of the key ingredients in modern SMT-solvers,
and we simply reimplemented an efficient modern congruence closure algorithm
following Nieuwenhuis and Oliveras [2005].

Congruence closure solves the ground equation problem: it can decide if a set
of equations implies another equation, but only if the equations contain no
variables. It goes like this: start with an empty congruence relation. For each
ground equation ¢ = u that you want to assume, unify ¢’s and u’s congruence
class. Then to find out if a = b follows from your assumptions, simply check if a
and b lie in the same congruence class. Note that the ground equation problem
is decidable, and efficiently solvable: the congruence closure algorithm gives
the correct answer, and very quickly.

We can try to apply the same technique to check for logical implication even
when the equations are not ground. However, there is an equational inference
rule for non-ground equations that is not useful for ground equations, namely
that any instance of a valid equation is valid: if ¢ = u then to = uo (where o
is any substitution). Congruence closure does not capture this rule. Instead,
we must approzimate the rule: whenever we want to assume a non-ground
equation t = wu, instead of just unifying ¢’s and u’s congruence class, we must
generate a large number of instances to = uo and for each of them we must
unify to’s and uo’s congruence class.

In other words, given a set of equations E to assume and an equation a = b to
try to prove, we can proceed as follows:

2A congruence relation is an equivalence relation that is also a congruence: if z = y
then C[z] = C[y] for all contexts C.
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1. Start with an empty congruence relation.

2. For each equation ¢t = u in E, generate a set of substitutions, and for
each substitution o, unify to’s and uo’s congruence class.

3. Finally, to see if a = b is provable from FE, just check if a and b lie in the
same congruence class.

This procedure is sound but incomplete: if it says a = b is true, then it is;
otherwise, a = b is either false or just too difficult to prove.

By plugging this proof procedure into the “broad sketch” of the pruning algo-
rithm from the previous page, we get a pruning algorithm. Doing this naively,
we would end up reconstructing the congruence relation for each equation we
are trying to prune; that would be wasteful. Instead we can construct the
congruence relation incrementally as we go along. The final pruning algorithm
looks like this, and is just the algorithm from the previous page specialised to
use our above heuristic as the proof method:

1. Start with an empty congruence relation. This relation will represent all
knowledge implied by the equations we have printed so far, so that if ¢
and u lie in the same congruence class then ¢ = w is derivable from the
printed equations.

2. Sort the equations according to “simplicity”.
3. Go through each equation ¢ = u in turn, starting with the simplest one:

e If t and u lie in the same congruence class, do nothing: the equation
can be pruned.

o Otherwise:

(a) Print the equation out for the user to see: it will not be pruned.

(b) Generate a set of substitutions; for each substitution o, unify
to’s and uo’s congruence class. (This means that the congruence
relation now “knows” that ¢ = v and we will be able to prune
away its consequences.)

The final set of equations that is produced by the pruning algorithm is simply
printed out and shown to the user as QUICKSPEC’s output.

2.6 Which instances to generate

One thing we haven’t mentioned yet is which instances of each equation t = u
we should generate in step 3b of the pruning algorithm—this is a crucial choice
that controls the power of the algorithm. Too few instances and the pruner
won’t be able to prove many laws; too many and the pruner will become slow
as we fill the congruence relation with hundreds of thousands of terms.

Originally we generated all instances to = wuo such that both sides of the
equation are members of the universe (recall that the universe is the large set
of terms from which all equations are built). In practice this means that we
would generate all instances up to a particular term depth.
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This scheme allows the pruning algorithm to reason freely about the terms in
the universe: we can guarantee to prune an equation if there is an equational
proof of it where all the terms in all of the steps of the proof are in the universe,
so the pruner is quite powerful and predictable.

While this scheme works pretty well for most examples, it falls down a bit
when we have operators with structural properties, such as associativity. For
example, generating properties about the arithmetic operator +, we end up
with:

1. x+y = y+x
2. y+(x+z) = (z+y)+x
3. (x+y)+(x+z) = (z+y)+(x+x)

The third equation can be derived from the first two, but the proof goes through
a term x+(y+(x+z)) that lies outside of the universe, so our original scheme
doesn’t find the proof.

To fix this we relaxed our instance generation somewhat. According to our
original scheme, when add an equation ¢t = u to our congruence relation we
would generate all instances to = uo where both to and uo were in the universe.
Now we also generate all instances where just one of to and uo is in the universe.
Formally, we look at ¢ and generate all substitutions o such that to is in the
universe; then we look at u and generate all substitutions ¢ such that uo is
in the universe; then we apply each of those substitutions to ¢ = u to get an
instance, which we add to the congruence relation.

By relaxing the instance generation, we allow the algorithm to reason about
terms that lie outside the universe, in a limited way. While the original scheme
allows the pruner to find all equational proofs where all intermediate terms
are in the universe,® the relaxed scheme also allows us to “jump out” of the
universe for one proof step: in our proofs we are allowed to apply an equation
in a way that takes us to a term outside the universe, provided that we follow
it immediately with another proof step that takes us back into the universe.
Once again, our pruner is guaranteed to prune a law if there is a proof of it
fulfilling this restriction.

Adding the modification we just described to the algorithm, the last equation is
also pruned away. The modification does not noticeably slow down QQUICKSPEC.

2.6.1 An example

We now demonstrate our pruning algorithm on the running booleans example.
To make it more interesting we add another term to the universe, false&&(
x&&false). Our pruning algorithm sorts the initial set of equations by simplic-
ity, giving the following:

1. x&&x == x
2. y&&y ==y

3 Although the pruning algorithm does not exactly search for proofs, it is useful to char-
acterise the pruning algorithm’s power by what proofs it can find: “if it is possible to prove
the equation using a proof of this form then the equation will be pruned”
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x&&y == y&&x

x&&false == false

y&&false == false

false&&x == false

false&&y == false
false&&false == false
false&& (x&&false) == false.

© 00N OO W

We start with an empty congruence relation = in which every term is in its
own congruence class:

{x} {y} {false} {x&&x} {y&&y} {x&&y} {y&&x}
{x&&false} {y&&false} {false&&x} {false&&yl}
{false&&false} {false&&(x&&false)}

Starting from equation 1, we see that x&&x and x are in different congruence
classes (we can’t prove them equal) so we print out x&&x == x as an equation.
We add its instances to the congruence-closure by unifying x&&x with x, y&&y
with y and false&&false with false.® The congruence relation now looks like
this:

{x, x&&x} {y, y&&y} {false, false&&false} {x&&y} {y&&x}
{x&&false} {y&&false} {false&&x} {false&&yl}
{false&& (x&&false)}

Coming to equation 2, we see that y&&y and y are in the same congruence
class, so we prune away the equation: we can prove it from the previous equa-
tion. Equation 3 isn’t provable, so we print it out and add some instances to
the congruence closure data structure—=x&&y = y&&x, x&&false = false&&x,
y&&false = false&&y. Now the congruence relation is as follows:

{x, x&&x} {y, y&&y}, {false, false&&false} {x&&y, y&&x}
{x&&false, false&&x} {y&&false, false&&y}

{false&& (x&&false)}
Equation 4—=x&&false == false isn’t provable either, so we print it out. We
generate some instances as usual—x&&false = false, y&&false = false,

false&&false = false. This results in the following congruence relation:

{x, x&&x} {y, y&&y}

{false, x&&false, false&&x, y&&false, false&&y,
false&&false, false&& (x&&false)l}

{x&&y, y&&x}

Notice that false&& (x&&false) is now in the same congruence class as false,
even though we never unified it with anything. This is the extra feature that
congruence closure provides over union/find—since we told it that x&&false =
false and false&&false = false, it deduces by itself that false&& (x&&false)
= false&&false = false.

4 According to our relaxed instance-generation scheme from above, we should generate
even more instances because x can range over any term in the universe, but we ignore this
for the present example.
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Looking at the remainder of our equations, both sides are always in the same
congruence class. So all the remaining equations are pruned away and the final
set of equations produced by QUICKSPEC is

1. x&&x == x
2. x&&y == y&&x
3. x&&false == false

as we desired.

2.7 Alternative pruning methods that Don’t Work

The above pruning algorithm may seem overly sophisticated (although it is
rather short and sweet in practice because the congruence closure algorithm
does all the hard work). Wouldn’t a simpler algorithm be enough? We claim
that the answer is no: in this section we present two such simpler pruning
algorithms, which we used in earlier versions of QUICKSPEC; both algorithms
fail to remove many real-life redundant laws.

We present these failed algorithms in the hope that they illustrate how well-
behaved our current pruning algorithm is.

2.7.1 Instance-based pruning

In our first preliminary experiments with QUICKSPEC, we used the following
pruning algorithm: simply delete an equation if it’s an instance of another one.

For our boolean example this leads to the following set of laws:

X&&X == X

x&&y == y&&x
x&&false == false
false&&x == false

W N -

which is not satisfactory: laws 3 and 4 state the same thing modulo commuta-
tivity. However, to prove law 4 you need to use laws 3 and 2 together, and this
simplistic pruning method is not able to do that: it will only prune a law if it’s
an instance of one other law. In all real examples this simplistic algorithm is
hopelessly inadequate.

2.7.2 Rewriting-based pruning

We next observed that we ought to be able to delete the equation t == u (u
being t’s representative), if we can use the other equations as rewrite rules to
simplify t to u. (For this to work, we must have a total order defining the
simplicity of a term, we may only rewrite each term to a simpler term, and
both sides of any rewrite rule we use must be simpler than the thing we are
trying to rewrite.)

It turns out not to be necessary to simplify t all the way to u: if we can rewrite
t to a simpler term t’, we may unconditionally delete the equation t == u.
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The fact that we only need to consider a single rewrite step was crucial to the
efficiency of this algorithm.

(The reason why this one-step reduction works is that we know that t, t’
and u must all live in the same equivalence class. Therefore our initial set of

equations will contain t’ == u. If the pruner is sound we can prove t’> ==
from QUICKSPEC’s output, and since our rewrite rule proves t == t’ we can
also prove t == u and therefore may prune it away.)

An aside: it is tempting to remove the restriction that t’ must be smaller than
t, but this leads to circularity: we could prune t == u by rewriting t to t’ and
then t’ == u by rewriting t’ to t.

This algorithm was able to prove any law that could be proved by repeatedly
simplifying the left-hand side until you got to the right-hand side—much better
than the instance-based pruning. Note also that we never need to combine
rewrite steps—we only try each possible individual rewrite step against each
equation—so it’s fairly efficient when implemented.

Let’s see it in action on our booleans example. The equations are first sorted
in order of simplicity:

x&&x == x
y&&ky ==y
x&&y == y&&x

x&&false == false
y&&false == false
false&&x == false
falsek&y == false
false&&false == false

W N O O WN -

Equation 1 is not provable and is printed out.

Taking equation 2, we can rewrite the left-hand side, y&&y, to y using equation
1. This leaves us with y == y, which is simpler than equation 2, so we delete
equation 2. (So rewriting-based pruning subsumes instance-based pruning.)

Equations 3 and 4 are not provable. Equation 5 is pruned in a similar way to
equation 2.

Equation 6 is the equation that the instance-based pruning algorithm couldn’t
remove. Rewriting-based pruning has no problem here: we apply equation 3
to the left-hand side to rewrite false&&x == x to x&&false == x, which is
simpler according to our order (it’s equation 4, and the equations are sorted
by simplicity), so the pruner deletes equation 6.

Equations 7 and 8 get pruned just like equations 2 and 5.

Why it doesn’t work So why don’t we use this pruning method any more?
It seems promising at first glance and is quite easy to implement. Indeed,
we used it in QUICKSPEC for quite a long time, and it works well on some
kinds of examples, such as lists. However, it is unable to apply a rewrite step
“backwards”, starting from a simpler term to get to a more complicated term;
this is unfortunately often necessary. Problematic cases for this algorithm were:

1. Commutativity laws such as x&&y == y&&x have no natural orientation.
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So this algorithm may be allowed to rewrite t&&u to u&&t or it may
not; this is determined almost “randomly” depending on which term our
equation order considers simpler. If the proof of an equation uses com-
mutativity in the “wrong” direction, the rewriting-based pruner won’t be
able to delete the equation.

2. If we have in our signature one operator that distributes over another,
for example x&&(y | 1z) == (x&&y) | | (x&&z), the pruner will only be able
to apply this law from right to left (contracting a term). However, there
are many laws that we can only prove by using distributivity to expand
a term followed by simplifying it. The rewriting-based pruner will not be
able to filter out those laws.

We tried to fix these flaws by allowing the pruner to use multiple rewrite steps
when simplifying t == u: after the last step we must have an equation simpler
than t == u, but the intermediate equations can be anything. Then we could
for example have a proof that starts by applying a distributivity law and then
simplifying. However, naively searching for rewrite proofs of long lengths leads
instantly to exponential blowup; to avoid that we would have needed lots of
machinery from term rewriting (e.g. using unfailing Knuth-Bendix completion
to get a confluent rewrite system), which would have greatly complicated the
pruning algorithm. The “improved” algorithm would have been both more
complicated and less effective than the congruence-closure-based algorithm we
use now.

Rewriting-based pruning explodes How big of a problem was this in
practice? To answer, we list just a small selection of the laws produced by the
rewriting-based pruning algorithm when we ran QUICKSPEC on a sets exam-
ple. The signature contains four operations, new which returns the empty set,
add_element which inserts one element into a set, and the usual set operators
union and intersection. The rewriting-based pruning algorithm printed out
these laws, along with dozens of others:

union(S,S) ==
union(S,new()) ==
union(T,S) == union(S,T)
union(U,union(S,T)) == union(S,union(T,U))
union(S,union(8,T)) == union(S,T)
union(union(S,T) ,union(T,U)) == union(S,union(T,U))
union(union(S,U) ,union(T,V)) == union(union(S,T),union(U,V))
add_element (X,add_element (X,S)) == add_element(X,S)
add_element(Y,add_element (X,S)) ==
add_element (X,add_element (Y,S))
union(S,add_element(X,T)) == add_element(X,union(S,T))
union(add_element (X,S) ,add_element (X,T)) ==
add_element (X,union(S,T))
union(add_element (X,S),add_element(Y,S))
add_element (X,add_element (Y,S))
union(add_element (X,S) ,union(S,T)) ==
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add_element (X,union(S,T))
union(add_element (X,T),add_element(Y,S)) ==
union(add_element (X,S),add_element(Y,T))
union(add_element (X,T) ,union(S,U)) ==
union(add_element (X,S) ,union(T,U))
intersection(intersection(S,T) ,union(S,U))
intersection(S,T)
intersection(intersection(S,T) ,union(T,U))
intersection(S,T)
intersection(intersection(S,U),intersection(T,V)) ==
intersection(intersection(S,T),intersection(U,V))
intersection(intersection(S,U) ,union(T,U)) ==
intersection(S,U)
intersection(intersection(T,U) ,union(S,T)) ==
intersection(T,U)

Terrible! Notice how many of the equations are just simple variations of each
other. By contrast, the current implementation of QUICKSPEC, using the prun-
ing algorithm described in section 2.5, returns these 17 laws only:

1 intersection(T,S) == intersection(S,T)

2. union(T,S) == union(S,T)

3. intersection(S,S) ==

4. intersection(S,new()) == new()

5. union(S,S) ==

6. union(S,new()) ==

7 add_element (Y,add_element(X,S)) ==
add_element (X,add_element(Y,S))

8. intersection(T,intersection(S,U)) ==
intersection(S,intersection(T,U))

9. union(S,add_element(X,T)) == add_element(X,union(S,T))

10. union(T,union(S,U)) == union(S,union(T,U))

11. intersection(S,add_element(X,S)) ==

12. intersection(S,union(S,T)) ==

13. union(S,intersection(S,T)) ==

14. intersection(add_element(X,S),add_element(X,T)) ==
add_element (X,intersection(S,T))

15. intersection(union(S,T),union(S,U)) ==
union(S,intersection(T,U))

16. union(add_element(X,S),add_element(X,T)) ==
add_element (X,union(S,T))

17. union(intersection(S,T),intersection(S,U)) ==
intersection(S,union(T,U))

This is still not ideal—there is some repetition between add_element and union
(more on that in section 2.8), but is much better.

Comparison with the current algorithm In our experience, pruning by
rewriting is too brittle and unpredictable: it depends on ordering the terms in
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exactly the right way so that all the laws we want to erase can be proved purely
by simplification—we can never rewrite a smaller term to a larger term. It is far
too sensitive to the exact term order we use (to get good results we had to use
a carefully-tuned, delicate heuristic), and blows up when there is no natural
term order to use, as is the case when there are commutative operators, or
when a proof needs to expand a term before simplifying it, as is the case with
distributive operators. Attempts to patch this up by searching for “expansion”
steps as well as simplification steps in proofs complicate the algorithm to an
unreal extent, for example requiring the use of Knuth-Bendix completion to
get a useful algorithm.

By contrast, our current algorithm that uses congruence closure is predictable
and well-behaved:

e It is strictly more powerful than the rewriting-based pruner.

e [t does no search or rewriting, instead merely recording a set of facts,
so it has no trouble dealing with commutativity or distributivity or any
other strange algebraic properties.

e It is much less sensitive to changes in the equation order than the pruner
that used rewriting: the equation order affects which laws you may use
as assumptions when proving an equation, but not how those laws may
be applied as in the rewriting-based pruner.

e On most examples it works well; perhaps more importantly, we know of
no examples where it does really badly, which is certainly not the case
with the pruner it replaced. We are able to just rely on it to do the
right thing whatever program we give QUICKSPEC, which is the most
important thing.

2.8 Definitions

Recall our sets example from section 2.7.2. We have four operators, new that
returns the empty set, add_element that adds an element to a set, and union
and intersection. Running QUICKSPEC on this signature, we get slightly
unsatisfactory results:

1 intersection(T,S) == intersection(S,T)

2. union(T,S) == union(S,T)

3 intersection(S,S) ==

4. intersection(S,new()) == new()

5. union(S,S) ==

6. union(S,new()) ==

7. add_element(Y,add_element(X,S)) ==
add_element (X,add_element(Y,S))

8. intersection(T,intersection(S,U)) ==
intersection(S,intersection(T,U))

9. union(S,add_element(X,T)) == add_element(X,union(S,T))

10. union(T,union(S,U)) == union(S,union(T,U))

11. intersection(S,add_element(X,S)) ==
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12. intersection(S,union(S,T)) ==

13. union(S,intersection(S,T)) ==

14. intersection(add_element(X,S),add_element(X,T)) ==
add_element (X, intersection(S,T))

15. intersection(union(S,T),union(S,U)) ==
union(S,intersection(T,U))

16. union(add_element(X,S),add_element (X,T)) ==
add_element (X,union(S,T))

17. union(intersection(S,T),intersection(S,U)) ==
intersection(S,union(T,U))

These results state everything we would like to know about union and intersec-
tion, but there are perhaps more laws than we would like to see. Several laws
appear in two variants, one for union and one for add_element.

This suggests that union and add_element are similar somehow. And indeed
they are: add_element is the special case of union where one set is a single-
ton set (S U {z}). The way to reduce the number of equations is to replace
add_element by a function unit that returns a singleton set. This function is
simpler, so we expect better laws, but the API remains as expressive as before
because add_element can be defined using unit and union. If we do that we
get fewer laws:

intersection(T,S) == intersection(S,T)

union(T,S) == union(S,T)

intersection(S,S) == S

intersection(S,new()) == new()

union(S,S) == S

union(S,new()) ==

intersection(T,intersection(S,U)) ==

intersection(S,intersection(T,U))

union(T,union(S,U)) == union(S,union(T,U))

9. intersection(S,union(S,T)) == S

10. union(S,intersection(S,T)) == S

11. intersection(union(S,T),union(S,U)) ==
union(S,intersection(T,U))

12. union(intersection(S,T),intersection(S,U)) ==

intersection(S,union(T,U))

~NOo o WN e

[}

Now all the laws are recognisable as standard set theory ones, so we should
conclude that there is not much redundancy here. Much better!

This technique is more widely applicable: whenever we have a redundant
operator we will often get better results from QUICKSPEC if we remove it from
the signature. QUICKSPEC in fact alerts us that an operator is redundant by
printing out a definition of that operator in terms of other operators. In our
case, when we ran QUICKSPEC the first time it also printed the following:

add_element(X,S) := union(S,add_element (X,new()))
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In other words, add_element (X,S) is the union of S and the singleton set {X},
which we can construct with add_element (X,new()).

What QUICKSPEC looks for when it searches for definitions is a pair of equal
terms in the equivalence relation satisfying the following conditions:

e One term must be a function call with all arguments distinct variables.
In our case, this is add_element (X,S). This is the left-hand side of the
definition.

e The definition should not be circular; for example, we should not emit
union(S,T) := union(T,S) as a definition. One possibility would be to
forbid the right-hand side of a definition from referring to the function
we’re trying to define. However, this is too restrictive: in the definition
of add_element, we use add_element on the right-hand side but we use
a special case of add_element to construct a singleton set. We capture
this by allowing the right-hand side of the definition to call the function
it defines, but with one restriction: there must be a variable on the left-
hand side of the definition that does not appear in the “recursive” call.
In our case, the left-hand side mentions the variable S and the recursive
call to add_element does not, so we conclude that the recursive call is a
special case of add_element rather than a circular definition.

2.9 The depth optimisation

QUICKSPEC includes one optimisation to reduce the number of terms generated.
We will first motivate the optimisation and then explain it in more detail.

Suppose we have run QUICKSPEC on an API of boolean operators with a depth
limit of 2, giving (among others) the law x&&x==x. But now, suppose we want
to increase the depth limit on terms from 2 to 3. Using the algorithm described
above, we would first generate all terms of depth 3, including such ones as x&&y
and (x&&x)&&y. But these two terms are obviously equivalent (since we know
that x&&x==x), we won’t get any more laws by generating both of them, and
we ought to generate only x&&y and not (x&&x)&&y.

The observation we make is that, if two terms are equal (like x&&x and x above),
we ought to pick one of them as the “canonical form” of that expression; we
avoid generating any term that has a non-canonical form as a subterm. In this
example, we don’t generate (x&&x)&&y, because it has x&&x as a subterm. (We
do still generate x&&x on its own, otherwise we wouldn’t get the law x&&x==x.)

The depth optimisation applies this observation, and works quite straightfor-
wardly. If we want to generate all terms up to depth 3, say, we first generate
all terms up to depth 2 and sort them into equivalence classes by testing. The
representatives of those classes we intend to be the “canonical forms” we men-
tioned above. Then, for terms of depth 3, we generate only those terms for
which all the direct subterms are the representatives of their equivalence class.
In the example above, we have an equivalence class {x, x&&x}; x is the rep-
resentative. So we will generate terms that contain x as a direct subterm but
not ones that contain x&&x.

We can justify why this optimisation is sound. If we choose not to generate a
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term t with canonical form t’, and if testing would have revealed an equation
t==u, we will also generate an equation t’==u.” We also will have generated
laws that imply t==t’ since each direct subterm of t is equal to the corre-
sponding subterm of t’ (in the booleans example the law in question would
be x&&x == x), and therefore t==u is redundant. (It is also the case that our
pruner would’ve filtered out t==u.)

This optimisation makes a very noticeable difference to the number of terms
generated. For a large list signature, the number of terms goes down from
21266 to 7079. For booleans there is a much bigger difference, since so many
terms are equal: without the depth optimisation we generate 7395 terms, and
with it 449 terms. Time-wise, the method becomes an order of magnitude
faster.

2.10 Generating Test Data

As always with random testing tools, the quality of the test data determines
the quality of the generated equations. As such, it is important to provide
good test data generators, that fit the program at hand. In our property-
based random testing tool QuickCheck [Claessen and Hughes, 2000], we have a
range of test data generators for standard types, and a library of functions for
building custom generators. QUICKSPEC simply reuses QuickCheck’s random
data generators.

As an example of what can happen if we use an inappropriate generator, con-
sider generating laws for an API including the following functions:

isPrefix0f :: [Elem] -> [Elem] -> Bool
null :: [Elem] -> Bool

If one is not careful in defining the list generator, QUICKSPEC might end up
producing the law isPrefixO0f xs ys == null xs. Why? Because for two
randomly generated lists, it is very unlikely that one is a prefix of the other,
unless the first is empty. So, there is a risk that the interesting test cases that
separate isPrefix0f xs ys and null xs will not be generated. The problem
can be solved by making sure that the generator used for random lists is likely to
pick the list elements from a small domain. Thus, just as in using QuickCheck,
creating custom generators is sometimes necessary to get correct results.

We have to point out that this does not happen often even if we are careless
about test data generation: as noted earlier, in our implementation we keep
on refining the equivalence relation until it has been stable for 200 iterations,
which gives QUICKSPEC a better chance of falsifying hard-to-falsify equations.

3 Case Studies

In this section, we present two case studies using QUICKSPEC. Our goal is
primarily to derive understanding of the code we test. In many cases, the

5This relies on t’ not having greater depth than t, which requires the term ordering to
always pick the representative of an equivalence class as a term with the smallest depth.
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specifications generated by QUICKSPEC are initially disappointing—but by ex-
tending the signature with new operations we are able to arrive at concise and
perspicuous specifications. Arguably, selecting the right operations to specify is
a key step in formulating a good specification, and one way to see QQUICKSPEC
is as a tool to support exploration of this design space.

3.1 Case Study #1: Leftist Heaps in Haskell

A leftist heap [Okasaki, 1998] is a data structure that implements a priority
queue. A leftist heap provides the usual heap operations:

empty :: Heap

isEmpty :: Heap -> Bool

insert :: Elem -> Heap -> Heap
findMin :: Heap -> Elem
deleteMin :: Heap -> Heap

When we tested this signature with the variables h, h1, h2 :: Heap and
X, ¥, z :: Elem. then QUICKSPEC generated a rather incomplete specifica-
tion. The specification describes the behaviour of findMin and deleteMin on
empty and singleton heaps:

findMin empty == undefined

findMin (insert x empty) == x
deleteMin empty == undefined
deleteMin (insert x empty) == empty

It shows that the order of insertion into a heap is irrelevant:
insert y (insert x h) == insert x (insert y h),
Apart from that, it only contains the following equation:
isEmpty (insert x hl) == isEmpty (insert x h)

This last equation is quite revealing—obviously, we would expect both sides
to be False, which explains why they are equal. But why doesn’t QUICKSPEC
just print the equation isEmpty (insert x h) == False? The reason is that
False is not in our signature! When we add it to the signature, then we do
indeed obtain the simpler form instead of the original equation above.®

In general, when a term is found to be equal to a renaming of itself with
different variables, then this is an indication that a constant should be added
to the signature, and in fact QUICKSPEC prints a suggestion to do so.

Generalising a bit, since isEmpty returns a Bool, it’s certainly sensible to give
QUICKSPEC operations that manipulate booleans. We added the remaining
boolean connectives True, &&, || and not; one new law appeared that we
couldn’t express before, isEmpty empty == True.

SFor completeness, we will list all of the new laws that QUICKSPEC produces every time
we change the signature.
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3.1.1 Merge

Leftist heaps actually provide one more operation than those we encountered
so far: merging two heaps.

merge :: Heap -> Heap -> Heap

If we run QUICKSPEC on the new signature, we get the fact that merge is
commutative and associative and has empty as a unit element:

merge hl h == merge h hil
merge hl (merge h h2) == merge h (merge hil h2)
merge h empty ==

We get nice laws about merge’s relationship with the other operators:

merge h (insert x hl) == insert x (merge h hl)
isEmpty h && isEmpty hl == isEmpty (merge h h1l)

We also get some curious laws about merging a heap with itself:

findMin (merge h h) == findMin h
merge h (deleteMin h) == deleteMin (merge h h)

These are all the equations that are printed. Note that there are no redundant
laws here. As mentioned earlier, our testing method guarantees that this set of
laws is complete, in the sense that any valid equation over our signature, which
is not excluded by the depth limit, follows from these laws.

3.1.2 With Lists

We can get useful laws about heaps by relating them to a more common data
structure, lists. First, we need to extend the signature with operations that
convert between heaps and lists:

fromList :: [Elem] -> Heap
tolist :: Heap -> [Elem]

fromList turns a list into a heap by folding over it with the insert function;
toList does the reverse, deconstructing a heap using findMin and deleteMin.
‘We should also add a few list operations mentioned earlier:

(++) :: [Elem] -> [Elem] -> [Elem]
tail :: [Elem] -> [Elem]

(:) :: Elem -> [Elem] -> [Elem]

[1 :: [Elem]

sort :: [Elem] -> [Elem]

and variables xs, ys, zs :: [Elem]. Now, QUICKSPEC discovers many new
laws. The most striking one is

toList (fromList xs) == sort xs.
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This is the definition of heapsort! The other laws indicate that our definitions
of toList and fromList are sensible:

sort (toList h) == tolist h

fromList (tolList h) ==

fromList (sort xs) == fromList xs
fromList (ys++xs) == fromList (xs++ys)

The first law says that toList produces a sorted list, and the second one says
that fromList . toList is the identity (up to == on heaps, which actually
applies toList to each operand and compares them!). The other two laws
suggest that the order of fromList’s input doesn’t matter.

We get a definition by pattern-matching of fromList (read the second and
third equations from right to left):

fromList [] == empty
insert x (fromList xs) == fromList (x:xs)
merge (fromList xs) (fromList ys) == fromList (xs++ys)

We also get a family of laws relating heap operations to list operations:

toList empty == []
head (tolList h) == findMin h
toList (deleteMin h) == tail (toList h)

We can think of toList h as an abstract model of h—all we need to know
about a heap is the sorted list of elements, in order to predict the result of any
operation on that heap. The heap itself is just a clever representation of that
sorted list of elements.

The three laws above define empty, findMin and deleteMin by how they act
on the sorted list of elements—the model of the heap. For example, the third
law says that applying deleteMin to a heap corresponds to taking the tail
in the abstract model (a sorted list). Since tail is obviously the correct way
to remove the minimum element from a sorted list, this equation says exactly
that deleteMin is correct!”

So these three equations are a complete specification of the three functions
empty, findMin and deleteMin!

If we want to extend this to a complete specification of heaps, we must add
operators to insert an element into a sorted list, to merge two sorted lists, and
to test if a sorted list is empty. ..

insertl :: Elem -> [Elem] -> [Elem]
mergel :: [Elem] -> [Elem] -> [Elem]
null :: [Elem] -> Bool

...and our reward is three laws asserting that the functions insert, merge and
isEmpty are correct:

"This style of specification is not new and goes back to Hoare [1972].
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toList (insert x h) == insertL x (toList h)
mergel. (tolList h) (tolList hl) == tolList (merge h hl)
null (toList h) == isEmpty h

We also get another law about fromList to go with our earlier collection. This
one says essentially that mergel. xs ys contains each of the members of both
xs and ys exactly once:

fromList (mergeL xs ys) == fromList (xs++ys)

This section highlights the importance of choosing a rich set of operators
when using QUICKSPEC. There are often useful laws about a library that
mention functions from unrelated libraries; the more such functions we include,
the more laws QUICKSPEC can find. In the end, we got a complete specification
of heaps (and heapsort, as a bonus!) by including list functions in our testing.

It’s not always obvious which functions to add to get better laws. In this case,
there were several reasons for choosing lists: they’re well-understood, there are
operators that convert heaps to and from lists, and sorted lists form a model
of priority queues.

3.1.3 Buggy Code

What happens when the code under test has a bug? To find out, we introduced
a fault into toList. The buggy version of toList doesn’t produce a sorted list,
but rather the elements of the heap in an arbitrary order.

‘We were hoping that some laws would fail, and that QUICKSPEC would produce
specific instances of some of those laws instead. This happened: whereas before,
we had many useful laws about toList, afterwards, we had only two:

toList empty == []
toList (insert x empty) == x:[]

Two things stand out here: first, the law sort (toList h) == toList h does
not appear, so we know that the buggy toList doesn’t produce a sorted result.
Second, we only get equations about empty and singleton heaps, not about heaps
of arbitrary size. QUICKSPEC is unable to find any specification of toList on
nontrivial heaps, which suggests that the buggy toList has no simple specifi-
cation.

3.1.4 A trick

We finish with a “party trick”: getting QUICKSPEC to discover how to imple-
ment insert and deleteMin. We hope to run QUICKSPEC and see it print
equations of the form insert x h = ? and deleteMin h = 7.

We need to prepare the trick first; if we just run QUICKSPEC straight away, we
won’t get either equation. There are two reasons, each of which explains the
disappearance of one equation.
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First, it’s impossible to implement deleteMin using only the leftist heap API,
so there’s no equation for QUICKSPEC to print. To give QUICKSPEC a chance,
we need to reveal the representation of leftist heaps; they’re really binary trees.
So we add the functions

leftBranch :: Heap -> Heap
rightBranch :: Heap -> Heap

to the signature. Of course, no implementation of leftist heaps would export
these functions, this is only for the trick.

Secondly, QUICKSPEC won’t bother to print out the definition of insert: it’s
easily derivable from the other laws, so QUICKSPEC considers it boring. Actu-
ally, in most ways, it 4s pretty boring; the one thing that makes it interesting
is that it defines insert, but QUICKSPEC takes no notice of that.

Fortunately, we have a card up our sleeve: QUICKSPEC prints a list of defini-
tions, equations that define an operator in terms of other operators, as we saw
in section 2.8. The real purpose of this is to suggest redundant operators, but
we will use it to see the definition of insert instead.

Finally, we also need to be careful—previously, we were treating our heap as
an abstract data type, so that two heaps would be equal if they had the same
elements. But leftBranch and rightBranch peek into the internals of the heap,
so they can distinguish heaps that are morally the same. So we had better tell
QUICKSPEC that equality should check the representation of the heap and not
its contents.

Everything in place at last, we run QUICKSPEC. And—hey prestol—out come
the equations

insert x h = merge h (insert x empty)
deleteMin h = merge (leftBranch h) (rightBranch h)

That is, you can insert an element by merging with a unit heap that just
contains that element, or delete the minimum element—which happens to be
stored at the root of the tree—by merging the root’s branches.

3.2 Case Study #2: Understanding a Fixed Point Arithmetic
Library in Erlang

We used QUICKSPEC to try to understand a library for fixed point arithmetic,
developed by a South African company, which we were previously unfamiliar
with. The library exports 16 functions, which is rather overwhelming to ana-
lyze in one go, so we decided to generate equations for a number of different
subsets of the API instead. In this section, we give a detailed account of our
experiments and developing understanding.

Before we could begin to use QUICKSPEC, we needed a QuickCheck generator
for fixed point data. We chose to use one of the library functions to ensure
a valid result, choosing one which seemed able to return arbitrary fixed point
values:

fp() -> ?LET({N,D},{largeint ) ,nat O}, from_minor_int(N,D)).
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That is, we call from_minor_int with random arguments. We suspected that
D is the precision of the result—a suspicion that proved to be correct.

3.2.1 Addition and Subtraction

We began by testing the add operation, deriving commutativity and associa-
tivity laws as expected. Expecting laws involving zero, we defined

zero() -> from_int (0)
and added it to the signature, obtaining as our reward a unit law,
add(A,zero()) == A.

The next step was to add subtraction to the signature. However, this led to
several very similar laws being generated—for example,

add(B,add(A,C)) == add(A,add(B,C))
add(B,sub(A,C)) == add(A,sub(B,C))
sub(A,sub(B,C)) == add(A,sub(C,B))
sub(sub(A,B),C) == sub(A,add(B,C))

To relieve the problem, we added another derived operator to the signature
instead:

negate(A) -> sub(zero(),A).

and observed that the earlier family of similar laws was no longer generated,
replaced by a single one, add(A,negate(B)) == sub(A,B). Thus by adding a
new auxiliary function to the signature, negate, we were able to reduce the
complexity of the specification considerably.

After this new equation was generated by QUICKSPEC, we tested it extensively
using QuickCheck. Once confident that it held, we could safely replace sub in
our signature by add and negate, without losing any other equations. Once we
did this, we obtained a more useful set of new equations:

add(negate(A) ,add(A,A)) ==

add(negate(A) ,negate(B)) == negate(add(A,B))
negate(negate(A)) ==

negate(zero()) == zero()

These are all very plausible—what is striking is the absence of the following
equation:

add(A,negate(A)) == zero()

When an expected equation like this is missing, it’s easy to formulate it as a
QuickCheck property and find a counterexample, in this case {fp,1,0,0}. We
discovered by experiment that negate ({fp,1,0,0}) is actually the same value!
This strongly suggests that this is an alternative representation of zero (zero ()
evaluates to {fp,0,0,0} instead).
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3.22 0#£0

It is reasonable that a fixed point arithmetic library should have different rep-
resentations for zero of different precisions, but we had not anticipated this.
Moreover, since we want to derive equations involving zero, the question arises
of which zero we would like our equations to contain! Taking our cue from the
missing equation, we introduced a new operator zero_like(A) -> sub(A,A)
and then derived not only add(A,negate(A)) == zero_like(A) but a vari-
ety of other interesting laws. These two equations suggest that the result of
zero_like depends only on the number of decimals in its argument,

zero_like(from_int(I)) == zero()
zero_like(from_minor_int(J,M)) ==
zero_like(from_minor_int (I,M))

this equation suggests that the result has the same number of decimals as the
argument,

zero_like(zero_like(A)) == zero_like(A)
while these two suggest that the number of decimals is preserved by arithmetic.

zero_like(add(A,A)) == zero_like(A)
zero_like(negate(A)) == zero_like(A)

It is not in general true that add(A,zero_like(B)) == A which is not so
surprising—the precision of B affects the precision of the result. QUICKSPEC
does find a more restricted property, add(A,zero_like(A)) == A.

The following equations suggest that the precision of the results of add and
negate depend only on the precision of the arguments, not their values:

add(zero_like(A) ,zero_like(B)) == zero_like(add(A,B))
negate(zero_like(A)) == zero_like(A)

3.2.3 Multiplication and Division

When we added multiplication and division operators to the signature, then we
followed a similar path, and were led to introduce reciprocal and one_like
functions, for similar reasons to negate and zero_like above. One interesting
equation we discovered was this one:

divide(one_like(A) ,reciprocal (A)) ==
reciprocal (reciprocal(4))

The equation is clearly true, but why does it say reciprocal (reciprocal(A))
instead of just A? The reason is that the left-hand side raises an ex-
ception if A is zero, and so the right-hand side must do so also—which
reciprocal (reciprocal(A)) does.

We obtain many equations that express things about the precision of results,
such as
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multiply(B,zero_like(A)) == zero_like(multiply(A,B))
multiply(from_minor_int(I,N),from_minor_int(J,M)) ==
multiply(from_minor_int(I,M),from_minor_int(J,N))

where the former expresses the fact that the precision of the zero produced
depends both on A and B, and the latter expresses

ix10T"Mxix107"=ix 107" xjx 107"
That is, it is in a sense the commutativity of multiplication in disguise.

One equation we expected, but did not see, was the distributivity of multipli-
cation over addition. Alerted by its absence, we formulated a corresponding
QuickCheck property,

prop_multiply_distributes_over_add() ->
?FORALL({A,B,C},{fp(O,fpO,fpO3},
multiply(A,add(B,C)) ==
add(multiply(A,B) ,multiply(A,C))).

and used it to find a counterexample:
A = {fp,1,0,4}, B = {fp,1,0,2}, C = {fp,1,1,4}

We used the library’s format function to convert these to strings, and found
thus that A = 0.4, B = 0.2,C = 1.4. Working through the example, we found
that multiplying A and B returns a representation of 0.1, and so we were alerted
to the fact that multiply rounds its result to the precision of its arguments.

3.2.4 Understanding Precision

At this point, we decided that we needed to understand how the precision
of results was determined, so we defined a function precision to extract the
first component of an {fp, ...} structure, where we suspected the precision
was stored. We introduced a max function on naturals, guessing that it might
be relevant, and (after observing the term precision(zero()) in generated
equations) the constant natural zero. QUICKSPEC then generated equations
that tell us rather precisely how the precision is determined, including the
following;:

max (precision(A) ,precision(B)) == precision(add(A,B))
precision(divide(zero(),A)) == precision(one_like(A))
precision(from_int(I)) ==
precision(from_minor_int(I,M)) ==
precision(multiply(A,B)) == precision(add(A,B))
precision(reciprocal(A)) == precision(one_like(A))

The first equation tells us the addition uses the precision of whichever argument
has the most precision, and the fifth equation tells us that multiplication does
the same. The second and third equations confirm that we have understood
the representation of precision correctly. The second and sixth equations reveal
that our definition of one_like(A) raises an exception when A is zero—this is
why we do not see
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precision(one_like(A)) == precision(4).

The second equation is more specific than we might expect, and in fact it is
true that

precision(divide(A,B)) ==
max (precision(A) ,precision(one_like(B)))

but the right-hand side exceeds our depth limit, so QUICKSPEC cannot discover
it.

If we could discover conditional equations, then QUICKSPEC might discover
instead that

B/=zero_like(B) ==>
precision(divide(A,B)) == precision(add(A,B))

a property which we verified with QuickCheck.

3.3 Adjusting Precision

The library contained two operations whose meaning we could not really guess
from their names, adjust and shr. Adding adjust to the signature generated
a set of equations including the following:

adjust (A,precision(Ad)) ==
precision(adjust(A,M)) ==
zero_like(adjust(A,M)) == adjust(zero(),M)
adjust(zero_like(A),M) == adjust(zero(),M)

These equations make it fairly clear that adjust sets the precision of its argu-
ment. We also generated an equation relating double to single adjustment:

adjust(adjust(A,M),0) == adjust(4,0)
We generalised this to
N =< M ==> adjust(adjust(A,M),N) == adjust(4,N),

a law which QUICKSPEC might well have generated if it could produce condi-
tional equations. We tested the new equation with QuickCheck, and discovered
it to be false! The counterexample QuickCheck found shows that the problem
is caused by rounding: adjusting 0.1045 to three decimal places yields 0.105,
and adjusting this to two decimals produces 0.11. Adjusting the original num-
ber to two decimals in one step produces 0.10, however, which is different. In
fact, the original equation that QUICKSPEC found above is also false—but sev-
eral hundred tests are usually required to find a counterexample. This shows
the importance of testing the most interesting equations that QUICKSPEC finds
more extensively—occasionally, it does report falsehoods. Had we written a
test data generator that tried to provoke interesting rounding behaviours we
mightn’t have encountered these false equations.
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3.4 shr: Problems with Partiality

Adding shr to the signature, too, we at first obtained several rather complex
equations, of which this is a typical example:

adjust (shr(zero(),I),precision(A)) == shr(zero_like(A),I)

All the equations had one thing in common: shr appeared on both sides of the
equation, with the same second argument. Eventually we realised why: shr
is a partial function, which raises an exception when its second argument is
negative—so QUICKSPEC produced equations with shr on both sides so that
exceptions would be raised in the same cases. We changed the signature to de-
clare shr’s second argument to be nat () rather than int (), whereupon QUICK-
SPEC produced simple equations as usual.

QUICKSPEC told us how the precision of the result is determined:
precision(shr(A,M)) == precision(A)
Other informative equations were

shr (shr(A,N),M) == shr(shr(A,M),N)
shr(A,0) ==
shr(zero_like(A) ,M) == zero_like(A)

and, after we introduced addition on naturals,
shr (shr(A,M),N) == shr(A,M+N)

We began to suspect that shr implemented a right shift, and to test this hy-
pothesis we formulated the property

prop_shr_value() ->
?FORALL ({N, A}, {nat ) ,£pO},
shr (multiply(A,pow(10,N)),N) == A).

and after 100,000 successful tests concluded that our hypothesis was correct.

3.4.1 Summing Up

Overall, we found QUICKSPEC to be a very useful aid in developing an under-
standing of the fixed point library. Of course, we could simply have formulated
the expected equations as QuickCheck properties, and tested them without
the aid of QUICKSPEC. However, this would have taken very much longer, and
because the work is fairly tedious, there is a risk that we might have forgotten
to include some important properties. QUICKSPEC automates the tedious part,
and allowed us to spot missing equations quickly.

Of course, QUICKSPEC also generates unezpected equations, and these would
be much harder to find using QuickCheck. In particular, when investigating
functions such as adjust, where we initially had little idea of what they were
intended to do, then it would have been very difficult to formulate candidate
QuickCheck properties in advance.
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Although QUICKSPEC can run given any signature, we discovered that if QUICK-
SPEC is used without sufficient thought, the result is often disappointing. We
needed to use our ingenuity to extend the signature with useful auxiliaries, such
as negate, precision, + and max, to get the best out of QUICKSPEC.

Since QUICKSPEC is unsound, it may generate equations which are not true,
as it did once in our case study. However, even these false equations can be
quite informative, since they are nearly true—they are simple statements which
passed a few hundred test cases. They are thus likely misconceptions about the
code, and formulating them, then discovering their falsehood by more exten-
sive testing, contributes in itself to understanding of the code. (“You might
think that such-and-such holds, but oh no, consider this case!”). We regularly
include such negative properties in QuickCheck specifications, to prevent the
same misconception arising again. QUICKSPEC runs relatively few tests of each
equation (several hundred), and so, once the most interesting equations have
been selected, then it is valuable to QuickCheck them many more times to
make sure that they are true. It can also be worthwhile, just as in random
testing in general, to tweak the test data generator to get a better distribution
of random data.

QUICKSPEC’s equation filtering mostly did a fine job of reducing the number
of generated equations. However, it sometimes helped to alter the signature to
make QUICKSPEC’s job easier—such as replacing sub by the simpler function
negate.

The case study highlights the difficulties that partial functions can cause: our
requirement that the left and right-hand sides of an equation must raise ex-
ceptions in ezactly the same cases leads QUICKSPEC to generate impenetrable
equations containing complex terms whose only purpose is to raise an exception
in the right cases. QUICKSPEC cannot currently find equations that hold, pro-
vided preconditions are fulfilled. It would be useful to report “weak equations”
too, whose left and right-hand sides are equal whenever both are defined. How-
ever, it is not clear how QUICKSPEC should prune such equations, since “weak
equality” is not an equivalence relation and the reasoning principles for “weak
equations” are not obvious. At the very least, QUICKSPEC should inform us
when it discovers that a function is partial.

Another way to address partiality would be to generate conditional equations
with the function preconditions as the condition. Indeed, this would be a
generally useful extension, and the case study also highlights other examples
where conditional equations would be useful.

4 Related Work

As mentioned earlier, the existing work that is most similar to ours is Henkel
et al. [2007]; a tool for discovering algebraic specifications from Java classes.
They generate terms and evaluate them, dynamically identify terms which are
equal, then generate equations and filter away redundant ones. There are
differences in the kind of equations that can be generated, which have been
discussed earlier.

The most important difference in the two approaches is the fact that they start
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by generating a large set of ground terms when searching for equations, which
they then test, filter, generalize and prune. So, their initial set both represents
the possible terms that can occur in the equations, and the “test cases” that
are run. The term set they use thus becomes extremely large, and in order to
control its size, they use heuristics such as only generating random subsets of
all possible terms, and restricting values to very small domains. This choice not
only sacrifices completeness, but also predictability and controllability. In con-
trast, we always generate all possible terms that can occur in equations (keeping
completeness), and then use random testing to gather knowledge about these
terms. If we end up with too few equations, we can increase the number of
terms; if we end up too many equations, we can increase the number of random
tests.

There are other differences as well. They test terms for operational equivalence,
which is quite expensive; we use fast structural equivalence or a user-specified
equality test. They use a heuristic term-rewriting method for pruning equations
which will not handle structural properties well (we note that their case stud-
ies do not include commutative and associative operators, which we initially
found to be extremely problematic); we use a predictable congruence closure
algorithm. We are able to generate equations relating higher-order functions;
working in Java, this was presumably not possible. They observe—as we do—
that conditional equations would be useful, but neither tool generates them.
Our tool appears to be faster (our examples take seconds to run, while compa-
rable examples in their setting take hours). It is unfortunately rather difficult
to make a fair comparison between the efficacy and performance of the two
approaches, because their tool and examples are not available for download.

Daikon [Ernst et al., 2007] is a tool for inferring likely invariants in C, C++,
Java or Perl programs. Daikon observes program variables at selected program
points during testing, and applies machine learning techniques to discover re-
lationships between them. For example, Daikon can discover linear relation-
ships between integer variables, such as array indices. Agitar’s commercial
tool based on Daikon generates test cases for the code under analysis auto-
matically [Boshernitsan et al., 2006]. However, Daikon will not discover, for
example, that reverse(reverse(Xs)) == Xs, unless such a double application
of reverse appears in the program under analysis. Whereas Daikon discovers
invariants that hold at existing program points, QUICKSPEC discovers equations
between arbitrary terms constructed using an API. This is analogous to the
difference between assertions placed in program code, and the kind of proper-
ties which QuickCheck tests, that also invoke the API under test in interesting
ways. While Daikon’s approach is ideal for imperative code, especially code
which loops over arrays, QUICKSPEC is perhaps more appropriate for analysing
pure functions.

Inductive logic programming (ILP) [Muggleton and de Raedt, 1994] aims to infer
logic programs from examples—specific instances—of their behaviour. The
user provides both a collection of true statements and a collection of false
statements, and the ILP tool finds a program consistent with those statements.
Our approach only uses false statements as input (inequality is established by
testing), and is optimized for deriving equalities.

In the area of Automated Theorem Discovery (ATD), the aim is to emulate the
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human theorem discovery process. The idea can be applied to many different
fields, such as mathematics, physics, but also formal verification. An example of
an ATD system for mathematicians is MathSaid [McCasland and Bundy, 2006].
The system starts by generating a finite set of hypotheses, according to some
syntactical rules that capture typical mathematical thinking, for example: if we
know A = B, we should also check if B = A, and if not, under what conditions
this holds. Theorem proving techniques are used to select theorems and patch
non-theorems. Since this leads to many theorems, a filtering phase decides if
theorems are interesting or not, according to a number of different predefined
“tests”. Ome such test is the simplicity test, which compares theorems for
simplicity based on their proofs, and only keeps the simplest theorems. The
aim of their filtering is quite different from ours (they want to filter out theorems
that mathematicians would have considered trivial), but the motivation is the
same; there are too many theorems to consider.

QuickCheck is our own tool for random testing of functional programs, origi-
nally for Haskell [Claessen and Hughes, 2000] and now in a commercial version
for Erlang [Arts et al., 2006]. QuickCheck tests properties such as the equa-
tions that QUICKSPEC discovers, so one application for QUICKSPEC is to quickly
generate a QuickCheck test suite. However, QuickCheck supports a more gen-
eral property language, including conditional properties and specifications for
functions with side-effects [Claessen and Hughes, 2002, Hughes, 2007]. Both
implementations of QUICKSPEC use QuickCheck to generate random test data;
this allows users to exert fine control over the selection of test data by specifying
an appropriate QuickCheck generator.

5 Conclusions and Future Work

We have presented a new tool, QUICKSPEC, which can automatically generate
algebraic specifications for functional programs. Although simple, it is remark-
ably powerful. It can be used to aid program understanding, or to generate
a QuickCheck test suite to detect changes in specification as the code under
test evolves. We are hopeful that it will enable more users to overcome the
barrier that formulating properties can present, and discover the benefits of
QuickCheck-style specification and testing.

For future work, we plan to generate conditional equations. In some sense, these
can be encoded in what we already have by specifying new custom types with
appropriate operators. For example, if we want x<=y to occur as a precondition,
we might introduce a type AscPair of “pairs with ascending elements”, and add
the functions

smaller, larger :: AscPair -> Int

and the variable p :: AscPair to the API. A conditional equation we could
then generate is:

isSorted (smaller p : larger p : xs) ==
isSorted (larger p : xs)

(Instead of the perhaps more readable
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x<=y ==> isSorted (x:y:xs) == isSorted (y:xs).) But we are still investi-
gating the limitations and applicability of this approach.

Another class of equations we are looking at is equations between program frag-
ments that can have side effects. Our idea is to represent a program fragment
by a monadic expression, or similar, and use QUICKSPEC’s existing functional-
ity to derive laws for these fragments. We have a prototype implementation of
this but more work is needed.

The Erlang version of QUICKSPEC uses structural equality in the generated
equations, which means that terms that may evaluate to different representa-
tions of the same abstract value are considered to be different, for example
causing some of the unexpected results in section 3.2. The Haskell version uses
the (==) operator, defined in the appropriate Eq instance. However, this is
unsafe unless (==) is a congruence relation with respect to the operations in
the API under test! QUICKSPEC has recently been extended to test for these
properties while classifying terms, although we do not discuss this here.

It can be puzzling when an equation we expect to see is missing. A small
extension would be to allow us to ask QUICKSPEC why an equation wasn’t
printed, and get either a proof of the equation (if it was pruned away) or a
counterexample (if it was false). Both of these can quite easily be extracted
from QUICKSPEC’s data structures.
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Finding Race Conditions in Erlang with QuickCheck and
PULSE
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Abstract

We address the problem of testing and debugging concurrent, dis-
tributed Erlang applications. In concurrent programs, race conditions
are a common class of bugs and are very hard to find in practice. Tradi-
tional unit testing is normally unable to help finding all race conditions,
because their occurrence depends so much on timing. Therefore, race
conditions are often found during system testing, where due to the vast
amount of code under test, it is often hard to diagnose the error resulting
from race conditions. We present three tools (QuickCheck, PULSE, and a
visualizer) that in combination can be used to test and debug concurrent
programs in unit testing with a much better possibility of detecting race
conditions. We evaluate our method on an industrial concurrent case
study and illustrate how we find and analyze the race conditions.

1 Introduction

Concurrent programming is notoriously difficult, because the non-deterministic
interleaving of events in concurrent processes can lead software to work most
of the time, but fail in rare and hard-to-reproduce circumstances when an
unfortunate order of events occurs. Such failures are called race conditions.
In particular, concurrent software may work perfectly well during unit testing,
when individual modules (or “software units”) are tested in isolation, but fail
later on during system testing. Even if unit tests cover all aspects of the units,
we still can detect concurrency errors when all components of a software system
are tested together. Timing delays caused by other components lead to new,
previously untested, schedules of actions performed by the individual units. In
the worst case, bugs may not appear until the system is put under heavy load
in production. Errors discovered in these late stages are far more expensive to
diagnose and correct, than errors found during unit testing. Another cause of
concurrency errors showing up at a late stage is when well-tested software is
ported from a single-core to a multi-core processor. In that case, one would
really benefit from a hierarchical approach to testing legacy code in order to
simplify debugging of faults encountered.

The Erlang programming language [Armstrong, 2007] is designed to simplify
concurrent programming. Erlang processes do not share memory, and Erlang
data structures are immutable, so the kind of data races which plague impera-
tive programs, in which concurrent processes race to read and write the same
memory location, simply cannot occur. However, this does not mean that Er-
lang programs are immune to race conditions. For example, the order in which
messages are delivered to a process may be non-deterministic, and an unex-
pected order may lead to failure. Likewise, Erlang processes can share data,
even if they do not share memory—the file store is one good example of shared
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mutable data, but there are also shared data-structures managed by the Erlang
virtual machine, which processes can race to read and write.

Industrial experience is that the late discovery of race conditions is a real
problem for Erlang developers too [Cronqvist, 2004]. Moreover, these race
conditions are often caused by design errors, which are particularly expensive
to repair. If these race conditions could be found during unit testing instead,
then this would definitely reduce the cost of software development.

In this paper, we describe tools we have developed for finding race conditions
in Erlang code during unit testing. Our approach is based on property-based
testing using QuickCheck [Claessen and Hughes, 2000], in a commercial version
for Erlang developed by Quviq AB [Arts et al., 2006, Hughes, 2007]. Its salient
features are described in section 3. We develop a suitable property for testing
parallel code, and a method for generating parallel test cases, in section 4. To
test a wide variety of schedules, we developed a randomizing scheduler for Er-
lang called PULSE, which we explain in section 5. PULSE records a trace during
each test, but interpreting the traces is difficult, so we developed a trace visual-
izer which is described in section 6. We evaluate our tools by applying them to
an industrial case study, which is introduced in section 2, then used as a run-
ning example throughout the paper. This code was already known to contain
bugs (thanks to earlier experiments with QuickCheck in 2005), but we were
previously unable to diagnose the problems. Using the tools described here, we
were able to find and fix two race conditions, and identify a fundamental flaw
in the API.

2 OQOur case study: the process registry

We begin by introducing the industrial case that we apply our tools and tech-
niques to. In Erlang, each process has a unique, dynamically-assigned identifier
(“pid”), and to send a message to a process, one must know its pid. To enable
processes to discover the pids of central services, such as error logging, Erlang
provides a process registry—a kind of local name server—which associates static
names with pids. The Erlang VM provides operations to register a pid with
a name, to look up the pid associated with a name, and to unregister a name,
removing any association with that name from the registry. The registry holds
only live processes; when registered processes crash, then they are automat-
ically unregistered. The registry is heavily used to provide access to system
services: a newly started Erlang node already contains 13 registered processes.

However, the built-in process registry imposes several, sometimes unwelcome,
limitations: registered names are restricted to be atoms, the same process
cannot be registered with multiple names, and there is no efficient way to
search the registry (other than by name lookup). This motivated Ulf Wiger
(who was working for Ericsson at the time) to develop an extended process
registry in Erlang, which could be modified and extended much more easily
than the one in the virtual machine. Wiger’s process registry software has
been in use in Ericsson products for several years [Wiger, 2007].

In our case study we consider an earlier prototype of this software, called
proc_reg, incorporating an optimization that proved not to work. The API
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supported is just: reg(Name,Pid) to register a pid, where(Name) to look up
a pid, unreg(Name) to remove a registration, and finally send(Name,Msg) to
send a message to a registered process. Like the production code, proc_reg
stores the association between names and pids in Erlang Term Storage (“ETS
tables” )—hash tables, managed by the virtual machine, that hold a set of tuples
and support tuple-lookup using the first component as a key [cf. Armstrong,
2007, chap 15]. It also creates a monitor for each registered process, whose effect
is to send proc_reg a “DOWN” message if the registered process crashes, so it
can be removed from the registry. Two ETS table entries are created for each
registration: a “forward” entry that maps names to pids, and a “reverse” entry
that maps registered pids to the monitor reference. The monitor reference is
needed to turn off monitoring again, if the process should later be unregistered.

Also like the production code, proc_reg is implemented as a server process us-
ing Erlang’s generic server library [cf. Armstrong, 2007, chap 16]. This library
provides a robust way to build client-server systems, in which clients make
“synchronous calls” to the server by sending a call message, and awaiting a
matching reply’. Each operation—reg, where, unreg and send—is supported
by a different call message. The operations are actually executed by the server,
one at a time, and so no race conditions can arise.

At least, this is the theory. In practice there is a small cost to the generic server
approach: each request sends two messages and requires two context switches,
and although these are cheap in Erlang, they are not free, and turn out to be
a bottleneck in system start-up times, for example. The prototype proc_reg
attempts to optimize this, by moving the creation of the first “forward” ETS
table entry into the clients. If this succeeds (because there is no previous entry
with that name), then clients just make an “asynchronous” call to the server
(a so-called cast message, with no reply) to inform it that it should complete
the registration later. This avoids a context switch, and reduces two messages
to one. If there is already a registered process with the same name, then the
reg operation fails (with an exception)—unless, of course, the process is dead.
In this case, the process will soon be removed from the registry by the server;
clients ask the server to “audit” the dead process to hurry this along, then
complete their registration as before.

This prototype was one of the first pieces of software to be tested using
QuickCheck at Ericsson. At the time, in late 2005, it was believed to work, and
indeed was accompanied by quite an extensive suite of unit tests—including
cases designed specifically to test for race conditions. We used QuickCheck to
generate and run random sequences of API calls in two concurrent processes,
and instrumented the proc_reg code with calls to yield() (which cedes control
to the scheduler) to cause fine-grain interleaving of concurrent operations. By
so doing, we could show that proc_reg was incorrect, since our tests failed. But
the failing test cases we found were large, complex, and very hard to under-
stand, and we were unable to use them to diagnose the problem. As a result,
this version of proc_reg was abandoned, and development of the production
version continued without the optimization.

While we were pleased that QuickCheck could reveal bugs in proc_reg, we were

1Unique identifiers are generated for each call, and returned in the reply, so that no
message confusion can occur.
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unsatisfied that it could not help us to find them. Moreover, the QuickCheck
property we used to test it was hard-to-define and ad hoc—and not easily
reusable to test any other software. This paper is the story of how we addressed
these problems—and returned to apply our new methods successfully to the
example that defeated us before.

3 An Overview of Quviq QuickCheck

QuickCheck [Claessen and Hughes, 2000] is a tool that tests universally quan-
tified properties, instead of single test cases. QuickCheck generates random
test cases from each property, tests whether the property is true in that case,
and reports cases for which the property fails. Recent versions also “shrink”
failing test cases automatically, by searching for similar, but smaller test cases
that also fail. The result of shrinking is a “minimal”? failing case, which often
makes the root cause of the problem very easy to find.

Quviq QuickCheck is a commercial version that includes support for model-
based testing using a state machine model [Hughes, 2007]. This means that
it has standard support for generating sequences of API calls using this state
machine model. It has been used to test a wide variety of industrial software,
such as Ericsson’s Media Proxy [Arts et al., 2006] among others. State ma-
chine models are tested using an additional library, eqc_statem, which invokes
call-backs supplied by the user to generate and test random, well-formed se-
quences of calls to the software under test. We illustrate eqc_statem by giving
fragments of a (sequential) specification of proc_reg.

Let us begin with an example of a generated test case (a sequence of API calls).

[{set,{var,1},{call,proc_reg_eqc,spawn, [1}},
{set,{var,2},{call,proc_reg,where, [c]}},
{set,{var,3},{call,proc_reg_eqc,spawn, [1}},
{set,{var,4},{call,proc_reg_eqc,kill, [{var,1}1}},
{set,{var,5},{call,proc_reg,where, [d]}},
{set,{var,6},{call,proc_reg_eqc,reg, [a,{var,1}]1}},
{set,{var,7},{call,proc_reg_eqc,spawn, [1}}]

eqc_statem test cases are lists of symbolic commands represented by Erlang
terms, each of which binds a symbolic variable (such as {var,1}) to the result of
a function call, where {call,M,F,Args} represents a call of function F in module
M with arguments Args®. Note that previously bound variables can be used in
later calls. Test cases for proc_reg in particular randomly spawn processes
(to use as test data), kill them (to simulate crashes at random times), or pass
them to proc_reg operations. Here proc_reg_eqc is the module containing
the specification of proc_reg, in which we define local versions of reg and
unreg which just call proc_reg and catch any exceptions. This allows us to
write properties that test whether an exception is raised correctly or not. (An
uncaught exception in a test is interpreted as a failure of the entire test).

We model the state of a test case as a list of processes spawned, processes killed,
and the {Name,Pid} pairs currently in the registry. We normally encapsulate

2In the sense that it cannot shrink to a failing test with the shrinking algorithm used.
3In Erlang, variables start with an uppercase character, whereas atoms (constants) start
with a lowercase character.
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the state in a record:
-record(state,{pids=[],regs=[],killed=[]1}).

eqc_statem generates random calls using the call-back function command that
we supply as part of the state machine model, with the test case state as its
argument:

command (S) ->
oneof (
[{call,?MODULE, spawn, [1}] ++
[{call,?MODULE,kill, [elements(S#state.pids)]}
|| S#state.pids/=[]1] ++
[{call,?MODULE,reg, [name () ,elements (S#state.pids)]}
|| S#state.pids/=[1] ++
[{call,?MODULE,unreg, [name ()]}] ++
[{call,proc_reg,where, [name()1}]).

name() -> elements([a,b,c,d]).

The function oneof is a QuickCheck generator that randomly uses one element
from a list of generators; in this case, the list of candidates to choose from
depends on the test case state. ([X||P] is a degenerate list comprehension,
that evaluates to the empty list if P is false, and [X] if P is true—so reg and
kill can be generated only if there are pids available to pass to them.) We
decided not to include send in test cases, because its implementation is quite
trivial. The macro ?MODULE expands to the name of the module that it appears
in, proc_reg_eqc in this case.

The next_state function specifies how each call is supposed to change the
state:

next_state(S,V,{call,_,spawn,_}) ->
S#state{pids=[V|S#state.pids]l};
next_state(S,V,{call,_,kill, [Pid]}) —>
Sttstate{killed=[Pid|S#state.killed],
regs=[{Name,P} ||
{Name,P} <- S#state.regs, Pid /= Pl};
next_state(S,_V,{call,_,reg, [Name,Pid]l}) —->
case register_ok(S,Name,Pid) andalso
not lists:member(Pid,S#state.killed) of
true ->
S#state{regs=[{Name,Pid}|S#state.regs]};
false ->
S
end;
next_state(S,_V,{call,_,unreg, [Namel}) ->
S#tstate{regs=lists:keydelete(Name,1,S#state.regs)};
next_state(S,_V,{call,_,where,[_]}) —>
S.

register_ok(S,Name,Pid) ->
not lists:keymember (Name,1,S#state.regs).

Note that the new state can depend on the result of the call (the second argu-
ment V), as in the first clause above. Note also that killing a process removes
it from the registry (in the model), and that registering a dead process, or
a name that is already registered (see register_ok), should not change the



55

registry state. We do allow the same pid to be registered with several names,
however.

When running tests, eqc_statem checks the postcondition of each call, specified
via another call-back that is given the state before the call, and the actual result
returned, as arguments. Since we catch exceptions in each call, which converts
them into values of the form {’EXIT’,Reason}, our proc_reg postconditions
can test that exceptions are raised under precisely the right circumstances:

postcondition(S,{call,_,reg, [Name,Pid]},Res) ->
case Res of
true ->
register_ok(S,Name,Pid);
{’EXIT’,_} —>
not register_ok(S,Name,Pid)
end;
postcondition(S,{call,_,unreg, [Name]},Res) ->
case Res of
true ->
unregister_ok(S,Name) ;
{’EXIT’,_} ->
not unregister_ok(S,Name)
end;
postcondition(S,{call,_,where, [Name]},Res) ->
lists:member ({Name,Res},S#state.regs);
postcondition(_S,{call,_,_,_},_Res) ->
true.

unregister_ok(S,Name) ->
lists:keymember (Name,1,S#state.regs) .

Note that reg(Name,Pid) and unreg(Name) are required to return exceptions if
Name is already used/not used respectively, but that reg always returns true if
Pid is dead, even though no registration is performed! This may perhaps seem
a surprising design decision, but it is consistent. As a comparison, the built-
in process registry sometimes returns true and sometimes raises an exception
when registering dead processes. This is due to the fact that a context switch
is required to clean up.

State machine models can also specify a precondition for each call, which re-
stricts test cases to those in which all preconditions hold. In this example,
we could have used preconditions to exclude test cases that we expect to raise
exceptions—but we prefer to allow any test case, and check that exceptions are
raised correctly, so we define all preconditions to be true.

With these four call-backs, plus another call-back specifying the initial state,

our specification is almost complete. It only remains to define the top-level
property which generates and runs tests:

prop_proc_reg() ->
?FORALL (Cmds, commands (?MODULE) ,

begin
{ok,ETSTabs} = proc_reg_tabs:start_link(),
{ok,Server} = proc_reg:start_link(),
{H,S,Res} = run_commands(?MODULE,Cmds),
cleanup (ETSTabs,Server),
Res == ok

end) .
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Here ?FORALL binds Cmds to a random list of commands generated by commands,
then we initialize the registry, run the commands, clean up, and check that the
result of the run (Res) was a success. Here commands and run_commands are
provided by eqc_statem, and take the current module name as an argument
in order to find the right call-backs. The other components of run_commands’
result, H and S, record information about the test run, and are of interest
primarily when a test fails. This is not the case here: sequential testing of
proc_reg does not fail.

4 Parallel Testing with QuickCheck

4.1 A Parallel Correctness Criterion

In order to test for race conditions, we need to generate test cases that are
executed in parallel, and we also need a specification of the correct parallel
behavior. We have chosen, in this paper, to use a specification that just says
that the API operations we are testing should behave atomically.

How can we tell from test results whether or not each operation “behaved atom-
ically”? Following Lamport [1979] and Herlihy and Wing [1987], we consider
a test to have passed if the observed results are the same as some possible se-
quential execution of the operations in the test—that is, a possible interleaving
of the parallel processes in the test.

Of course, testing for atomic behavior is just a special case, and in general we
may need to test other properties of concurrent code too—but we believe that
this is a very important special case. Indeed, Herlihy and Wing claim that
their notion of linearizability “focuses exclusively on a subset of concurrent
computations that we believe to be the most interesting and useful”; we agree.
In particular, atomicity is of great interest for the process registry.

One great advantage of this approach is that we can reuse the same specification
of the sequential behavior of an API, to test its behavior when invocations take
place in parallel. We need only find the right linearization of the API calls in
the test, and then use the sequential specification to determine whether or not
the test has passed. We have implemented this idea in a new QuickCheck
module, eqc_par_statem, which takes the same state-machine specifications
as eqc_statem, but tests the API in parallel instead. While state machine
specifications require some investment to produce in real situations, this means
that we can test for race conditions with no further investment in developing a
parallel specification. It also means that, as the code under test evolves, we can
switch freely to-and-fro between sequential testing to ensure the basic behavior
still works, and race condition testing using eqc_par_statem.

The difficulty with this approach is that, when we run a test, then there is
no way to observe the sequence in which the API operations take effect. (For
example, a server is under no obligation to service requests in the order in which
they are made, so observing this order would tell us nothing.) In general,
the only way to tell whether there is a possible sequentialization of a test
case which can explain the observed test results, is to enumerate all possible
sequentializations. This is prohibitively expensive unless care is taken when
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test cases are generated.

4.2 Generating Parallel Test Cases

Our first approach to parallel test case generation was to use the standard
Quviqg QuickCheck library eqc_statem to generate sequential test cases, then
execute all the calls in the test case in parallel, constrained only by the data
dependencies between them (which arise from symbolic variables, bound in one
command, being used in a later one). This generates a great deal of parallelism,
but sadly also an enormous number of possible serializations—in the worst case
in which there are no data dependencies, a sequence of n commands generates
n! possible serializations. It is not practically feasible to implement a test oracle
for parallel tests of this sort.

Instead, we decided to generate parallel test cases of a more restricted form.
They consist of an initial sequential prefix, to put the system under test into a
random state, followed by exactly two sequences of calls which are performed
in parallel. Thus the possible serializations consist of the initial prefix, followed
by an interleaving of the two parallel sequences. (Lu et al. [2008] gives clear
evidence that it is possible to discover a large fraction of the concurrency re-
lated bugs by using only two parallel threads/processes.) We generate parallel
test cases by parallelizing a suffix of an eqc_statem test case, separating it into
two lists of commands of roughly equal length, with no mutual data dependen-
cies, which are mon-interfering according to the sequential specification. By
non-interference, we mean that all command preconditions are satisfied in any
interleaving of the two lists, which is necessary to prevent tests from failing
because a precondition was unsatisfied—mnot an interesting failure. We avoid
parallelizing too long a suffix (longer than 16 commands), to keep the number
of possible interleavings feasible to enumerate (about 10,000 in the worst case).
Finally, we run tests by first running the prefix, then spawning two processes to
run the two command-lists in parallel, and collecting their results, which will
be non-deterministic depending on the actual parallel scheduling of events.

We decide whether a test has passed, by attempting to construct a sequen-
tialization of the test case which explains the results observed. We begin with
the sequential prefix of the test case, and use the next_state function of the
eqc_statem model to compute the test case state after this prefix is completed.
Then we try to extend the sequential prefix, one command at a time, by choos-
ing the first command from one of the parallel branches, and moving it into the
prefix. This is allowed only if the postcondition specified in the eqc_statem
model accepts the actual result returned by the command when we ran the
test. If so, we use the next_state function to compute the state after this
command, and continue. If the first commands of both branches fulfilled their
postconditions, then we cannot yet determine which command took effect first,
and we must explore both possibilities further. If we succeed in moving all
commands from the parallel branches into the sequential prefix, such that all
postconditions are satisfied, then we have found a possible sequentialization of
the test case explaining the results we observed. If our search fails, then there
is no such sequence, and the test failed.

This is a greedy algorithm: as soon as a postcondition fails, then we can discard
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all potential sequentializations with the failing command as the next one in
the sequence. This happens often enough to make the search reasonably fast
in practice. As a further optimization, we memoize the search function on the
remaining parallel branches and the test case state. This is useful, for example,
when searching for a sequentialization of [A4, B] and [C, D], if both [A, C] and
[C, A] are possible prefixes, and they lead to the same test state—for then
we need only try to sequentialize [B] and [D] once. We memoize the non-
interference test in a similar way, and these optimizations give an appreciable,
though not dramatic, speed-up in our experiments—of about 20%. With these
optimizations, generating and running parallel tests is acceptably fast.

4.3 Shrinking Parallel Test Cases

When a test fails, QuickCheck attempts to shrink the failing test by searching
for a similar, but smaller test case which also fails. QuickCheck can often report
minimal failing examples, which is a great help in fault diagnosis. eqc_statem
already has built-in shrinking methods, of which the most important tries to
delete unnecessary commands from the test case, and eqc_par_statem inherits
these methods. But we also implement an additional shrinking method for
parallel test cases: if it is possible to move a command from one of the parallel
suffixes into the sequential prefix, then we do so. Thus the minimal test cases we
find are “minimally parallel]”—we know that the parallel branches in the failing
tests reported really do race, because everything that can be made sequential,
is sequential. This also assists fault diagnosis.

4.4 Testing proc_reg for Race Conditions

To test the process registry using eqc_par_statem, it is only necessary to mod-
ify the property in Section 2 to use eqc_par_statem rather than eqc_statem
to generate and run test cases.

prop_proc_reg_parallel() ->
?PFORALL(Cmds,eqc_par_statem: commands (?MODULE) ,

begin
{ok,ETSTabs} = proc_reg_tabs:start_link(),
{ok,Server} = proc_reg:start_link(),
{H,{A,B},Res} =

eqc_par_statem:run_commands (?MODULE, Cmds) ,

cleanup (ETSTabs,Server) ,
Res == ok

end) .

The type returned by run_commands is slightly different (A and B are lists of
the calls made in each parallel branch, paired with the results returned), but
otherwise no change to the property is needed.

When this property is tested on a single-core processor, all tests pass. How-
ever, as soon as it is tested on a dual-core, tests begin to fail. Interestingly,
just running on two cores gives us enough fine-grain interleaving of concur-
rent processes to demonstrate the presence of race conditions, something we
had to achieve by instrumenting the code with calls to yield() to control the
scheduler when we first tested this code in 2005. However, just as in 2005, the



59

reported failing test cases are large, and do not shrink to small examples. This
makes the race condition very hard indeed to diagnose.

The problem is that the test outcome is not determined solely by the test case:
depending on the actual interleaving of memory operations on the dual core,
the same test may sometimes pass and sometimes fail. This is devastating for
QuickCheck’s shrinking, which works by repeatedly replacing the failed test
case by a smaller one which still fails. If the smaller test happens to succeed—
by sheer chance, as a result of non-deterministic execution—then the shrinking
process stops. This leads QuickCheck to report failed tests which are far from
minimal.

Our solution to this is almost embarrassing in its simplicity: instead of running
each test only once, we run it many times, and consider a test case to have
passed only if it passes every time we run it. We express this concisely using
a new form of QuickCheck property, 7ALWAYS(N,Prop), which passes if Prop
passes N times in a row?. Now, provided the race condition we are looking
for is reasonably likely to be provoked by test cases in which it is present,
then 7ALWAYS(10,...) is very likely to provoke it—and so tests are unlikely to
succeed “by chance” during the shrinking process. This dramatically improves
the effectiveness of shrinking, even for quite small values of N. While we do not
always obtain minimal failing tests with this approach, we find we can usually
obtain a minimal example by running QuickCheck a few times.

When testing the proc_reg property above, we find the following simple coun-
terexample:

{[{set,{var,5},{call,proc_reg_eqc,spawn, [1}},
{set,{var,9},{call,proc_reg_eqc,kill, [{var,5}]1}},
{set,{var,15},{call,proc_reg_eqc,reg, [a,{var,5}1}}],

{[{set,{var,19},{call,proc_reg_eqc,reg, [a,{var,5}]1}}],
[{set,{var,18},{call,proc_reg_eqc,reg, [a,{var,5}]1}}]1}}

This test case first creates and kills a process, then tries to register it (which
should have no effect, because it is already dead), and finally tries to register
it again twice, in parallel. Printing the diagnostic output from run_commands,
we see:

Sequential:
[{{state, [1,[],[]1},<0.5576.2>},
{{state, [<0.5576.2>],[1, [1},0k},
{{state, [<0.5576.2>],[], [<0.5576.2>]},true}]
Parallel:
{[{{call,proc_reg_eqc,reg, [2,<0.5576.2>]},
{’EXIT’,{badarg, [{proc_reg,reg,2},...1}}}]1,
[{{call,proc_reg_eqc,reg, [a,<0.5576.2>]},true}]}
Res: no_possible_interleaving

(where the ellipses replace an uninteresting stack trace). The values displayed
under “Parallel:” are the results A and B from the two parallel branches—
they reveal that one of the parallel calls to reg raised an exception, even though
trying to register a dead process should always just return true! How this hap-
pened, though, is still quite mysterious—but will be explained in the following
sections.

4In fact we need only repeat tests during shrinking.
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5 PULSE: A User-level Scheduler

At this point, we have found a simple test case that fails, but we do not know
why it failed—we need to debug it. A natural next step would be to turn on
Erlang’s tracing features and rerun the test. But when the bug is caused by a
race condition, then turning on tracing is likely to change the timing properties
of the code, and thus interfere with the test failure! Even simply repeating the
test may lead to a different result, because of the non-determinism inherent in
running on a multi-core. This is devastating for debugging.

What we need is to be able to repeat the test as many times as we like, with
deterministic results, and to observe what happens during the test, so that we
can analyze how the race condition was provoked. With this in mind, we have
implemented a new Erlang module that can control the execution of designated
Erlang processes and records a trace of all relevant events. Our module can
be thought of as a user-level scheduler, sitting on top of the normal Erlang
scheduler. Its aim is to take control over all sources of non-determinism in
Erlang programs, and instead take those scheduling decisions randomly. This
means that we can repeat a test using exactly the same schedule by supplying
the same random number seed: this makes tests repeatable. We have named
the module PULSE, short for ProTest User-Level Scheduler for Erlang.

The Erlang virtual machine (VM) runs processes for relatively long time-slices,
in order to minimize the time spent on context switching—but as a result, it is
very unlikely to provoke race conditions in small tests. It is possible to tune the
VM to perform more context switches, but even then the scheduling decisions
are entierly deterministic. This is one reason why tricky concurrency bugs are
rarely found during unit testing; it is not until later stages of a project, when
many components are tested together, that the standard scheduler begins to
preempt processes and trigger race conditions. In the worst case, bugs don’t
appear until the system is put under heavy load in production! In these later
stages, such errors are expensive to debug. One other advantage (apart from
repeatability) of PULSE is that it generates much more fine-grain interleaving
than the built-in scheduler in the Erlang virtual machine (VM), because it
randomly chooses the next process to run at each point. Therefore, we can
provoke race conditions even in very small tests.

Erlang’s scheduler is built into its virtual machine—and we did not want to
modify the virtual machine itself. Not only would this be difficult—it is a low-
level, fairly large and complex C program—but we would need to repeat the
modifications every time a new version of the virtual machine was released. We
decided, therefore, to implement PULSE in Erlang, as a user-level scheduler, and
to instrument the code of the processes that it controls so that they cooperate
with it. As a consequence, PULSE can even be used in conjunction with legacy
or customized versions of the Erlang VM (which are used in some products).
The user level scheduler also allows us to restrict our debugging effort to a
few processes, whereas we are guaranteed that the rest of the processes are
executed normally.
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5.1 Overall Design

The central idea behind developing PULSE was to provide absolute control over
the order of relevant events. The first natural question that arises is: What are
the relevant events? We define a side-effect to be any interaction of a process
with its environment. Of particular interest in Erlang is the way processes
interact by message passing, which is asynchronous. Message channels, con-
taining messages that have been sent but not yet delivered, are thus part of
the environment and explicitly modelled as such in PULSE. It makes sense to
separate side-effects into two kinds: outward side-effects, that influence only
the environment (such as sending a message over a channel, which does not
block and cannot fail, or printing a message), and inward side-effects, that al-
low the environment to influence the behavior of the process (such as receiving
a message from a channel, or asking for the system time).

We do not want to take control over purely functional code, or side-effecting
code that only influences processes locally. PULSE takes control over some
basic features of the Erlang RT'S (such as spawning processes, message sending,
linking, etc.), but it knows very little about standard library functions — it
would be too much work to deal with each of these separately! Therefore,
the user of PULSE can specify which library functions should be dealt with as
(inward) side-effecting functions, and PULSE has a generic way of dealing with
these (see subsection 5.3).

A process is only under the control of PULSE if its code has been properly instru-
mented. All other processes run as normal. In instrumentation, occurrences
of side-effecting actions are replaced by indirections that communicate with
PULSE instead. In particular, outward side-effects (such as sending a message
to another process) are replaced by simply sending a message to PULSE with the
details of the side-effect, and inward side-effects (such as receiving a message)
are replaced by sending a request to PULSE for performing that side-effect, and
subsequently waiting for permission. To ease the instrumentation process, we
provide an automatic instrumenter, described in subsection 5.4.

5.2 Inner Workings

The PULSE scheduler controls its processes by allowing only one of them to run
at a time. It employs a cooperative scheduling method: At each decision point,
PULSE randomly picks one of its waiting processes to proceed, and wakes it up.
The process may now perform a number of outward side-effects, which are all
recorded and taken care of by PULSE, until the process wants to perform an
inward side-effect. At this point, the process is put back into the set of waiting
processes, and a new decision point is reached.

The (multi-node) Erlang semantics [Svensson and Fredlund, 2007] provides
only one guarantee for message delivery order: that messages between a pair
of processes arrive in the same order as they were sent. So as to adhere to this,
PULSE’s state also maintains a message queue between each pair of processes.
When process P performs an outward side-effect by sending a message M to
the process @, then M is added to the queue (P,Q). When PULSE wants
to wake up a waiting process @, it does so by randomly picking a non-empty
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queue (P’, Q) with Q as its destination, and delivering the first message in that
queue to Q. Special care needs to be taken for the Erlang construct receive

. after n -> ... end, which allows a receiving process to only wait for an
incoming message for n milliseconds before continuing, but the details of this
are beyond the scope of this paper.

As an additional benefit, this design allows PULSE to detect deadlocks when it
sees that all processes are blocked, and there exist no message queues with the
blocked processes as destination.

As a clarification, the message queues maintained by PULSE for each pair of
processes should not be confused with the internal mailbox that each process
in Erlang has. In our model, sending a message M from P to @ goes in four
steps: (1) P asynchronously sends off M, (2) M is on its way to @, (3) M
is delivered to @’s mailbox, (4) Q performs a receive statement and M is
selected and removed from the mailbox. The only two events in this process
that we consider side-effects are (1) P sending of M, and (3) delivering M
to @’s mailbox. In what order a process decides to process the messages in
its mailbox is not considered a side-effect, because no interaction with the
environment takes place.

5.3 External Side-effects

In addition to sending and receiving messages between themselves, the pro-
cesses under test can also interact with uninstrumented code. PULSE needs to
be able to control the order in which those interactions take place. Since we
are not interested in controlling the order in which pure functions are called
we allow the programmer to specify which external functions have side-effects.
Each call of a side-effecting function is then instrumented with code that yields
before performing the real call and PULSE is free to run another process at that
point.

Side-effecting functions are treated as atomic which is also an important feature
that aids in testing systems built of multiple components. Once we establish
that a component contains no race conditions we can remove the instrumen-
tation from it and mark its operations as atomic side-effects. We will then be
able to test other components that use it and each operation marked as side-
effecting will show up as a single event in a trace. Therefore, it is possible to
test a component for race conditions independently of the components that it
relies on.

5.4 Instrumentation

The program under test has to cooperate with PULSE, and the relevant processes
should use PULSE’s API to send and receive messages, spawn processes, etc.,
instead of Erlang’s built-in functionality. Manually altering an Erlang program
so that it does this is tedious and error-prone, so we developed an instrumenting
compiler that does this automatically. The instrumenter is used in exactly the
same way as the normal compiler, which makes it easy to switch between PULSE
and the normal Erlang scheduler. It’s possible to instrument and load a module
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at runtime by typing in a single command at the Erlang shell.

Let us show the instrumentation of the four most important constructs: sending
a message, yielding, spawning a process, and receiving a message.

5.4.1 Sending

If a process wants to send a message, the instrumenter will redirect this as a
request to the PULSE scheduler. Thus, Pid ! Msg is replaced by

scheduler ! {send, Pid, Msg},
Msg

The result value of sending a message is always the message that was sent.
Since we want the instrumented send to yield the same result value as the
original one, we add the second line.

5.4.2 Yielding

A process yields when it wants to give up control to the scheduler. Yields are
also introduced just before each user-specified side-effecting external function.
After instrumentation, a yielding process will instead give up control to PULSE.

This is done by telling it that the process yields, and waiting for permission to
continue. Thus, yield() is replaced by

scheduler ! yield,
receive

{scheduler, go} -> ok
end

In other words, the process notifies PULSE and then waits for the message go
from the scheduler before it continues. All control messages sent by PULSE
to the controlled processes are tagged with {scheduler, _} in order to avoid
mixing them up with "real” messages.

5.4.3 Spawning

A process P spawning a process () is considered an outward side-effect for P,
and thus P does not have to block. However, PULSE must be informed of the
existence of the new process ), and @) needs to be brought under its control.
The spawned process Q must therefore wait for PULSE to allow it to run. Thus,
spawn (Fun) is replaced by

Pid = spawn(fun() -> receive
{scheduler, go} -> Fun()
end
end),
scheduler ! {spawned, Pid},
Pid

In other words, the process spawns an altered process that waits for the message
go from the scheduler before it does anything. The scheduler is then informed
of the existence of the spawned process, and we continue.
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5.4.4 Receiving

Receiving in Erlang works by pattern matching on the messages in the process’
mailbox. When a process is ready to receive a new message, it will have to
ask PULSE for permission. However, it is possible that an appropriate message
already exists in its mailbox, and receiving this message would not be a side-
effect. Therefore, an instrumented process will first check if it is possible to
receive a message with the desired pattern, and proceed if this is possible. If
not, it will tell the scheduler that it expects a new message in its mailbox, and
blocks. When woken up again on the delivery of a new message, this whole
process is repeated if necessary.

We need a helper function that implements this checking-waiting loop. It is
called receiving:

receiving(Receiver) ->
Receiver(fun() ->
scheduler ! block,
receive
{scheduler, go} -> receiving(Receiver)
end
end) .

receiving gets a receiver function as an argument. A receiver function is a
function that checks if a certain message is in its mailbox, and if not, executes
its argument function. The function receiving turns this into a loop that only
terminates once PULSE has delivered the right message. When the receiver
function fails, PULSE is notified by the block message, and the process waits
for permission to try again.

Code of the form

receive Pat -> Exp end
is then replaced by

receiving(fun (Failed) ->

receive
Pat -> Exp
after 0 -> Failed()
end
end)
In the above, we use the standard Erlang idiom (receive ... after 0 -> ...

end) for checking if a message of a certain type exists. It is easy to see how
receive statements with more than one pattern can be adapted to work with
the above scheme.

5.5 Testing proc_reg with PULSE

To test the proc_reg module using both QuickCheck and PULSE, we need to
make a few modifications to the QuickCheck property in Section 4.4.

prop_proc_reg_scheduled() ->
?FORALL (Cmds, eqc_par_statem: commands (?MODULE) ,
?ALWAYS (10, ?FORALL (Seed,seed (),
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begin
SRes =
scheduler:start ([{seed,Seed}],
fun() ->
{ok,ETSTabs} = proc_reg_tabs:start_link(),
{ok,Server} = proc_reg:start_link(),
eqc_par_statem:run_commands (?MODULE, Cmds) ,
cleanup (ETSTabs,Server) ,
end),
{H,AB,Res} = scheduler:get_result(SRes),
Res == ok
end))).

PULSE uses a random seed, generated by seed(). It also takes a function as
an argument, so we create a lambda-function which initializes and runs the
tests. The result of running the scheduler is a list of things, thus we need to
call scheduler:get_result to retrieve the actual result from run_commands.
‘We should also remember to instrument rather than compile all the involved
modules. Note that we still use 7ALWAYS in order to run the same test data with
different random seeds, which helps the shrinking process in finding smaller
failing test cases that would otherwise be less likely to fail.

When testing this modified property, we find the following counterexample,
which is in fact simpler than the one we found in Section 4.4:

{[{set,{var,9},{call,proc_reg_eqc,spawn, [1}},
{set,{var,10},{call,proc_reg_eqc,kill, [{var,9}]1}}],
{[{set,{var,15},{call,proc_reg_eqc,reg, [c,{var,9}1}}],

[{set,{var,12},{call,proc_reg_eqc,reg, [c,{var,931}}]1}}

When prompted, PULSE provides quite a lot of information about the test case
run and the scheduling decisions taken. Below we show an example of such
information. However, it is still not easy to explain the counterexample; in
the next section we present a method that makes it easier to understand the
scheduler output.

-> <’start_link.Pid1’> calls
scheduler:process_flag [priority,high]
returning normal.

-> <’start_link.Pid1’> sends
’{call,{attach,<0.31626.0>},

<0.31626.0>,#Ref<0.0.0.13087>}’
to <’start_link.Pid’>.

-> <’start_link.Pid1’> blocks.

*%*x unblocking <’start_link.Pid’>
by delivering ’{call,{attach,<0.31626.0>},
<0.31626.0>,
#Ref<0.0.0.13087>}’
sent by <’start_link.Pid1’>.

6 Visualizing Traces

PULSE records a complete trace of the interesting events during test execution,
but these traces are long, and tedious to understand. To help us interpret them,
we have, utilizing the popular GraphViz package [Gansner and North, 1999],
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scheduler:process_flag(trap_exit,true)
= false
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Figure 2.1: A simple trace visualization.

built a trace visualizer that draws the trace as a graph. For example, Figure
2.1 shows the graph drawn for one possible trace of the following program:

procA() ->
PidB = spawn(fun procB/0),
PidB ! a,
process_flag(trap_exit, true),
link(PidB),
receive

{’EXIT’,_,Why} -> Why

end.

procB() ->
receive
a -> exit(kill)
end.

The function procA starts by spawning a process, and subsequently sends it a
message a. Later, procA links to the process it spawned, which means that it
will get notified when that process dies. The default behavior of a process when
such a notification happens is to also die (in this way, one can build hierarchies
of processes). Setting the process flag trap_ezit to true changes this behaviour,
and the notification is delivered as a regular message of the form {EXIT,_,_}
instead.
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In the figure, each process is drawn as a sequence of state transitions, from a
start state drawn as a triangle, to a final state drawn as an inverted triangle,
all enclosed in a box and assigned a unique color. (Since the printed version of
the diagrams may lack these colors, we reference diagram details by location
and not by color. However, the diagrams are even more clear in color.) The
diagram shows the two processes, procA (called root) which is shown to the
left (in red), and procB (called procA.PidB, a name automatically derived by
PULSE from the point at which it was spawned) shown to the right (in blue).
Message delivery is shown by gray arrows, as is the return of a result by the root
process. As explained in the previous section, processes make transitions when
receiving a message®, or when calling a function that the instrumenter knows
has a side-effect. From the figure, we can see that the root process spawned
PidB and sent the message a to it, but before the message was delivered then
the root process managed to set its trap_exit process flag, and linked to PidB.
PidB then received its message, and killed itself, terminating with reason kill.
A message was sent back to root, which then returned the exit reason as its
result.

Figure 2.2 shows an alternative trace, in which PidB dies before root creates
a link to it, which generates an exit message with a different exit reason. The
existence of these two different traces indicates a race condition when using
spawn and link separately (which is the reason for the existence of an atomic
spawn_link function in Erlang).

The diagrams help us to understand traces by gathering together all the events
that affect one process into one box; in the original traces, these events may
be scattered throughout the entire trace. But notice that the diagrams also
abstract away from irrelevant information—specifically, the order in which mes-
sages are delivered to different processes, which is insignificant in Erlang. This
abstraction is one strong reason why the diagrams are easier to understand
than the traces they are generated from.

However, we do need to know the order in which calls to functions with side-
effects occur, even if they are made in different processes. To make this order
visible, we add dotted black arrows to our diagrams, from one side-effecting
call to the next. Figure 2.3 illustrates one possible execution of this program,
in which two processes race to write to the same file:

write_race() ->
Pid = spawn(fun() ->
file:write_file("a.txt","a")
end),
file:write_file("a.txt","b").

In this diagram, we can see that the write_file in the root process preceded
the one in the spawned process write_race.Pid.

If we draw these arrows between every side-effect and its successor, then our
diagrams rapidly become very cluttered. However, it is only necessary to in-
dicate the sequencing of side-effects explicitly if their sequence is not already
determined. For each pair of successive side-effect transitions, we thus com-
pute Lamport’s “happens before” relation [Lamport, 1978] between them, and

5If messages are consumed from a process mailbox out-of-order, then we show the de-
livery of a message to the mailbox, and its later consumption, as separate transitions.
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root \ rocA . PidB\
a

scheduler:process_flag(trap_exit,true)
= false

{EXIT,_,noproc}

—2 Y
kill

Figure 2.2: An alternative possible execution.

if this already implies that the first precedes the second, then we draw no ar-
row in the diagram. Interestingly, in our examples then this eliminates the
majority of such arrows, and those that remain tend to surround possible race
conditions—where the message passing (synchronization) does not enforce a
particular order of side-effects. Thus black dotted arrows are often a sign of
trouble.

6.1 Analyzing the proc_reg race conditions

Interestingly, as we saw in Section 5.5, when we instrumented proc_reg and
tested it using PULSE and QuickCheck, we obtained a different—even simpler—
minimal failing test case, than the one we had previously discovered using
QuickCheck with the built-in Erlang scheduler. Since we need to use PULSE
in order to obtain a trace to analyze, then we must fix this bug first, and see
whether that also fixes the first problem we discovered. The failing test we find
using PULSE is this one:

{[{set,{var,9},{call,proc_reg_eqc,spawn, [1}},
{set,{var,10},{call,proc_reg_eqc,kill, [{var,9}]1}}],
{[{set,{var,15},{call,proc_reg_eqc,reg, [c,{var,9}1}}],
[{set,{var,12},{call,proc_reg_eqc,reg, [c,{var,9}]1}}1}}

In this test case, we simply create a dead process (by spawning a process and
then immediately killing it), and try to register it twice in parallel, and as it
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file:write_file("a.txt", )
= ok

N - '
write race.P1

file:write_file("p.txt", )
= ok

Figure 2.3: A race between two side-effects.

happens the first call to reg raises an exception. The diagram we generate is
too large to include in full, but in Figure 2.4 we reproduce the part showing
the problem.

In this diagram fragment, the processes we see are, from left to right, the
proc_reg server, the second parallel fork (BPid), and the first parallel fork
(APid). We can see that BPid first inserted its argument into the ETS table,
recording that the name c is now taken, then sent an asynchronous message to
the server ({cast,{..}}) to inform it of the new entry. Thereafter APid tried
to insert an ETS entry with the same name—but failed. After discovering that
the process being registered is actually dead, APid sent a message to the server
asking it to “audit” its entry ({call,{..},_,_})—that is, clean up the table
by deleting the entry for a dead process. But this message was delivered before
the message from BPid! As a result, the server could not find the dead process
in its table, and failed to delete the entry created by BPid, leading APid’s
second attempt to create an ETS entry to fail also—which is not expected to
happen. When BPid’s message is finally received and processed by the server,
it is already too late.

The problem arises because, while the clients create “forward” ETS entries
linking the registered name to a pid, it is the server which creates a “reverse”
entry linking the pid to its monitoring reference (created by the server). It
is this reverse entry that is used by the server when asked to remove a dead
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Figure 2.4: A problem caused by message overtaking.

process from its tables. We corrected the bug by letting clients (atomically)
insert two ETS entries into the same table: the usual forward entry, and a
dummy reverse entry (lacking a monitoring reference) that is later overwritten
by the server. This dummy reverse entry enables the server to find and delete
both entries in the test case above, thus solving the problem.

In fact, the current Erlang virtual machine happens to deliver messages to
local mailboxes instantaneously, which means that one message cannot actually
overtake another message sent earlier—the cause of the problem in this case.
This is why this minimal failing test was not discovered when we ran tests
on a multi-core, using the built-in scheduler. However, this behavior is not
guaranteed by the language definition, and indeed, messages between nodes
in a distributed system can overtake each other in this way. It is expected
that future versions of the virtual machine may allow message overtaking even
on a single “many-core” processor; thus we consider it an advantage that our
scheduler allows this behavior, and can provoke race conditions that it causes.

It should be noted that exactly the same scenario can be triggered in an alterna-
tive way (without parallel processes and multi-core!); namely if the BPid above
is preempted between its call to ets:insert_new and sending the cast-message.
However, the likelihood for this is almost negligible, since the Erlang scheduler
prefers running processes for relatively long time-slices. Using PULSE does not
help triggering the scenario in this way either. PULSE is not in control at any
point between ets:insert_new and sending the cast-message, meaning that
only the Erlang scheduler controls the execution. Therefore, the only feasible
way to repeatedly trigger this faulty scenario is by delaying the cast-message
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by using PULSE (or a similar tool).

6.2 A second race condition in proc_reg

Having corrected the bug in proc_reg we repeated the QuickCheck test. The
property still fails, with the same minimal failing case that we first discovered
(which is not so surprising since the problem that we fixed in the previous
section cannot actually occur with today’s VM). However, we were now able to
reproduce the failure with PULSE, as well as the built-in scheduler. As a result,
we could now analyze and debug the race condition. The failing case is:

{[{set,{var,4},{call,proc_reg_eqc,spawn, [1}},
{set,{var,7},{call,proc_reg_eqc,kill, [{var,4}]1}},
{set,{var,12},{call,proc_reg_eqc,reg, [b,{var,4}1}}],

{[{set,{var,18},{call,proc_reg_eqc,reg, [b,{var,4}1}}]1,
[{set,{var,21},{call,proc_reg_eqc,reg, [b,{var,4}1}}]1}}

In this test case we also create a dead process, but we try to register it once in
the sequential prefix, before trying to register it twice in parallel. Once again,
one of the calls to reg in the parallel branches raised an exception.

Turning again to the generated diagram, which is not included in the paper for
space reasons, we observed that both parallel branches (APid and BPid) fail to
insert b into the ETS table. They fail since the name b was already registered
in the sequential part of the test case, and the server has not yet processed the
DOWN message generated by the monitor. Both processes then call where(b)
to see if b is really registered, which returns undefined since the process is
dead. Both APid and BPid then request an “audit” by the server, to clean out
the dead process. After the audit, both processes assume that it is now ok to
register b, there is a race condition between the two processes, and one of the
registrations fails. Since this is not expected, an exception is raised. (Note
that if b were alive then this would be a perfectly valid race condition, where
one of the two processes successfully registers the name and the other fails, but
the specification says that the registration should always return true for dead
processes).

This far into our analysis of the error it became clear that it is an altogether
rather unwise idea ever to insert a dead process into the process registry. To
fix the error we added a simple check that the process is alive before inserting
it into the registry. The effect of this change on the performance turned out
to be negligible, because is_process_alive is very efficient for local processes.
After this change the module passed 20 000 tests, and we were satisfied.

7 Discussion and Related Work

Actually, the “fix” just described does not really remove all possible race con-
ditions. Since the diagrams made us understand the algorithm much better, we
can spot another possible race condition: If APid and BPid try to register the
same pid at the same time, and that process dies just after APid and BPid have
checked that it is alive, then the same problem we have just fixed, will arise.
The reason that our tests succeeded even so, is that a test must contain three
parallel branches to provoke the race condition in its new form—two processes
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K
2 3 4 5

1 2 6 24 120

2 6 90 2520 | 113400

3 20 1680 | 369600 108

N 4 70 | 34650 | 6 x 107 | 3 x 10!
5 252 | 756756 1019 | 6 x 104

8 | 12870 | 10" | 10'7 | 8 x10*

Figure 2.5: Possible interleavings of parallel branches

making simultaneous attempts to register, and a third process to kill the pid
concerned at the right moment. Because our parallel test cases only run two
concurrent branches, then they can never provoke this behavior.

The best way to fix the last race condition problem in proc_reg would seem
to be to simplify its API, by restricting reg so that a process may only register
itself. This, at a stroke, eliminates the risk of two processes trying to register
the same process at the same time, and guarantees that we can never try to
register a dead process. This simplification was actually made in the production
version of the code.

Parallelism in test cases

We could, of course, generate test cases with three, four, or even more concur-
rent branches, to test for this kind of race condition too. The problem is, as
we explained in section 4.2, that the number of possible interleavings grows ex-
tremely fast with the number of parallel branches. The number of interleavings
of K sequences of length N are as presented in Figure 2.5.

The practical consequence is that, if we allow more parallel branches in test
cases, then we must restrict the length of each branch correspondingly. The
bold entries in the table show the last “feasible” entry in each column—with
three parallel branches, we would need to restrict each branch to just three
commands; with four branches, we could only allow two; with five or more
branches, we could allow only one command per branch. This is in itself a
restriction that will make some race conditions impossible to detect. Moreover,
with more parallel branches, there will be even more possible schedules for
PULSE to explore, so race conditions depending on a precise schedule will be
correspondingly harder to find.

There is thus an engineering trade-off to be made here: allowing greater paral-
lelism in test cases may in theory allow more race conditions to be discovered,
but in practice may reduce the probability of finding a bug with each test,
while at the same time increasing the cost of each test. We decided to prior-
itize longer sequences over more parallelism in the test case, and so we chose
K = 2. However, in the future we plan to experiment with letting QuickCheck
randomly choose K and N from the set of feasible combinations. To be clear,
note that K only refers to the parallelism in the test case, that is, the number
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of processes that make calls to the API. The system under test may have hun-
dreds of processes running, many of them controlled by PULSE, independently
of K.

The problem of detecting race conditions is well studied and can be divided
in runtime detection, also referred to as dynamic detection, and analyzing the
source code, so called static detection. Most results refer to race conditions in
which two threads or processes write to shared memory (data race condition),
which in Erlang cannot happen. For us, a race condition appears if there are
two schedules of occurring side effects (sending a message, writing to a file,
trapping exits, linking to a process, etc) such that in one schedule our model
of the system is violated and in the other schedule it is not. Of course, writing
to a shared ETS table and writing in shared memory is related, but in our
example it is allowed that two processes call ETS insert in parallel. By the
atomicity of insert, one will succeed, the other will fail. Thus, there is a valid
race condition that we do not want to detect, since it does not lead to a failure.
Even in this slightly different setting, known results on race conditions still
indicate that we are dealing with a hard problem. For example, Netzer and
Miller [1990] show for a number of relations on traces of events that ordering
these events on ‘could have been a valid execution’ is an NP-hard problem (for
a shared memory model). Klein et al. [2003] show that statically detecting race
conditions is NP-complete if more than one semaphore is used.

Thus, restricting eqc_par_statem to execute only two processes in parallel is
a pragmatic choice. Three processes may be feasible, but real scalability is
not in sight. This pragmatic choice is also supported by recent studies [Lu
et al., 2008], where it is concluded that: “Almost all (96%) of the examined
concurrency bugs are guaranteed to manifest if certain partial order between 2
threads is enforced.”

Hierarchical approach

Note that our tools support a hierarchical approach to testing larger systems.
We test proc_reg under the assumption that the underlying ets operations are
atomic; PULSE does not attempt to (indeed, cannot) interleave the executions of
single ETS operations, which are implemented by C code in the virtual machine.
Once we have established that the proc_reg operations behave atomically, then
we can make the same assumption about them when testing code that makes
use of them. When testing for race conditions in modules that use proc_reg,
then we need not, and do not want to, test for race conditions in proc_reg
itself. As a result, the PULSE schedules remain short, and the simple random
scheduling that we use suffices to find schedules that cause failures.

Model Checking

One could argue that the optimal solution to finding race conditions problem
would be to use a model checker to explore all possible interleavings. The
usual objections are nevertheless valid, and the rapidly growing state space
for concurrent systems makes model checking totally infeasible, even with a
model checker optimized for Erlang programs, such as McErlang [Fredlund
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and Svensson, 2007]. Further it is not obvious what would be the property
to model check, since the atomicity violations that we search for can not be
directly translated into an LTL model checking property.

Input non-determinism

PULSE provides deterministic scheduling. However, in order for tests to be
repeatable we also need the external functions to behave consistently across
repeated runs. While marking them as side-effects will ensure that they are
only called serially, PULSE does nothing to guarantee that functions called in
the same sequence will return the same values in different runs. The user still
has to make sure that the state of the system is reset properly before each run.
Note that the same arguments apply to QuickCheck testing; it is crucial for
shrinking and re-testing that input is deterministic and thus it works well to
combine QuickCheck and PULSE.

False positives

In contrast to many race finding methods, that try to spot common patterns
leading to concurrency bugs, our approach does not produce false positives and
not even does it show races that result in correct execution of the program.
This is because we employ property-based testing and classify test cases based
on whether the results satisfy correctness properties and report a bug only
when a property is violated.

Related tools

Park and Sen [2008] study atomicity in Java. Their approach is similar to
ours in that they use a random scheduler both for repeatability and increased
probability of finding atomicity violations. However, since Java communication
is done with shared objects and locks, the analysis is rather different.

It is quite surprising that our simple randomized scheduler—and even just
running tests on a multi-core—coupled with repetition of tests to reduce non-
determinism, should work so well for us. After all, this can only work if the
probability of provoking the race condition in each test that contains one is
reasonably high. In contrast, race conditions are often regarded as very hard
to provoke because they occur so rarely. For example, Sen used very care-
fully constructed schedules to provoke race conditions in Java programs [Sen,
2008a]—so how can we reasonably expect to find them just by running the
same test a few times on a multi-core?

We believe two factors make our simple approach to race detection feasible.
e Firstly, Erlang is not Java. While there is shared data in Erlang programs,
there is much less of it than in a concurrent Java program. Thus there

are many fewer potential race conditions, and a simpler approach suffices
to find them.

e Secondly, we are searching for race conditions during unit testing, where
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each test runs for a short time using only a relatively small amount of
code. During such short runs, there is a fair chance of provoking race con-
ditions with any schedule. Finding race conditions during whole-program
testing is a much harder problem.

Chess, developed by Musuvathi et al. [2008], is a system that shares many sim-
ilarities with PULSE. Its main component is a scheduler capable of running the
program deterministically and replaying schedules. The key difference between
Chess and PULSE is that the former attempts to do an exhaustive search and
enumerate all the possible schedules instead of randomly probing them. Several
interesting techniques are employed, including prioritizing schedules that are
more likely to trigger bugs, making sure that only fair schedules are enumer-
ated and avoiding exercising schedules that differ insignificantly from already
visited ones.

Visualization

Visualization is a common technique used to aid understanding software. Infor-
mation is extracted statically from source code or dynamically from execution
and displayed in graphical form. Of many software visualization tools a number
are related to our work. Topol et al. [1995] developed a tool that visualizes exe-
cutions of parallel programs and shows, among other things, a trace of messages
sent between processes indicating the happened-before relationships. Work of
Jerding et al. [1997] is able to show dynamic call-graphs of object-oriented pro-
grams and interaction patterns between their components. Arts and Fredlund
[2002] describe a tool that visualizes traces of Erlang programs in form of ab-
stract state transition diagrams. Artho et al. [2007] develop a notation that
extends UML diagrams to also show traces of concurrent executions of threads,
Maoz et al. [2007] create event sequence charts that can express which events
“must happen” in all possible scenarios.

8 Conclusions

Concurrent code is hard to debug and therefore hard to get correct. In this
paper we present an extension to QuickCheck, a user level scheduler for Erlang
(PULSE), and a tool for visualizing concurrent executions that together help
in debugging concurrent programs. The tools allow us to find concurrency
errors on a module testing level, whereas industrial experience is that most of
them slip through to system level testing, because the standard scheduler is
deterministic, but behaves differently in different timing contexts.

We contributed eqc_par_statem, an extension of the state machine library for
QuickCheck that enables parallel execution of a sequence of commands. We
generate a sequential prefix to bring the system into a certain state and continue
with parallel execution of a suffix of independent commands. As a result we can
provoke concurrency errors and at the same time get good shrinking behavior
from the test cases.

We contributed with PULSE, a user level scheduler that enables scheduling of any
concurrent Erlang program in such a way that an execution can be repeated
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deterministically. By randomly choosing different schedules, we are able to
explore more execution paths than without such a scheduler. In combination
with QuickCheck we get in addition an even better shrinking behavior, because
of the repeatability of test cases.

We contributed with a graph visualization method and tool that enabled us
to analyze concurrency faults more easily than when we had to stare at the
produced traces. The visualization tool depends on the output produced by
PULSE, but the use of computing the “happens before” relation to simplify the
graph is a general principle.

We evaluated the tools on a real industrial case study and we detected two
race conditions. The first one by only using eqc_par_statem; the fault had
been noticed before, but now we did not need to instrument the code under
test with yield() commands. The first and second race condition could easily
be provoked by using PULSE. The traces recorded by PULSE were visualized
and helped us in clearly identifying the sources of the two race conditions. By
analyzing the graphs we could even identify a third possible race condition,
which we could provoke if we allowed three instead of two parallel processes in
eqc_par_statem.

Our contributions help Erlang software developers to get their concurrent code
right and enables them to ship technologically more advanced solutions. Prod-
ucts that otherwise might have remained a prototype, because they were neither
fully understood nor tested enough, can now make it into production. The tool
PULSE and the visualization tool are available under the Simplified BSD License
and have a commercially supported version as part of Quviq QuickCheck.
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Ranking Programs using Black Box Testing

Koen Claessen, John Hughes, Michal Palka, Nick Smallbone,
Hans Svensson

Abstract

We present an unbiased method for measuring the relative quality of
different solutions to a programming problem. Our method is based on
identifying possible bugs from program behaviour through black-box test-
ing. The main motivation for such a method is its use in experimental
evaluation of software development methods. We report on the use of our
method in a small-scale such experiment, which was aimed at evaluating
the effectiveness of property-based testing vs. unit testing in software de-
velopment. The experiment validated the assessment method and yielded
suggestive, though not yet statistically significant results. We also show
tests that justify our method.
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1 Introduction

Property-based testing is an approach to testing software against a formal
specification, consisting of universally quantified properties which supply both
test data generators and test oracles. QuickCheck is a property-based testing
tool first developed for Haskell [Claessen and Hughes, 2000], and which forms
the basis for a commercial tool developed by Quviq [Arts et al., 2006]. As
a simple example, using QuickCheck, a programmer could specify that list
reversal is its own inverse like this,

prop_reverse (xs :: [Integer]) =
reverse (reverse xs) == Xs

which defines a property called prop_reverse which is universally quantified
over all lists of integers xs. Given such a property, QuickCheck generates
random values for xs as test data, and uses the body of the property as an oracle
to decide whether each test has passed. When a test fails, QuickCheck shrinks
the failing test case, searching systematically for a minimal failing example, in
a way similar to delta-debugging [Zeller, 2002]. The resulting minimal failing
case usually makes diagnosing a fault easy. For example, if the programmer
erroneously wrote

prop_reverse (xs :: [Integer]) =
reverse xs == Xs

then QuickCheck would report the minimal counterexample [0,1], since at
least two different elements are needed to violate the property, and the two
smallest different integers are 0 and 1.

The idea of testing code against general properties, rather than specific test
cases, is an appealing one which also underlies Tillmann and Schulte’s parame-
terized unit tests [Tillmann and Schulte, 2005] and the Pex tool [Tillmann and
de Halleux, 2008] (although the test case generation works differently). We
believe firmly that it brings a multitude of benefits to the developer, improving
quality and speeding development by revealing problems faster and earlier. Yet
claims such as this are easy to make, but hard to prove. And it is not obvious
that property-based testing must be superior to traditional test automation.
Among the possible disadvantages of QuickCheck testing are:

e it is often necessary to write test data generators for problem-specific data
structures, code which is not needed at all in traditional testing.

e the developer must formulate a formal specification, which is conceptually
more difficult than just predicting the correct output in specific examples.

e randomly generated test cases might potentially be less effective at re-
vealing errors than carefully chosen ones.

Thus an empirical comparison of property-based testing against other methods
is warranted.

Our overall goal is to evaluate property-based testing as a development tool,
by comparing programs developed by students using QuickCheck for testing,
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against programs developed for the same problem using HUnit [Herington,
2010]—a unit testing framework for Haskell similar to the popular JUnit tool
for Java programmers [JUnit.org, 2010]. We have not reached this goal yet—we
have carried out a small-scale experiment, but we need more participants to
draw statistically significant conclusions. However, we have identified an im-
portant problem to solve along the way: how should we rank student solutions
against each other, without introducing experimental bias?

Our intention is to rank solutions by testing them: those that pass the most
tests will be ranked the highest. But the choice of test suite is critical. It is
tempting to use QuickCheck to test student solutions against our own prop-
erties, using the proportion of tests passed as a measure of quality—but this
would risk experimental bias in two different ways:

e By using one of the tools in the comparison to grade solutions, we might
unfairly bias the experiment to favour that tool.

e The ranking of solutions could depend critically on the distribution of
random tests, which is rather arbitrary.

Unfortunately, a manually constructed set of test cases could also introduce
experimental bias. If we were to include many similar tests of a particular
kind, for example, then handling that kind of test successfully would carry
more weight in our assessment of solutions than handling other kinds of test.

Our goal in this paper, thus, is to develop a way of ranking student solutions
by testing that leaves no room for the experimenter’s bias to affect the result.
We will do so by generating a set of test cases from the submissions themselves,
based on a simple “bug model” presented in Section 3, such that each test case
tests for one bug. We then rank solutions by the number of bugs they contain.
QuickCheck is used to help find this set of test cases, but in such a way that
the distribution of random tests is of almost no importance.

1.0.1 Contribution

The main contribution of this paper is the ranking method we developed. As
evidence that the ranking is reasonable, we present the results of our small-
scale experiment, in which solutions to three different problems are compared
in this way. We also evaluate the stability of the method further by ranking
mutated versions of the same program.

The remainder of the paper is structured as follows. In the next section we
briefly describe the experiment we carried out. In Section 3 we explain and
motivate our ranking method. Section 4 analyses the results obtained, and
Section 5 checks that our ranking behaves reasonably. In Section 6 we discuss
related work, and we conclude in Section 7.

2 The Experiment

We designed an experiment to test the hypothesis that “Property-based test-
ing is more effective than unit testing, as a tool during software development”,
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using QuickCheck as the property-based testing tool, and HUnit as the unit
testing tool. We used a replicated project study [Basili et al., 1986], where in a
controlled experiment a group of student participants individually solved three
different programming tasks. We planned the experiment in accordance to best
practice for such experiments; trying not to exclude participants, assigning the
participants randomly to tools, using a variety of programming tasks, and try-
ing our best not to influence the outcome unnecessarily. We are only evaluating
the final product, thus we are not interested in process aspects in this study.

In the rest of this section we describe in more detail how we planned and exe-
cuted the experiment. We also motivate the choice of programming assignments
given to the participants.

2.1 Experiment overview

We planned an experiment to be conducted during one day. Since we expected
participants to be unfamiliar with at least one of the tools in the comparison,
we devoted the morning to a training session in which the tools were introduced
to the participants. The main issue in the design of the experiment was the
programming task (or tasks) to be given to the participants. Using several
different tasks would yield more data points, while using one single (bigger)
task would give us data points of higher quality. We decided to give three
separate tasks to the participants, mostly because by doing this, and selecting
three different types of problems, we could reduce the risk of choosing a task
particularly suited to one tool or the other. All tasks were rather small, and
require only 20-50 lines of Haskell code to implement correctly.

To maximize the number of data points we decided to assign the tasks to
individuals instead of forming groups. Repeating the experiments as a pair-
programming assignment would also be interesting.

2.2 Programming assignments

We constructed three separate programming assignments. We tried to choose
problems from three different categories: one data-structure implementation
problem, one search/algorithmic problem, and one slightly tedious string ma-
nipulation task.

2.2.1 Problem 1: email anonymizer

In this task the participants were asked to write a sanitizing function anonymize
which blanks out email addresses in a string. For example,

anonymize "pelle@foretag.se" ==
"P____@f . S_"

anonymize "Hi johnny.cash@music.org!" ==
"Hi j .c___@m .o__!"

The function should identify all email addresses in the input, change them, but
leave all other text untouched. This is a simple problem, but with a lot of
tedious cases.
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2.2.2 Problem 2: Interval sets

In this task the participants were asked to implement a compact represen-
tation of sets of integers based on lists of intervals, represented by the type
IntervalSet = [(Int,Int)], where for example the set {1,2,3,7,8,9,10}
would be represented by the list [(1,3),(7,10)]. The participants were in-
structed to implement a family of functions for this data type (empty, member,
insert, delete, merge). There are many special cases to consider—for exam-
ple, inserting an element between two intervals may cause them to merge into
one.

2.2.3 Problem 3: Cryptarithm

In this task the students were asked to write a program that solves puzzles like
this one:

SEND
MORE

The task is to assign a mapping from letters to (unique) digits, such that the
calculation makes sense. (In the exampleM = 1, 0 =0, S=9, R=28, E =
5, N =6, Y =2, D= 7). Solving the puzzle is complicated by the fact that
there might be more than one solution and that there are problems for which
there is no solution. This is a search problem, which requires an algorithm with
some level of sophistication to be computationally feasible.

2.3 The participants

Since the university (Chalmers University of Technology, Gothenburg, Sweden)
teaches Haskell, this was the language we used in the experiment. We tried to
recruit students with (at least) a fair understanding of functional programming.
This we did because we believed that too inexperienced programmers would
not be able to benefit from either QuickCheck or HUnit. The participants
were recruited by advertising on campus, email messages sent to students from
the previous Haskell course and announcements in different ongoing courses.
Unfortunately the only available date collided with exams at the university,
which lowered the number of potential participants. In the end we got only 13
participants. This is too few to draw statistically significant conclusions, but
on the other hand it is a rather manageable number of submissions to analyze
in greater detail. Most of the participants were at a level where they had passed
(often with honour) a 10-week programming course in Haskell.

2.4 Assigning the participants into groups

We assigned the participants randomly (by lot) into two groups, one group
using QuickCheck and one group using HUnit.
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2.5 Training the participants

The experiment started with a training session for the participants. The train-
ing was divided into two parts, one joint session, and one session for the specific
tool. In the first session, we explained the purpose and the underlying hypoth-
esis for the experiment. We also clearly explained that we were interested in
software quality rather than development time. The participants were encour-
aged to use all of the allocated time to produce the best software possible.

In the second session the groups were introduced to their respective testing
tools, by a lecture and practical session. Both sessions lasted around 60 min-
utes.

2.6 Programming environment

Finally, with everything set up, the participants were given the three different
tasks with a time limit of 50 minutes for each of the tasks. The participants
were each given a computer equipped with GHC (the Haskell compiler) [The
GHC Team, 2010], both the testing tools, and documentation. The computers
were connected to the Internet, but since the participants were aware of the
purpose of the study and encouraged not to use other tools than the assigned
testing tool it is our belief this did not affect the outcome of the experiment.’

2.7 Data collection and reduction

Before the experiment started we asked all participants to fill out a survey,
where they had to indicate their training level (programming courses taken)
and their estimated skill level (on a 1-5 scale).

From the experiments we collected the implementations as well as the testing
code written by each participant.

2.7.1 Manual grading of implementations

Each of the three tasks were graded by an experienced Haskell programmer.
We graded each implementation on a 0-10 scale, just as we would have graded
an exam question. Since the tasks were reasonably small, and the number of
participants manageable, this was feasible. To prevent any possible bias, the
grader was not allowed to see the testing code and thus he could not know
whether each student was using QuickCheck or HUnit.

2.7.2 Automatic ranking

The implementations of each problem were subjected to an analysis that we
present in Section 3.

We had several students submit uncompilable code.? In those cases, we made

1Why not simply disconnect the computers from the Internet? Because we used an online
submission system, as well as documentation and software from network file systems.

2Since we asked students to submit their code at a fixed time, some students submitted
in the middle of making changes.
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the code compile by for example removing any ill-formed program fragments.
This was because such a program might be partly working, and deserve a
reasonable score; we thought it would be unfair if it got a score of zero simply
because it (say) had a syntax error.

2.7.3 Grading of test suites

We also graded participants’ testing code. Each submission was graded by
hand by judging the completeness of the test suite—and penalised for missing
cases (for HUnit) or incomplete specifications (for QuickCheck). As we did not
instruct the students to use test-driven development, there was no penalty for
not testing a function if that function was not implemented.

2.7.4 Cross-comparison of tests

We naturally wanted to automatically grade students’ test code too—not least,
because a human grader may be biased towards QuickCheck or HUnit tests.
Our approach was simply to take each student’s test suite, and run it against
all of the submissions we had; for every submission the test suite found a bug
in, it scored one point.

We applied this method successfully to the interval sets problem. However, for
the anonymizer and cryptarithm problems, many students performed white box
testing, testing functions that were internal to their implementation; therefore
we were not able to transfer test suites from one implementation to another,
and we had to abandon the idea for these problems.

3 Evaluation Method

We assume we have a number of student answers to evaluate, A1,..., A,, and
a perfect solution Ap, each answer being a program mapping a test case to
output. We assume that we have a test oracle which can determine whether
or not the output produced by an answer is correct, for any possible test case.
Such an oracle can be expressed as a QuickCheck property—if the correct
output is unique, then it is enough to compare with Agp’s output; otherwise,
something more complex is required. Raising an exception, or falling into a
loop,® is never correct behaviour. We can thus determine, for an arbitrary test
case, which of the student answers pass the test.

We recall that the purpose of our automatic evaluation method is to find a set
of test cases that is as unbiased as possible. In particular, we want to avoid
counting multiple test cases that are equivalent, in the sense that they trigger
the same bug.

Thus, we aim to “count the bugs” in each answer, using black-box testing alone.
How, then, should we define a “bug”? We cannot refer to errors at specific
places in the source code, since we use black-box testing only—we must define
a “bug” in terms of the program behaviour. We take the following as our bug
model:

3Detecting a looping program is approximated by an appropriately chosen timeout.
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e A bug causes a program to fail for a set of test cases. Given a bug b, we
write the set of test cases that it causes to fail as BugTests(b). (Note that
it is possible that the same bug b occurs in several different programs.)

e A program p will contain a set of bugs, Bugs(p). The set of test cases
that p fails for will be

FailingTests(p) = be B%gs(p) BugTests(b)

It is quite possible, of course, that two different errors in the source code might
manifest themselves in the same way, causing the same set of tests to fail.
We will treat these as the same bug, quite simply because there is no way to
distinguish them using black-box testing.

It is also possible that two different bugs in combination might “cancel each
other out” in some test cases, leading a program containing both bugs to behave
correctly, despite their presence. We cannot take this possibility into account,
once again because black-box testing cannot distinguish correct output pro-
duced “by accident” from correct output produced correctly. We believe the
phenomenon, though familiar to developers, is rare enough not to influence our
results strongly.

Our approach is to analyze the failures of the student answers, and use them to
infer the existence of possible bugs Bugs, and their failure sets. Then we shall
rank each answer program A; by the number of these bugs that the answer
appears to contain:

rank(A;) = |{b € Bugs | BugTests(b) C FuailingTests(A;)}|

In general, there are many ways of explaining program failures via a set of
bugs. The most trivial is to take each answer’s failure set FailingTests(A;) to
represent a different possible bug; then the rank of each answer would be the
number of other (different) answers that fail on a strictly smaller set of inputs.
However, we reject this idea as too crude, because it gives no insight into the
nature of the bugs present. We shall aim instead to find a more refined set of
possible bugs, in which each bug explains a small set of “similar” failures.

Now, let us define the failures of a test case to be the set of answers that it
provokes to fail:

AnswersFailing(t) = {A; | t € FailingTests(A;)}

We insist that if two test cases t1 and t2 provoke the same answers to fail, then
they are equivalent with respect to the bugs we infer:

AnswersFailing(t1) = AnswersFailing(t:) =
Vb € Bugs. t1 € BugTests(b) < ta € BugTests(b)

We will not distinguish such a pair of test cases, because there is no evidence
from the answers that could justify doing so. Thus we can partition the space
of test cases into subsets that behave equivalently with respect to our answers.
By identifying bugs with these partitions (except, if it exists, the partition
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which causes no answers to fail), then we obtain a maximal set of bugs that
can explain the failures we observe. No other set of bugs can be more refined
than this without distinguishing inputs that should not be distinguished.

However, we regard this partition as a little too refined. Consider two answers
A; and Az, and three partitions B, By and Bz, such that

Vt € B. AnswersFailing(t) = {A1, Aa}
Vt € By. AnswersFailing(t) = {A1}
Vit € By. AnswersFuailing(t) = {A2}

Clearly, one possibility is that there are three separate bugs represented here,
and that

Bugs(A1) = {B, B1}

Bugs(A2) = {B, B2}

But another possibility is that there are only two different bugs represented,
B{ = BUB; and B) = BU B, and that each A; just has one bug, B;. In this
case, test cases in B can provoke either bug. Since test cases which can provoke
several different bugs are quite familiar, then we regard the latter possibility as
more plausible than the former. We choose therefore to ignore any partitions
whose failing answers are the union of those of a set of other partitions; we
call these partitions redundant, and we consider it likely that the test cases
they contain simply provoke several bugs at once. In terms of our bug model,
we combine such partitions with those representing the individual bugs whose
union explains their failures. Note, however, that if a third answer As only fails
for inputs in B, then we consider this evidence that B does indeed represent
an independent bug (since {A1, A2, A3} is not the union of {A:} and {A2}),
and that answers A; and Az therefore contain two bugs each.

Now, to rank our answers we construct a test suite containing one test case
from each of the remaining partitions, count the tests that each answer fails,
and assign ranks accordingly.

In practice, we find the partitions by running a very large number of random
tests. We maintain a set of test cases Suite, each in a different partition.
For each newly generated test case t, we test all of the answers to compute
AnswersFailing(t). We then test whether the testcase is redundant in the sense
described above:

Redundant(t, Suite)=
t) =

AnswersFailing(
| ¢ € Suite,
U{ AnswersFailing(t') | AnswersFailing(t') C
\ AnswersFailing(t)

Whenever t is not redundant, i.e. when Redundant(t, Suite) evaluates to False,
then we apply QuickCheck’s shrinking to find a minimal t,,;, that is not
redundant with respect to Suite—which is always possible, since if we can-
not find any smaller test case which is irredundant, then we can just take
t itself. Then we add t,,;, to Suite, and remove any t' € Suite such that
Redundant(t', (Suite — t') U {t,;,}). (Shrinking at this point probably helps
us to find test cases that provoke a single bug rather than several—“probably”
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since a smaller test case is likely to provoke fewer bugs than a larger one, but
of course there is no guarantee of this).

We continue this process until a large number of random tests fail to add any
test cases to Suite. At this point, we assume that we have found one test case
for each irredundant input partition, and we can use our test suite to rank
answers.

Note that this method takes no account of the sizes of the partitions involved—
we count a bug as a bug, whether it causes a failure for only one input value,
or for infinitely many. Of course, the severity of bugs in practice may vary
dramatically depending on precisely which inputs they cause failures for—but
taking this into account would make our results dependent on value judgements
about the importance of different kinds of input, and these value judgements
would inevitably introduce experimental bias.

In the following section, we will see how this method performs in practice.

4 Analysis

We adopted the statistical null hypothesis to be that there is no difference in
quality between programs developed using QuickCheck and programs devel-
oped using HUnit. The aim of our analysis will be to establish whether the
samples we got are different in a way which cannot be explained by coincidence.

We collected solutions to all three tasks programmed by 13 students, 7 of which
were assigned to the group using QuickCheck and the remaining 6 to one using
HUnit. In this section we will refer to the answers (solutions to tasks) as Al
to A13. Since the submissions have been anonymized, numbering of answers
have also been altered and answers Al to different problems correspond to
submissions of different participants. For each task there is also a special
answer AQ which is the model answer which we use as the testing oracle. For
the anonymizer, we also added the identity function for comparison as Al4,
and for the interval sets problem we added a completely undefined solution as
Al4.

4.1 Automatic Ranking of Solutions

We ranked all solutions according to the method outlined in Section 3. The
ranking method produced a test-suite for each of the three tasks and assigned
the number of failing tests to each answer of every task. The final score that
we used for evaluation of answers was the number of successful runs on tests
from the test-suite. The generated test suites are shown in Figure 3.1. Every
test in the test suite causes some answer to fail; for example delete 0 [] is the
simplest test that causes answers that did not implement the delete function
to fail. These test cases have been shrunk by QuickCheck, which is why the
only letter to appear in the anonymizer test cases is ’a’, and why the strings
are so short?.

4Because Haskell encourages the use of dynamic data-structures, then none of the so-
lutions could encounter a buffer overflow or other error caused by fixed size arrays. As a
result, there is no need for tests with very long strings.



Anon IntSet Crypt
" member 0 [] b+b=c
"\n" member 0 [(-2,2)] a+a=a
"e" member 2 [(1,1)] a+b=ab
"a" member 0 [(-3,-3),(0,4)] aa+ta=bac
"&Q" insert 0 []

".e" insert -1 [(1,1)]

"eQ" insert 0 [(-2,0)]

", Q" insert 1 [(-2,0)]

"e_a" insert 2 [(0,0)]

"@a=" delete 0 []

"_og" delete 0 [(0,0)]

"a@a" delete 0 [(0,1)]

"#0&Q" merge [] []

" a0#" merge [] [(-1,0)]

"a@_a" merge [(0,0)] [(0,0)]

"a@aa" | merge [(-1,0),(2,3)] [(-1,0)]

" (+9)

Figure 3.1: Generated test suites.

"@" (+ 6)

"' (+ 8)

Al, A10, A6

" (+ 8)

"\n" (+ 5)

" (+9)

Figure 3.2: Relative correctness of anonymizer answers.
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insert 1 ((-2,0)]
(+1)

member 0 [(-2,2)]
(+4)

member 2 [(1,1)] [member 0 [(-3,-3),(0,4)]
(+ 4) (+7)

member 2 [(1,)]/member 0 [(-3,-3),(0,4)] -4
(+1) (+4) (+2) +1)
_ ° ember 0 []

member 0 []'\  member 0 []
(+3)

Figure 3.3: Relative correctness of interval set answers.

A0, A13, A5

Al, All, A12, A2, A3, A4, A7, A8

Figure 3.4: Relative correctness of cryptarithm answers.
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Answer | Anon | IntSet | Crypto
A0 16 16 4
Al 0* 4% 0*
A2 9* 11* 0
A3 6 * 0*
A4 9* 12* 0*
A5 10 7 4%
A6 0 9 2%
AT 12* 4 0*
A8 16* 5* 0
A9 7 16 2
A10 0 15%* 3
All 14 9 0*
Al12 10* 13 0
A13 13* 14* 4

Figure 3.5: Results of automatic grading.

Figures 3.2 to 3.4 visualize the test results. Each node represents a set of
answers which pass precisely the same tests. An arrow from one node to another
means that the answers at the target of the arrow pass a subset of the tests
that the answers at the source of the arrow pass. Arrows are labelled with a
test case that distinguishes the source and target, and the number of other such
test cases in brackets. For instance, we can read from Figure 3.2 that A2 fails
three more tests than A7, and that it fails on the input string ”@” whereas A7
succeeds on it. Thus these figures visualize a “correctness partial order” on the
submitted answers.

The top node of each graph represents the entirely correct solutions, including
the model answer AO. The bottom node represents incomplete solutions, in
which the main functions were not defined—and which therefore fail all tests.
Interestingly, our analysis distinguishes all other answers—no two partially cor-
rect submissions were equivalent. Moreover, there is a non-trivial partial order-
ing of answers in each case: some answers really are strictly better than others.
We conclude that our analysis is able to classify partially correct answers in an
interesting way. (We also conclude that the cryptarithm problem was too hard
to solve in the time available, since more than half of the submissions failed
every test).

The final score assigned to each answer is shown in figure 3.5. In order to
assign better answers a higher score, we show the number of tests passed by
each answer, rather than the number of test failures—i.e. bugs. AO is the
model answer in each case, and answers coming from the group assigned to
using QuickCheck are marked with stars(*).

The following table shows a statistical analysis of scores from the automatic
ranking. To determine whether there is a statistical difference between samples
coming from the two groups we applied Welch’s t-test (which tests whether two
collections of data have the same mean) and got the values visible in the P-value
row (which we shall explain below).



91

Anon ‘ IntSet ‘ Crypto
All - Avg (Sdev) | 8.15 (5.38) | 9.69 (4.15) | 1.15 (1.63)
QC - Avg (Sdev) | 9.86 (5.01) | 9.71 (4.39) | 0.86 (1.57)
HU - Avg (Sdev) | 6.17 (5.53) | 9.67 (4.27) | 1.50 (1.76)
P-value 0.2390 0.9846 0.5065

For the anonymizer example, we can see that the solutions developed using
QuickCheck scored higher than those developed using HUnit, for interval sets
the scores were about the same, and for the cryptarithm example, then solutions
developed using QuickCheck fared worse. The P-value is the probability of
seeing the observed (or lower) difference in scores by sheer chance, if there
is no difference in the expected score using HUnit and QuickCheck (the null
hypothesis). For the anonymizer problem then the null hypothesis can be
rejected with a confidence of 76%—which is not enough to draw a statistically
significant conclusion from, but is nevertheless suggestive enough to encourage
us to perform a bigger experiment.

4.2 Manual Grading of Solutions

In the table below we present that average scores (and their standard devia-
tions) from the manual grading for the three problems. These numbers are not
conclusive from a statistical point of view. Thus, for the manual grading we can
not reject the null hypothesis. Nevertheless, there is a tendency corresponding
to the results of the automatic grading in section 4.1. For example, in the email
anonymizer problem the solutions that use QuickCheck are graded higher than
the solutions that use HUnit.

Anon ‘ IntSet ‘ Crypto
All - Avg (Sdev) | 4.07 (2.78) | 4.46 (2.87) | 2.15 (2.91)
QC - Avg (Sdev) | 4.86 (2.67) | 4.43 (2.88) | 1.86 (3.23)
HU - Avg (Sdev) | 3.17 (2.86) | 4.50 (3.13) | 2.50 (2.74)

To further justify our method for automatic ranking of the solutions, we would
like to see a correlation between the automatic scores and the manual scores.
However, we can not expect them to be exactly the same since the automatic
grading is in a sense less forgiving. (The automatic grading measures how well
the program actually works, while the manual grading measures “how far from
a correct program” the solution is.) If we look in more detail on the scores
to the email anonymizer problem, presented in the table below, we can see
that although the scores are not identical, they tend to rank the solutions in
a very similar way. The most striking difference is for solution A7, which is
ranked 4th by the automatic ranking and 10th by the manual ranking. This
is caused by the nature of the problem. The identity function (the function
simply returning the input, A14) is actually a rather good approximation of
the solution functionality-wise. AT is close to the identity function—it does
almost nothing, getting a decent score from the automatic grading, but failing
to impress a human marker.
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Answer | Auto | Manual | Auto rank | Manual rank
Al 0 3 11 8
A2 9 3 7 8
A3 6 2 10 10
A4 9 5 7 4
A5 10 4 5 5
A6 0 0 11 13
AT 12 2 4 10
A8 16 9 1 1
A9 7 4 9 5
A10 0 1 11 12
All 14 8 2 2
Al2 10 4 5 5
A13 13 8 3 2

4.3 Assessment of Students’ Testing

As described in Section 2.7.3, we checked the quality of each student’s test code
both manually and automatically (by counting how many submissions each test
suite could detect a bug in). Figure 3.6 shows the results.

Student number
QuickCheck | 1 |2 [ 3|4 |5 6 7
Manual grading | 0 | 0 | 0| 3 | 9 9 | 12
Automatic grading | 0 | 0 | 0 | 0| 8 | 10 | 11

Student number
HUnit | 8 9|10 |11 |12 | 13
Manual grading | 3 | 12 § 3 6 9
Automatic grading | 0 5 5 6 7 8

Figure 3.6: Manual vs. automatic grading of test suite quality.

The manual scores may be biased since all the authors are QuickCheck affi-
cionados, so we would like to use them only as a “sanity check” to make sure
that the automatic scores are reasonable. We can see that, broadly speaking,
the manual and automatic scores agree.

The biggest discrepancy is that student 9 got full marks according to our man-
ual grading but only 5/11 according to the automatic grading. The main reason
is that his test suite was less comprehensive than we thought: it included sev-
eral interesting edge cases, such as an insert that “fills the gap” between two
intervals and causes them to become one larger interval, but left out some sim-
ple cases, such as insert 2 (insert O empty). In this case, the automatic
grader produced the fairer mark.

So, the automatically-produced scores look reasonable and we pay no more
attention to the manual scores. Looking at the results, we see that four students
from the QuickCheck group were not able to detect any bugs at all. (Three of
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them submitted no test code at all®, and one of them just tested one special
case of the member function.) This compares to just one student from the HUnit
group who was unable to find any bugs.

However, of the students who submitted a useful test suite, the worst
QuickCheck test suite got the same score as the best HUnit test suite! All
of the HUnit test suites, as it happens, were missing some edge case or other.°

So, of the students who were using QuickCheck, half failed to submit any useful
test-suite at all, and the other half’s test suites were the best ones submitted.
There may be several explanations for this: perhaps QuickCheck properties
are harder to write but more effective than unit tests; or perhaps QuickCheck
is only effective in the hands of a strong programmer; or perhaps QuickCheck
properties are “all-or-nothing”, so that a property will either be ineffective or
catch a wide range of bugs; or perhaps it was just a coincidence. The “all-or-
nothing”-effect, or more often referred to as the “double hump”-effect, is often
observed in introductory programming classes [Dehnadi and Bornat, 2006]. It
would certainly be interesting to see if the same pattern applies to property-
based testing; this is something we will aim to find out in our next experiment.

5 Correctness and Stability of the Bug Measure

To justify our ranking method, we checked the quality of the rankings achieved
in three different ways:

e We evaluated the stability of the ranking of the actual student solutions.

e We used program mutation to create a larger sample of programs. There-
after we measured how stable the relative ranking of a randomly chosen
pair of programs is, when we alter the other programs that appear in the
ranking.

e We tested how well the bugs found by the ranking algorithm correspond
to the actual bugs in the programs.

We would ideally like to prove things about the algorithm, but there is no
objective way to tell a “good” ranking from a “bad” ranking so no complete
specification of the ranking algorithm. Furthermore, any statistical properties
about stability are likely to be false in pathological cases. So we rely on tests
instead to tell us if the algorithm is any good.

5.1 Stability with Respect to Choosing a Test Suite

Our bug-analysis performs a random search in the space of test cases in order
to construct its test suite. Therefore, it is possible that different searches select
different sets of tests, and thus assign different ranks to the same program in

50f course, this does not imply that these students did not test their code at all—just
that they did not automate their tests. Haskell provides a read-eval-print loop which makes
interactive testing quite easy.

SFunctions on interval sets have a surprising number of edge cases; with QuickCheck,
there is no need to enumerate them.
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different runs. To investigate this, we ran the bug analysis ten times on the
solutions to each of the three problems. We found that the partial ordering on
solutions that we inferred did not change, but the size of test suite did vary
slightly. This could lead to the same solution failing a different number of tests
in different runs, and thus to a different rank being assigned to it. The table
below shows the results for each problem. Firstly, the number of consecutive
tests we ran without refining the test suite before concluding it was stable.
Secondly, the sizes of the test suites we obtained for each problem. Once a
test suite was obtained, we assigned a rank to each answer, namely the number
of tests it failed. These ranks did differ between runs, but the rank of each
answer never varied by more than one in different runs. The last rows show
the average and maximum standard deviations of the ranks assigned to each
answer.

‘ Anon ‘ IntSet ‘ Crypto

Number of tests 10000 | 10000 1000
Sizes of test suite 15,16 15,16 4
Avg std dev of ranks 0.08 0.06 0
Max std dev of ranks 0.14 0.14 0

From this we conclude that the rank assignment is not much affected by the
random choices made as we construct the test suite.

5.2 Stability of Score in Different Rankings

Our ranking method assigns a score to a program based not only on its failures
but also on the failures of the other programs that participate in the ranking.
Since the generated test suite depends on the exact set of programs that are
ranked the same program will in general get different scores in two different
rankings, even if we rule out the influence of test selection (as tested for in
Section 5.1). Furthermore, the difference in scores can be arbitrarily large if we
choose the programs maliciously or in other pathological cases.” We would like
to formulate a stability criterion but we must test it in a relaxed form: instead
of requiring absolute stability we will expect rankings to be stable when typical
programs are ranked and not care what happens when we choose the programs
maliciously.

Testing our method on “typical” programs requires having a supply of them.
Of course we would like to possess a large library of programs written by human
beings, but unfortunately we only have a small number of student submissions.
Thus, we decided to employ the technique of program mutation to simulate
having many reasonable programs. We started with the model solution for
the email anonymiser problem and identified 18 mutation points, places in the
program that we could modify to introduce a bug. These modifications are
called mutations. Some mutation points we could modify in several ways to
get different bugs, and some mutations excluded others. In this way we got a
set of 3128 mutants, or buggy variations of the original program.

Using this infrastructure we were able to generate mutants at random. When
choosing a mutant we used a non-uniform random distribution—the likelihood

"This weakness seems inherent to ranking methods based on black-box testing.
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Figure 3.7: Scores of programs from pair 1. Circles lying on the dashed diagonal
line represent runs where scores of both programs were equal.

of choosing a faulty version of code at a given location was 5 times smaller
than leaving the code unchanged. We did this to keep the average number of
mutations in the generated programs down; otherwise most of them would fail
on all inputs and the rankings would become trivial.

The specific test we applied was to look at the relative stability of the scores for
two randomly chosen programs. We first picked the two mutated programs, at
random, and then ranked them 500 times using our method. Each of the 500
rankings involved 30 other mutants, each time chosen at random. The results
for one such pair of programs are shown in the Figure 3.7. Each circle in the
graph corresponds to a pair of scores received by the two selected programs in
a run. When the same pair of scores occurs many times the circle is larger; the
area of the circle is proportional to the number of times that pair occurs.

An interesting feature of the graph is the line ‘y = z’: any points lying on this
line represent rankings where both programs got the same score. Points lying
below the line are rankings where program A got a higher score, and points
above the line are ones where program B got the higher score.

The scores of both programs in the graph are quite variable, with most of the
scores falling between 10 and 20. However, when ranking programs we are
mostly interested in the relative difference between two programs; these are
much less dispersed. Program A, whose scores are on the x axis, is typically
better than program B by 0 to 2 points. Also, the vast majority of points lie
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Figure 3.8: Scores of programs from pair 2.

on or below the ‘y = x’ line, indicating that the ranking algorithm normally
ranks program A higher than program B. (The few points lying above this
line are drawn with small circles, indicating that not many rankings gave those
scores. )

Further examination reveals that A contains one mutation and B contains the
same one and two more. Despite that, due to some interaction between bugs,
there are tests that fail for A and succeed for B. (We explore these interactions
in Section 5.3.) Still, our method identifies A as the more correct program most
of the time.

The results for another pair are shown in Figure 3.8. The two programs contain
unrelated mutations and, according to our method, the mutations in program
B are more serious than the ones in A. This is indicated by the fact that
all circles are below the dashed diagonal line. Again the variability of scores
is quite high, but the differences remain within a small range. We arrive at
even smaller differences when we look at the ratio of one score to the other.
The solid line crossing the origin on the graph is fitted to the pairs of scores
with slope 0.659 and error of 1.304, indicating that the score of one program is
usually roughly 0.659 times the score of the other.

Most graphs that we saw looked like these two with the first type being more
common, even when programs had unrelated mutations. The fact that the
differences in scores are not so variable is favourable to our method, but we
were curious about the high spread of scores. It is explained by the fact that
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in each run, depending on the other 30 programs chosen, the total number of
inferred bugs differs. Thus, in each run the maximum score might be different
from previous runs. To counter this effect, we normalized the scores, dividing
each of them by the maximum score seen for a given set of runs so that the
score for a program is in effect the percentage of tests that it passed.

Figure 3.9 contains graphs for the same pairs of programs as Figures 3.7 and
3.8 but with normalized scores. As we can see in the first graph both programs
were getting good scores and in most cases program A was winning by a small
margin. The solid line is fitted to the results with an error of about 4%.
Normalized scores in the second graph are more varied, concentrated around
73% for A and 50% for B. A line fitted, starting at the origin, has an error of
6%.

We found that all pairs of programs examined had spreads of this magnitude
and in almost all cases the line was fitted with an error of below 6%.

5.3 Inferred “bugs” = real bugs?

Aside from mathematical properties such as stability, we would also like to
know that the ranking produced by our algorithm corresponds to what we
intuitively expect.

What would like to do is take a well-understood set of programs, where we
know what the bugs are, and see if our method infers a similar set of bugs to
us. Just as before, since we don’t really have such a set of programs, we generate
programs by mutating the solution to the email anonymiser problem in various
ways chosen by us; we assume that each mutation introduces one bug into the
program. Program mutation was described in more detail in Section 5.2.

This time, we picked just four allowable mutations in the email anonymiser,
compared with 18 mutation points in the stability testing. The reasons for this
are twofold:

e By picking only four mutations, we were able to try to find four mutations
that introduce independent faults into the program. If the faults are not
independent then it’s not clear that our ranking algorithm should treat
each fault as a separate bug.

e Instead of generating a random set of mutants, as in the stability testing,
we can instead run the ranking algorithm on all mutants at the same
time. This should make our conclusions more reliable.

Table 3.1 shows the mutations we chose and the fault each introduces.

Given the four mutations in Table 3.1, there are 16 mutated programs. We use
our algorithm to rank all these programs against each other, together with a
17th program that always crashes on any input.

We give the mutated programs names, from A0 to A16. AO is the program
that always crashes, the buggiest program; Table 3.2 shows which mutations
the other programs have.

The ranking algorithm produces a partial order of the programs given by how
correct they are. As we did in Section 4.1, we can visualise this ranking as
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Name | Meaning

«r All alphanumeric characters in the email address are
replaced by an underscore, including the first one:
kalle@anka.se becomes Q

instead of k Qa___.s

“@” An email address may contain several @-signs
(this is disallowed by the specification):
kalle@anka@se becomes k Qa___0s_

take 1 | Some parts of the text are discarded:
kalle@anka.se becomes k____a___s_

A dot isn’t considered an email address character:
kalle@anka.se becomes k____@a .se

[T

Table 3.1: The mutations we made to the email anonymizer.

Mutation | Al | A2 A3 A4 A5 A6 AT A8
take 1 v v v v
“r v v v v
“@” v v v v
Mutation | A9 | A10 | A11 | A12 | A13 | A14 | A15 | Al6
take 1 v v v v
“r v v v v
“@” v v v v
“r v v v v v v v v

Table 3.2: The mutations that each program has.

a graph of programs, where we draw an edge from one program to another
if the first program passes all the testcases that the second one does. This
visualisation for our set of 17 programs is given in Figure 3.10, where Al (at
the top) passes all testcases and A0 (at the bottom) passes none.

Does this graph look how we expect it to? To answer this, we should decide
what we expect the graph to look like. As explained above, we hoped that
all four mutations introduced independent bugs, in which case our algorithm
would produce the graph shown in Figure 3.11. This graph shows the programs
ordered by what mutations they have, rather than what bugs are inferred for
them. This is the ideal graph we would like to get when we rank the 17 pro-
grams; any difference between our actual ranking and this graph is something
we must explain.

The ranking we actually get, in Figure 3.10, is actually rather different! The
best we can say is that all programs are at about the same “level” in the ideal
graph and the actual one, but the structure of the two graphs is quite different.
If we look closer at the ranking, we can see that four pairs of programs are
ranked equal: A2 and A10, A4 and A12, A6 and A14, and A8 and A16. These
programs have different mutations but apparently the same behaviour. There
is a pattern here: one program in each pair has the “take 1”7 mutation, the
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'‘@@a" (+ 1)

Figure 3.10: The mutants’ ranking

other has both “take 1”7 and “_”. What happens is that the “take 1” mutation
subsumes the “” error: a program with either mutation censors all email
addresses incorrectly, but a program with the “take 1” mutation also mutilates

text outside of email addresses.

So the mutations are not independent bugs as we hoped, which explains why
we don’t get the graph of Figure 3.11. Let us try to work around that problem.
By taking that figure and merging any programs we know to be equivalent we
get a different graph, shown in Figure 3.12. This is the graph we would get if all
mutations were independent bugs, except for the matter of “take 1”7 subsuming
This new graph is very close to the one our ranking algorithm produced, a good
sign. However, there are still some differences we have to account for:

e A5 ought to be strictly less buggy than A7 but isn’t. A5 has only
the “@Q” mutation, while A7 has the “@” mutation and the “.” mutation,
so we would expect it to be buggier. However, this is not the case. The
“@” mutation causes A5 to incorrectly see the string a@b@c.de as an
email address (it isn’t as it has two @-signs) and censor it to a@b@c.d_.
A7, however, gives the correct answer here: because of the “.”-mutation,
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Figure 3.11: The mutants ranked by mutations, not by bugs

it thinks that the .de is not part of the email address and leaves it alone.

So this is a case where two bugs “cancel each other out”, at least partially,
and our algorithm does not try to detect this.

There is the same problem with programs A13 and A15, and it has the
same cause, that the “.” bug and the “@” bug interfere.

e A6 is strictly buggier than A7 according to the algorithm, but
we expect them to be incomparable. A6 has the “@Q” and “take 1”
mutations, while A7 has the “@Q” and “.” mutations. We would expect
A6 and A7 to have an overlapping set of bugs, then, but actually A7
passes every test that A6 does.

This is because A6 actually censors every email address (any text con-
taining an @-sign) incorrectly because of the “take 17 mutation. A7’s
mutation only affects email addresses with dots in, which A6 will fail on
anyway because they will contain an @-sign.

(Why, then, doesn’t the “take 1” bug on its own subsume “.”? The
counterexample that our algorithm found is the test case @.aa@. This
isn’t an email address, since it has two @-signs, and a program with just
the “take 1”7 mutation will behave correctly on it. However, a program
with the “.” mutation will identify the text as two email addresses, @ and
aa@, separated by a dot, and proceed to censor them to get @.a_@. Only
if an email address may contain two @-signs does “take 1”7 subsume “.”.)
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Figure 3.12: Figure 3.11 with some anomalous nodes merged

The same problem occurs with A14 and A15.

Overall, our ranking algorithm ranks the programs more or less according to
which mutations they have, as we expected. There were some discrepancies,
which happened when one bug subsumed another or two bugs “interfered” so
that by adding a second bug to a program it became better. On the other
hand, these discrepancies did not ruin the ranking and whenever bugs were
independent, the algorithm did the right thing.

Our bugs interacted in several ways despite our best efforts to choose four
independent bugs. We speculate that this is because the email anonymiser
consists of only one function, and that a larger API, where the correctness
of one function doesn’t affect the correctness of the others, would be better-
behaved in this respect.

5.4 Conclusion on Stability

We checked three important properties that we expect from a ranking method.
Firstly, we concluded that the results are stable even when the test generator
omits some of the relevant test cases. Secondly, we showed that when different
subsets of “reasonable” programs are present this does not change the results of
the ranking very much. And thirdly, we were able to explain the irregularities
in a graph produced by our ranking by interactions between different faults.
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It is impossible to provide a complete specification for the ranking method
without refering to the way it works under the hood, however the three proper-
ties that we checked provide a reasonable partial specification that our method
satisfies. The tests we applied increased our confidence in the ranking method,
however one could imagine a more convincing variant of the last test where we
use a large set of real programs to validate the stability of rankings.

6 Related Work

Much work has been devoted to finding representative test-suites that would
be able to uncover all bugs even when exhaustive testing is not possible. When
it is possible to divide the test space into partitions and assert that any fault
in the program will cause one partition to fail completely it is enough select
only a single test case from each partition to provoke all bugs. The approach
was pioneered by Goodenough and Gerhart [1975] who looked both at speci-
fications and the control structure of tested programs and came up with test
suites that would exercise all possible combinations of execution conditions.
Weyuker and Ostrand [1980] attempted to obtain good test-suites by looking
at execution paths that they expect to appear in an implementation based
on the specification. These methods use other information to construct test
partitions, whereas our approach is to find the partitions by finding faults in
random testing.

Lately, test-driven development has gained in popularity, and in a controlled
experiment from 2005 [Erdogmus et al., 2005] Erdogmus et. al. compare its
effectiveness with a traditional test-after approach. The result was that the
group using TDD wrote more test cases, and tended to be more productive.
These results are inspiring, and the aim with our experiment was to show that
property-based testing (using QuickCheck) is a good way of conducting tests
in a development process.

In the design of the experiments we were guided by several texts on empirical
research in software engineering, amongst which [Basili et al., 1986, Kitchenham
et al., 2002, Wohlin et al., 2000] were the most helpful.

7 Conclusions

We have designed an experiment to compare property-based testing and con-
ventional unit testing, and as part of the design we have developed an unbiased
way to assess the “bugginess” of submitted solutions. We have carried out
the experiment on a small-scale, and verified that our assessment method can
make fine distinctions between buggy solutions, and generates useful results.
Our experiment was too small to yield a conclusive answer to the question
it was designed to test. In one case, the interval sets, we observed that all
the QuickCheck test suites (when they were written) were more effective at
detecting errors than any of the HUnit test suites. Our automated analysis
suggests, but does not prove, that in one of our examples, the code developed
using QuickCheck was less buggy than code developed using HUnit. Finally,
we observed that QuickCheck users are less likely to write test code than HUnit
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users—even in a study of automated testing—suggesting perhaps that HUnit
is easier to use.

The main weakness of our experiment (apart from the small number of subjects)
is that students did not have enough time to complete their answers to their
own satisfaction. We saw this especially in the cryptarithm example, where
more than half the students submitted solutions that passed no tests at all.
In particular, students did not have time to complete a test suite to their own
satisfaction. We imposed a hard deadline on students so that development time
would not be a variable. In retrospect this was probably a mistake: next time
we will allow students to submit when they feel ready, and measure development
time as well.

In conclusion, our results are encouraging and suggest that a larger experiment
might demonstrate interesting differences in power between the two approaches
to testing. We look forward to holding such an experiment in the future.
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