
Mixing Induction and Coinduction

Nils Anders Danielsson (Nottingham)

Aussois, 2009-05-15

Introduction

I Purely coinductive definitions are
sometimes too “coarse”.

I Mixing in a bit of induction gives
more precision.

I This technique does not seem to be
well-known.

I I will introduce it through some examples.

Coinductive
types

in Agda

Streams

data Stream (A : Set) : Set where
:: : A � ∞ (Stream A) � Stream A

∞

I ∞ marks coinductive arguments.

I T = F (∞ T) T ≈ T = νC .µI . F C I .

I Can be seen as a suspension.

I Delay and force:

] : ∀ {A} � A � ∞ A
[: ∀ {A} � ∞ A � A

∞

I ∞ marks coinductive arguments.

I T = F (∞ T) T ≈ T = νC .µI . F C I .

I Can be seen as a suspension.

I Delay and force:

codata∞ (A : Set) : Set where
] : A � ∞ A

[: ∀ {A} � ∞ A � A
[(] x) = x

Streams and stream processors

Stream A ≈ νC .A × C :

data Stream (A : Set) : Set where
:: : A � ∞ (Stream A) � Stream A

SP A B ≈ νC .µI . (A � I) + B × C :

data SP (A B : Set) : Set where
get : (A � SP A B) � SP A B
put : B � ∞ (SP A B) � SP A B

Guarded corecursion

map : ∀ {A B} � (A � B) � Stream A � Stream B
map f (x :: xs) = f x ::] (map f ([xs))

Lexicographic guarded corecursion and
structural recursion:

J K : ∀ {A B} � SP A B � Stream A � Stream B
J get f K (a :: as) = J f a K ([as)
J put b sp K as = b ::] (J [sp K as)

“Coinductive families”

data ≈ {A} : Stream A � Stream A � Set where
:: : ∀ x {xs ys} � ∞ ([xs ≈ [ys) �

x :: xs ≈ x :: ys

Guarded coinduction:

map-cong : ∀ {A B} (f : A � B) {xs ys} �
xs ≈ ys � map f xs ≈ map f ys

map-cong f (x :: xs≈ys) =
f x ::] (map-cong f ([xs≈ys))

Inference
systems

Inference systems

I Two kinds of inference systems:
I Algorithmic (syntax-directed).
I Declarative (with rules like transitivity).

I Declarative coinductive inference systems
are often a bad idea:

bad : ∀ {x y} � x ≈ y
bad = trans (] bad) (] bad)

I Solution: Make non-structural rules inductive.

Alternative definition of stream equality

data ∼ {A} : Stream A � Stream A � Set where
:: : ∀ x {xs ys} � ∞ ([xs ∼ [ys) �

x :: xs ∼ x :: ys

refl : ∀ {xs} � xs ∼ xs
sym : ∀ {xs ys} � xs ∼ ys � ys ∼ xs
trans : ∀ {xs ys zs} �

xs ∼ ys � ys ∼ zs � xs ∼ zs

Equivalent to ≈ .

Parser
combinators

Parser combinators

I Parser combinators are nice.

I But what about termination?

I Left recursion often problematic:

expr = expr · tok "+" · term
| term

term = . . .

Interface (roughly)

G : Set
∈ : List Token � G � Set
∈? : ∀ s g � Dec (s ∈ g)

Note that ∈? returns an inductive result.

Interface (roughly)

∅ : G
ε : G
tok : Token � G
| : G � G � G
· : G � G � G

Corecursion will be used ⇒
some arguments have to be coinductive.

Choice

Hard to decide infinite choice:

g = g | g ′

g = g ′ | g

The arguments of | will be inductive.

Sequencing

Problematic if g′ is nullable, otherwise OK:

g = g · g ′
g = g ′ · g

Let us index G on whether or not
the empty string is accepted.

Conditional coinduction

∞? : Bool � Set � Set
∞? true A = ∞ A
∞? false A = A

]? : ∀ b {A} � A � ∞? b A
]? true x =] x
]? false x = x

[? : ∀ b {A} � ∞? b A � A
[? true x = [x
[? false x = x

Grammars

Index true iff empty string accepted:

data G : Bool � Set where
∅ : G false
ε : G true
tok : Token � G false
| : ∀ {n1 n2} �

G n1 � G n2 � G (n1 ∨ n2)
· : ∀ {n1 n2} � ∞? (not n2) (G n1) �

∞? (not n1) (G n2) �
G (n2 ∧ n1)

Grammars

Index true iff empty string accepted:

data G : Bool � Set where
∅ : G false
ε : G true
tok : Token � G false
| : ∀ {n1 n2} �

G n1 � G n2 � G (n1 ∨ n2)
· : ∀ {n1 n2} � G n1 �

∞? (not n1) (G n2) �
G (n1 ∧ n2)

Example

Kleene star:

mutual
? : G false � G true

g ? = ε | g +

+ : G false � G false
g + = g ·] (g ?)

The argument must not accept the empty string;
ε ? is not very useful.

Semantics

Inductive:

data ∈ : List Token � G n � Set where
ε : [] ∈ ε
tok : [t] ∈ tok t

|` : s ∈ g1 � s ∈ g1 | g2

|r : s ∈ g2 � s ∈ g1 | g2

· : s1 ∈ g1 � s2 ∈ [? (not n1) g2 �
s1 ++ s2 ∈ g1 · g2

For g : G n:
[] ∈ g iff n ≡ true.

Implementation

I Uses a variant of Brzozowski’s
Derivatives of Regular Expressions.

I ∂ : ∀ {n} (g : G n) (t : Token) � G (∂n g t).

I s ∈ ∂ g t iff t :: s ∈ g .

I ∂ is used once per element in the input string.

I ∂ uses recursion over the inductive structure
of the grammars.

∂

∂ : ∀ {n} (g : G n) (t : Token) � G (∂n g t)
∂ ∅ t = ∅
∂ ε t = ∅
∂ (tok t ′) t with t ≡? t ′

∂ (tok .t) t | yes refl = ε
∂ (tok t ′) t | no t 6≡ t ′ = ∅
∂ (g1 | g2) t = ∂ g1 t | ∂ g2 t
∂ (· {true} g1 g2) t =
∂ g1 t ·]? (not (∂n g1 t)) g2 | ∂ g2 t

∂ (· {false} g1 g2) t =
∂ g1 t ·]? (not (∂n g1 t)) ([g2)

Almost
done

More examples

I Peter Hancock’s examples from yesterday.

I Process calculi:
Can avoid explicit support for
(guarded) recursive definitions.

Conclusions

I Mixed induction/coinduction is fun.

I I encourage you to add this technique
to your toolbox.

?

