------------------------------------------------------------------------ -- The Agda standard library -- -- Solver for commutative ring or semiring equalities ------------------------------------------------------------------------ -- Uses ideas from the Coq ring tactic. See "Proving Equalities in a -- Commutative Ring Done Right in Coq" by Grégoire and Mahboubi. The -- code below is not optimised like theirs, though (in particular, our -- Horner normal forms are not sparse). open import Algebra open import Algebra.RingSolver.AlmostCommutativeRing open import Relation.Binary module Algebra.RingSolver {r₁ r₂ r₃} (Coeff : RawRing r₁) -- Coefficient "ring". (R : AlmostCommutativeRing r₂ r₃) -- Main "ring". (morphism : Coeff -Raw-AlmostCommutative⟶ R) (_coeff≟_ : Decidable (Induced-equivalence morphism)) where import Algebra.RingSolver.Lemmas as L; open L Coeff R morphism private module C = RawRing Coeff open AlmostCommutativeRing R renaming (zero to zero*) import Algebra.FunctionProperties as P; open P _≈_ open import Algebra.Morphism open _-Raw-AlmostCommutative⟶_ morphism renaming (⟦_⟧ to ⟦_⟧′) import Algebra.Operations as Ops; open Ops semiring open import Relation.Binary open import Relation.Nullary.Core import Relation.Binary.EqReasoning as EqR; open EqR setoid import Relation.Binary.PropositionalEquality as PropEq import Relation.Binary.Reflection as Reflection open import Data.Empty open import Data.Product open import Data.Nat as Nat using (ℕ; suc; zero) open import Data.Fin as Fin using (Fin; zero; suc) open import Data.Vec open import Function open import Level using (_⊔_) infix 9 :-_ -H_ -N_ infixr 9 _:^_ _^N_ infix 8 _*x+_ _*x+HN_ _*x+H_ infixl 8 _:*_ _*N_ _*H_ _*NH_ _*HN_ infixl 7 _:+_ _:-_ _+H_ _+N_ infix 4 _≈H_ _≈N_ ------------------------------------------------------------------------ -- Polynomials data Op : Set where [+] : Op [*] : Op -- The polynomials are indexed by the number of variables. data Polynomial (m : ℕ) : Set r₁ where op : (o : Op) (p₁ : Polynomial m) (p₂ : Polynomial m) → Polynomial m con : (c : C.Carrier) → Polynomial m var : (x : Fin m) → Polynomial m _:^_ : (p : Polynomial m) (n : ℕ) → Polynomial m :-_ : (p : Polynomial m) → Polynomial m -- Short-hand notation. _:+_ : ∀ {n} → Polynomial n → Polynomial n → Polynomial n _:+_ = op [+] _:*_ : ∀ {n} → Polynomial n → Polynomial n → Polynomial n _:*_ = op [*] _:-_ : ∀ {n} → Polynomial n → Polynomial n → Polynomial n x :- y = x :+ :- y -- Semantics. sem : Op → Op₂ Carrier sem [+] = _+_ sem [*] = _*_ ⟦_⟧ : ∀ {n} → Polynomial n → Vec Carrier n → Carrier ⟦ op o p₁ p₂ ⟧ ρ = ⟦ p₁ ⟧ ρ ⟨ sem o ⟩ ⟦ p₂ ⟧ ρ ⟦ con c ⟧ ρ = ⟦ c ⟧′ ⟦ var x ⟧ ρ = lookup x ρ ⟦ p :^ n ⟧ ρ = ⟦ p ⟧ ρ ^ n ⟦ :- p ⟧ ρ = - ⟦ p ⟧ ρ ------------------------------------------------------------------------ -- Normal forms of polynomials -- A univariate polynomial of degree d, -- -- p = a_d x^d + a_{d-1}x^{d-1} + … + a_0, -- -- is represented in Horner normal form by -- -- p = ((a_d x + a_{d-1})x + …)x + a_0. -- -- Note that Horner normal forms can be represented as lists, with the -- empty list standing for the zero polynomial of degree "-1". -- -- Given this representation of univariate polynomials over an -- arbitrary ring, polynomials in any number of variables over the -- ring C can be represented via the isomorphisms -- -- C[] ≅ C -- -- and -- -- C[X_0,...X_{n+1}] ≅ C[X_0,...,X_n][X_{n+1}]. mutual -- The polynomial representations are indexed by the polynomial's -- degree. data HNF : ℕ → Set r₁ where ∅ : ∀ {n} → HNF (suc n) _*x+_ : ∀ {n} → HNF (suc n) → Normal n → HNF (suc n) data Normal : ℕ → Set r₁ where con : C.Carrier → Normal zero poly : ∀ {n} → HNF (suc n) → Normal (suc n) -- Note that the data types above do /not/ ensure uniqueness of -- normal forms: the zero polynomial of degree one can be -- represented using both ∅ and ∅ *x+ con C.0#. mutual -- Semantics. ⟦_⟧H : ∀ {n} → HNF (suc n) → Vec Carrier (suc n) → Carrier ⟦ ∅ ⟧H _ = 0# ⟦ p *x+ c ⟧H (x ∷ ρ) = ⟦ p ⟧H (x ∷ ρ) * x + ⟦ c ⟧N ρ ⟦_⟧N : ∀ {n} → Normal n → Vec Carrier n → Carrier ⟦ con c ⟧N _ = ⟦ c ⟧′ ⟦ poly p ⟧N ρ = ⟦ p ⟧H ρ ------------------------------------------------------------------------ -- Equality and decidability mutual -- Equality. data _≈H_ : ∀ {n} → HNF n → HNF n → Set (r₁ ⊔ r₃) where ∅ : ∀ {n} → _≈H_ {suc n} ∅ ∅ _*x+_ : ∀ {n} {p₁ p₂ : HNF (suc n)} {c₁ c₂ : Normal n} → p₁ ≈H p₂ → c₁ ≈N c₂ → (p₁ *x+ c₁) ≈H (p₂ *x+ c₂) data _≈N_ : ∀ {n} → Normal n → Normal n → Set (r₁ ⊔ r₃) where con : ∀ {c₁ c₂} → ⟦ c₁ ⟧′ ≈ ⟦ c₂ ⟧′ → con c₁ ≈N con c₂ poly : ∀ {n} {p₁ p₂ : HNF (suc n)} → p₁ ≈H p₂ → poly p₁ ≈N poly p₂ mutual -- Equality is decidable. _≟H_ : ∀ {n} → Decidable (_≈H_ {n = n}) ∅ ≟H ∅ = yes ∅ ∅ ≟H (_ *x+ _) = no λ() (_ *x+ _) ≟H ∅ = no λ() (p₁ *x+ c₁) ≟H (p₂ *x+ c₂) with p₁ ≟H p₂ | c₁ ≟N c₂ ... | yes p₁≈p₂ | yes c₁≈c₂ = yes (p₁≈p₂ *x+ c₁≈c₂) ... | _ | no c₁≉c₂ = no λ { (_ *x+ c₁≈c₂) → c₁≉c₂ c₁≈c₂ } ... | no p₁≉p₂ | _ = no λ { (p₁≈p₂ *x+ _) → p₁≉p₂ p₁≈p₂ } _≟N_ : ∀ {n} → Decidable (_≈N_ {n = n}) con c₁ ≟N con c₂ with c₁ coeff≟ c₂ ... | yes c₁≈c₂ = yes (con c₁≈c₂) ... | no c₁≉c₂ = no λ { (con c₁≈c₂) → c₁≉c₂ c₁≈c₂} poly p₁ ≟N poly p₂ with p₁ ≟H p₂ ... | yes p₁≈p₂ = yes (poly p₁≈p₂) ... | no p₁≉p₂ = no λ { (poly p₁≈p₂) → p₁≉p₂ p₁≈p₂ } mutual -- The semantics respect the equality relations defined above. ⟦_⟧H-cong : ∀ {n} {p₁ p₂ : HNF (suc n)} → p₁ ≈H p₂ → ∀ ρ → ⟦ p₁ ⟧H ρ ≈ ⟦ p₂ ⟧H ρ ⟦ ∅ ⟧H-cong _ = refl ⟦ p₁≈p₂ *x+ c₁≈c₂ ⟧H-cong (x ∷ ρ) = (⟦ p₁≈p₂ ⟧H-cong (x ∷ ρ) ⟨ *-cong ⟩ refl) ⟨ +-cong ⟩ ⟦ c₁≈c₂ ⟧N-cong ρ ⟦_⟧N-cong : ∀ {n} {p₁ p₂ : Normal n} → p₁ ≈N p₂ → ∀ ρ → ⟦ p₁ ⟧N ρ ≈ ⟦ p₂ ⟧N ρ ⟦ con c₁≈c₂ ⟧N-cong _ = c₁≈c₂ ⟦ poly p₁≈p₂ ⟧N-cong ρ = ⟦ p₁≈p₂ ⟧H-cong ρ ------------------------------------------------------------------------ -- Ring operations on Horner normal forms -- Zero. 0H : ∀ {n} → HNF (suc n) 0H = ∅ 0N : ∀ {n} → Normal n 0N {zero} = con C.0# 0N {suc n} = poly 0H mutual -- One. 1H : ∀ {n} → HNF (suc n) 1H {n} = ∅ *x+ 1N {n} 1N : ∀ {n} → Normal n 1N {zero} = con C.1# 1N {suc n} = poly 1H -- A simplifying variant of _*x+_. _*x+HN_ : ∀ {n} → HNF (suc n) → Normal n → HNF (suc n) (p *x+ c′) *x+HN c = (p *x+ c′) *x+ c ∅ *x+HN c with c ≟N 0N ... | yes c≈0 = ∅ ... | no c≉0 = ∅ *x+ c mutual -- Addition. _+H_ : ∀ {n} → HNF (suc n) → HNF (suc n) → HNF (suc n) ∅ +H p = p p +H ∅ = p (p₁ *x+ c₁) +H (p₂ *x+ c₂) = (p₁ +H p₂) *x+HN (c₁ +N c₂) _+N_ : ∀ {n} → Normal n → Normal n → Normal n con c₁ +N con c₂ = con (c₁ C.+ c₂) poly p₁ +N poly p₂ = poly (p₁ +H p₂) -- Multiplication. _*x+H_ : ∀ {n} → HNF (suc n) → HNF (suc n) → HNF (suc n) p₁ *x+H (p₂ *x+ c) = (p₁ +H p₂) *x+HN c ∅ *x+H ∅ = ∅ (p₁ *x+ c) *x+H ∅ = (p₁ *x+ c) *x+ 0N mutual _*NH_ : ∀ {n} → Normal n → HNF (suc n) → HNF (suc n) c *NH ∅ = ∅ c *NH (p *x+ c′) with c ≟N 0N ... | yes c≈0 = ∅ ... | no c≉0 = (c *NH p) *x+ (c *N c′) _*HN_ : ∀ {n} → HNF (suc n) → Normal n → HNF (suc n) ∅ *HN c = ∅ (p *x+ c′) *HN c with c ≟N 0N ... | yes c≈0 = ∅ ... | no c≉0 = (p *HN c) *x+ (c′ *N c) _*H_ : ∀ {n} → HNF (suc n) → HNF (suc n) → HNF (suc n) ∅ *H _ = ∅ (_ *x+ _) *H ∅ = ∅ (p₁ *x+ c₁) *H (p₂ *x+ c₂) = ((p₁ *H p₂) *x+H (p₁ *HN c₂ +H c₁ *NH p₂)) *x+HN (c₁ *N c₂) _*N_ : ∀ {n} → Normal n → Normal n → Normal n con c₁ *N con c₂ = con (c₁ C.* c₂) poly p₁ *N poly p₂ = poly (p₁ *H p₂) -- Exponentiation. _^N_ : ∀ {n} → Normal n → ℕ → Normal n p ^N zero = 1N p ^N suc n = p *N (p ^N n) mutual -- Negation. -H_ : ∀ {n} → HNF (suc n) → HNF (suc n) -H p = (-N 1N) *NH p -N_ : ∀ {n} → Normal n → Normal n -N con c = con (C.- c) -N poly p = poly (-H p) ------------------------------------------------------------------------ -- Normalisation normalise-con : ∀ {n} → C.Carrier → Normal n normalise-con {zero} c = con c normalise-con {suc n} c = poly (∅ *x+HN normalise-con c) normalise-var : ∀ {n} → Fin n → Normal n normalise-var zero = poly ((∅ *x+ 1N) *x+ 0N) normalise-var (suc i) = poly (∅ *x+HN normalise-var i) normalise : ∀ {n} → Polynomial n → Normal n normalise (op [+] t₁ t₂) = normalise t₁ +N normalise t₂ normalise (op [*] t₁ t₂) = normalise t₁ *N normalise t₂ normalise (con c) = normalise-con c normalise (var i) = normalise-var i normalise (t :^ k) = normalise t ^N k normalise (:- t) = -N normalise t -- Evaluation after normalisation. ⟦_⟧↓ : ∀ {n} → Polynomial n → Vec Carrier n → Carrier ⟦ p ⟧↓ ρ = ⟦ normalise p ⟧N ρ ------------------------------------------------------------------------ -- Homomorphism lemmas 0N-homo : ∀ {n} ρ → ⟦ 0N {n} ⟧N ρ ≈ 0# 0N-homo [] = 0-homo 0N-homo (x ∷ ρ) = refl -- If c is equal to 0N, then c is semantically equal to 0#. 0≈⟦0⟧ : ∀ {n} {c : Normal n} → c ≈N 0N → ∀ ρ → 0# ≈ ⟦ c ⟧N ρ 0≈⟦0⟧ {c = c} c≈0 ρ = sym (begin ⟦ c ⟧N ρ ≈⟨ ⟦ c≈0 ⟧N-cong ρ ⟩ ⟦ 0N ⟧N ρ ≈⟨ 0N-homo ρ ⟩ 0# ∎) 1N-homo : ∀ {n} ρ → ⟦ 1N {n} ⟧N ρ ≈ 1# 1N-homo [] = 1-homo 1N-homo (x ∷ ρ) = begin 0# * x + ⟦ 1N ⟧N ρ ≈⟨ refl ⟨ +-cong ⟩ 1N-homo ρ ⟩ 0# * x + 1# ≈⟨ lemma₆ _ _ ⟩ 1# ∎ -- _*x+HN_ is equal to _*x+_. *x+HN≈*x+ : ∀ {n} (p : HNF (suc n)) (c : Normal n) → ∀ ρ → ⟦ p *x+HN c ⟧H ρ ≈ ⟦ p *x+ c ⟧H ρ *x+HN≈*x+ (p *x+ c′) c ρ = refl *x+HN≈*x+ ∅ c (x ∷ ρ) with c ≟N 0N ... | yes c≈0 = begin 0# ≈⟨ 0≈⟦0⟧ c≈0 ρ ⟩ ⟦ c ⟧N ρ ≈⟨ sym $ lemma₆ _ _ ⟩ 0# * x + ⟦ c ⟧N ρ ∎ ... | no c≉0 = refl ∅*x+HN-homo : ∀ {n} (c : Normal n) x ρ → ⟦ ∅ *x+HN c ⟧H (x ∷ ρ) ≈ ⟦ c ⟧N ρ ∅*x+HN-homo c x ρ with c ≟N 0N ... | yes c≈0 = 0≈⟦0⟧ c≈0 ρ ... | no c≉0 = lemma₆ _ _ mutual +H-homo : ∀ {n} (p₁ p₂ : HNF (suc n)) → ∀ ρ → ⟦ p₁ +H p₂ ⟧H ρ ≈ ⟦ p₁ ⟧H ρ + ⟦ p₂ ⟧H ρ +H-homo ∅ p₂ ρ = sym (proj₁ +-identity _) +H-homo (p₁ *x+ x₁) ∅ ρ = sym (proj₂ +-identity _) +H-homo (p₁ *x+ c₁) (p₂ *x+ c₂) (x ∷ ρ) = begin ⟦ (p₁ +H p₂) *x+HN (c₁ +N c₂) ⟧H (x ∷ ρ) ≈⟨ *x+HN≈*x+ (p₁ +H p₂) (c₁ +N c₂) (x ∷ ρ) ⟩ ⟦ p₁ +H p₂ ⟧H (x ∷ ρ) * x + ⟦ c₁ +N c₂ ⟧N ρ ≈⟨ (+H-homo p₁ p₂ (x ∷ ρ) ⟨ *-cong ⟩ refl) ⟨ +-cong ⟩ +N-homo c₁ c₂ ρ ⟩ (⟦ p₁ ⟧H (x ∷ ρ) + ⟦ p₂ ⟧H (x ∷ ρ)) * x + (⟦ c₁ ⟧N ρ + ⟦ c₂ ⟧N ρ) ≈⟨ lemma₁ _ _ _ _ _ ⟩ (⟦ p₁ ⟧H (x ∷ ρ) * x + ⟦ c₁ ⟧N ρ) + (⟦ p₂ ⟧H (x ∷ ρ) * x + ⟦ c₂ ⟧N ρ) ∎ +N-homo : ∀ {n} (p₁ p₂ : Normal n) → ∀ ρ → ⟦ p₁ +N p₂ ⟧N ρ ≈ ⟦ p₁ ⟧N ρ + ⟦ p₂ ⟧N ρ +N-homo (con c₁) (con c₂) _ = +-homo _ _ +N-homo (poly p₁) (poly p₂) ρ = +H-homo p₁ p₂ ρ *x+H-homo : ∀ {n} (p₁ p₂ : HNF (suc n)) x ρ → ⟦ p₁ *x+H p₂ ⟧H (x ∷ ρ) ≈ ⟦ p₁ ⟧H (x ∷ ρ) * x + ⟦ p₂ ⟧H (x ∷ ρ) *x+H-homo ∅ ∅ _ _ = sym $ lemma₆ _ _ *x+H-homo (p *x+ c) ∅ x ρ = begin ⟦ p *x+ c ⟧H (x ∷ ρ) * x + ⟦ 0N ⟧N ρ ≈⟨ refl ⟨ +-cong ⟩ 0N-homo ρ ⟩ ⟦ p *x+ c ⟧H (x ∷ ρ) * x + 0# ∎ *x+H-homo p₁ (p₂ *x+ c₂) x ρ = begin ⟦ (p₁ +H p₂) *x+HN c₂ ⟧H (x ∷ ρ) ≈⟨ *x+HN≈*x+ (p₁ +H p₂) c₂ (x ∷ ρ) ⟩ ⟦ p₁ +H p₂ ⟧H (x ∷ ρ) * x + ⟦ c₂ ⟧N ρ ≈⟨ (+H-homo p₁ p₂ (x ∷ ρ) ⟨ *-cong ⟩ refl) ⟨ +-cong ⟩ refl ⟩ (⟦ p₁ ⟧H (x ∷ ρ) + ⟦ p₂ ⟧H (x ∷ ρ)) * x + ⟦ c₂ ⟧N ρ ≈⟨ lemma₀ _ _ _ _ ⟩ ⟦ p₁ ⟧H (x ∷ ρ) * x + (⟦ p₂ ⟧H (x ∷ ρ) * x + ⟦ c₂ ⟧N ρ) ∎ mutual *NH-homo : ∀ {n} (c : Normal n) (p : HNF (suc n)) x ρ → ⟦ c *NH p ⟧H (x ∷ ρ) ≈ ⟦ c ⟧N ρ * ⟦ p ⟧H (x ∷ ρ) *NH-homo c ∅ x ρ = sym (proj₂ zero* _) *NH-homo c (p *x+ c′) x ρ with c ≟N 0N ... | yes c≈0 = begin 0# ≈⟨ sym (proj₁ zero* _) ⟩ 0# * (⟦ p ⟧H (x ∷ ρ) * x + ⟦ c′ ⟧N ρ) ≈⟨ 0≈⟦0⟧ c≈0 ρ ⟨ *-cong ⟩ refl ⟩ ⟦ c ⟧N ρ * (⟦ p ⟧H (x ∷ ρ) * x + ⟦ c′ ⟧N ρ) ∎ ... | no c≉0 = begin ⟦ c *NH p ⟧H (x ∷ ρ) * x + ⟦ c *N c′ ⟧N ρ ≈⟨ (*NH-homo c p x ρ ⟨ *-cong ⟩ refl) ⟨ +-cong ⟩ *N-homo c c′ ρ ⟩ (⟦ c ⟧N ρ * ⟦ p ⟧H (x ∷ ρ)) * x + (⟦ c ⟧N ρ * ⟦ c′ ⟧N ρ) ≈⟨ lemma₃ _ _ _ _ ⟩ ⟦ c ⟧N ρ * (⟦ p ⟧H (x ∷ ρ) * x + ⟦ c′ ⟧N ρ) ∎ *HN-homo : ∀ {n} (p : HNF (suc n)) (c : Normal n) x ρ → ⟦ p *HN c ⟧H (x ∷ ρ) ≈ ⟦ p ⟧H (x ∷ ρ) * ⟦ c ⟧N ρ *HN-homo ∅ c x ρ = sym (proj₁ zero* _) *HN-homo (p *x+ c′) c x ρ with c ≟N 0N ... | yes c≈0 = begin 0# ≈⟨ sym (proj₂ zero* _) ⟩ (⟦ p ⟧H (x ∷ ρ) * x + ⟦ c′ ⟧N ρ) * 0# ≈⟨ refl ⟨ *-cong ⟩ 0≈⟦0⟧ c≈0 ρ ⟩ (⟦ p ⟧H (x ∷ ρ) * x + ⟦ c′ ⟧N ρ) * ⟦ c ⟧N ρ ∎ ... | no c≉0 = begin ⟦ p *HN c ⟧H (x ∷ ρ) * x + ⟦ c′ *N c ⟧N ρ ≈⟨ (*HN-homo p c x ρ ⟨ *-cong ⟩ refl) ⟨ +-cong ⟩ *N-homo c′ c ρ ⟩ (⟦ p ⟧H (x ∷ ρ) * ⟦ c ⟧N ρ) * x + (⟦ c′ ⟧N ρ * ⟦ c ⟧N ρ) ≈⟨ lemma₂ _ _ _ _ ⟩ (⟦ p ⟧H (x ∷ ρ) * x + ⟦ c′ ⟧N ρ) * ⟦ c ⟧N ρ ∎ *H-homo : ∀ {n} (p₁ p₂ : HNF (suc n)) → ∀ ρ → ⟦ p₁ *H p₂ ⟧H ρ ≈ ⟦ p₁ ⟧H ρ * ⟦ p₂ ⟧H ρ *H-homo ∅ p₂ ρ = sym $ proj₁ zero* _ *H-homo (p₁ *x+ c₁) ∅ ρ = sym $ proj₂ zero* _ *H-homo (p₁ *x+ c₁) (p₂ *x+ c₂) (x ∷ ρ) = begin ⟦ ((p₁ *H p₂) *x+H ((p₁ *HN c₂) +H (c₁ *NH p₂))) *x+HN (c₁ *N c₂) ⟧H (x ∷ ρ) ≈⟨ *x+HN≈*x+ ((p₁ *H p₂) *x+H ((p₁ *HN c₂) +H (c₁ *NH p₂))) (c₁ *N c₂) (x ∷ ρ) ⟩ ⟦ (p₁ *H p₂) *x+H ((p₁ *HN c₂) +H (c₁ *NH p₂)) ⟧H (x ∷ ρ) * x + ⟦ c₁ *N c₂ ⟧N ρ ≈⟨ (*x+H-homo (p₁ *H p₂) ((p₁ *HN c₂) +H (c₁ *NH p₂)) x ρ ⟨ *-cong ⟩ refl) ⟨ +-cong ⟩ *N-homo c₁ c₂ ρ ⟩ (⟦ p₁ *H p₂ ⟧H (x ∷ ρ) * x + ⟦ (p₁ *HN c₂) +H (c₁ *NH p₂) ⟧H (x ∷ ρ)) * x + ⟦ c₁ ⟧N ρ * ⟦ c₂ ⟧N ρ ≈⟨ (((*H-homo p₁ p₂ (x ∷ ρ) ⟨ *-cong ⟩ refl) ⟨ +-cong ⟩ (+H-homo (p₁ *HN c₂) (c₁ *NH p₂) (x ∷ ρ))) ⟨ *-cong ⟩ refl) ⟨ +-cong ⟩ refl ⟩ (⟦ p₁ ⟧H (x ∷ ρ) * ⟦ p₂ ⟧H (x ∷ ρ) * x + (⟦ p₁ *HN c₂ ⟧H (x ∷ ρ) + ⟦ c₁ *NH p₂ ⟧H (x ∷ ρ))) * x + ⟦ c₁ ⟧N ρ * ⟦ c₂ ⟧N ρ ≈⟨ ((refl ⟨ +-cong ⟩ (*HN-homo p₁ c₂ x ρ ⟨ +-cong ⟩ *NH-homo c₁ p₂ x ρ)) ⟨ *-cong ⟩ refl) ⟨ +-cong ⟩ refl ⟩ (⟦ p₁ ⟧H (x ∷ ρ) * ⟦ p₂ ⟧H (x ∷ ρ) * x + (⟦ p₁ ⟧H (x ∷ ρ) * ⟦ c₂ ⟧N ρ + ⟦ c₁ ⟧N ρ * ⟦ p₂ ⟧H (x ∷ ρ))) * x + (⟦ c₁ ⟧N ρ * ⟦ c₂ ⟧N ρ) ≈⟨ lemma₄ _ _ _ _ _ ⟩ (⟦ p₁ ⟧H (x ∷ ρ) * x + ⟦ c₁ ⟧N ρ) * (⟦ p₂ ⟧H (x ∷ ρ) * x + ⟦ c₂ ⟧N ρ) ∎ *N-homo : ∀ {n} (p₁ p₂ : Normal n) → ∀ ρ → ⟦ p₁ *N p₂ ⟧N ρ ≈ ⟦ p₁ ⟧N ρ * ⟦ p₂ ⟧N ρ *N-homo (con c₁) (con c₂) _ = *-homo _ _ *N-homo (poly p₁) (poly p₂) ρ = *H-homo p₁ p₂ ρ ^N-homo : ∀ {n} (p : Normal n) (k : ℕ) → ∀ ρ → ⟦ p ^N k ⟧N ρ ≈ ⟦ p ⟧N ρ ^ k ^N-homo p zero ρ = 1N-homo ρ ^N-homo p (suc k) ρ = begin ⟦ p *N (p ^N k) ⟧N ρ ≈⟨ *N-homo p (p ^N k) ρ ⟩ ⟦ p ⟧N ρ * ⟦ p ^N k ⟧N ρ ≈⟨ refl ⟨ *-cong ⟩ ^N-homo p k ρ ⟩ ⟦ p ⟧N ρ * (⟦ p ⟧N ρ ^ k) ∎ mutual -H‿-homo : ∀ {n} (p : HNF (suc n)) → ∀ ρ → ⟦ -H p ⟧H ρ ≈ - ⟦ p ⟧H ρ -H‿-homo p (x ∷ ρ) = begin ⟦ (-N 1N) *NH p ⟧H (x ∷ ρ) ≈⟨ *NH-homo (-N 1N) p x ρ ⟩ ⟦ -N 1N ⟧N ρ * ⟦ p ⟧H (x ∷ ρ) ≈⟨ trans (-N‿-homo 1N ρ) (-‿cong (1N-homo ρ)) ⟨ *-cong ⟩ refl ⟩ - 1# * ⟦ p ⟧H (x ∷ ρ) ≈⟨ lemma₇ _ ⟩ - ⟦ p ⟧H (x ∷ ρ) ∎ -N‿-homo : ∀ {n} (p : Normal n) → ∀ ρ → ⟦ -N p ⟧N ρ ≈ - ⟦ p ⟧N ρ -N‿-homo (con c) _ = -‿homo _ -N‿-homo (poly p) ρ = -H‿-homo p ρ ------------------------------------------------------------------------ -- Correctness correct-con : ∀ {n} (c : C.Carrier) (ρ : Vec Carrier n) → ⟦ normalise-con c ⟧N ρ ≈ ⟦ c ⟧′ correct-con c [] = refl correct-con c (x ∷ ρ) = begin ⟦ ∅ *x+HN normalise-con c ⟧H (x ∷ ρ) ≈⟨ ∅*x+HN-homo (normalise-con c) x ρ ⟩ ⟦ normalise-con c ⟧N ρ ≈⟨ correct-con c ρ ⟩ ⟦ c ⟧′ ∎ correct-var : ∀ {n} (i : Fin n) → ∀ ρ → ⟦ normalise-var i ⟧N ρ ≈ lookup i ρ correct-var () [] correct-var (suc i) (x ∷ ρ) = begin ⟦ ∅ *x+HN normalise-var i ⟧H (x ∷ ρ) ≈⟨ ∅*x+HN-homo (normalise-var i) x ρ ⟩ ⟦ normalise-var i ⟧N ρ ≈⟨ correct-var i ρ ⟩ lookup i ρ ∎ correct-var zero (x ∷ ρ) = begin (0# * x + ⟦ 1N ⟧N ρ) * x + ⟦ 0N ⟧N ρ ≈⟨ ((refl ⟨ +-cong ⟩ 1N-homo ρ) ⟨ *-cong ⟩ refl) ⟨ +-cong ⟩ 0N-homo ρ ⟩ (0# * x + 1#) * x + 0# ≈⟨ lemma₅ _ ⟩ x ∎ correct : ∀ {n} (p : Polynomial n) → ∀ ρ → ⟦ p ⟧↓ ρ ≈ ⟦ p ⟧ ρ correct (op [+] p₁ p₂) ρ = begin ⟦ normalise p₁ +N normalise p₂ ⟧N ρ ≈⟨ +N-homo (normalise p₁) (normalise p₂) ρ ⟩ ⟦ p₁ ⟧↓ ρ + ⟦ p₂ ⟧↓ ρ ≈⟨ correct p₁ ρ ⟨ +-cong ⟩ correct p₂ ρ ⟩ ⟦ p₁ ⟧ ρ + ⟦ p₂ ⟧ ρ ∎ correct (op [*] p₁ p₂) ρ = begin ⟦ normalise p₁ *N normalise p₂ ⟧N ρ ≈⟨ *N-homo (normalise p₁) (normalise p₂) ρ ⟩ ⟦ p₁ ⟧↓ ρ * ⟦ p₂ ⟧↓ ρ ≈⟨ correct p₁ ρ ⟨ *-cong ⟩ correct p₂ ρ ⟩ ⟦ p₁ ⟧ ρ * ⟦ p₂ ⟧ ρ ∎ correct (con c) ρ = correct-con c ρ correct (var i) ρ = correct-var i ρ correct (p :^ k) ρ = begin ⟦ normalise p ^N k ⟧N ρ ≈⟨ ^N-homo (normalise p) k ρ ⟩ ⟦ p ⟧↓ ρ ^ k ≈⟨ correct p ρ ⟨ ^-cong ⟩ PropEq.refl {x = k} ⟩ ⟦ p ⟧ ρ ^ k ∎ correct (:- p) ρ = begin ⟦ -N normalise p ⟧N ρ ≈⟨ -N‿-homo (normalise p) ρ ⟩ - ⟦ p ⟧↓ ρ ≈⟨ -‿cong (correct p ρ) ⟩ - ⟦ p ⟧ ρ ∎ ------------------------------------------------------------------------ -- "Tactics" open Reflection setoid var ⟦_⟧ ⟦_⟧↓ correct public using (prove; solve) renaming (_⊜_ to _:=_) -- For examples of how solve and _:=_ can be used to -- semi-automatically prove ring equalities, see, for instance, -- Data.Digit or Data.Nat.DivMod.