------------------------------------------------------------------------
-- A coinductive definition of (strong) bisimilarity
------------------------------------------------------------------------

{-# OPTIONS --without-K --safe #-}

open import Labelled-transition-system

module Bisimilarity {} (lts : LTS ) where

open import Equality.Propositional
open import Prelude

import Function-universe equality-with-J as F

import Bisimilarity.General
open import Indexed-container using (Container; ν; ν′)
open import Relation
open import Up-to

open LTS lts

private
  module General = Bisimilarity.General lts _[_]⟶_ _[_]⟶_ id id

open General public
  using (module StepC; ⟨_,_⟩; left-to-right; right-to-left; force;
         reflexive-∼; reflexive-∼′; ≡⇒∼; ∼:_; ∼′:_;
         [_]_≡_; [_]_≡′_; []≡↔; module Bisimilarity-of-∼;
         Extensionality; extensionality)

-- StepC is given in the following way, rather than via open public,
-- to make hyperlinks to it more informative.

StepC : Container (Proc × Proc) (Proc × Proc)
StepC = General.StepC

-- The following definitions are given explicitly, to make the code
-- easier to follow for readers of the paper.

Bisimilarity : Size  Rel₂  Proc
Bisimilarity = ν StepC

Bisimilarity′ : Size  Rel₂  Proc
Bisimilarity′ = ν′ StepC

infix 4 [_]_∼_ [_]_∼′_ _∼_ _∼′_

[_]_∼_ : Size  Proc  Proc  Set 
[ i ] p  q = ν StepC i (p , q)

[_]_∼′_ : Size  Proc  Proc  Set 
[ i ] p ∼′ q = ν′ StepC i (p , q)

_∼_ : Proc  Proc  Set 
_∼_ = [  ]_∼_

_∼′_ : Proc  Proc  Set 
_∼′_ = [  ]_∼′_

private

  -- However, these definitions are definitionally equivalent to
  -- corresponding definitions in General.

  indirect-Bisimilarity : Bisimilarity  General.Bisimilarity
  indirect-Bisimilarity = refl

  indirect-Bisimilarity′ : Bisimilarity′  General.Bisimilarity′
  indirect-Bisimilarity′ = refl

  indirect-[]∼ : [_]_∼_  General.[_]_∼_
  indirect-[]∼ = refl

  indirect-[]∼′ : [_]_∼′_  General.[_]_∼′_
  indirect-[]∼′ = refl

  indirect-∼ : _∼_  General._∼_
  indirect-∼ = refl

  indirect-∼′ : _∼′_  General._∼′_
  indirect-∼′ = refl

-- Combinators that can perhaps make the code a bit nicer to read.

infix -3 _⟶⟨_⟩ʳˡ_ _[_]⟶⟨_⟩ʳˡ_
         lr-result-with-action lr-result-without-action

_⟶⟨_⟩ʳˡ_ :  {i p′ q′ μ} p  p [ μ ]⟶ p′  [ i ] p′ ∼′ q′ 
            λ p′  p [ μ ]⟶ p′ × [ i ] p′ ∼′ q′
_ ⟶⟨ p⟶p′ ⟩ʳˡ p′∼′q′ = _ , p⟶p′ , p′∼′q′

_[_]⟶⟨_⟩ʳˡ_ :  {i p′ q′} p μ  p [ μ ]⟶ p′  [ i ] p′ ∼′ q′ 
               λ p′  p [ μ ]⟶ p′ × [ i ] p′ ∼′ q′
_ [ _ ]⟶⟨ p⟶p′ ⟩ʳˡ p′∼′q′ = _ ⟶⟨ p⟶p′ ⟩ʳˡ p′∼′q′

lr-result-without-action :
   {i p′ q′ μ}  [ i ] p′ ∼′ q′   q  q [ μ ]⟶ q′ 
   λ q′  q [ μ ]⟶ q′ × [ i ] p′ ∼′ q′
lr-result-without-action p′∼′q′ _ q⟶q′ = _ , q⟶q′ , p′∼′q′

lr-result-with-action :
   {i p′ q′}  [ i ] p′ ∼′ q′   μ q  q [ μ ]⟶ q′ 
   λ q′  q [ μ ]⟶ q′ × [ i ] p′ ∼′ q′
lr-result-with-action p′∼′q′ _ _ q⟶q′ =
  lr-result-without-action  p′∼′q′ _ q⟶q′

syntax lr-result-without-action p′∼q′   q q⟶q′ = p′∼q′      ⟵⟨ q⟶q′ ⟩ q
syntax lr-result-with-action    p′∼q′ μ q q⟶q′ = p′∼q′ [ μ ]⟵⟨ q⟶q′ ⟩ q

-- Strong bisimilarity is a weak simulation (of a certain kind).

strong-is-weak⇒̂ :
   {p p′ q μ} 
  p  q  p [ μ ]⇒̂ p′ 
   λ q′  q [ μ ]⇒̂ q′ × p′  q′
strong-is-weak⇒̂ =
  is-weak⇒̂ StepC.left-to-right  p∼′q  force p∼′q)
            s tr  step s tr done) ⟶→⇒̂

mutual

  -- Bisimilarity is symmetric.

  symmetric-∼ :  {i p q}  [ i ] p  q  [ i ] q  p
  symmetric-∼ p∼q =
    StepC.⟨ Σ-map id (Σ-map id symmetric-∼′)  StepC.right-to-left p∼q
          , Σ-map id (Σ-map id symmetric-∼′)  StepC.left-to-right p∼q
          

  symmetric-∼′ :  {i p q}  [ i ] p ∼′ q  [ i ] q ∼′ p
  force (symmetric-∼′ p∼q) = symmetric-∼ (force p∼q)

private

  -- An alternative proof of symmetry.

  alternative-proof-of-symmetry :  {i p q}  [ i ] p  q  [ i ] q  p
  alternative-proof-of-symmetry {i} =
    uncurry [ i ]_∼_ ⁻¹  ⊆⟨ ν-symmetric _ _ swap refl F.id ⟩∎
    uncurry [ i ]_∼_     

-- Strong bisimilarity is transitive.

transitive-∼ :  {i p q r}  [ i ] p  q  [ i ] q  r  [ i ] p  r
transitive-∼ {i} = λ p q 
  StepC.⟨ lr p q
        , Σ-map id (Σ-map id symmetric-∼′) 
          lr (symmetric-∼ q) (symmetric-∼ p)
        
  where
  lr :  {p p′ q r μ} 
       [ i ] p  q  [ i ] q  r  p [ μ ]⟶ p′ 
        λ r′  r [ μ ]⟶ r′ × [ i ] p′ ∼′ r′
  lr p q tr =
    let (_ , tr′ , p′) = StepC.left-to-right p tr
        (_ , tr″ , q′) = StepC.left-to-right q tr′
    in  (_ , tr″ , λ { .force  transitive-∼ (force p′) (force q′) })

transitive-∼′ :
   {i p q r}  [ i ] p ∼′ q  [ i ] q ∼′ r  [ i ] p ∼′ r
force (transitive-∼′ p∼q q∼r) = transitive-∼ (force p∼q) (force q∼r)