Mixing Induction and Coinduction

Nils Anders Danielsson (Nottingham)

Aussois, 2009-05-15

Introduction

- Purely coinductive definitions are sometimes too "coarse".
- Mixing in a bit of induction gives more precision.
- This technique does not seem to be well-known.
- I will introduce it through some examples.

Coinductive

$$
\begin{aligned}
& \text { types } \\
& \text { in Agda }
\end{aligned}
$$

Streams

data $\operatorname{Stream}(A: S e t): S e t$ where

$$
-: \because: A \rightarrow \infty(\operatorname{Stream} A) \rightarrow \operatorname{Stream} A
$$

- ∞ marks coinductive arguments.
- $T=F(\infty T) T \approx T=\nu C . \mu I . F C I$.
- Can be seen as a suspension.
- Delay and force:

$$
\begin{aligned}
& \sharp: \forall\{A\} \rightarrow A \rightarrow \infty A \\
& b: \forall\{A\} \rightarrow \infty A \rightarrow A
\end{aligned}
$$

- ∞ marks coinductive arguments.
- $T=F(\infty T) T \approx T=\nu C . \mu I . F C I$.
- Can be seen as a suspension.
- Delay and force:
codata $\infty(A: S e t):$ Set where
$\sharp: A \rightarrow \infty A$
b: $\forall\{A\} \rightarrow \infty A \rightarrow A$
$b(\sharp x)=x$

Streams and stream processors

Stream $A \approx \nu C . A \times C:$
data $\operatorname{Stream}(A: \operatorname{Set}):$ Set where

$$
__{-}: A \rightarrow \infty(\text { Stream } A) \rightarrow \text { Stream } A
$$

$S P A B \approx \nu C \cdot \mu I .(A \rightarrow I)+B \times C:$
data $S P(A B: S e t)$: Set where

$$
\begin{array}{ll}
\text { get }:(A \rightarrow S P A B) & \rightarrow S P A B \\
\text { put }: B \rightarrow \infty(S P A B) & \rightarrow S P A B
\end{array}
$$

Guarded corecursion

$$
\begin{aligned}
& \operatorname{map}: \forall\{A B\} \rightarrow(A \rightarrow B) \rightarrow \text { Stream } A \rightarrow \text { Stream } B \\
& \operatorname{map} f(x:: x s)=f x:: \sharp(\operatorname{map} f(b x s))
\end{aligned}
$$

Lexicographic guarded corecursion and structural recursion:

$$
\begin{aligned}
& \llbracket-\rrbracket: \forall\{A B\} \rightarrow S P A B \rightarrow \text { Stream } A \rightarrow \text { Stream } B \\
& \llbracket \text { get } f \rrbracket(a:: a s)=\llbracket f a \rrbracket(b a s) \\
& \llbracket \text { put } b s p \rrbracket a s \quad=b: \sharp(\llbracket b s p \rrbracket a s)
\end{aligned}
$$

"Coinductive families"

data $\approx_{-}\{A\}: \operatorname{Stream} A \rightarrow$ Stream $A \rightarrow$ Set where

$$
\begin{aligned}
-:-: & \forall x\{x s y s\} \rightarrow \infty(b x s \approx b y s) \rightarrow \\
& x:: x s \approx x:: y s
\end{aligned}
$$

Guarded coinduction:

$$
\begin{aligned}
& \text { map-cong }: \forall\{A B\}(f: A \rightarrow B)\{x s y s\} \rightarrow \\
& x s \approx y s \rightarrow \operatorname{map} f x s \approx \operatorname{map} f y s \\
& \text { map-cong } f(x:: x s \approx y s)= \\
& f x:: \sharp(\text { map-cong } f(b x s \approx y s))
\end{aligned}
$$

Inference
 systems

Inference systems

- Two kinds of inference systems:
- Algorithmic (syntax-directed).
- Declarative (with rules like transitivity).
- Declarative coinductive inference systems are often a bad idea:

$$
\begin{aligned}
& \text { bad : } \forall\{x y\} \rightarrow x \approx y \\
& \text { bad }=\operatorname{trans}(\sharp \text { bad })(\sharp \text { bad })
\end{aligned}
$$

- Solution: Make non-structural rules inductive.

Alternative definition of stream equality

data_~_ $\{A\}: \operatorname{Stream} A \rightarrow$ Stream $A \rightarrow$ Set where

$$
\begin{aligned}
\therefore:-\quad & : \forall x\{x s y s\} \rightarrow \infty(b x s \sim b y s) \rightarrow \\
& x: x s \sim x: y s \\
\text { refl }: & \forall\{x s\} \rightarrow x s \sim x s \\
\text { sym }: & \forall\{x s y s\} \rightarrow x s \sim y s \rightarrow y s \sim x s \\
\text { trans }: & \forall\{x s y s z s\} \rightarrow \\
& x s \sim y s \rightarrow y s \sim z s \rightarrow x s \sim z s
\end{aligned}
$$

Equivalent to _ \approx.

Parser

combinators

Parser combinators

- Parser combinators are nice.
- But what about termination?
- Left recursion often problematic:

$$
\begin{aligned}
\text { expr } & =\text { expr } \cdot \text { tok } "+" \cdot \text { term } \\
& \mid \text { term } \\
\text { term } & =\ldots
\end{aligned}
$$

Interface (roughly)

$G:$ Set
$-\epsilon_{-}:$List Token $\rightarrow G \rightarrow$ Set
$-\in ?_{-}: \forall s g \rightarrow \operatorname{Dec}(s \in g)$

Note that $_\in ?_{_}$returns an inductive result.

Interface (roughly)

$$
\begin{array}{lll}
\emptyset & : G \\
\varepsilon & : G \\
\text { tok } & : \text { Token } \rightarrow G \\
--G: G \rightarrow G \\
-- & G \rightarrow G \rightarrow G
\end{array}
$$

Corecursion will be used \Rightarrow some arguments have to be coinductive.

Choice

Hard to decide infinite choice:

$$
\begin{aligned}
& g=g \mid g^{\prime} \\
& g=g^{\prime} \mid g
\end{aligned}
$$

The arguments of $\quad \mid-$ will be inductive.

Sequencing

Problematic if g^{\prime} is nullable, otherwise OK:

$$
\begin{aligned}
& g=g \cdot g^{\prime} \\
& g=g^{\prime} \cdot g
\end{aligned}
$$

Let us index G on whether or not the empty string is accepted.

Conditional coinduction

∞ ? : Bool \rightarrow Set \rightarrow Set
∞ ? true $A=\infty A$
∞ ? false $A=A$
$\sharp ?: \forall b\{A\} \rightarrow A \rightarrow \infty$? $b A$
\sharp ? true $x=\sharp x$
\sharp ? false $x=x$
$b ?: \forall b\{A\} \rightarrow \infty$? b $A \rightarrow A$
b ? true $x=b x$
b ? false $x=x$

Grammars

Index true jiff empty string accepted:
data $G:$ Sol \rightarrow Set where
$\emptyset: G$ false
$\varepsilon: ~ G$ true
to : Token $\rightarrow G$ false
$-\mid: \forall\left\{n_{1} n_{2}\right\} \rightarrow$
$G n_{1} \rightarrow G n_{2} \rightarrow G\left(n_{1} \vee n_{2}\right)$
.- : $\forall\left\{n{1} n_{2}\right\} \rightarrow \infty$? $\left(\operatorname{not} n_{2}\right)\left(G n_{1}\right) \rightarrow$
∞ ? $\left(\right.$ not $\left.n_{1}\right)\left(G n_{2}\right) \rightarrow$
$G\left(n_{2} \wedge n_{1}\right)$

Grammars

Index true iff empty string accepted:
data $G: B o o l \rightarrow$ Set where
\emptyset : G false
$\varepsilon: ~ G$ true
to : Token $\rightarrow G$ false
$-\mid: \forall\left\{n_{1} n_{2}\right\} \rightarrow$
$G n_{1} \rightarrow G n_{2} \rightarrow G\left(n_{1} \vee n_{2}\right)$
-.- : $\forall\left\{n_{1} n_{2}\right\} \rightarrow G n_{1} \rightarrow$
$\infty ?\left(\operatorname{not} n_{1}\right)\left(G n_{2}\right) \rightarrow$
$G\left(n_{1} \wedge n_{2}\right)$

Example

Kleene star:
mutual

$$
\begin{aligned}
& -\star: G \text { false } \rightarrow G \text { true } \\
& g \star=\varepsilon \mid g+ \\
& -+: G \text { false } \rightarrow G \text { false } \\
& g+=g \cdot \sharp(g \star)
\end{aligned}
$$

The argument must not accept the empty string; $\varepsilon \star$ is not very useful.

Semantics

Inductive:
data _ $\epsilon_{-}:$List Token $\rightarrow G n \rightarrow$ Set where
$\varepsilon \quad:[] \in \varepsilon$
tok : $[t] \in$ tok t
$\left.\right|^{\ell} \quad: s \in g_{1} \rightarrow s \in g_{1} \mid g_{2}$
$\left.\right|^{r} \quad: s \in g_{2} \rightarrow s \in g_{1} \mid g_{2}$
$-_{-}: s_{1} \in g_{1} \rightarrow s_{2} \in b ?\left(\right.$ not $\left.n_{1}\right) g_{2} \rightarrow$ $s_{1}+s_{2} \in g_{1} \cdot g_{2}$

For g : $G n$:
[]$\in g$ iff $n \equiv$ true.

Implementation

- Uses a variant of Brzozowski's Derivatives of Regular Expressions.
- $\partial: \forall\{n\}(g: G n)(t:$ Token $) \rightarrow G(\partial n g t)$.
- $s \in \partial g t$ iff $t:: s \in g$.
- ∂ is used once per element in the input string.
- ∂ uses recursion over the inductive structure of the grammars.
$\partial: \forall\{n\}(g: G n)(t:$ Token $) \rightarrow G(\partial n g t)$
$\partial \emptyset \quad t=\emptyset$
$\partial \varepsilon$
$\partial\left(\right.$ to $\left.t^{\prime}\right)$
∂ (toke)
$\partial\left(\right.$ to $\left.t^{\prime}\right)$
$t=\emptyset$
$\partial\left(g_{1} \mid g_{2}\right)$
t with $t \equiv$? t^{\prime}
$t \mid$ yes refl $=\varepsilon$
$t \mid$ no $t \not \equiv t^{\prime}=\emptyset$
$\partial\left(-{ }_{-}\{\right.$true $\left.\} g_{1} g_{2}\right) t=$
$\partial g_{1} t \cdot \sharp ?\left(\operatorname{not}\left(\partial n g_{1} t\right)\right) g_{2} \mid \partial g_{2} t$
$\partial\left(-{ }_{-}\{\right.$false $\left.\} g_{1} g_{2}\right) t=$
$\partial g_{1} t \cdot \sharp ?\left(\operatorname{not}\left(\partial n g_{1} t\right)\right)\left(b g_{2}\right)$

More examples

- Peter Hancock's examples from yesterday.
- Process calculi:

Can avoid explicit support for (guarded) recursive definitions.

Conclusions

- Mixed induction/coinduction is fun.
- I encourage you to add this technique to your toolbox.

