------------------------------------------------------------------------ -- The Agda standard library -- -- Convenient syntax for "equational reasoning" using a preorder ------------------------------------------------------------------------ -- I think that the idea behind this library is originally Ulf -- Norell's. I have adapted it to my tastes and mixfix operators, -- though. -- If you need to use several instances of this module in a given -- file, then you can use the following approach: -- -- import Relation.Binary.PreorderReasoning as Pre -- -- f x y z = begin -- ... -- ∎ -- where open Pre preorder₁ -- -- g i j = begin -- ... -- ∎ -- where open Pre preorder₂ open import Relation.Binary module Relation.Binary.PreorderReasoning {p₁ p₂ p₃} (P : Preorder p₁ p₂ p₃) where open Preorder P infix 4 _IsRelatedTo_ infix 2 _∎ infixr 2 _∼⟨_⟩_ _≈⟨_⟩_ _≈⟨⟩_ infix 1 begin_ -- This seemingly unnecessary type is used to make it possible to -- infer arguments even if the underlying equality evaluates. data _IsRelatedTo_ (x y : Carrier) : Set p₃ where relTo : (x∼y : x ∼ y) → x IsRelatedTo y begin_ : ∀ {x y} → x IsRelatedTo y → x ∼ y begin relTo x∼y = x∼y _∼⟨_⟩_ : ∀ x {y z} → x ∼ y → y IsRelatedTo z → x IsRelatedTo z _ ∼⟨ x∼y ⟩ relTo y∼z = relTo (trans x∼y y∼z) _≈⟨_⟩_ : ∀ x {y z} → x ≈ y → y IsRelatedTo z → x IsRelatedTo z _ ≈⟨ x≈y ⟩ relTo y∼z = relTo (trans (reflexive x≈y) y∼z) _≈⟨⟩_ : ∀ x {y} → x IsRelatedTo y → x IsRelatedTo y _ ≈⟨⟩ x∼y = x∼y _∎ : ∀ x → x IsRelatedTo x _∎ _ = relTo refl