------------------------------------------------------------------------
-- The Step function, used to define strong and weak bisimilarity as
-- well as expansion
------------------------------------------------------------------------

{-# OPTIONS --without-K --safe #-}

open import Labelled-transition-system

module Bisimilarity.Step
         {}
         (lts : LTS )
         (open LTS lts)
         (_[_]↝₁_ _[_]↝₂_ : Proc  Label  Proc  Set )
         where

open import Equality.Propositional
open import Logical-equivalence using (_⇔_)
open import Prelude

open import Bijection equality-with-J using (_↔_)
import Equivalence equality-with-J as Eq
open import Function-universe equality-with-J as F hiding (_∘_)
open import H-level.Closure equality-with-J

import Similarity.Step lts as One-sided
open import Indexed-container hiding (⟨_⟩)
open import Indexed-container.Combinators hiding (_∘_)
open import Relation

private
 module Temporarily-private where

  -- If _[_]↝₁_ and _[_]↝₂_ are instantiated with _[_]⟶_, then this is
  -- basically the function from Definition 6.3.1 in Pous and
  -- Sangiorgi's "Enhancements of the bisimulation proof method",
  -- except that clause (3) is omitted.
  --
  -- Similarly, if the relations are instantiated with _[_]⇒̂_, then
  -- this is basically the function wb₁, again with the exception that
  -- clause (3) is omitted.
  --
  -- Finally, if _[_]↝₁_ is instantiated with _[_]⟶̂_ and _[_]↝₂_ is
  -- instantiated with _[_]⇒_, then we get the expansion relation's
  -- "step" function.

  record Step {r} (R : Rel₂ r Proc) (pq : Proc × Proc) :
              Set (  r) where
    constructor ⟨_,_⟩

    private
      p = proj₁ pq
      q = proj₂ pq

    field
      left-to-right :  {p′ μ} 
                      p [ μ ]⟶ p′   λ q′  q [ μ ]↝₁ q′ × R (p′ , q′)
      right-to-left :  {q′ μ} 
                      q [ μ ]⟶ q′   λ p′  p [ μ ]↝₂ p′ × R (p′ , q′)

open Temporarily-private using (Step)

-- The Step function, expressed as an indexed container.

StepC : Container (Proc × Proc) (Proc × Proc)
StepC = One-sided.StepC _[_]↝₁_  One-sided.StepC _[_]↝₂_

-- The strong bisimilarity container presented in the paper,
-- generalised to use _[_]↝₁_ and _[_]↝₂_.

StepC′ : Container (Proc × Proc) (Proc × Proc)
StepC′ =
   { (p , q)  (∀ {p′ μ}  p [ μ ]⟶ p′   λ q′  q [ μ ]↝₁ q′) ×
                 (∀ {q′ μ}  q [ μ ]⟶ q′   λ p′  p [ μ ]↝₂ p′)
     })
    
   { {(p , q)} (lr , rl) (p′ , q′) 
       ( λ μ   λ (p⟶p′ : p [ μ ]⟶ p′)  proj₁ (lr p⟶p′)  q′) 
       ( λ μ   λ (q⟶q′ : q [ μ ]⟶ q′)  proj₁ (rl q⟶q′)  p′)
     })

-- The interpretations of the two containers above are pointwise
-- logically equivalent, and in the presence of extensionality they
-- are pointwise isomorphic.

StepC↔StepC′ :
   {k r} {R : Rel₂ r Proc} {pq} 
  Extensionality? k  (  r) 
   StepC  R pq ↝[ k ]  StepC′  R pq
StepC↔StepC′ {pq = p , q} =
  inverse-ext? λ {k} ext 
  Σ-cong (inverse $
          drop-⊤-left-Σ (One-sided.Magic↔⊤ _)
            ×-cong
          drop-⊤-left-Σ (One-sided.Magic↔⊤ _)) λ { (lr , rl) 
  implicit-∀-cong ext λ { {p′ , q′} 
  Π-cong (lower-extensionality? k lzero  ext)
    (F.id ⊎-cong (

       ( λ μ   λ (q⟶q′ : q [ μ ]⟶ q′) 
            proj₁ (rl q⟶q′)  p′)                            ↝⟨ inverse $ drop-⊤-left-Σ (_⇔_.to contractible⇔↔⊤ (singleton-contractible _)) 

       ( λ (q′p′≡ :  λ q′p′  q′p′  (q′ , p′)) 
         λ μ   λ (q⟶q′ : q [ μ ]⟶ proj₁ (proj₁ q′p′≡)) 
          proj₁ (rl q⟶q′)  proj₂ (proj₁ q′p′≡))             ↝⟨ inverse Σ-assoc 

       ( λ q′p′  q′p′  (q′ , p′) ×
         λ μ   λ (q⟶q′ : q [ μ ]⟶ proj₁ q′p′) 
          proj₁ (rl q⟶q′)  proj₂ q′p′)                      ↔⟨ (∃-cong λ _  (inverse $ Eq.≃-≡ (Eq.↔⇒≃ ×-comm)) ×-cong F.id) ⟩□

       ( λ q′p′  swap q′p′  (p′ , q′) ×
         λ μ   λ (q⟶q′ : q [ μ ]⟶ proj₁ q′p′) 
          proj₁ (rl q⟶q′)  proj₂ q′p′)                      ))

     _  F.id) }}

-- The definition of Step in terms of a container is pointwise
-- logically equivalent to the direct definition, and in the presence
-- of extensionality it is pointwise isomorphic to the direct
-- definition.

Step↔StepC :
   {k r} {R : Rel₂ r Proc} {pq} 
  Extensionality? k  (  r) 
  Step R pq ↝[ k ]  StepC  R pq
Step↔StepC {R = R} {pq} ext =
  Step R pq                                     ↔⟨ lemma 

  One-sided.Step _[_]↝₁_ R pq
    ×
  One-sided.Step _[_]↝₂_ (R ⁻¹) (swap pq)       ↝⟨ One-sided.Step↔StepC _ ext ×-cong One-sided.Step↔StepC _ ext 

   One-sided.StepC _[_]↝₁_  R pq
    ×
   One-sided.StepC _[_]↝₂_  (R ⁻¹) (swap pq)  ↝⟨ inverse-ext?  ext  ⟦⟷⟧↔ ext (One-sided.StepC _[_]↝₁_) (One-sided.StepC _[_]↝₂_)) ext ⟩□

   StepC  R pq                                
  where
  lemma : _  _
  lemma = record
    { surjection = record
      { logical-equivalence = record
        { to   = λ s  One-sided.Step.⟨ Step.left-to-right s 
                     , One-sided.Step.⟨ Step.right-to-left s 
        ; from = λ { (lr , rl)  Step.⟨ One-sided.Step.challenge lr
                                      , One-sided.Step.challenge rl
                                      
                   }
        }
      ; right-inverse-of = λ _  refl
      }
    ; left-inverse-of = λ _  refl
    }

-- A variant of the previous lemma, stated for StepC′ instead of
-- StepC.

Step↔StepC′ :
   {k r} {R : Rel₂ r Proc} {pq} 
  Extensionality? k  (  r) 
  Step R pq ↝[ k ]  StepC′  R pq
Step↔StepC′ {R = R} {pq} ext =
  Step R pq        ↝⟨ Step↔StepC   ext 
   StepC   R pq  ↝⟨ StepC↔StepC′ ext ⟩□
   StepC′  R pq  

module StepC {r} {R : Rel₂ r Proc} {p q} where

  -- A "constructor".

  ⟨_,_⟩ :
    (∀ {p′ μ}  p [ μ ]⟶ p′   λ q′  q [ μ ]↝₁ q′ × R (p′ , q′)) 
    (∀ {q′ μ}  q [ μ ]⟶ q′   λ p′  p [ μ ]↝₂ p′ × R (p′ , q′)) 
     StepC  R (p , q)
   lr , rl  = _⇔_.to (Step↔StepC _) Step.⟨ lr , rl 

  -- Some "projections".

  left-to-right :
     StepC  R (p , q) 
     {p′ μ}  p [ μ ]⟶ p′   λ q′  q [ μ ]↝₁ q′ × R (p′ , q′)
  left-to-right = Step.left-to-right  _⇔_.from (Step↔StepC _)

  right-to-left :
     StepC  R (p , q) 
     {q′ μ}  q [ μ ]⟶ q′   λ p′  p [ μ ]↝₂ p′ × R (p′ , q′)
  right-to-left = Step.right-to-left  _⇔_.from (Step↔StepC _)

open Temporarily-private public