------------------------------------------------------------------------
-- Examples/exercises related to CCS from "Enhancements of the
-- bisimulation proof method" by Pous and Sangiorgi
--
-- Implemented using coinductive definitions of strong and weak
-- bisimilarity and expansion.
------------------------------------------------------------------------

{-# OPTIONS --without-K --safe #-}

module Bisimilarity.Weak.CCS.Examples {} {Name : Set } where

open import Equality.Propositional
open import Prelude hiding (module W)

open import Function-universe equality-with-J hiding (id; _∘_)

open import Bisimilarity.CCS
import Bisimilarity.Equational-reasoning-instances
import Bisimilarity.Weak.CCS as WL
import Bisimilarity.Weak.Equational-reasoning-instances
open import Equational-reasoning
import Expansion.CCS as EL
import Expansion.Equational-reasoning-instances
open import Labelled-transition-system.CCS Name

open import Bisimilarity CCS using (_∼_; ∼:_)
open import Bisimilarity.Weak CCS as W
open import Expansion CCS as E
import Labelled-transition-system.Equational-reasoning-instances CCS

mutual

  -- Example 6.5.4.

  6-5-4 :
     {i a b} 
    [ i ] ! name a  (b )  ! co a   (! a   ! b )  ! co a 
  6-5-4 {i} {a} {b} = W.⟨ lr , rl 
    where
    lemma =
      (! a   ! b )  b   ∼⟨ symmetric ∣-assoc  ∼:
      ! a   (! b   b )  ∼⟨ symmetric ∣-right-identity ∣-cong 6-1-2 ⟩■
      (! a   )  ! b 

    lr :
       {P μ} 
      ! name a  (b )  ! co a  [ μ ]⟶ P 
       λ Q  (! a   ! b )  ! co a  [ μ ]⇒̂ Q × [ i ] P ≈′ Q
    lr (par-left {P′ = P} tr) = case 6-1-3-2 tr of λ where
      (inj₁ (.(b ) , action , P∼!ab∣b)) 
        P  ! co a                          ∼⟨ P∼!ab∣b ∣-cong reflexive 
        (! name a  (b )  b )  ! co a   ∼⟨ swap-rightmost 
        (! name a  (b )  ! co a )  b   ∼′⟨ 6-5-4′ WL.∣-cong′ reflexive 
        ((! a   ! b )  ! co a )  b    ∼⟨ swap-rightmost  ∼:
        ((! a   ! b )  b )  ! co a    ∼⟨ lemma ∣-cong reflexive ⟩■
        ((! a   )  ! b )  ! co a 
          W.⇐̂[ name a ]                      ←⟨ ⟶: par-left (par-left (replication (par-right action))) ⟩■
        (! a   ! b )  ! co a 

      (inj₂ (_ , .(b ) , _ , .a , action , ab[a̅]⟶ , _)) 
        ⊥-elim (names-are-not-inverted ab[a̅]⟶)

    lr (par-right {Q′ = Q} tr) = case 6-1-3-2 tr of λ where
      (inj₁ (. , action , Q∼!a̅∣∅)) 
        ! name a  (b )  Q               ∼⟨ reflexive ∣-cong Q∼!a̅∣∅ 
        ! name a  (b )  (! co a   )  ∼⟨ ∣-assoc 
        (! name a  (b )  ! co a )    ∼′⟨ 6-5-4′ WL.∣-cong′ reflexive  ∼:
        ((! a   ! b )  ! co a )     ∼⟨ symmetric ∣-assoc ⟩■
        (! a   ! b )  (! co a   )
          W.⇐̂[ name (co a) ]               ←⟨ ⟶: par-right (replication (par-right action)) ⟩■
        (! a   ! b )  ! co a 

      (inj₂ (_ , . , _ , .(co a) , action , a̅[a̅̅]⟶ , _)) 
        ⊥-elim (names-are-not-inverted a̅[a̅̅]⟶)

    lr (par-τ {P′ = P} {Q′ = Q} tr₁ tr₂) =
      case 6-1-3-2 tr₁ ,′ 6-1-3-2 tr₂ of λ where
        (inj₁ (.(b ) , action , P∼!ab∣b) ,
         inj₁ (R      , tr     , Q∼!a̅∣R)) 
          P  Q                                      ∼⟨ P∼!ab∣b ∣-cong Q∼!a̅∣R 
          (! name a  (b )  b )  (! co a   R)  ∼≡⟨ cong  R  _  (_  R)) (·-only⟶ tr) 
          (! name a  (b )  b )  (! co a   )  ∼⟨ swap-in-the-middle 
          (! name a  (b )  ! co a )  (b   )  ∼′⟨ 6-5-4′ WL.∣-cong′ reflexive 
          ((! a   ! b )  ! co a )  (b   )   ∼⟨ swap-in-the-middle  ∼:
          ((! a   ! b )  b )  (! co a   )   ∼⟨ lemma ∣-cong reflexive ⟩■
          ((! a   )  ! b )  (! co a   )
            W.⇐̂[ τ ]                                 ←⟨ par-τ (par-left (replication (par-right action)))
                                                              (replication (par-right action)) ⟩■
          (! a   ! b )  ! co a 

        (_ , inj₂ (() , _))
        (inj₂ (() , _) , _)

    rl-lemma :
       {Q μ} 
      (! a   ! b )  ! co a  [ μ ]⟶ Q 
      (! a   ! b )  ! co a   Q
        ×
      (μ  name a  μ  name b  μ  name (co a)  μ  τ)
    rl-lemma (par-left (par-left {P′ = P} tr)) =
      case 6-1-3-2 tr of λ where
        (inj₁ (. , action , P∼!a∣∅)) 
            ((! a   ! b )  ! co a         ∼⟨ (symmetric ∣-right-identity ∣-cong reflexive) ∣-cong reflexive 
             ((! a   )  ! b )  ! co a   ∼⟨ (symmetric P∼!a∣∅ ∣-cong reflexive) ∣-cong reflexive ⟩■
             (P  ! b )  ! co a )
          , inj₁ refl

        (inj₂ (refl , . , _ , .a , action , a[a̅]⟶ , _)) 
          ⊥-elim (names-are-not-inverted a[a̅]⟶)

    rl-lemma (par-left (par-right {Q′ = P} tr)) =
      case 6-1-3-2 tr of λ where
        (inj₁ (. , action , P∼!b∣∅)) 
            ((! a   ! b )  ! co a         ∼⟨ (reflexive ∣-cong symmetric ∣-right-identity) ∣-cong reflexive 
             (! a   (! b   ))  ! co a   ∼⟨ (reflexive ∣-cong symmetric P∼!b∣∅) ∣-cong reflexive ⟩■
             (! a   P)  ! co a )
          , inj₂ (inj₁ refl)

        (inj₂ (_ , . , _ , .b , action , b[b̅]⟶ , _)) 
          ⊥-elim (names-are-not-inverted b[b̅]⟶)

    rl-lemma (par-left (par-τ {P′ = P} {Q′ = Q} tr₁ tr₂)) =
      case 6-1-3-2 tr₁ ,′ 6-1-3-2 tr₂ of λ where
        (inj₁ (. , action , P∼!a∣∅) ,
         inj₁ (. , action , Q∼!b∣∅)) 
            ((! a   ! b )  ! co a               ∼⟨ symmetric (∣-right-identity ∣-cong ∣-right-identity) ∣-cong reflexive 
             ((! a   )  (! b   ))  ! co a   ∼⟨ symmetric (P∼!a∣∅ ∣-cong Q∼!b∣∅) ∣-cong reflexive ⟩■
             (P  Q)  ! co a )
          , inj₂ (inj₂ (inj₂ refl))

        (inj₂ (() , _) , _)
        (_ , inj₂ (() , _))

    rl-lemma (par-right {Q′ = Q} tr) =
      case 6-1-3-2 tr of λ where
        (inj₁ (. , action , Q∼!a̅∣∅)) 
            ((! a   ! b )  ! co a         ∼⟨ reflexive ∣-cong symmetric ∣-right-identity 
             (! a   ! b )  (! co a   )  ∼⟨ reflexive ∣-cong symmetric Q∼!a̅∣∅ ⟩■
             (! a   ! b )  Q)
          , inj₂ (inj₂ (inj₁ refl))

        (inj₂ (_ , . , _ , .(co a) , action , a̅[a̅̅]⟶ , _)) 
          ⊥-elim (names-are-not-inverted a̅[a̅̅]⟶)

    rl-lemma (par-τ {Q′ = Q} (par-left {P′ = P} tr₁) tr₂) =
      case 6-1-3-2 tr₁ ,′ 6-1-3-2 tr₂ of λ where
        (inj₁ (. , action , P∼!a∣∅) ,
         inj₁ (R  , tr     , Q∼!a̅∣R)) 
            ((! a   ! b )  ! co a               ∼⟨ symmetric ((∣-right-identity ∣-cong reflexive) ∣-cong ∣-right-identity) 
             ((! a   )  ! b )  (! co a   )  ∼≡⟨ cong  R  _  (_  R)) (sym $ ·-only⟶ tr) 
             ((! a   )  ! b )  (! co a   R)  ∼⟨ symmetric ((P∼!a∣∅ ∣-cong reflexive) ∣-cong Q∼!a̅∣R) ⟩■
             (P  ! b )  Q)
          , inj₂ (inj₂ (inj₂ refl))

        (inj₂ (() , _) , _)
        (_ , inj₂ (() , _))

    rl-lemma (par-τ {Q′ = Q} (par-right {Q′ = P} tr₁) tr₂) =
      case 6-1-3-2 tr₁ ,′ 6-1-3-2 tr₂ of λ where
        (inj₁ (. , action , P∼!b∣∅) ,
         inj₁ (R  , tr     , Q∼!a̅∣R)) 
            ((! a   ! b )  ! co a               ∼⟨ symmetric ((reflexive ∣-cong ∣-right-identity) ∣-cong ∣-right-identity) 
             (! a   (! b   ))  (! co a   )  ∼≡⟨ cong  R  _  (_  R)) (sym $ ·-only⟶ tr) 
             (! a   (! b   ))  (! co a   R)  ∼⟨ symmetric ((reflexive ∣-cong P∼!b∣∅) ∣-cong Q∼!a̅∣R) ⟩■
             (! a   P)  Q)
          , inj₂ (inj₂ (inj₂ refl))

        (inj₂ (() , _) , _)
        (_ , inj₂ (() , _))

    rl :
       {Q μ} 
      (! a   ! b )  ! co a  [ μ ]⟶ Q 
       λ P  ! name a  (b )  ! co a  [ μ ]⇒̂ P × [ i ] P ≈′ Q
    rl {Q} tr = case rl-lemma tr of λ where
      (!a∣!b∣!a̅∼Q , inj₁ refl) 
        ! name a  (b )  ! co a           →⟨ ⟶: par-left (replication (par-right action)) ⟩■
          W.⇒̂[ name a ]
        (! name a  (b )  b )  ! co a   ∼⟨ swap-rightmost 
        (! name a  (b )  ! co a )  b   ∼′⟨ 6-5-4′ WL.∣-cong′ reflexive 
        ((! a   ! b )  ! co a )  b    ∼⟨ swap-rightmost 
        ((! a   ! b )  b )  ! co a    ∼⟨ symmetric ∣-assoc ∣-cong reflexive 
        (! a   (! b   b ))  ! co a    ∼⟨ (reflexive ∣-cong 6-1-2) ∣-cong reflexive  ∼:
        (! a   ! b )  ! co a            ∼⟨ !a∣!b∣!a̅∼Q ⟩■
        Q

      (!a∣!b∣!a̅∼Q , inj₂ (inj₁ refl)) 
        ! name a  (b )  ! co a                   →⟨ par-τ (replication (par-right action))
                                                              (replication (par-right action)) 
        (! name a  (b )  (b ))  (! co a   )  →⟨ ⟶: par-left (par-right action) ⟩■
          W.⇒̂[ name b ]
        (! name a  (b )  )  (! co a   )      ∼⟨ ∣-right-identity ∣-cong ∣-right-identity 
        (! name a  (b ))  ! co a                 ∼′⟨ 6-5-4′  ∼:
        (! a   ! b )  ! co a                    ∼⟨ !a∣!b∣!a̅∼Q ⟩■
        Q

      (!a∣!b∣!a̅∼Q , inj₂ (inj₂ (inj₁ refl))) 
        ! name a  (b )  ! co a         →⟨ ⟶: par-right (replication (par-right action)) ⟩■
          W.⇒̂[ name (co a) ]
        ! name a  (b )  (! co a   )  ∼⟨ reflexive ∣-cong ∣-right-identity 
        ! name a  (b )  ! co a         ∼′⟨ 6-5-4′  ∼:
        (! a   ! b )  ! co a          ∼⟨ !a∣!b∣!a̅∼Q ⟩■
        Q

      (!a∣!b∣!a̅∼Q , inj₂ (inj₂ (inj₂ refl))) 
        ! name a  (b )  ! co a   
          W.⇒̂[ τ ]
        ! name a  (b )  ! co a   ∼′⟨ 6-5-4′  ∼:
        (! a   ! b )  ! co a    ∼⟨ !a∣!b∣!a̅∼Q ⟩■
        Q

  6-5-4′ :
     {i a b} 
    [ i ] ! name a  (b )  ! co a  ≈′ (! a   ! b )  ! co a 
  force 6-5-4′ = 6-5-4

-- The first part of Exercise 6.5.8.

6-5-8-1 :
   a {P Q} 
  ⟨ν proj₁ a  (name a  P  name (co a)  Q)  ⟨ν proj₁ a  (P  Q)
6-5-8-1 a {P} {Q} = E.⟨ lr , rl 
  where
  lr :
     {μ R} 
    ⟨ν proj₁ a  (name a  P  name (co a)  Q) [ μ ]⟶ R 
     λ R′  ⟨ν proj₁ a  (P  Q) [ μ ]⟶̂ R′ × R ≳′ R′
  lr (restriction a∉μ (par-left action))          = ⊥-elim (a∉μ refl)
  lr (restriction a∉μ (par-right action))         = ⊥-elim (a∉μ refl)
  lr (restriction a∉μ (par-τ {Q′ = R} action tr)) =
    ⟨ν proj₁ a  (P  R)  ∼≡⟨ cong  R  ⟨ν _  (_  R)) (·-only⟶ tr) ⟩■
    ⟨ν proj₁ a  (P  Q)
      ⟵̂[ τ ]
    ⟨ν proj₁ a  (P  Q)  

  rl :
     {μ R′} 
    ⟨ν proj₁ a  (P  Q) [ μ ]⟶ R′ 
     λ R  ⟨ν proj₁ a  (name a  P  name (co a)  Q) [ μ ]⇒ R ×
            R ≳′ R′
  rl {μ} (restriction {P′ = R} a∉μ P∣Q⟶R) =
    ⟨ν proj₁ a  (name a  P  name (co a)  Q)  →⟨ ⟶: restriction _ (par-τ action action) 
    ⟨ν proj₁ a  (P  Q)                         →⟨ ⟶: restriction a∉μ P∣Q⟶R ⟩■
      E.⇒[ μ ]
    ⟨ν proj₁ a  R                               

-- One interpretation of the second part of Exercise 6.5.8 is
-- contradictory, assuming that Name is inhabited.

¬-6-5-8-2 :
  Name 
  ¬ (∀ {a b P} 
     ! ⟨ν proj₁ a  (name b  (a )  name (co a)  P) 
     ! name b  ⟨ν proj₁ a  P)
¬-6-5-8-2 x =
  (∀ {a b P} 
   ! ⟨ν proj₁ a  (name b  (a )  name (co a)  P) 
   ! name b  ⟨ν proj₁ a  P)                                          ↝⟨  hyp  hyp {a = a} {b = co a}) 

  (! ⟨ν proj₁ a  (name (co a)  (a )  co a ) 
   ! name (co a)  ⟨ν proj₁ a  )                                     ↝⟨  hyp  Σ-map id proj₁ $ W.right-to-left hyp
                                                                                                      (replication (par-right action))) 
   (! ⟨ν proj₁ a  (name (co a)  (a )  co a ) [ name (co a) ]⇒̂_)  ↝⟨ !P⇒̂  proj₂ ⟩□

                                                                      
  where
  a = x , true

  P = ⟨ν proj₁ a  (name (co a)  (a )  co a )

  P⟶ :  {μ Q}  ¬ P [ μ ]⟶ Q
  P⟶ (restriction x≢x (par-left action))  = ⊥-elim (x≢x refl)
  P⟶ (restriction x≢x (par-right action)) = ⊥-elim (x≢x refl)
  P⟶ (restriction _   (par-τ action tr))  = names-are-not-inverted tr

  !P⟶ :  {μ Q}  ¬ ! P [ μ ]⟶ Q
  !P⟶ (replication (par-left tr))  = !P⟶ tr
  !P⟶ (replication (par-right tr)) = P⟶ tr
  !P⟶ (replication (par-τ _ tr))   = P⟶ tr

  !P⇒ :  {Q}  ! P  Q  Q  ! P
  !P⇒ done          = refl
  !P⇒ (step _ tr _) = ⊥-elim (!P⟶ tr)

  !P[]⇒ :  {μ Q}  ¬ ! P [ μ ]⇒ Q
  !P[]⇒ (steps trs tr _) rewrite !P⇒ trs = !P⟶ tr

  !P⇒̂ :  {b Q}  ¬ ! P [ name b ]⇒̂ Q
  !P⇒̂ (silent () _)
  !P⇒̂ (non-silent _ tr) = !P[]⇒ tr

-- Another interpretation of the second part of Exercise 6.5.8 can be
-- proved.

6-5-8-2 :
   {i a b P} 
  proj₁ a  proj₁ b 
  [ i ] ! ⟨ν proj₁ a  (name b  (a )  name (co a)  P) 
        ! name b  ⟨ν proj₁ a  P
6-5-8-2 {i} {a} {b} {P} a≢b = W.⟨ lr , rl 
  where
  6-5-8-2′ :
    [ i ] ! ⟨ν proj₁ a  (name b  (a )  name (co a)  P) ≈′
          ! name b  ⟨ν proj₁ a  P
  force 6-5-8-2′ = 6-5-8-2 a≢b

  lr :
     {Q μ} 
    ! ⟨ν proj₁ a  (name b  (a )  name (co a)  P) [ μ ]⟶ Q 
     λ Q′  ! name b  ⟨ν proj₁ a  P [ μ ]⇒̂ Q′ × [ i ] Q ≈′ Q′
  lr {Q} tr = case 6-1-3-2 tr of λ where
    (inj₁ (_ , restriction a≢b (par-left action)
             , Q∼!νa[ba∣a̅P]∣νa[a∣a̅P])) 
      Q                                                    ∼⟨ Q∼!νa[ba∣a̅P]∣νa[a∣a̅P] 

      ! ⟨ν proj₁ a  (name b  (a )  name (co a)  P) 
      ⟨ν proj₁ a  (a   name (co a)  P)                 ∼⟨ (_ ) EL.∣-cong 6-5-8-1 _  ≈′:

      ! ⟨ν proj₁ a  (name b  (a )  name (co a)  P) 
      ⟨ν proj₁ a  (  P)                                 ∼⟨ 6-5-8-2′ WL.∣-cong′ convert {a = } (⟨ν refl ⟩-cong ∣-left-identity) ⟩■

      ! name b  ⟨ν proj₁ a  P  ⟨ν proj₁ a  P

        W.⇐̂[ name b ]                                      ←⟨ ⟶: replication (par-right action) ⟩■

      ! name b  ⟨ν proj₁ a  P

    (inj₁ (_ , restriction _ (par-τ action tr) , _)) 
      ⊥-elim (                              $⟨ tr 
        name (co a) · _ [ name (co b) ]⟶ _  ↝⟨ ·-only 
        name (co a)  name (co b)           ↝⟨ cancel-name 
        co a  co b                         ↝⟨ cong proj₁ 
        proj₁ a  proj₁ b                   ↝⟨ a≢b ⟩□
                                           )

    (inj₁ (_ , restriction a≢a (par-right action) , _)) 
      ⊥-elim (a≢a refl)

    (inj₂ (refl , _ , _ , _
                , restriction _ (par-left action)
                , restriction _ (par-left tr)
                , _)) 
      ⊥-elim (names-are-not-inverted tr)

    (inj₂ (refl , _ , _ , _
                , restriction _ (par-right action)
                , restriction _ (par-right tr)
                , _)) 
      ⊥-elim (names-are-not-inverted tr)

    (inj₂ (refl , _ , _ , _
                , restriction a≢b (par-left action)
                , restriction _   (par-right tr)
                , _)) 
                                          $⟨ tr 
      name (co a)  P [ name (co b) ]⟶ _  ↝⟨ cong proj₁  cancel-name  ·-only 
      proj₁ a  proj₁ b                   ↝⟨ a≢b 
                                         ↝⟨ ⊥-elim ⟩□
      _                                   

    (inj₂ (refl , _ , _ , c
                , restriction a≢c (par-right tr)
                , restriction _   (par-left action)
                , _)) 
                                     $⟨ tr 
      name (co a)  P [ name c ]⟶ _  ↝⟨ cong proj₁  cancel-name  ·-only 
      proj₁ a  proj₁ c              ↝⟨ a≢c 
                                    ↝⟨ ⊥-elim ⟩□
      _                              

  rl :
     {Q′ μ} 
    ! name b  ⟨ν proj₁ a  P [ μ ]⟶ Q′ 
     λ Q  ! ⟨ν proj₁ a  (name b  (a )  name (co a)  P) [ μ ]⇒̂ Q ×
            [ i ] Q ≈′ Q′
  rl {Q′} tr = case 6-1-3-2 tr of λ where
    (inj₁ (_ , action , Q′∼!bνaP∣νaP)) 
      ! ⟨ν proj₁ a  (name b  (a )  name (co a)  P)    →⟨ ⟶: replication (par-right (restriction a≢b (par-left action))) ⟩■

        W.⇒̂[ name b ]

      ! ⟨ν proj₁ a  (name b  (a )  name (co a)  P) 
      ⟨ν proj₁ a  (a   name (co a)  P)                 ∼′⟨ 6-5-8-2′ WL.∣-cong′ convert {a = } (6-5-8-1 a) 

      ! name b  ⟨ν proj₁ a  P  ⟨ν proj₁ a  (  P)     ∼⟨ (_ ) ∣-cong ⟨ν refl ⟩-cong ∣-left-identity  ∼:

      ! name b  ⟨ν proj₁ a  P  ⟨ν proj₁ a  P           ∼⟨ symmetric Q′∼!bνaP∣νaP ⟩■

      Q′

    (inj₂ (refl , _ , _ , _ , action , tr , _)) 
      ⊥-elim (names-are-not-inverted tr)