------------------------------------------------------------------------ -- The Agda standard library -- -- The reflexive transitive closures of McBride, Norell and Jansson ------------------------------------------------------------------------ -- This module could be placed under Relation.Binary. However, since -- its primary purpose is to be used for _data_ it has been placed -- under Data instead. module Data.Star where open import Relation.Binary open import Function open import Level infixr 5 _◅_ -- Reflexive transitive closure. data Star {i t} {I : Set i} (T : Rel I t) : Rel I (i ⊔ t) where ε : Reflexive (Star T) _◅_ : ∀ {i j k} (x : T i j) (xs : Star T j k) → Star T i k -- The type of _◅_ is Trans T (Star T) (Star T); I expanded -- the definition in order to be able to name the arguments (x -- and xs). -- Append/transitivity. infixr 5 _◅◅_ _◅◅_ : ∀ {i t} {I : Set i} {T : Rel I t} → Transitive (Star T) ε ◅◅ ys = ys (x ◅ xs) ◅◅ ys = x ◅ (xs ◅◅ ys) -- Sometimes you want to view cons-lists as snoc-lists. Then the -- following "constructor" is handy. Note that this is _not_ snoc for -- cons-lists, it is just a synonym for cons (with a different -- argument order). infixl 5 _▻_ _▻_ : ∀ {i t} {I : Set i} {T : Rel I t} {i j k} → Star T j k → T i j → Star T i k _▻_ = flip _◅_ -- A corresponding variant of append. infixr 5 _▻▻_ _▻▻_ : ∀ {i t} {I : Set i} {T : Rel I t} {i j k} → Star T j k → Star T i j → Star T i k _▻▻_ = flip _◅◅_ -- A generalised variant of map which allows the index type to change. gmap : ∀ {i j t u} {I : Set i} {T : Rel I t} {J : Set j} {U : Rel J u} → (f : I → J) → T =[ f ]⇒ U → Star T =[ f ]⇒ Star U gmap f g ε = ε gmap f g (x ◅ xs) = g x ◅ gmap f g xs map : ∀ {i t u} {I : Set i} {T : Rel I t} {U : Rel I u} → T ⇒ U → Star T ⇒ Star U map = gmap id -- A generalised variant of fold. gfold : ∀ {i j t p} {I : Set i} {J : Set j} {T : Rel I t} (f : I → J) (P : Rel J p) → Trans T (P on f) (P on f) → TransFlip (Star T) (P on f) (P on f) gfold f P _⊕_ ∅ ε = ∅ gfold f P _⊕_ ∅ (x ◅ xs) = x ⊕ gfold f P _⊕_ ∅ xs fold : ∀ {i t p} {I : Set i} {T : Rel I t} (P : Rel I p) → Trans T P P → Reflexive P → Star T ⇒ P fold P _⊕_ ∅ = gfold id P _⊕_ ∅ gfoldl : ∀ {i j t p} {I : Set i} {J : Set j} {T : Rel I t} (f : I → J) (P : Rel J p) → Trans (P on f) T (P on f) → Trans (P on f) (Star T) (P on f) gfoldl f P _⊕_ ∅ ε = ∅ gfoldl f P _⊕_ ∅ (x ◅ xs) = gfoldl f P _⊕_ (∅ ⊕ x) xs foldl : ∀ {i t p} {I : Set i} {T : Rel I t} (P : Rel I p) → Trans P T P → Reflexive P → Star T ⇒ P foldl P _⊕_ ∅ = gfoldl id P _⊕_ ∅ concat : ∀ {i t} {I : Set i} {T : Rel I t} → Star (Star T) ⇒ Star T concat {T = T} = fold (Star T) _◅◅_ ε -- If the underlying relation is symmetric, then the reflexive -- transitive closure is also symmetric. revApp : ∀ {i t u} {I : Set i} {T : Rel I t} {U : Rel I u} → Sym T U → ∀ {i j k} → Star T j i → Star U j k → Star U i k revApp rev ε ys = ys revApp rev (x ◅ xs) ys = revApp rev xs (rev x ◅ ys) reverse : ∀ {i t u} {I : Set i} {T : Rel I t} {U : Rel I u} → Sym T U → Sym (Star T) (Star U) reverse rev xs = revApp rev xs ε -- Reflexive transitive closures form a (generalised) monad. -- return could also be called singleton. return : ∀ {i t} {I : Set i} {T : Rel I t} → T ⇒ Star T return x = x ◅ ε -- A generalised variant of the Kleisli star (flip bind, or -- concatMap). kleisliStar : ∀ {i j t u} {I : Set i} {J : Set j} {T : Rel I t} {U : Rel J u} (f : I → J) → T =[ f ]⇒ Star U → Star T =[ f ]⇒ Star U kleisliStar f g = concat ∘′ gmap f g _⋆ : ∀ {i t u} {I : Set i} {T : Rel I t} {U : Rel I u} → T ⇒ Star U → Star T ⇒ Star U _⋆ = kleisliStar id infixl 1 _>>=_ _>>=_ : ∀ {i t u} {I : Set i} {T : Rel I t} {U : Rel I u} {i j} → Star T i j → T ⇒ Star U → Star U i j m >>= f = (f ⋆) m -- Note that the monad-like structure above is not an indexed monad -- (as defined in Category.Monad.Indexed). If it were, then _>>=_ -- would have a type similar to -- -- ∀ {I} {T U : Rel I t} {i j k} → -- Star T i j → (T i j → Star U j k) → Star U i k. -- ^^^^^ -- Note, however, that there is no scope for applying T to any indices -- in the definition used in Category.Monad.Indexed.