------------------------------------------------------------------------ -- The Agda standard library -- -- Operations on and properties of decidable relations ------------------------------------------------------------------------ module Relation.Nullary.Decidable where open import Data.Bool open import Data.Empty open import Data.Product hiding (map) open import Data.Unit open import Function open import Function.Equality using (_⟨$⟩_; module Π) open import Function.Equivalence using (_⇔_; equivalence; module Equivalence) open import Function.Injection using (Injection; module Injection) open import Level using (Lift) open import Relation.Binary using (Setoid; module Setoid; Decidable) open import Relation.Binary.PropositionalEquality open import Relation.Nullary ⌊_⌋ : ∀ {p} {P : Set p} → Dec P → Bool ⌊ yes _ ⌋ = true ⌊ no _ ⌋ = false True : ∀ {p} {P : Set p} → Dec P → Set True Q = T ⌊ Q ⌋ False : ∀ {p} {P : Set p} → Dec P → Set False Q = T (not ⌊ Q ⌋) -- Gives a witness to the "truth". toWitness : ∀ {p} {P : Set p} {Q : Dec P} → True Q → P toWitness {Q = yes p} _ = p toWitness {Q = no _} () -- Establishes a "truth", given a witness. fromWitness : ∀ {p} {P : Set p} {Q : Dec P} → P → True Q fromWitness {Q = yes p} = const _ fromWitness {Q = no ¬p} = ¬p -- Variants for False. toWitnessFalse : ∀ {p} {P : Set p} {Q : Dec P} → False Q → ¬ P toWitnessFalse {Q = yes _} () toWitnessFalse {Q = no ¬p} _ = ¬p fromWitnessFalse : ∀ {p} {P : Set p} {Q : Dec P} → ¬ P → False Q fromWitnessFalse {Q = yes p} = flip _$_ p fromWitnessFalse {Q = no ¬p} = const _ map : ∀ {p q} {P : Set p} {Q : Set q} → P ⇔ Q → Dec P → Dec Q map P⇔Q (yes p) = yes (Equivalence.to P⇔Q ⟨$⟩ p) map P⇔Q (no ¬p) = no (¬p ∘ _⟨$⟩_ (Equivalence.from P⇔Q)) map′ : ∀ {p q} {P : Set p} {Q : Set q} → (P → Q) → (Q → P) → Dec P → Dec Q map′ P→Q Q→P = map (equivalence P→Q Q→P) module _ {a₁ a₂ b₁ b₂} {A : Setoid a₁ a₂} {B : Setoid b₁ b₂} where open Injection open Setoid A using () renaming (_≈_ to _≈A_) open Setoid B using () renaming (_≈_ to _≈B_) -- If there is an injection from one setoid to another, and the -- latter's equivalence relation is decidable, then the former's -- equivalence relation is also decidable. via-injection : Injection A B → Decidable _≈B_ → Decidable _≈A_ via-injection inj dec x y with dec (to inj ⟨$⟩ x) (to inj ⟨$⟩ y) ... | yes injx≈injy = yes (Injection.injective inj injx≈injy) ... | no injx≉injy = no (λ x≈y → injx≉injy (Π.cong (to inj) x≈y)) -- If a decision procedure returns "yes", then we can extract the -- proof using from-yes. From-yes : ∀ {p} {P : Set p} → Dec P → Set p From-yes {P = P} (yes _) = P From-yes (no _) = Lift ⊤ from-yes : ∀ {p} {P : Set p} (p : Dec P) → From-yes p from-yes (yes p) = p from-yes (no _) = _ -- If a decision procedure returns "no", then we can extract the proof -- using from-no. From-no : ∀ {p} {P : Set p} → Dec P → Set p From-no {P = P} (no _) = ¬ P From-no (yes _) = Lift ⊤ from-no : ∀ {p} {P : Set p} (p : Dec P) → From-no p from-no (no ¬p) = ¬p from-no (yes _) = _