------------------------------------------------------------------------ -- The Agda standard library -- -- Vectors ------------------------------------------------------------------------ module Data.Vec where open import Category.Applicative open import Data.Nat open import Data.Fin using (Fin; zero; suc) open import Data.List as List using (List) open import Data.Product as Prod using (∃; ∃₂; _×_; _,_) open import Function open import Relation.Binary.PropositionalEquality using (_≡_; refl) ------------------------------------------------------------------------ -- Types infixr 5 _∷_ data Vec {a} (A : Set a) : ℕ → Set a where [] : Vec A zero _∷_ : ∀ {n} (x : A) (xs : Vec A n) → Vec A (suc n) infix 4 _∈_ data _∈_ {a} {A : Set a} : A → {n : ℕ} → Vec A n → Set a where here : ∀ {n} {x} {xs : Vec A n} → x ∈ x ∷ xs there : ∀ {n} {x y} {xs : Vec A n} (x∈xs : x ∈ xs) → x ∈ y ∷ xs infix 4 _[_]=_ data _[_]=_ {a} {A : Set a} : {n : ℕ} → Vec A n → Fin n → A → Set a where here : ∀ {n} {x} {xs : Vec A n} → x ∷ xs [ zero ]= x there : ∀ {n} {i} {x y} {xs : Vec A n} (xs[i]=x : xs [ i ]= x) → y ∷ xs [ suc i ]= x ------------------------------------------------------------------------ -- Some operations head : ∀ {a n} {A : Set a} → Vec A (1 + n) → A head (x ∷ xs) = x tail : ∀ {a n} {A : Set a} → Vec A (1 + n) → Vec A n tail (x ∷ xs) = xs [_] : ∀ {a} {A : Set a} → A → Vec A 1 [ x ] = x ∷ [] infixr 5 _++_ _++_ : ∀ {a m n} {A : Set a} → Vec A m → Vec A n → Vec A (m + n) [] ++ ys = ys (x ∷ xs) ++ ys = x ∷ (xs ++ ys) infixl 4 _⊛_ _⊛_ : ∀ {a b n} {A : Set a} {B : Set b} → Vec (A → B) n → Vec A n → Vec B n [] ⊛ _ = [] (f ∷ fs) ⊛ (x ∷ xs) = f x ∷ (fs ⊛ xs) replicate : ∀ {a n} {A : Set a} → A → Vec A n replicate {n = zero} x = [] replicate {n = suc n} x = x ∷ replicate x applicative : ∀ {a n} → RawApplicative (λ (A : Set a) → Vec A n) applicative = record { pure = replicate ; _⊛_ = _⊛_ } map : ∀ {a b n} {A : Set a} {B : Set b} → (A → B) → Vec A n → Vec B n map f xs = replicate f ⊛ xs zipWith : ∀ {a b c n} {A : Set a} {B : Set b} {C : Set c} → (A → B → C) → Vec A n → Vec B n → Vec C n zipWith _⊕_ xs ys = replicate _⊕_ ⊛ xs ⊛ ys zip : ∀ {a b n} {A : Set a} {B : Set b} → Vec A n → Vec B n → Vec (A × B) n zip = zipWith _,_ unzip : ∀ {a b n} {A : Set a} {B : Set b} → Vec (A × B) n → Vec A n × Vec B n unzip [] = [] , [] unzip ((x , y) ∷ xys) = Prod.map (_∷_ x) (_∷_ y) (unzip xys) foldr : ∀ {a b} {A : Set a} (B : ℕ → Set b) {m} → (∀ {n} → A → B n → B (suc n)) → B zero → Vec A m → B m foldr b _⊕_ n [] = n foldr b _⊕_ n (x ∷ xs) = x ⊕ foldr b _⊕_ n xs foldr₁ : ∀ {a} {A : Set a} {m} → (A → A → A) → Vec A (suc m) → A foldr₁ _⊕_ (x ∷ []) = x foldr₁ _⊕_ (x ∷ y ∷ ys) = x ⊕ foldr₁ _⊕_ (y ∷ ys) foldl : ∀ {a b} {A : Set a} (B : ℕ → Set b) {m} → (∀ {n} → B n → A → B (suc n)) → B zero → Vec A m → B m foldl b _⊕_ n [] = n foldl b _⊕_ n (x ∷ xs) = foldl (λ n → b (suc n)) _⊕_ (n ⊕ x) xs foldl₁ : ∀ {a} {A : Set a} {m} → (A → A → A) → Vec A (suc m) → A foldl₁ _⊕_ (x ∷ xs) = foldl _ _⊕_ x xs concat : ∀ {a m n} {A : Set a} → Vec (Vec A m) n → Vec A (n * m) concat [] = [] concat (xs ∷ xss) = xs ++ concat xss splitAt : ∀ {a} {A : Set a} m {n} (xs : Vec A (m + n)) → ∃₂ λ (ys : Vec A m) (zs : Vec A n) → xs ≡ ys ++ zs splitAt zero xs = ([] , xs , refl) splitAt (suc m) (x ∷ xs) with splitAt m xs splitAt (suc m) (x ∷ .(ys ++ zs)) | (ys , zs , refl) = ((x ∷ ys) , zs , refl) take : ∀ {a} {A : Set a} m {n} → Vec A (m + n) → Vec A m take m xs with splitAt m xs take m .(ys ++ zs) | (ys , zs , refl) = ys drop : ∀ {a} {A : Set a} m {n} → Vec A (m + n) → Vec A n drop m xs with splitAt m xs drop m .(ys ++ zs) | (ys , zs , refl) = zs group : ∀ {a} {A : Set a} n k (xs : Vec A (n * k)) → ∃ λ (xss : Vec (Vec A k) n) → xs ≡ concat xss group zero k [] = ([] , refl) group (suc n) k xs with splitAt k xs group (suc n) k .(ys ++ zs) | (ys , zs , refl) with group n k zs group (suc n) k .(ys ++ concat zss) | (ys , ._ , refl) | (zss , refl) = ((ys ∷ zss) , refl) -- Splits a vector into two "halves". split : ∀ {a n} {A : Set a} → Vec A n → Vec A ⌈ n /2⌉ × Vec A ⌊ n /2⌋ split [] = ([] , []) split (x ∷ []) = (x ∷ [] , []) split (x ∷ y ∷ xs) = Prod.map (_∷_ x) (_∷_ y) (split xs) reverse : ∀ {a n} {A : Set a} → Vec A n → Vec A n reverse {A = A} = foldl (Vec A) (λ rev x → x ∷ rev) [] sum : ∀ {n} → Vec ℕ n → ℕ sum = foldr _ _+_ 0 toList : ∀ {a n} {A : Set a} → Vec A n → List A toList [] = List.[] toList (x ∷ xs) = List._∷_ x (toList xs) fromList : ∀ {a} {A : Set a} → (xs : List A) → Vec A (List.length xs) fromList List.[] = [] fromList (List._∷_ x xs) = x ∷ fromList xs -- Snoc. infixl 5 _∷ʳ_ _∷ʳ_ : ∀ {a n} {A : Set a} → Vec A n → A → Vec A (1 + n) [] ∷ʳ y = [ y ] (x ∷ xs) ∷ʳ y = x ∷ (xs ∷ʳ y) initLast : ∀ {a n} {A : Set a} (xs : Vec A (1 + n)) → ∃₂ λ (ys : Vec A n) (y : A) → xs ≡ ys ∷ʳ y initLast {n = zero} (x ∷ []) = ([] , x , refl) initLast {n = suc n} (x ∷ xs) with initLast xs initLast {n = suc n} (x ∷ .(ys ∷ʳ y)) | (ys , y , refl) = ((x ∷ ys) , y , refl) init : ∀ {a n} {A : Set a} → Vec A (1 + n) → Vec A n init xs with initLast xs init .(ys ∷ʳ y) | (ys , y , refl) = ys last : ∀ {a n} {A : Set a} → Vec A (1 + n) → A last xs with initLast xs last .(ys ∷ʳ y) | (ys , y , refl) = y infixl 1 _>>=_ _>>=_ : ∀ {a b m n} {A : Set a} {B : Set b} → Vec A m → (A → Vec B n) → Vec B (m * n) xs >>= f = concat (map f xs) infixl 4 _⊛*_ _⊛*_ : ∀ {a b m n} {A : Set a} {B : Set b} → Vec (A → B) m → Vec A n → Vec B (m * n) fs ⊛* xs = fs >>= λ f → map f xs -- Interleaves the two vectors. infixr 5 _⋎_ _⋎_ : ∀ {a m n} {A : Set a} → Vec A m → Vec A n → Vec A (m +⋎ n) [] ⋎ ys = ys (x ∷ xs) ⋎ ys = x ∷ (ys ⋎ xs) -- A lookup function. lookup : ∀ {a n} {A : Set a} → Fin n → Vec A n → A lookup zero (x ∷ xs) = x lookup (suc i) (x ∷ xs) = lookup i xs -- An inverse of flip lookup. tabulate : ∀ {n a} {A : Set a} → (Fin n → A) → Vec A n tabulate {zero} f = [] tabulate {suc n} f = f zero ∷ tabulate (f ∘ suc) -- Update. infixl 6 _[_]≔_ _[_]≔_ : ∀ {a n} {A : Set a} → Vec A n → Fin n → A → Vec A n [] [ () ]≔ y (x ∷ xs) [ zero ]≔ y = y ∷ xs (x ∷ xs) [ suc i ]≔ y = x ∷ xs [ i ]≔ y -- Generates a vector containing all elements in Fin n. This function -- is not placed in Data.Fin because Data.Vec depends on Data.Fin. -- -- The implementation was suggested by Conor McBride ("Fwd: how to -- count 0..n-1", http://thread.gmane.org/gmane.comp.lang.agda/2554). allFin : ∀ n → Vec (Fin n) n allFin _ = tabulate id