Mixing Induction and Coinduction

Nils Anders Danielsson (Nottingham)

Aussois, 2009-05-15

- Purely coinductive definitions are sometimes too "coarse".
- Mixing in a bit of induction gives more precision.
- This technique does not seem to be well-known.
- ► I will introduce it through some examples.

Coinductive types in Agda

data Stream (A : Set) : Set where _::_ : $A \rightarrow \infty$ (Stream A) \rightarrow Stream A

- $ightarrow \infty$ marks coinductive arguments.
- $\bullet T = F(\infty T) T \approx T = \nu C.\mu I. F C I.$
- Can be seen as a suspension.
- Delay and force:

$$\sharp : \forall \{A\} \rightarrow A \rightarrow \infty A$$

$$\flat : \forall \{A\} \rightarrow \infty A \rightarrow A$$

- $ho \infty$ marks coinductive arguments.
- $\bullet T = F(\infty T) T \approx T = \nu C.\mu I. F C I.$
- Can be seen as a suspension.
- Delay and force:

codata ∞ (A : Set) : Set where \sharp : $A \rightarrow \infty A$ \flat : $\forall \{A\} \rightarrow \infty A \rightarrow A$ \flat ($\sharp x$) = x Stream $A \approx \nu C.A \times C$:

data Stream (A : Set) : Set where _::_ : $A \rightarrow \infty$ (Stream A) \rightarrow Stream A

SP A B
$$\approx \nu C.\mu I. (A \rightarrow I) + B \times C:$$

data SP (A B : Set) : Set where get : (A \rightarrow SP A B) \rightarrow SP A B put : B $\rightarrow \infty$ (SP A B) \rightarrow SP A B

$$map : \forall \{A B\} \rightarrow (A \rightarrow B) \rightarrow Stream A \rightarrow Stream B$$
$$map f (x :: xs) = f x :: \ddagger (map f (\flat xs))$$

Lexicographic guarded corecursion and structural recursion:

data
$$_\approx_ \{A\}$$
 : Stream $A \rightarrow$ Stream $A \rightarrow$ Set where
 $_::_ : \forall x \{xs \ ys\} \rightarrow \infty (\flat xs \approx \flat ys) \rightarrow$
 $x :: xs \approx x :: ys$

Guarded coinduction:

 $\begin{array}{l} map-cong : \forall \{A B\} (f : A \rightarrow B) \{xs \ ys\} \rightarrow \\ xs \approx ys \rightarrow map \ f \ xs \approx map \ f \ ys \\ map-cong \ f \ (x :: xs \approx ys) = \\ f \ x :: \sharp \ (map-cong \ f \ (\flat \ xs \approx ys)) \end{array}$

Inference

systems

Inference systems

Two kinds of inference systems:

- Algorithmic (syntax-directed).
- Declarative (with rules like transitivity).
- Declarative coinductive inference systems are often a bad idea:

 $bad : \forall \{x \ y\} \rightarrow x \approx y$ $bad = trans(\sharp bad)(\sharp bad)$

Solution: Make non-structural rules inductive.

Alternative definition of stream equality

data
$$_\sim_ \{A\}$$
 : Stream $A \rightarrow$ Stream $A \rightarrow$ Set where
 $_::_$: $\forall x \{xs \ ys\} \rightarrow \infty (\flat xs \sim \flat ys) \rightarrow$
 $x :: xs \sim x :: ys$
refl : $\forall \{xs\} \rightarrow xs \sim xs$
sym : $\forall \{xs \ ys\} \rightarrow xs \sim ys \rightarrow ys \sim xs$
trans : $\forall \{xs \ ys \ zs\} \rightarrow$
 $xs \sim ys \rightarrow ys \sim zs \rightarrow xs \sim zs$

Equivalent to $-\approx_-$.

Parser combinators

- Parser combinators are nice.
- But what about termination?
- Left recursion often problematic:

Interface (roughly)

Note that $_\in?_$ returns an inductive result.

Interface (roughly)

Corecursion will be used \Rightarrow some arguments have to be coinductive.

Hard to decide infinite choice:

$$g = g \mid g'$$

 $g = g' \mid g$

The arguments of $__$ will be inductive.

Problematic if g' is nullable, otherwise OK:

$$g = g \cdot g'$$

 $g = g' \cdot g$

Let us index G on whether or not the empty string is accepted.

$$\infty? : Bool \rightarrow Set \rightarrow Set$$

$$\infty? true A = \infty A$$

$$\infty? false A = A$$

$$\ddagger? : \forall b \{A\} \rightarrow A \rightarrow \infty? b A$$

$$\ddagger? true x = \ddagger x$$

$$\ddagger? false x = x$$

$$b? : \forall b \{A\} \rightarrow \infty? b A \rightarrow A$$

$$b? true x = b x$$

$$b? false x = x$$

Index true iff empty string accepted:

data
$$G : Bool \rightarrow Set$$
 where
 $\emptyset : G$ false
 $\varepsilon : G$ true
tok : Token \rightarrow G false
 $\downarrow \downarrow : \forall \{n_1 \ n_2\} \rightarrow$
 $G \ n_1 \rightarrow G \ n_2 \rightarrow G \ (n_1 \lor n_2)$
 $_\cdot_: \forall \{n_1 \ n_2\} \rightarrow \infty? \ (not \ n_2) \ (G \ n_1) \rightarrow$
 $\infty? \ (not \ n_1) \ (G \ n_2) \rightarrow$
 $G \ (n_2 \land n_1)$

Index true iff empty string accepted:

data
$$G : Bool \rightarrow Set$$
 where
 $\emptyset : G$ false
 $\varepsilon : G$ true
tok : Token \rightarrow G false
 $\downarrow \downarrow : \forall \{n_1 \ n_2\} \rightarrow$
 $G \ n_1 \rightarrow G \ n_2 \rightarrow G \ (n_1 \lor n_2)$
 $\neg \cdot _ : \forall \{n_1 \ n_2\} \rightarrow G \ n_1 \rightarrow$
 $\infty? (not \ n_1) (G \ n_2) \rightarrow$
 $G \ (n_1 \land n_2)$

Example

Kleene star:

mutual $\begin{array}{rcl} _\star & : & G \text{ false } \rightarrow & G \text{ true} \\ g \star & = & \varepsilon \mid g + \\ _+ & : & G \text{ false } \rightarrow & G \text{ false} \\ g + & = & g \cdot \ddagger (g \star) \end{array}$

The argument must not accept the empty string; $\varepsilon \star$ is not very useful.

Semantics

Inductive:

data _ \in _ : List Token \rightarrow G $n \rightarrow$ Set where ε : [] $\in \varepsilon$ tok : [t] \in tok t $|^{\ell}$: $s \in g_1 \rightarrow s \in g_1 | g_2$ $|^r$: $s \in g_2 \rightarrow s \in g_1 | g_2$ $-\cdot$ _ : $s_1 \in g_1 \rightarrow s_2 \in \flat$? (not n_1) $g_2 \rightarrow$ $s_1 \oplus s_2 \in g_1 \cdot g_2$

For
$$g : G n$$
:
[] $\in g$ iff $n \equiv$ true.

- Uses a variant of Brzozowski's Derivatives of Regular Expressions.
- ► ∂ : \forall {n} (g : G n) (t : Token) \rightarrow G (∂ n g t).
- $s \in \partial g t$ iff $t :: s \in g$.
- \blacktriangleright ∂ is used once per element in the input string.
- ► ∂ uses recursion over the inductive structure of the grammars.

 ∂ : \forall {n} (g : G n) (t : Token) \rightarrow G (∂ n g t) $\partial \emptyset$ $t = \emptyset$ $\partial \varepsilon$ $t = \emptyset$ t with $t \equiv ? t'$ ∂ (tok t') ∂ (tok .t) t | yes refl = ε $t \mid \text{no } t \not\equiv t' = \emptyset$ ∂ (tok t') $\partial (g_1 \mid g_2)$ $t = \partial g_1 t | \partial g_2 t$ $\partial (_\cdot_ \{\text{true}\} g_1 g_2) t =$ $\partial g_1 t \cdot \sharp$? (not ($\partial n g_1 t$)) $g_2 \mid \partial g_2 t$ $\partial \left(-\cdot \right) \{ \text{false} \} g_1 g_2$ $\partial g_1 t \cdot \sharp$? (not ($\partial n g_1 t$)) ($\flat g_2$)

Almost

done

- ▶ Peter Hancock's examples from yesterday.
- Process calculi: Can avoid explicit support for (guarded) recursive definitions.

Conclusions

- ► Mixed induction/coinduction is fun.
- I encourage you to add this technique to your toolbox.

