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Abstract. HipSpec is a system for automatically deriving and proving
properties about functional programs. It uses a novel approach, combining
theory exploration, counterexample testing and inductive theorem proving.
HipSpec automatically generates a set of equational theorems about the
available recursive functions of a program. These equational properties
make up an algebraic specification for the program and can in addition be
used as a background theory for proving additional user-stated properties.
Experimental results are encouraging: HipSpec compares favourably to
other inductive theorem provers and theory exploration systems.

1 Introduction

We are studying the problem of automatically proving algebraic properties of
programs. Our aim is to build a tool that programmers can use to support
software development. This paper describes current progress towards this goal,
in particular addressing the problem of automating inductive proofs.

We work in a subset of the strongly typed functional programming language
Haskell. Our subset consists of monomorphic, terminating programs without type
classes or primitive types (like Int). The only data types are algebraic data types,
functions and uninterpreted types. Removing these restrictions is ongoing work.

There are two key advantages of using Haskell as the input language. Firstly,
a pure functional programming language is semantically simpler and thus easier
to reason about than languages with side effects. Secondly, many Haskell pro-
grammers already use QuickCheck [5], a tool for property-based random testing,
which means that many Haskell program are already annotated with formal
properties (tested, but not proved).

The main obstacles one encounters when doing automated verification of
functional programs are (1) when and how to apply induction, and (2) how to
discover auxiliary lemmas or generalisations which may be required in inductive
proofs. Let us look at a simple example. Consider the following Haskell program
implementing the list reverse function in two different ways, rev and qrev. The
latter uses a helper function revacc with an accumulating parameter which leads
to a function with better time complexity. Their definitions are:

rev [] = [

rev (x:xs) = rev xs ++ [x]



revacc [] acc = acc
revacc (x:xs) acc = revacc xs (x:acc)

qrev xs = revacc xs []

A natural property one would like to verify is that the functions above pro-
duce the same result: V xs. rev xs = qrev xs. Suppose we attempt to prove
this by structural induction on xs. This will fail as the inductive hypothesis
rev as = grev as is too weak to prove rev (a:as) = qrev (a:as). What is
needed here is an additional lemma such as rev xs++ys = revacc xs ys, from
which the original conjecture follows as a special case when ys happens to be
the empty list. This is a typical example of the kind of generalisations which
are required in proofs about functions with accumulator variables. One of the
main challenges for inductive theorem provers is how to discover such lemmas
automatically.

Current inductive theorem provers such as IsaPlanner [8], Zeno [19] and ACL2
[13] support a simple lemma discovery technique called lemma calculation, by
which a new lemma is suggested by replacing some common subterm in a stuck
goal by a variable. Although this technique works very well for many proofs, it
is not enough for the above example, which cannot be automatically proved by
these systems. The now defunct CLLAM proof-planner had in addition a so-called
proof-critic for discovering more complex generalisations [9], such as the one
required in the example, but only if other basic lemmas were given by the user.

Our approach differs from the top-down manner in which the above systems
work. Instead of waiting for the proof to somehow get stuck, we use bottom-up
lemma discovery, or theory exploration. Our tool, called HipSpec, gets its name
from its two subsystems which we developed previously: the automated inductive
prover Hip [18], and the conjecture generation system QuickSpec [6]. Hip tries to
prove a conjecture by enumerating all possible ways of doing structural induction
over the free variables, and then calling an automated first-order prover to prove
them. QuickSpec creates thousands of terms involving the functions of a given
API, and computes equivalence classes over these terms by means of testing.
Each pair of terms t1,¢s in an equivalence class gives rise to a conjecture t; = to.

HipSpec reads in a program, but besides trying to tackle any of the user-given
properties, it asks QuickSpec to produce a list of conjectures about the program.
HipSpec then sends these conjectures to Hip and those that are proved can
be used as lemmas in subsequent proof-attempts. After this theory exploration
phase, the properties stated by the programmer are tried, using all the proved
lemmas as background theory.

There are several theory exploration systems which have been applied to
discover theorems in inductive theories [12,15,16], but none have been fully
integrated with an automated theorem prover in order to supply the prover with
lemmas. Instead, these systems simply generate and prove a set of ‘interesting’
equations summarising the main properties about the program, which are then
presented to the user. In fact, HipSpec may also be used in this manner without
any user-stated properties.



Let us return to the example property about rev. HipSpec calls QuickSpec,
which within a few seconds conjectures a set of equations about the functions
involved. HipSpec feeds these to Hip, which tries to prove them. Those that can
be proved without induction are redundant and can be discarded; the lemmas
needing induction are shown below!:

No Conjecture Proved using?
(1) xs++[] = xs XS

(2) (xs++ys)++zs = xs++(ys++zs) XS

(3) rev xs++rev ys = rev (ys++xs) ys, (1), (2)

(4) revacc (revacc xs ys) [] = revacc ys xs XS

(5) revacc (revacc xs ys) zs = revacc ys (xs++zs) xs

(6) revacc xs ys++zs = revacc xs (ys++zs) zs, (1), (2), (9)
(7) revacc xs (rev ys) = rev (ys++xs) xs, (1), (3), (6)

The original property is now easily proved: it follows directly from (7), letting
ys = [, and the definition of grev; induction is not even needed. Note that
lemma (4) is not needed for proving the original property. Discovering some
unnecessary lemmas is a (potentially disadvantageous) side-effect of the bottom-
up approach.

Contributions. We augment the automated induction landscape with a new
method which uses a bottom-up theory exploration approach to find auxiliary
lemmas. This approach combines our own earlier work on conjecture generation
based on testing (QuickSpec) and induction principle enumeration (Hip). By
adding proof capabilities on top of QuickSpec we also get a system which can be
used as a stand-alone theory exploration system.

Our hypothesis is that:

1. Algebraic equations constructed from terms up to a certain depth form a
rich enough background theory for proving many algebraic properties about
programs without specialised proof-critics.

2. A reasoning system for functional programs can be built on top of an auto-
matic first-order theorem prover.

3. A system combining (1) and (2) can be used both as a theorem prover and
as an efficient theory exploration system, producing background lemmas
comparable to those appearing in human-created libraries.

The experimental results in this paper have so far confirmed this.

2 Implementation

Below we describe in more detail how Hip and QuickSpec work, and how they
are combined in HipSpec.

! The variables are implicitly universally quantified over total and finite values.
2 This column shows the induction variables and which lemmas were used.



2.1 Hip

Hip [18] is an automatic tool for proving user-stated equality or implicational
properties about Haskell programs. Hip starts by compiling the definitions in the
program at hand to first-order logic. For each property stated in the program,
it systematically applies different induction rules, yielding first-order proof obli-
gations, which are tested for validity using off-the shelf automated first-order
theorem provers. If one proof obligation succeeds, the original conjecture was
valid. Thus, the first-order prover takes care of non-inductive reasoning, while
Hip adds inductive reasoning at the meta-level. In the context of HipSpec, Hip
is configured to apply structural induction up to a given depth on one or more
variables. Hip, however, also supports co-inductive proof techniques such as fixed
point induction. The focus of our work in HipSpec is currently not on proving
termination, so we restrict ourselves by allowing only well-founded definitions,
and put the responsibility on the end user to enforce this policy for now.

2.2 QuickSpec

QuickSpec [6] conjectures equations about a functional program by means of
testing. The user of QuickSpec provides a list of functions and their types, a
random test data generator for each of the types involved, a set of variables
(usually 2-3 per type), and a term depth limit (usually 3). QuickSpec starts by
creating a set of terms, called the universe, consisting of all well-typed terms built
from the functions and variables given, whose depth is within the given limit. It
then partitions this universe into equivalence classes by running a finite number
of random tests (usually 100); two terms will be in the same equivalence class if
and only if they were equal for all tests. This equivalence relation in turn gives
rise to a huge set of conjectured equations about the tested program (typically
thousands or tens of thousands). For the sake of human users, QuickSpec also
includes a final phase which prunes away equations that follow from simpler ones,
leaving only a small core of equations from which all original equations follow.
This core is usually presented to the user (usually 10-25 equations). However,
when HipSpec uses QuickSpec to generate lemmas, it does not use the pruning
phase, because valuable lemmas may be pruned away. For example, even when an
equation F; implies a more complex equation Fs, we can not necessarily discard
FE5, because Fo may be provable by induction whereas F; may not be. In fact,
FE5 may very well be needed as a lemma to prove E;! So, HipSpec considers the
full set of equations produced by QuickSpec before pruning.

2.3 HipSpec

HipSpec’s operation is illustrated in Figure 1. We start by running QuickSpec
on the program source file, which generates a list of conjectures. We also translate
the program source code to a first-order theory using Hip.

HipSpec maintains three sets of equations: active conjectures, which we still
need to consider, failed conjectures, which we have already tried to prove but
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Fig. 1. An overview of HipSpec.

failed, and lemmas, which we have managed to prove. The first-order theory
in Figure 1 consists of Hip’s translation of our program plus the current set of
lemmas. Initially the active conjectures consist of all equations that QuickSpec
found (even those that would have been removed by pruning), and the failed
conjecture set and lemma set are empty.

The main loop works as follows:

1. Pick a conjecture ¢ from the active conjecture set (using a heuristic described
below).

2. Check if ¢ follows from the lemmas found so far by equational reasoning only.
If so, discard ¢, and re-iterate.

3. Otherwise, ask Hip to prove the conjecture by induction, using definitions
and previously proved lemmas as background theory.

4. If Hip succeeds, move ¢ to the lemma set, and move some failed conjectures
back to the active conjectures (based on a heuristic described below).

5. If Hip does not succeed within a set timeout, move c to the failed conjectures.

The loop ends when the active conjecture set is empty.

Picking the conjecture The performance of HipSpec completely depends on one
heuristic: which active conjecture to try to prove next. Our current heuristics are
rather crude; more sophisticated techniques are further work.

Our basic strategy is to prove simpler equations before more complicated
ones. We define simplicity as follows. A smaller term is simpler than a bigger
term; if two terms have the same size, the term with more variables is simpler
(because it might be more general). For example, (x+y)+z=x+(y+z) is simpler
than (x+x)+y=x+(x+y). The simplicity of an equation t; = 5 is determined by
whichever of ¢; and t5 is the most complex.

We also take into account the call graph of the program. For example, if we
are proving properties about the natural numbers, we prove as much as possible
about + before starting on *, since * calls +. More precisely, when choosing which
conjecture to prove next, we pick the one whose call graph is the smallest; if two
conjectures have the same size call graph, we pick the simplest one.



Discarding trivial consequences 1t is quite expensive to send every conjecture
to Hip to be proved, when we may have thousands of them. Luckily, QuickSpec
has a lightweight theorem prover based on congruence closure. This prover can
efficiently answer questions of the form “given these lemmas, can I prove this
equation?”, replying either “yes” or “don’t know”.

Whenever we pick a conjecture, we check if this prover can prove it from the
current lemmas without induction. If so, we just discard it. This filters out most
trivial conjectures that are provable without induction.

Re-activating failed conjectures When we prove a lemma, we sometimes move
some failed conjectures back to the active conjectures. HipSpec’s rule is to wait
until the set of active conjectures is empty and then move all failed conjectures
back to the active set, provided that at least one new lemma was proved since
last attempting the conjecture. This guarantees termination.

We have experimented with more elaborate heuristics in this step, eagerly
adding failed conjectures back. These heuristics can help in certain examples, but
so far none have been sufficiently general. Perhaps surprisingly, the simple method
described above works well for all examples in this article. More sophisticated
heuristics are further work.

3 Examples

This section gives examples of successful proofs and their related theory explo-
rations, as well as an example showing some current limitations of our approach.

3.1 Rotating the length a of list

This simple property of the rotate function is surprisingly difficult to prove?:

prop_rotate xs = rotate (length xs) xs =:= xs

The rotate function takes a natural number n and returns the list resulting from
removing the n first elements and appending them to the end. Rotating a list
by its length returns the original list. Although this property is very simple to
state it is surprisingly hard to prove by mathematical induction, as it requires a
generalised version to be proved, which implies prop_rotate. This generalisation
itself can be proved by induction.

Given the standard definitions of append, length and Peano numbers with
successor S and zero Z, and the below definition of rotate, HipSpec finds and
proves such a generalisation, and uses it to prove prop_rotate:

rotate Z XS = XS
rotate (S n) [] (]
rotate (S n) (x:xs) rotate n (xs ++ [x])

3 Here, =:= is HipSpec’s notation for equality.



The lemmas for which HipSpec needed induction are in Figure 2. Lemma (8) is
the required generalisation, from which it proves prop_rotate, which follows as
a special case when ys is the empty list. Notice that lemma (8) itself requires
lemmas (1) and (2). A number of additional lemmas are also discovered, which
are not of use in this particular proof, but could well be useful in other proofs.
The whole process of theory exploration and the proof of prop_rotate took 17
seconds, with less than a second spent in QuickSpec and the rest of the time
spent in various proofs of the generated equations.

No Conjecture Proved by
(1) xs++[] = xs xs

(2) (xs++ys)++zs = xs++(ys++zs) xs

(3) rotate n (rotate m xs) = rotate m (rotate n xs) n, m

(4) rotate (S n) (rotate m xs) = rotate (S m) (rotate n xs) xs, (3)

(5) rotate n [x] = [x] n

(6) length (xs++ys) = length (ys++xs) xs, ys

(7) length (rotate n xs) = length xs n, (6)

(8) rotate (length xs) (xs++ys) = ys++xs xs, (1), (2)
(9) rotate (length xs) xs = xs (8)

Fig. 2. Properties generated and proved about the theory of lists with ++, rotate, and
length. The third column shows which induction variables and lemmas were used.

As this proof requires both generalisation and lemma discovery it was identified
in 2005 as an automated reasoning challenge beyond the capabilities of state-of-
the-art reasoning systems ([3], p. 77). We are not aware of any other theorem
provers which prove this theorem fully automatically, without the help of user-
supplied lemmas.

3.2 Nicomachus’ Theorem

Using Peano arithmetic, with standard definitions of addition and multiplication
recursively on the first argument, we will try to get HipSpec to prove Nicomachus’
Theorem. This states that the sum of the n first cubes is the nth triangle number
squared: Yy k3= (>r_, k)?. We define two functions: tri calculates triangle
numbers and cubes n calculates the sum of the first n cubes.

tri Z =7 cubes Z =7
tri (S n) trin+Sn cubes (S n) = cubes n + (S n*S n*S n)

Using these definitions, Nicomachus’ theorem is stated as follows:
prop_Nicomachus x = cubes x =:= tri x * tri x

When HipSpec is given the definitions of plus, multiplication, tri and cubes,
it generates and proves (by induction) the properties listed in Figure 3 below,
which takes 10 seconds. The properties are listed in the order they were proved.



No  Conjecture Lemmas used Induction on

(1) =+y = yx X, y
(2) =x+(y+2) = (y+x)+z (1) z
(3) =y = y*x (2) X,y
(4)  xx(y*z) = (y*x)*z (1), (2), (8) X,y
(5)  =x(y+y) = y*(x+x) (1), (2), (3), (4) y
(6) GoydrGeez) = xe(pez) (1), (2), () :
(7)  tri xx(y+y) = (x*P*S x (1), (2), (3), (4), (6) x
(8) tri x+tri x = x+(x*x) (1), (2), (3) X
(9) tri x*tri x = cubes x (1), (2), (3), (6),(8) «x

Fig. 3. Properties proved about the theory with natural number addition, multiplication,
triangle numbers (tri) and sum of cubes (cubes).

In (8) the well-known identity Y _, k = n(n+1)/2 is proved, using previously
proved lemmas. From this lemma HipSpec proves Nicomachus’ Theorem in (9).
Due to the order in which HipSpec ends up proving the conjectures in this
example, some unnecessary lemmas are included in figure 3, e.g. () and (7).

3.3 Insertion sort produces a sorted list

Currently, QuickSpec can only generate equational lemmas. To prove that, for
example, insertion sort produces a sorted list requires conditional lemmas. We
state this property as prop_sorted xs = sorted (isort xs) =:= True.

In order to prove prop_sorted we need the conditional lemma
sorted xs ==> sorted (insert x xs), where insert is the sorted list inser-
tion function used by isort, but HipSpec only can only discover and prove the
somewhat peculiar equations (lemmas 1-4) in Figure 4. HipSpec also discovers,
but fails to prove, some additional properties (conjectures 5-9). For example,
property (&), which states that insert is commutative in its first argument.
These equations are not proved because they require conditional lemmas.

Although not proved, QuickSpec has tested these equations and not found
a counterexample. Hence, even a failed proof attempt may at least give some
insight into the properties of the program. The runtime for this example was 8
seconds.

No  Conjecture Induction on
(1) =x<=x = True X

(2) =x<=8 x = True X

(3) 8 x<=x = False X

(4) insert y (x:[1) = insert x (y:[]) X,y

(5) 4insert x (imsert y xs) = insert y (insert x xs)

(6) sorted (insert x xs) = sorted xs

(7) 1isort (imsert x xs) = isort (x:xs)

(8) sorted (isort xs) = True

(9) isort (isort xs) = isort xs

Fig. 4. Results for the theory of insertion sort. Properties 1-4 were proved, while
properties 5-9 were not, as they require conditional lemmas.



4 Evaluation

HipSpec has two modes of use. Firstly, it can be used as an automated induction
to prove user-given conjectures using theory exploration to find necessary lemmas.
In this case, the individual lemmas that are discovered in the background and
used in the proofs are of less interest for the user, since the focus is on proving
the user supplied properties automatically. Theory exploration is treated more
like a black box.

Secondly, HipSpec can be used in a more speculative manner, as a standalone
theory exploration system. In this case, the user expects HipSpec to discover and
prove a set of basic equational properties about the given program. Here it becomes
important not to swamp the user with trivial or overly complicated equations.
Rather, we wish to present the user with a concise set of elegant equations
summarising the main properties, much like the libraries in proof assistants such
as Isabelle. The hope is that these may be useful in later interactive reasoning or
as an algebraic specification of the program.

The examples come from the theorem proving literature and assume termi-
nating functions over total values. We used Z3 [7] as a backend for HipSpec in
these experiments. As the program is translated to a first order theory, we did
not use any of Z3’s built-in theories or decision procedures, but we did exploit its
support for types and constructor functions. The source code for HipSpec and
all experimental results are available online [1,2].

4.1 HipSpec as a Theorem Prover

HipSpec was evaluated on two test suites from the inductive theorem proving
literature. The test suites consist of conjectures about natural numbers, lists and
binary trees. As they feature a large number of unrelated functions, HipSpec was
run separately for each property. This reduces the number of generated equations
because HipSpec will ignore any function that is not (directly or indirectly)
reachable from the property. It also means that HipSpec cannot use already-
proved properties from the test suite to prove later ones. Thus, the order of the
properties in the test suite does not matter: they are proved independently.

HipSpec was configured to give a timeout of 1 second for each individual
proof obligation sent to the prover, and to allow induction on up to two variables
simultaneously using one-step structural induction.

Test Suite A consists of 85 conjectures with both first- and higher-order
functions about lists, natural numbers and binary trees [10]. These were originally
formalised for the IsaPlanner system in Isabelle’s HOL and have since been
translated into other formalisms to compare the Zeno and ACL2 Sedan provers
[19,4] and the Dafny system [14]. As these systems use different logics we note
that the functions are not defined in exactly the same way in the different
experiments. This test suite was originally designed for evaluating IsaPlanner’s
rippling heuristic in the presence of if- and case-expressions, which are expressed
as higher-order functions in Isabelle, and cause trouble for IsaPlanner’s syntax-
based rippling heuristic. Hence, from a lemma discovery point of view, many



proofs are rather easy: 67 theorems can be proved without extra lemmas, and
12 do not require induction. The results for the different provers on the 85
conjectures are summarised below:

HipSpec Zeno [19] ACL2s [4] IsaPlanner [10] Dafny [14]
80 82 74 47 45

HipSpec performs well, with the majority of failures being due to proofs
requiring conditional lemmas, as HipSpec only is able to generate equations. For
one property (number 81), we had to configure HipSpec to use induction on three
variables; this is counted as a success in the table above. Zeno performs best, failing
only on three examples, two fewer than HipSpec. However, HipSpec can prove two
theorems that Zeno cannot: rev (drop i xs) = take (len xs-i) (rev xs)
and rev (take i xs) = drop (len xs-i) (rev xs).

Test Suite B consists of 50 theorems about lists and natural numbers
and was previously used to demonstrate proof-critics in the CLAM prover [9],
which is unfortunately no longer maintained. As opposed to Test Suite A, most
theorems here do require auxiliary lemmas, generalisations, case-splits or non-
standard inductions. CLAM proves 41 of the 50 theorems fully automatically.
The remaining 9 theorems were proved interactively. They require generalisation
(including the rev example from §1 and the rotate example from §3.1), for which
CLAM needed the help of some user-supplied lemmas. Again, HipSpec was not
given any auxiliary lemmas. Fully automatically, it proved 44 theorems, including
6 of the 9 theorems which CLAM proved with the help of user-supplied lemmas.

We managed to prove 3 further theorems (properties 33-35) by adjusting
HipSpec’s settings. These three properties concern accumulating versions of mul-
tiplication, factorial and exponentiation. Because we are using Peano arithmetic,
these functions return large results, and the testing phase used too much memory:
we supplied a flag that causes QuickSpec to compare results up to some size
bound, so results that are too large will be considered equal. There were also too
many conjectures, so we added a flag to limit the size of the generated terms. We
did not have to give any lemmas by hand. In total, HipSpec proved 47 theorems,
including the 9 for which CLAM needed user-supplied lemmas.

We also tested Zeno on these examples: it can prove 21, but not any of the
ones requiring complex generalisations.

Finally, we remark that the bottom-up approach taken by HipSpec is naturally
a bit slower than IsaPlanner and Zeno, which typically perform proofs in less than
a second. Most successful proof attempts are very fast, with the long runtimes
arising from cases with a lot of failed proof attempts.

For test suite A, all properties required less than a minute on a normal
desktop computer [1]. The vast majority required less than 15 seconds, and most
1-2 seconds. For test suite B, the 44 successful properties required at most 15
seconds, most of them 1-2 seconds. The three properties for which we needed
to tweak the settings ranged from 30 seconds to 40 minutes. Of the three failed
properties, two took about five minutes before giving up, the third 8 seconds.

As mentioned, HipSpec may also discover some superfluous lemmas not strictly
required for the proof of the user-stated property. In these examples, there are



very few such lemmas and the theorem prover’s performance was not notably
affected by these being added to the theory.

4.2 HipSpec as a Theory Exploration System

In these experiments HipSpec is given a program as an input, without any
user-properties stated. The aim is to present the user with a concise set of
equational properties that have been discovered and proved. We exploit the
pruning algorithm already implemented in QuickSpec to achieve this. QuickSpec
was originally built as a standalone system for suggesting algebraic specifications
of programs using testing. When used on its own, it prunes the many equations it
generates by heuristically ordering them and removing those that trivially follow
from previous ones. We refer to [6] for a detailed description of this pruning
algorithm. When HipSpec is used in theory exploration mode, it first attempts
to prove as many conjectures as we can, just as in the theorem-proving mode.
Then it takes the set of the conjectures that it proved, or that trivially follow
from what it proved, and applies the pruning algorithm to this set. As a result,
HipSpec often produces a smaller and more concise set of lemmas than it does
when used in theorem-prover mode. The final list of equations does not depend
on what order we proved things in, or on what needed induction, only on what
the theory implies.

We have applied HipSpec to some simple theories from the theory exploration
literature [12,16], one about natural numbers, with + and *, and three small
theories about lists: 1) append, reverse and length, 2) append, reverse and
map and 3) append, foldl and foldr. The theorems produced are presented
in Figure 5. HipSpec generates these theorems much faster than IsaCoSy and
IsaScheme: it takes only between 6-12 seconds for each theory (full results available
online [1]), while IsaCoSy and IsaScheme may require hours. We expect this to be
due to the congruence closure reasoning of QuickSpec, which reduces the search
space and integrates counterexample checking in the term generation phase.

We also perform the same precision-recall analysis as in [12,16] to assess the
quality of the generated theories using Isabelle’s libraries* as reference. This
experiment assumes that the Isabelle library is so well-designed that it contains
exactly all interesting properties and nothing more. The results are summarised
in Table 1, where recall measures how many of the theorems in the library were
also produced by HipSpec, and precision measures how many of the theorems
HipSpec produced were also in the library, i.e. how well it avoids producing
“superfluous” theorems.

HipSpec performs very well: for the lists, it generates all theorems in Isabelle’s
library, plus theorem L3 in Figure 5, which is the closest we can get to the
useful lemma length (xs ++ ys) = length xs + length ys since we did not
include the + operator in the program. For the natural numbers, HipSpec fails to
generate three of the library theorems: the standard formulations of associativity
are missing (instead HipSpec generates two variants in theorems N5 and N6) and

4 http://www.cl.cam.ac.uk/research/hvg/Isabelle/dist/library/HOL/
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Natural Numbers

N1. x+y = y+x N6."  xx(y*xz) = y*(x*z)

N2. XKy = y*X N7. x+S y = S (x+y)

NS. X+Z = x NS. x*S y = x+(x*y)

Nj4. X*Z = Z N9.®  zxx(y+y) = y*(x+x)
N5*  x+(y+z) = y+(x+z) NI10. (xxy)+(x*z) = x*(y+z)
Lists

L1. xs++[] = xs

L2. (xs++ys)++zs = xs++(ys++zs)

L3.* 1length (xs++ys) = length (ys++xs)
Ly4. length (rev xs) = length xs

L5. rev (rev xs) = xs

Lé6. rev xs++rev ys = rev (ys++xs)

L7. map f xs++map f ys = map f (xs++ys)
LS. map f (rev xs) = rev (map f xs)

LY. foldl f (foldl f x xs) ys = foldl f x (xs++ys)
L10. foldr f (foldr f x xs) ys = foldr f x (ys++xs)

Fig. 5. Theory exploration results: theorems generated by HipSpec. Theorems marked
by * were not in Isabelle’s library.

the theorem S x + y = x + S y is excluded. However, all three can be trivially
derived by equational reasoning from the theorems HipSpec does produce.

HipSpec IsaCoSy [12] IsaScheme [16] Isabelle

#Thms Naturals 10 16 16™ 12
Precision 80% 63% 100%* -

Recall 73% 83% 46%* -

#Thms Lists 10 24 13 9

Precision 90% 38% 70%

Recall 100% 100% 100% -

Table 1. Theory Exploration results. Note that IsaScheme was evaluated on a natural
number theory also including exponentiation [16].

5 Related Work

Inductive theories do not allow cut-elimination and are thus undecidable. In
practice, this means that auxiliary lemmas (themselves requiring an inductive
proof) may be required to complete a proof. Inductive theorem provers which
support some form of automated lemma discovery, such as ACL2’s induction
tactic [4], CLAM [9], IsaPlanner [8] and Zeno [19], use a top-down approach by
which lemmas are discovered from failed proof-attempts. HipSpec differ from all



of these in its bottom-up theory exploration approach. HipSpec automatically
tries to discover a background theory for the relevant functions, building up
something like the human-created lemma libraries available for interactive provers
such as Isabelle [17] or ACL2 [13]. Experimental evaluation shows that HipSpec’s
bottom-up approach compares well in terms of finding the right lemmas. Some
types of lemmas are difficult to discover in the top-down approach, for instance
the generalised version needed to prove the theorem rev xs = qrev xs [],
and many other similar theorems featuring accumulator variables. While the
CLAM system could discover the rev/qrev generalisation given some other basic
lemmas, HipSpec discovers it all automatically. Zeno, IsaPlanner and ACL2 do
not support this type of lemma discovery at all, and thus fail on theorems of this
kind. In HipSpec, there is always a risk of discovering extra irrelevant lemmas
too. However, these may perhaps be useful in other proofs.

Both CLAM and IsaPlanner are based on the rippling heuristic for guiding
rewriting of the step-case towards the inductive hypothesis. The advantage of
rippling is that it guarantees termination of rewriting, and that rewrite rules may
be used both ways around if need be. Rippling is a syntax-based heuristic, which
may cause problems for instance on conjectures where a lot of case-analysis is
required, as highlighted by Test Suite A in §4 where HipSpec, Zeno and ACL2
performed better than the rippling-based IsaPlanner. HipSpec relies on an off-the-
shelf prover as backend which has no termination guarantee like rippling-based
provers. Instead termination is enforced by using a timeout, which means that
there is a risk of missing proofs which just take a little bit too long. When
special-purpose rippling-based provers fail, the user may inspect the final proof
state to see where the proof got stuck. HipSpec cannot currently.

While most other provers have some form of built-in rewriting tactics, HipSpec
and the program verifier Dafny [14] instead send proof obligations to external
automated provers. Like HipSpec, Dafny applies induction on the meta-level and
passes the resulting proof obligations to the theorem prover Z3, which was also
used as a backend for HipSpec in the experiments in this article. Dafny does
not, however, support automated lemma discovery, so auxiliary lemmas must
be supplied by the user. The obvious advantage is that off-the-shelf automated
provers are often very fast and powerful. However, as the provers are treated as
black boxes we do not get a readable proof, or any information if a proof fails.
IsaPlanner checks proof steps in Isabelle and can produce readable output of
complete or partial proofs. Zeno can output proofs in Isabelle format, which can
then be re-checked in the proof assistant, ensuring correctness. Readable and
checkable proofs are further work in HipSpec.

HipSpec is the only system which can be used both as an inductive theorem
prover and as a theory exploration system. The IsaCoSy and IsaScheme theory
explorers were developed for automating the creation of lemma libraries for
inductive theories in Isabelle [12,16]. Both systems use IsaPlanner to prove
conjectures that pass counterexample checking, but differ in the heuristics they
use to generate conjectures. Experiments in which the outputs of IsaCoSy were
manually fed back to IsaPlanner have been successfully performed [11]. However,



neither is fully integrated with the theorem prover: IsaPlanner cannot call either
of these automatically while proving user-given properties, In contrast, HipSpec
is fully automatic. Both IsaCoSy and IsaScheme are considerably slower than
HipSpec, although all three systems produce similar sets of lemmas.

6 Conclusion and Further Work

HipSpec is an automated inductive theorem prover and a theory exploration
system. It takes a novel bottom-up approach to lemma discovery by using theory
exploration to first build a richer background theory in which user-given properties
are proved. In experimental evaluation, HipSpec performs very well in comparison
with other systems: in particular, it succeeds in proving theorems about tail-
recursive functions that require generalisations, which no other system can prove
fully automatically without user-supplied lemmas. HipSpec also performs very
well as a standalone theory exploration system, producing sets of lemmas with
high precision and recall when compared to Isabelle’s libraries. Furthermore, it
does so in seconds rather than hours like previous systems.

Ultimately, we would like to use HipSpec in a tool for automatically proving
properties of Haskell programs, making it usable by “normal” programmers,
much like the popular QuickCheck tool [5]. In order to extend HipSpec to the full
Haskell language we need to add support also for infinite and lazy data-structures
and non-terminating functions in QuickSpec and in HipSpec’s property language.
The Haskell-to-FOL translation system HALO [20] already supports this, and Hip
supports co-inductive reasoning and fixpoint induction. The theory-exploration
machinery does however need to be extended to record which lemmas hold
for all values of a type (including partial ones) and which ones only hold for
completely-defined total values.

Another area of further work is providing user feedback from failed proofs, and
producing checkable proofs. It could interesting to experiment with a different
prover backend, from which information about failed proof attempts can be
reclaimed, rather than treating the prover as a black box.
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