------------------------------------------------------------------------ -- The Agda standard library -- -- Code for converting Vec A n → B to and from n-ary functions ------------------------------------------------------------------------ module Data.Vec.N-ary where open import Data.Nat hiding (_⊔_) open import Data.Product as Prod open import Data.Vec open import Function open import Function.Equivalence using (_⇔_; equivalence) open import Level using (Level; _⊔_) open import Relation.Binary open import Relation.Binary.PropositionalEquality open import Relation.Nullary.Decidable ------------------------------------------------------------------------ -- N-ary functions N-ary-level : Level → Level → ℕ → Level N-ary-level ℓ₁ ℓ₂ zero = ℓ₂ N-ary-level ℓ₁ ℓ₂ (suc n) = ℓ₁ ⊔ N-ary-level ℓ₁ ℓ₂ n N-ary : ∀ {ℓ₁ ℓ₂} (n : ℕ) → Set ℓ₁ → Set ℓ₂ → Set (N-ary-level ℓ₁ ℓ₂ n) N-ary zero A B = B N-ary (suc n) A B = A → N-ary n A B ------------------------------------------------------------------------ -- Conversion curryⁿ : ∀ {n a b} {A : Set a} {B : Set b} → (Vec A n → B) → N-ary n A B curryⁿ {zero} f = f [] curryⁿ {suc n} f = λ x → curryⁿ (f ∘ _∷_ x) _$ⁿ_ : ∀ {n a b} {A : Set a} {B : Set b} → N-ary n A B → (Vec A n → B) f $ⁿ [] = f f $ⁿ (x ∷ xs) = f x $ⁿ xs ------------------------------------------------------------------------ -- Quantifiers -- Universal quantifier. ∀ⁿ : ∀ n {a ℓ} {A : Set a} → N-ary n A (Set ℓ) → Set (N-ary-level a ℓ n) ∀ⁿ zero P = P ∀ⁿ (suc n) P = ∀ x → ∀ⁿ n (P x) -- Universal quantifier with implicit (hidden) arguments. ∀ⁿʰ : ∀ n {a ℓ} {A : Set a} → N-ary n A (Set ℓ) → Set (N-ary-level a ℓ n) ∀ⁿʰ zero P = P ∀ⁿʰ (suc n) P = ∀ {x} → ∀ⁿʰ n (P x) -- Existential quantifier. ∃ⁿ : ∀ n {a ℓ} {A : Set a} → N-ary n A (Set ℓ) → Set (N-ary-level a ℓ n) ∃ⁿ zero P = P ∃ⁿ (suc n) P = ∃ λ x → ∃ⁿ n (P x) ------------------------------------------------------------------------ -- N-ary function equality Eq : ∀ {a b c ℓ} {A : Set a} {B : Set b} {C : Set c} n → REL B C ℓ → REL (N-ary n A B) (N-ary n A C) (N-ary-level a ℓ n) Eq n _∼_ f g = ∀ⁿ n (curryⁿ {n = n} λ xs → (f $ⁿ xs) ∼ (g $ⁿ xs)) -- A variant where all the arguments are implicit (hidden). Eqʰ : ∀ {a b c ℓ} {A : Set a} {B : Set b} {C : Set c} n → REL B C ℓ → REL (N-ary n A B) (N-ary n A C) (N-ary-level a ℓ n) Eqʰ n _∼_ f g = ∀ⁿʰ n (curryⁿ {n = n} λ xs → (f $ⁿ xs) ∼ (g $ⁿ xs)) ------------------------------------------------------------------------ -- Some lemmas -- The functions curryⁿ and _$ⁿ_ are inverses. left-inverse : ∀ {n a b} {A : Set a} {B : Set b} (f : Vec A n → B) → ∀ xs → curryⁿ f $ⁿ xs ≡ f xs left-inverse f [] = refl left-inverse f (x ∷ xs) = left-inverse (f ∘ _∷_ x) xs right-inverse : ∀ {a b} {A : Set a} {B : Set b} n (f : N-ary n A B) → Eq n _≡_ (curryⁿ (_$ⁿ_ {n} f)) f right-inverse zero f = refl right-inverse (suc n) f = λ x → right-inverse n (f x) -- ∀ⁿ can be expressed in an "uncurried" way. uncurry-∀ⁿ : ∀ n {a ℓ} {A : Set a} {P : N-ary n A (Set ℓ)} → ∀ⁿ n P ⇔ (∀ (xs : Vec A n) → P $ⁿ xs) uncurry-∀ⁿ n {a} {ℓ} {A} = equivalence (⇒ n) (⇐ n) where ⇒ : ∀ n {P : N-ary n A (Set ℓ)} → ∀ⁿ n P → (∀ (xs : Vec A n) → P $ⁿ xs) ⇒ zero p [] = p ⇒ (suc n) p (x ∷ xs) = ⇒ n (p x) xs ⇐ : ∀ n {P : N-ary n A (Set ℓ)} → (∀ (xs : Vec A n) → P $ⁿ xs) → ∀ⁿ n P ⇐ zero p = p [] ⇐ (suc n) p = λ x → ⇐ n (p ∘ _∷_ x) -- ∃ⁿ can be expressed in an "uncurried" way. uncurry-∃ⁿ : ∀ n {a ℓ} {A : Set a} {P : N-ary n A (Set ℓ)} → ∃ⁿ n P ⇔ (∃ λ (xs : Vec A n) → P $ⁿ xs) uncurry-∃ⁿ n {a} {ℓ} {A} = equivalence (⇒ n) (⇐ n) where ⇒ : ∀ n {P : N-ary n A (Set ℓ)} → ∃ⁿ n P → (∃ λ (xs : Vec A n) → P $ⁿ xs) ⇒ zero p = ([] , p) ⇒ (suc n) (x , p) = Prod.map (_∷_ x) id (⇒ n p) ⇐ : ∀ n {P : N-ary n A (Set ℓ)} → (∃ λ (xs : Vec A n) → P $ⁿ xs) → ∃ⁿ n P ⇐ zero ([] , p) = p ⇐ (suc n) (x ∷ xs , p) = (x , ⇐ n (xs , p)) -- Conversion preserves equality. curryⁿ-cong : ∀ {n a b c ℓ} {A : Set a} {B : Set b} {C : Set c} (_∼_ : REL B C ℓ) (f : Vec A n → B) (g : Vec A n → C) → (∀ xs → f xs ∼ g xs) → Eq n _∼_ (curryⁿ f) (curryⁿ g) curryⁿ-cong {zero} _∼_ f g hyp = hyp [] curryⁿ-cong {suc n} _∼_ f g hyp = λ x → curryⁿ-cong _∼_ (f ∘ _∷_ x) (g ∘ _∷_ x) (λ xs → hyp (x ∷ xs)) curryⁿ-cong⁻¹ : ∀ {n a b c ℓ} {A : Set a} {B : Set b} {C : Set c} (_∼_ : REL B C ℓ) (f : Vec A n → B) (g : Vec A n → C) → Eq n _∼_ (curryⁿ f) (curryⁿ g) → ∀ xs → f xs ∼ g xs curryⁿ-cong⁻¹ _∼_ f g hyp [] = hyp curryⁿ-cong⁻¹ _∼_ f g hyp (x ∷ xs) = curryⁿ-cong⁻¹ _∼_ (f ∘ _∷_ x) (g ∘ _∷_ x) (hyp x) xs appⁿ-cong : ∀ {n a b c ℓ} {A : Set a} {B : Set b} {C : Set c} (_∼_ : REL B C ℓ) (f : N-ary n A B) (g : N-ary n A C) → Eq n _∼_ f g → (xs : Vec A n) → (f $ⁿ xs) ∼ (g $ⁿ xs) appⁿ-cong _∼_ f g hyp [] = hyp appⁿ-cong _∼_ f g hyp (x ∷ xs) = appⁿ-cong _∼_ (f x) (g x) (hyp x) xs appⁿ-cong⁻¹ : ∀ {n a b c ℓ} {A : Set a} {B : Set b} {C : Set c} (_∼_ : REL B C ℓ) (f : N-ary n A B) (g : N-ary n A C) → ((xs : Vec A n) → (f $ⁿ xs) ∼ (g $ⁿ xs)) → Eq n _∼_ f g appⁿ-cong⁻¹ {zero} _∼_ f g hyp = hyp [] appⁿ-cong⁻¹ {suc n} _∼_ f g hyp = λ x → appⁿ-cong⁻¹ _∼_ (f x) (g x) (λ xs → hyp (x ∷ xs)) -- Eq and Eqʰ are equivalent. Eq-to-Eqʰ : ∀ {a b c ℓ} {A : Set a} {B : Set b} {C : Set c} n (_∼_ : REL B C ℓ) {f : N-ary n A B} {g : N-ary n A C} → Eq n _∼_ f g → Eqʰ n _∼_ f g Eq-to-Eqʰ zero _∼_ eq = eq Eq-to-Eqʰ (suc n) _∼_ eq = Eq-to-Eqʰ n _∼_ (eq _) Eqʰ-to-Eq : ∀ {a b c ℓ} {A : Set a} {B : Set b} {C : Set c} n (_∼_ : REL B C ℓ) {f : N-ary n A B} {g : N-ary n A C} → Eqʰ n _∼_ f g → Eq n _∼_ f g Eqʰ-to-Eq zero _∼_ eq = eq Eqʰ-to-Eq (suc n) _∼_ eq = λ _ → Eqʰ-to-Eq n _∼_ eq