------------------------------------------------------------------------ -- The Agda standard library -- -- Some properties related to Data.Star ------------------------------------------------------------------------ module Data.Star.Properties where open import Data.Star open import Function open import Relation.Binary open import Relation.Binary.PropositionalEquality as PropEq using (_≡_; refl; sym; cong; cong₂) import Relation.Binary.PreorderReasoning as PreR ◅◅-assoc : ∀ {i t} {I : Set i} {T : Rel I t} {i j k l} (xs : Star T i j) (ys : Star T j k) (zs : Star T k l) → (xs ◅◅ ys) ◅◅ zs ≡ xs ◅◅ (ys ◅◅ zs) ◅◅-assoc ε ys zs = refl ◅◅-assoc (x ◅ xs) ys zs = cong (_◅_ x) (◅◅-assoc xs ys zs) gmap-id : ∀ {i t} {I : Set i} {T : Rel I t} {i j} (xs : Star T i j) → gmap id id xs ≡ xs gmap-id ε = refl gmap-id (x ◅ xs) = cong (_◅_ x) (gmap-id xs) gmap-∘ : ∀ {i t} {I : Set i} {T : Rel I t} {j u} {J : Set j} {U : Rel J u} {k v} {K : Set k} {V : Rel K v} (f : J → K) (g : U =[ f ]⇒ V) (f′ : I → J) (g′ : T =[ f′ ]⇒ U) {i j} (xs : Star T i j) → (gmap {U = V} f g ∘ gmap f′ g′) xs ≡ gmap (f ∘ f′) (g ∘ g′) xs gmap-∘ f g f′ g′ ε = refl gmap-∘ f g f′ g′ (x ◅ xs) = cong (_◅_ (g (g′ x))) (gmap-∘ f g f′ g′ xs) gmap-◅◅ : ∀ {i t j u} {I : Set i} {T : Rel I t} {J : Set j} {U : Rel J u} (f : I → J) (g : T =[ f ]⇒ U) {i j k} (xs : Star T i j) (ys : Star T j k) → gmap {U = U} f g (xs ◅◅ ys) ≡ gmap f g xs ◅◅ gmap f g ys gmap-◅◅ f g ε ys = refl gmap-◅◅ f g (x ◅ xs) ys = cong (_◅_ (g x)) (gmap-◅◅ f g xs ys) gmap-cong : ∀ {i t j u} {I : Set i} {T : Rel I t} {J : Set j} {U : Rel J u} (f : I → J) (g : T =[ f ]⇒ U) (g′ : T =[ f ]⇒ U) → (∀ {i j} (x : T i j) → g x ≡ g′ x) → ∀ {i j} (xs : Star T i j) → gmap {U = U} f g xs ≡ gmap f g′ xs gmap-cong f g g′ eq ε = refl gmap-cong f g g′ eq (x ◅ xs) = cong₂ _◅_ (eq x) (gmap-cong f g g′ eq xs) fold-◅◅ : ∀ {i p} {I : Set i} (P : Rel I p) (_⊕_ : Transitive P) (∅ : Reflexive P) → (∀ {i j} (x : P i j) → ∅ ⊕ x ≡ x) → (∀ {i j k l} (x : P i j) (y : P j k) (z : P k l) → (x ⊕ y) ⊕ z ≡ x ⊕ (y ⊕ z)) → ∀ {i j k} (xs : Star P i j) (ys : Star P j k) → fold P _⊕_ ∅ (xs ◅◅ ys) ≡ fold P _⊕_ ∅ xs ⊕ fold P _⊕_ ∅ ys fold-◅◅ P _⊕_ ∅ left-unit assoc ε ys = sym (left-unit _) fold-◅◅ P _⊕_ ∅ left-unit assoc (x ◅ xs) ys = begin x ⊕ fold P _⊕_ ∅ (xs ◅◅ ys) ≡⟨ cong (_⊕_ x) $ fold-◅◅ P _⊕_ ∅ left-unit assoc xs ys ⟩ x ⊕ (fold P _⊕_ ∅ xs ⊕ fold P _⊕_ ∅ ys) ≡⟨ sym (assoc x _ _) ⟩ (x ⊕ fold P _⊕_ ∅ xs) ⊕ fold P _⊕_ ∅ ys ∎ where open PropEq.≡-Reasoning -- Reflexive transitive closures are preorders. preorder : ∀ {i t} {I : Set i} (T : Rel I t) → Preorder _ _ _ preorder T = record { _≈_ = _≡_ ; _∼_ = Star T ; isPreorder = record { isEquivalence = PropEq.isEquivalence ; reflexive = reflexive ; trans = _◅◅_ } } where reflexive : _≡_ ⇒ Star T reflexive refl = ε -- Preorder reasoning for Star. module StarReasoning {i t} {I : Set i} (T : Rel I t) where open PreR (preorder T) public renaming (_∼⟨_⟩_ to _⟶⋆⟨_⟩_; _≈⟨_⟩_ to _≡⟨_⟩_) infixr 2 _⟶⟨_⟩_ _⟶⟨_⟩_ : ∀ x {y z} → T x y → y IsRelatedTo z → x IsRelatedTo z x ⟶⟨ x⟶y ⟩ y⟶⋆z = x ⟶⋆⟨ x⟶y ◅ ε ⟩ y⟶⋆z