------------------------------------------------------------------------
-- Some results related to expansion for the delay monad
------------------------------------------------------------------------

{-# OPTIONS --without-K --safe #-}

module Expansion.Delay-monad {a} {A : Set a} where

open import Delay-monad
open import Delay-monad.Expansion as D using (force)
open import Equality.Propositional
open import Logical-equivalence using (_⇔_)
open import Prelude

open import Function-universe equality-with-J hiding (id; _∘_)

import Bisimilarity.Delay-monad as SD
open import Equational-reasoning
import Expansion.Equational-reasoning-instances
open import Labelled-transition-system.Delay-monad A

open import Bisimilarity delay-monad using ([_]_∼_)
open import Expansion delay-monad

------------------------------------------------------------------------
-- The direct and the indirect definitions of expansion are pointwise
-- logically equivalent

-- Emulations of the constructors D.later and D.laterˡ.

later-cong :  {i x y} 
             [ i ] force x ≳′ force y  [ i ] later x  later y
later-cong x≳′y =
    { later  _ , ⟶→⟶̂   later , x≳′y })
  ,  { later  _ , ⟶→[]⇒ later , x≳′y })
  

laterˡ :  {i x y}  [ i ] force x  y  [ i ] later x  y
laterˡ x≳y =
    { later  _ , done _ , convert {a = a} x≳y })
  , Σ-map id (Σ-map later[]⇒ id)  right-to-left x≳y
  

-- The direct definition of expansion is contained in the one
-- obtained from the transition relation.

direct→indirect :  {i x y} 
                  D.[ i ] x  y  [ i ] x  y
direct→indirect D.now        = reflexive
direct→indirect (D.later  p) = later-cong λ { .force 
                                 direct→indirect (force p) }
direct→indirect (D.laterˡ p) = laterˡ (direct→indirect p)

-- If x makes a sequence of zero or more silent transitions to y, then
-- x is an expansion of y.

⇒→≳ :  {i x y}  x  y  D.[ i ] x  y
⇒→≳ done               = D.reflexive _
⇒→≳ (step _  later tr) = D.laterˡ (⇒→≳ tr)
⇒→≳ (step () now   tr)

-- If x makes a non-silent transition with the label y, then x is an
-- expansion of now y.

[just]⟶→≳now :  {i x x′ y}  x [ just y ]⟶ x′  D.[ i ] x  now y
[just]⟶→≳now now = D.reflexive _

[just]⇒→≳now :  {i x x′ y}  x [ just y ]⇒ x′  D.[ i ] x  now y
[just]⇒→≳now (steps tr now _) = ⇒→≳ tr

[just]⇒̂→≳now :  {i x x′ y}  x [ just y ]⇒̂ x′  D.[ i ] x  now y
[just]⇒̂→≳now (silent () _)
[just]⇒̂→≳now (non-silent _ tr) = [just]⇒→≳now tr

[just]⟶̂→≳now :  {i x x′ y}  x [ just y ]⟶̂ x′  D.[ i ] x  now y
[just]⟶̂→≳now (done ())
[just]⟶̂→≳now (step tr) = [just]⇒̂→≳now (⟶→⇒̂ tr)

-- The definition of expansion obtained from the transition relation
-- is contained in the direct one.

indirect→direct :  {i} x y  [ i ] x  y  D.[ i ] x  y
indirect→direct {i} (now x) y =
  ([ i ] now x  y)                                ↝⟨  p  left-to-right p now) 
  ( λ y′  y [ just x ]⟶̂ y′ × [ i ] now x ≳′ y′)  ↝⟨ sym  [just]⟶̂→≡now  proj₁  proj₂ 
  now x  y                                        ↝⟨  { refl  D.reflexive _ }) ⟩□
  D.[ i ] now x  y                                

indirect→direct {i} x (now y) =
  [ i ] x  now y                                  ↝⟨  p  right-to-left p now) 
  ( λ x′  x [ just y ]⇒ x′ × [ i ] x′ ≳′ now y)  ↝⟨ [just]⇒→≳now  proj₁  proj₂ ⟩□
  D.[ i ] x  now y                                

indirect→direct (later x) (later y) lx≳ly =
  case left-to-right lx≳ly later of λ where
    (_ , step later , x≳′y)  D.later λ { .force {j} 
                                indirect→direct _ _
                                  (force x≳′y {j = j}) }
    (_ , done _     , x≳′ly) 
      let x′ , lx⇒x′ , x′≳′y = right-to-left lx≳ly later
      in lemma x≳′ly ([]⇒→⇒ _ lx⇒x′) x′≳′y
  where
  indirect→direct′ :  {i x x′ y} 
                     x  x′  [ i ] x′  y  D.[ i ] x  y
  indirect→direct′ done               p = indirect→direct _ _ p
  indirect→direct′ (step _  later tr) p = D.laterˡ
                                            (indirect→direct′ tr p)
  indirect→direct′ (step () now   _)

  lemma :
     {i x x′} 
    [ i ] force x ≳′ later y 
    later x  x′  [ i ] x′ ≳′ force y 
    D.[ i ] later x  later y
  lemma x≳′ly done lx≳′y =
    D.later λ { .force 
      D.laterˡʳ⁻¹
        (indirect→direct _ _ (force lx≳′y))
        (indirect→direct _ _ (force x≳′ly)) }
  lemma x≳′ly (step _ later x⇒x′) x′≳′y =
    D.later λ { .force 
      indirect→direct′ x⇒x′ (force x′≳′y) }

-- The direct definition of the expansion relation is logically
-- equivalent to the one obtained from the transition relation.
--
-- TODO: Are the two definitions isomorphic?

direct⇔indirect :  {i x y}  D.[ i ] x  y  [ i ] x  y
direct⇔indirect = record
  { to   = direct→indirect
  ; from = indirect→direct _ _
  }

------------------------------------------------------------------------
-- Some non-existence results

Laterˡ⁻¹′ =  {x} 
            later (record { force = now x }) 
            later (record { force = now x }) 
            now x  later (record { force = now x })

laterˡ⁻¹′⇔uninhabited : Laterˡ⁻¹′  ¬ A
laterˡ⁻¹′⇔uninhabited =
  Laterˡ⁻¹′    ↝⟨ inverse $ implicit-∀-cong _ $ →-cong _ direct⇔indirect direct⇔indirect 
  D.Laterˡ⁻¹′  ↝⟨ D.laterˡ⁻¹′⇔uninhabited ⟩□
  ¬ A          

Laterˡ⁻¹ =  {x y}  later x  y  force x  y

laterˡ⁻¹⇔uninhabited : Laterˡ⁻¹  ¬ A
laterˡ⁻¹⇔uninhabited =
  Laterˡ⁻¹    ↝⟨ inverse $ implicit-∀-cong _ $ implicit-∀-cong _ $ →-cong _ direct⇔indirect direct⇔indirect 
  D.Laterˡ⁻¹  ↝⟨ D.laterˡ⁻¹⇔uninhabited ⟩□
  ¬ A         

Laterʳ⁻¹-∼≳ =
   {i x} 
  [ i ] never  later (record { force = now x }) 
  [ i ] never  now x

size-preserving-laterʳ⁻¹-∼≳⇔uninhabited : Laterʳ⁻¹-∼≳  ¬ A
size-preserving-laterʳ⁻¹-∼≳⇔uninhabited =
  Laterʳ⁻¹-∼≳    ↝⟨ inverse $ implicit-∀-cong _ $ implicit-∀-cong _ $ →-cong _ SD.direct⇔indirect direct⇔indirect 
  D.Laterʳ⁻¹-∼≳  ↝⟨ D.size-preserving-laterʳ⁻¹-∼≳⇔uninhabited ⟩□
  ¬ A            

Laterʳ⁻¹ =  {i x y}  [ i ] x  later y  [ i ] x  force y

size-preserving-laterʳ⁻¹⇔uninhabited : Laterʳ⁻¹  ¬ A
size-preserving-laterʳ⁻¹⇔uninhabited =
  Laterʳ⁻¹    ↝⟨ inverse $ implicit-∀-cong _ $ implicit-∀-cong _ $ implicit-∀-cong _ $ →-cong _ direct⇔indirect direct⇔indirect 
  D.Laterʳ⁻¹  ↝⟨ D.size-preserving-laterʳ⁻¹⇔uninhabited ⟩□
  ¬ A         

Transitivity-∼≳ˡ =
   {i} {x y z : Delay A } 
  [ i ] x  y  y  z  [ i ] x  z

size-preserving-transitivity-∼≳ˡ⇔uninhabited : Transitivity-∼≳ˡ  ¬ A
size-preserving-transitivity-∼≳ˡ⇔uninhabited =
  Transitivity-∼≳ˡ    ↝⟨ inverse $ implicit-∀-cong _ $ implicit-∀-cong _ $ implicit-∀-cong _ $ implicit-∀-cong _ $
                         →-cong _ SD.direct⇔indirect (→-cong _ direct⇔indirect direct⇔indirect) 
  D.Transitivity-∼≳ˡ  ↝⟨ D.size-preserving-transitivity-∼≳ˡ⇔uninhabited ⟩□
  ¬ A                 

Transitivityˡ =
   {i} {x y z : Delay A } 
  [ i ] x  y  y  z  [ i ] x  z

size-preserving-transitivityˡ⇔uninhabited : Transitivityˡ  ¬ A
size-preserving-transitivityˡ⇔uninhabited =
  Transitivityˡ    ↝⟨ inverse $ implicit-∀-cong _ $ implicit-∀-cong _ $ implicit-∀-cong _ $ implicit-∀-cong _ $
                      →-cong _ direct⇔indirect (→-cong _ direct⇔indirect direct⇔indirect) 
  D.Transitivityˡ  ↝⟨ D.size-preserving-transitivityˡ⇔uninhabited ⟩□
  ¬ A              

Transitivity =
   {i} {x y z : Delay A } 
  [ i ] x  y  [ i ] y  z  [ i ] x  z

size-preserving-transitivity⇔uninhabited : Transitivity  ¬ A
size-preserving-transitivity⇔uninhabited =
  Transitivity    ↝⟨ inverse $ implicit-∀-cong _ $ implicit-∀-cong _ $ implicit-∀-cong _ $ implicit-∀-cong _ $
                     →-cong _ direct⇔indirect $ →-cong _ direct⇔indirect direct⇔indirect 
  D.Transitivity  ↝⟨ D.size-preserving-transitivity⇔uninhabited ⟩□
  ¬ A