
A Formalisation of a
Dependently Typed Language as an

Inductive-Recursive Family

Nils Anders Danielsson

Chalmers University of Technology

Abstract. It is demonstrated how a dependently typed lambda calculus
(a logical framework) can be formalised inside a language with inductive-
recursive families. The formalisation does not use raw terms; the well-
typed terms are defined directly. It is hence impossible to create ill-typed
terms.
As an example of programming with strong invariants, and to show that
the formalisation is usable, normalisation is proved. Moreover, this proof
seems to be the first formal account of normalisation by evaluation for a
dependently typed language.

1 Introduction

Programs can be verified in many different ways. One difference lies in how
invariants are handled. Consider a type checker, for instance. The typing rules
of the language being type checked are important invariants of the resulting
abstract syntax. In the external approach to handling invariants the type checker
works with raw terms. Only later, when verifying the soundness of the type
checker, is it necessary to verify that the resulting, supposedly well-typed terms
satisfy the invariants (typing rules). In the internal approach the typing rules
are instead represented directly in the abstract syntax data types, and soundness
thus follows automatically from the type of the type checking function, possibly
at the cost of extra work in the implementation. For complicated invariants the
internal approach requires strong forms of data types, such as inductive families
or generalised algebraic data types.

Various aspects of many different essentially simply typed programming lan-
guages have been formalised using the internal approach [CD97, AR99, Coq02,
XCC03, PL04, MM04, AC06, MW06, McBb]. Little work has been done on
formalising dependently typed languages using this approach, though; Dybjer’s
work [Dyb96] on formalising so-called categories with families, which can be seen
as the basic framework of dependent types, seems to be the only exception. The
present work attempts to fill this gap.

This paper describes a formalisation of the type system, and a proof of
normalisation, for a dependently typed lambda calculus (basically the logical
framework of Martin-Löf’s monomorphic type theory [NPS90] with explicit sub-
stitutions). Moreover, the proof of normalisation seems to be the first formal

implementation of normalisation by evaluation [ML75, BS91] for a dependently
typed language. The ultimate goal of this work is to have a formalised imple-
mentation of the core type checker for a full-scale implementation of type theory.

To summarise, the contributions of this work are as follows:

– A fully typed representation of a dependently typed language (Sect. 3).
– A proof of normalisation (Sect. 5). This proof seems to be the first account

of a formal implementation of normalisation by evaluation for a dependently
typed language.

– Everything is implemented and type checked in the proof checker AgdaLight
[Nor07]. The code can be downloaded from the author’s web page [Dan07].

2 Meta Language

Let us begin by introducing the meta language in which the formalisation has
been carried out, AgdaLight [Nor07], a prototype of a dependently typed pro-
gramming language. It is in many respects similar to Haskell, but, naturally,
deviates in some ways.

One difference is that AgdaLight lacks polymorphism, but has hidden ar-
guments, which in combination with dependent types compensate for this loss.
For instance, the ordinary list function map could be given the following type
signature:

map : {a, b : Set } → (a → b) → List a → List b

Here Set is the type of types from the first universe. Arguments within {. . .} are
hidden, and need not be given explicitly, if the type checker can infer their values
from the context in some way. If the hidden arguments cannot be inferred, then
they can be given explicitly by enclosing them within {. . .}:

map {Integer } {Bool } : (Integer → Bool) → List Integer → List Bool

AgdaLight also has inductive-recursive families [DS06], illustrated by the
following example (which is not recursive, just inductive). Data types are intro-
duced by listing the constructors and giving their types; natural numbers can
for instance be defined as follows:

data Nat : Set where
zero : Nat
suc : Nat → Nat

Vectors, lists of a given fixed length, may be more interesting:

data Vec (a : Set) : Nat → Set where
nil : Vec a zero
cons : {n : Nat } → a → Vec a n → Vec a (suc n)

Note how the index (the natural number introduced after the last : in the defi-
nition of Vec) is allowed to vary between the constructors. Vec a is a family of
types, with one type for every index n.

To illustrate the kind of pattern matching AgdaLight allows for an inductive
family, let us define the tail function:

tail : {a : Set } → {n : Nat } → Vec a (suc n) → Vec a n
tail (cons x xs) = xs

We can and need only pattern match on cons, since the type of nil does not
match the type Vec a (suc n) given in the type signature for tail . As another
example, consider the definition of the append function:

(++) : Vec a n1 → Vec a n2 → Vec a (n1 + n2)
nil ++ ys = ys
cons x xs ++ ys = cons x (xs ++ ys)

In the nil case the variable n1 in the type signature is unified with zero, trans-
forming the result type into Vec a n2, allowing us to give ys as the right-hand
side. (This assumes that zero + n2 evaluates to n2.) The cons case can be ex-
plained in a similar way.

Note that the hidden arguments of (++) were not declared in its type signa-
ture. This is not allowed by AgdaLight, but often done in the paper to reduce
notational noise. Some other details of the formalisation are also ignored, to
make the paper easier to follow. The actual code can be downloaded for inspec-
tion [Dan07].

Note also that some of the inductive-recursive families in this formalisation
do not quite meet the requirements of [DS06]; see Sects. 3.2 and 5.2. Furthermore
[DS06] only deals with functions defined using elimination rules. The functions
in this paper are defined using pattern matching and structural recursion.

AgdaLight currently lacks (working) facilities for checking that the code is
terminating and that all pattern matching definitions are exhaustive. However,
for the formalisation presented here this has been verified manually. Unless some
mistake has been made all data types are strictly positive (with the exception of
Val ; see Sect. 5.2), all definitions are exhaustive, and every function uses struc-
tural recursion of the kind accepted by the termination checker foetus [AA02].

3 Object Language

The object language that is formalised is a simple dependently typed lambda
calculus with explicit substitutions. Its type system is sketched in Fig. 1. The
labels on the rules correspond to constructors introduced in the formalisation.
Note that Γ ⇒ ∆ is the type of substitutions taking terms with variables in
Γ to terms with variables in ∆, and that the symbol =? stands for βη-equality
between types. Some things are worth noting about the language:

Contexts

(ε)
ε context

Γ context Γ ` τ type
(.)

Γ, x : τ context

Types

(?)
Γ ` ? type

Γ ` τ1 type Γ, x : τ1 ` τ2 type
(Π)

Γ ` Π(x : τ1) τ2 type

Γ ` t : ? (El)
Γ ` El t type

Terms

(x , τ) ∈ Γ
(var)

Γ ` x : τ

Γ, x : τ1 ` t : τ2
(λ)

Γ ` λx : τ1.t : Π(x : τ1) τ2

Γ ` t : τ ρ : Γ ⇒ ∆
(/̀)

∆ ` t ρ : τ ρ

Γ ` t1 : Π(x : τ1) τ2 Γ ` t2 : τ1
(@)

Γ ` t1 t2 : τ2 [x 7→ t2]

Γ ` t : τ1 τ1 =? τ2 (::≡`)
Γ ` t : τ2

Substitutions

Γ ` t : τ (sub)
[x 7→ t] : Γ, x : τ ⇒ Γ

(wk)
wk x τ : Γ ⇒ Γ, x : τ

(id)
id Γ : Γ ⇒ Γ

ρ : Γ ⇒ ∆
(↑)

ρ ↑x τ : Γ, x : τ ⇒ ∆, x : τ ρ

ρ1 : Γ ⇒ ∆ ρ2 : ∆ ⇒ X
(�)

ρ1 ρ2 : Γ ⇒ X

Fig. 1: Sketch of the type system that is formalised. If a rule mentions Γ ` t : τ , then
it is implicitly assumed that Γ context and Γ ` τ type; similar assumptions
apply to the other judgements as well. All freshness side conditions have been
omitted.

– It has explicit substitutions in the sense that the application of a substitution
to a term is an explicit construction in the language. However, the application
of a substitution to a type is an implicit operation.

– There does not seem to be a “standard” choice of basic substitutions. The
set chosen here is the following:
• [x 7→ t] is the substitution mapping x to t and every other variable to

itself.
• wk x τ extends the context with a new, unused variable.
• id Γ is the identity substitution on Γ .
• ρ ↑x τ is a lifting; variable x is mapped to itself, and the other variables

are mapped by ρ.
• ρ1 ρ2 is composition of substitutions.

– Heterogeneous equality is used. Two types can be equal (τ1 =? τ2) even
though their contexts are not definitionally equal in the meta-theory. Con-
texts of equal types are always provably equal in the object-theory, though
(see Sect. 3.6).

The following subsections describe the various parts of the formalisation: con-
texts, types, terms, variables, substitutions and equalities. Section 3.7 discusses

some of the design choices made. The table below summarises the types defined;
the concept being defined, typical variable names used for elements of the type,
and the type name (fully applied):

Contexts Γ , ∆, X Ctxt
Types τ , σ Ty Γ
Terms t Γ ` τ
Variables v Γ 3 τ
Substitutions ρ Γ ⇒ ∆
Equalities eq Γ1 =Ctxt Γ2, τ1 =? τ2, . . .

Note that all the types in this section are part of the same mutually recursive
definition, together with the function (/) (see Sect. 3.2).

3.1 Contexts

Contexts are represented in a straight-forward way. The empty context is written
ε, and Γ . τ is the context Γ extended with the type τ . Variables are represented
using de Bruijn indices, so there is no need to mention variables here:

data Ctxt : Set where
ε : Ctxt
(.) : (Γ : Ctxt) → Ty Γ → Ctxt

Ty Γ is the type, introduced below, of object-language types with variables in Γ .

3.2 Types

The definition of the type family Ty of object-level types follows the type system
sketch in Fig. 1:

data Ty : Ctxt → Set where
? : {Γ : Ctxt } → Ty Γ
Π : (τ : Ty Γ) → Ty (Γ . τ) → Ty Γ
El : Γ ` ? → Ty Γ

The type Γ ` τ stands for terms of type τ with variables in Γ , so terms can only
be viewed as types if they have type ?.

Note that types are indexed on the context to which their variables belong,
and similarly terms are indexed on both contexts and types (Γ ` τ). The meta-
theory behind indexing a type by a type family defined in the same mutually
recursive definition has not been worked out properly yet. It is, however, crucial
to this formalisation.

Let us now define the function (/), which applies a substitution to a type
(note that postfix application is used). The type Γ ⇒ ∆ stands for a substitution
which, when applied to something in context Γ (a type, for instance), transforms
this into something in context ∆:

(/) : Ty Γ → Γ ⇒ ∆ → Ty ∆
? / ρ = ?
Π τ1 τ2 / ρ = Π (τ1 / ρ) (τ2 / ρ ↑ τ1)
El t / ρ = El (t /̀ ρ)

The constructor (/̀) is the analogue of (/) for terms (see Sect. 3.3). The sub-
stitution transformer (↑) is used when going under binders; ρ ↑ τ1 behaves as ρ,
except that the new variable zero in the original context is mapped to the new
variable zero in the resulting context:

(↑) : (ρ : Γ ⇒ ∆) → (σ : Ty Γ) → Γ . σ ⇒ ∆ . (σ / ρ)

Substitutions are defined in Sect. 3.5.

3.3 Terms

The types Γ ` τ and Γ 3 τ stand for terms and variables, respectively, of type
τ in context Γ . Note that what is customarily written Γ ` t : τ , like in Fig. 1, is
now written t :Γ ` τ . There are five kinds of terms: variables (var), abstractions
(λ), applications (@), casts (::≡`) and substitution applications (/̀):

data (`) : (Γ : Ctxt) → Ty Γ → Set where
var : Γ 3 τ → Γ ` τ
λ : Γ . τ1 ` τ2 → Γ ` Π τ1 τ2

(@) : Γ ` Π τ1 τ2 → (t2 : Γ ` τ1) → Γ ` τ2 / sub t2
(::≡`) : Γ ` τ1 → τ1 =? τ2 → Γ ` τ2

(/̀) : Γ ` τ → (ρ : Γ ⇒ ∆) → ∆ ` τ / ρ

Notice the similarity to the rules in Fig. 1. The substitution sub t2 used in the
definition of (@) replaces vz with t2, and lowers the index of all other variables
by one:

sub : Γ ` τ → Γ . τ ⇒ Γ

The conversion rule defined here (::≡`) requires the two contexts to be def-
initionally equal in the meta-theory. A more general version of the rule would
lead to increased complexity when functions that pattern match on terms are
defined. However, we can prove a general version of the conversion rule, so no
generality is lost:

(::`) : Γ1 ` τ1 → τ1 =? τ2 → Γ2 ` τ2

In this formalisation, whenever a cast constructor named (::≡•) is introduced
(where • can be ` or 3, for instance), a corresponding generalised variant (::•)
is always proved.

Before moving on to variables, note that all typing information is present in
a term, including casts (the conversion rule). Hence this type family actually
represents typing derivations.

3.4 Variables

Variables are represented using de Bruijn indices (the notation (3) is taken from
[McBb]):

data (3) : (Γ : Ctxt) → Ty Γ → Set where
vz : {σ : Ty Γ } → Γ . σ 3 σ/wk σ
vs : Γ 3 τ → {σ : Ty Γ } → Γ . σ 3 τ /wk σ
(::≡3) : Γ 3 τ1 → τ1 =? τ2 → Γ 3 τ2

The rightmost variable in the context is denoted by vz (“variable zero”), and
vs v is the variable to the left of v . The substitution wk σ is a weakening, taking
something in context Γ to the context Γ . σ:

wk : (σ : Ty Γ) → Γ ⇒ Γ . σ

The use of weakening is necessary since, for instance, σ is a type in Γ , whereas
vz creates a variable in Γ . σ.

The constructor (::≡3) is a variant of the conversion rule for variables. It might
seem strange that the conversion rule is introduced twice, once for variables and
once for terms. However, note that var v ::≡` eq is a term and not a variable, so
if the conversion rule is needed to show that a variable has a certain type, then
(::≡`) cannot be used.

3.5 Substitutions

Substitutions are defined as follows:

data (⇒) : Ctxt → Ctxt → Set where
sub : Γ ` τ → Γ . τ ⇒ Γ
wk : (σ : Ty Γ) → Γ ⇒ Γ . σ
(↑) : (ρ : Γ ⇒ ∆) → (σ : Ty Γ) → Γ . σ ⇒ ∆ . (σ / ρ)
id : Γ ⇒ Γ
(�) : Γ ⇒ ∆ → ∆ ⇒ X → Γ ⇒ X

Single-term substitutions (sub), weakenings (wk) and liftings (↑) have been in-
troduced above. The remaining constructors denote the identity substitution
(id) and composition of substitutions (�). The reasons for using this particular
definition of (⇒) are outlined in Sect. 3.7.

3.6 Equality

The following equalities are defined:

(=Ctxt) : Ctxt → Ctxt → Set
(=?) : Ty Γ1 → Ty Γ2 → Set
(=`) : Γ1 ` τ1 → Γ2 ` τ2 → Set

(=3) : Γ1 3 τ1 → Γ2 3 τ2 → Set
(=⇒) : Γ1 ⇒ ∆1 → Γ2 ⇒ ∆2 → Set

As mentioned above heterogeneous equality is used. As a sanity check every
equality is associated with one or more lemmas like the following one, which
states that equal terms have equal types:

eq èq? : {t1 : Γ1 ` τ1} → {t2 : Γ2 ` τ2} → t1 =` t2 → τ1 =? τ2

The context and type equalities are the obvious congruences. For instance,
type equality is defined as follows:

data (=?) : Ty Γ1 → Ty Γ2 → Set where
?Cong : Γ1 =Ctxt Γ2 → ? {Γ1} =? ? {Γ2}
ΠCong : τ11 =? τ12 → τ21 =? τ22 → Π τ11 τ21 =? Π τ12 τ22

ElCong : t1 =` t2 → El t1 =? El t2

In many presentations of type theory it is also postulated that type equality is
an equivalence relation. This introduces an unnecessary amount of constructors
into the data type; when proving something about a data type one typically
needs to pattern match on all its constructors. Instead I have chosen to prove
that every equality (except (=`)) is an equivalence relation:

refl? : τ =? τ
sym? : τ1 =? τ2 → τ2 =? τ1

trans? : τ1 =? τ2 → τ2 =? τ3 → τ1 =? τ3

(And so on for the other equalities.)
The semantics of a variable should not change if a cast is added, so the

variable equality is a little different. In order to still be able to prove that the
relation is an equivalence the following definition is used:

data (=3) : Γ1 3 τ1 → Γ2 3 τ2 → Set where
vzCong : σ1 =? σ2 → vz {σ1} =3 vz {σ2}
vsCong : v1 =3 v2 → σ1 =? σ2 → vs v1 {σ1} =3 vs v2 {σ2}
castEq`

3 : v1 =3 v2 → v1 ::≡3 eq =3 v2

castEqr
3 : v1 =3 v2 → v1 =3 v2 ::≡3 eq

For substitutions extensional equality is used:

data (=⇒) (ρ1 : Γ1 ⇒ ∆1) (ρ2 : Γ2 ⇒ ∆2) : Set where
extEq : Γ1 =Ctxt Γ2 → ∆1 =Ctxt ∆2

→ (∀v1 v2. v1 =3 v2 → var v1 /̀ ρ1 =` var v2 /̀ ρ2)
→ ρ1 =⇒ ρ2

Note that this data type contains negative occurrences of Ty , (3) and (=3),
which are defined in the same mutually recursive definition as (=⇒). In order to
keep this definition strictly positive a first-order variant of (=⇒) is used, which

simulates the higher-order version by explicitly enumerating all the variables.
The first-order variant is later proved equivalent to the definition given here.

Term equality is handled in another way than the other equalities. The pres-
ence of the β and η laws makes it hard to prove that (=`) is an equivalence
relation, and hence this is postulated:

data (=`) : Γ1 ` τ1 → Γ2 ` τ2 → Set where
-- Equivalence.

refl` : (t : Γ ` τ) → t =` t
sym` : t1 =` t2 → t2 =` t1
trans` : t1 =` t2 → t2 =` t3 → t1 =` t3

-- Congruence.
varCong : v1 =3 v2 → var v1 =` var v2

λCong : t1 =` t2 → λ t1 =` λ t2
(@Cong) : t11 =` t12 → t21 =` t22 → t11@t21 =` t12@t22
(/̀ Cong) : t1 =` t2 → ρ1 =⇒ ρ2 → t1 /̀ ρ1 =` t2 /̀ ρ2

-- Cast, β and η equality.
castEq` : t ::≡` eq =` t
β : (λ t1)@t2 =` t1 /̀ sub t2
η : {t : Γ ` Π τ1 τ2} → λ ((t /̀ wk τ1)@var vz) =` t

-- Substitution application axioms.
. . .

The η law basically states that, if x is not free in t , and t is of function type,
then λx.t x = t . The first precondition on t is handled by explicitly weakening
t , though.

The behaviour of (/̀) also needs to be postulated. The abstraction and appli-
cation cases are structural; the id case returns the term unchanged, and the (�)
case is handled by applying the two substitutions one after the other; a variable
is weakened by applying vs to it; substituting t for variable zero results in t , and
otherwise the variable’s index is lowered by one; and finally lifted substitutions
need to be handled appropriately:

data (=`) : Γ1 ` τ1 → Γ2 ` τ2 → Set where
. . .

-- Substitution application axioms.
substLam : λ t /̀ ρ =` λ (t /̀ ρ ↑ τ1)
substApp : (t1@t2) /̀ ρ =` (t1 /̀ ρ)@(t2 /̀ ρ)
idVanishesTm : t /̀ id =` t
compSplitsTm : t /̀ (ρ1 � ρ2) =` t /̀ ρ1 /̀ ρ2

substWk : var v /̀ wk σ =` var (vs v)
substVzSub : var vz /̀ sub t =` t
substVsSub : var (vs v) /̀ sub t =` var v
substVzLift : var vz /̀ (ρ ↑ σ) =` var vz
substVsLift : var (vs v) /̀ (ρ ↑ σ) =` var v /̀ ρ /̀ wk (σ / ρ)

3.7 Design Choices

Initially I tried to formalise a language with implicit substitutions, i.e. I tried to
implement (/̀) as a function instead of as a constructor. This turned out to be
difficult, since when (/̀) is defined as a function many substitution lemmas need
to be proved in the initial mutually recursive definition containing all the type
families above, and when the mutual dependencies become too complicated it is
hard to prove that the code is terminating.

As an example of why substitution lemmas are needed, take the axiom
substApp above. If substApp is considered as a pattern matching equation in
the definition of (/̀), then it needs to be modified in order to type check:

(t1@t2) /̀ ρ = (t1 /̀ ρ)@(t2 /̀ ρ) ::≡` subCommutes?

Here subCommutes? states that, in certain situations, sub commutes with other
substitutions:

subCommutes? : τ / (ρ ↑ σ) / sub (t /̀ ρ) =? τ / sub t / ρ

Avoidance of substitution lemmas is also the reason for making the equalities
heterogeneous. It would be possible to enforce directly that, for instance, two
terms are only equal if their respective types are equal. It suffices to add the
type equality as an index to the term equality:

(=`) : {τ1 =? τ2} → Γ1 ` τ1 → Γ2 ` τ2 → Set

However, in this case substApp could not be defined without a lemma like
subCommutes?. Furthermore this definition of (=`) easily leads to a situa-
tion where two equality proofs need to be proved equal. These problems are
avoided by, instead of enforcing equality directly, proving that term equality
implies type equality (eq èq?) and so on. These results also require lemmas like
subCommutes?, but the lemmas can be proved after the first, mutually recursive
definition.

The problems described above could be avoided in another way, by postu-
lating the substitution lemmas needed, i.e. adding them as type equality con-
structors. This approach has not been pursued, as I have tried to minimise the
amount of “unnecessary” postulates and definitions.

The postulate substApp discussed above also provides motivation for defining
(/) as a function, even though (/̀) is a constructor: if (/) were a constructor
then t1 /̀ ρ would not have a Π type as required by (@) (the type would be
Π τ1 τ2 / ρ), and hence a cast would be required in the definition of substApp. I
have not examined this approach in detail, but I suspect that it would be harder
to work with.

Another important design choice is the basic set of substitutions. The follow-
ing definition is a natural candidate for this set:

data (⇒̃) : Ctxt → Ctxt → Set where
∅ : ε ⇒̃ ∆
(�) : (ρ : Γ ⇒̃ ∆) → ∆ ` τ / ρ → Γ . τ ⇒̃ ∆

This type family encodes simultaneous (parallel) substitutions; for every variable
in the original context a term in the resulting context is given. So far so good, but
the substitutions used in the type signatures above (sub and wk , for instance)
need to be implemented in terms of ∅ and (�), and these implementations seem
to require various substitution lemmas, again leading to the problems described
above.

Note that, even though (⇒̃) is not used to define what a substitution is, the
substitutions ∅ and (�) can be defined in terms of the other substitutions, and
they are used in Sect. 5.3 when value environments are defined.

4 Removing Explicit Substitutions

In Sect. 5 a normalisation proof for the lambda calculus introduced in Sect. 3
is presented. The normalisation function defined there requires terms without
explicit substitutions (“implicit terms”). This section defines a data type Tm−

representing such terms.
The type Tm− provides a view of the (`) terms (the “explicit terms”). Other

views will be introduced later, for instance normal forms (Sect. 5.1), and they
will all follow the general scheme employed by Tm−, with minor variations.

Implicit terms are indexed on explicit terms to which they are, in a sense,
βη-equal; the function tm−ToTm converts an implicit term to the corresponding
explicit term, and tm−ToTm t− =` t for every implicit term t− : Tm− t :

data Tm− : Γ ` τ → Set where
var− : (v : Γ 3 τ) → Tm− (var v)
λ− : Tm− t → Tm− (λ t)
(@−) : Tm− t1 → Tm− t2 → Tm− (t1@t2)
(::≡`−) : Tm− t1 → t1 =` t2 → Tm− t2

tm−ToTm : {t : Γ ` τ } → Tm− t → Γ ` τ
tm−ToTm (var− v) = var v
tm−ToTm (λ− t−) = λ (tm−ToTm t−)
tm−ToTm (t−1 @− t−2) = (tm−ToTm t−1)@ (tm−ToTm t−2) ::≡` . . .
tm−ToTm (t− ::≡`− eq) = tm−ToTm t− ::≡` eq èq? eq

(The ellipsis stands for uninteresting code that has been omitted.)
It would be possible to index implicit terms on types instead. However, by

indexing on explicit terms soundness results are easily expressed in the types of
functions constructing implicit terms. For instance, the function tmToTm− which
converts explicit terms to implicit terms has the type (t :Γ ` τ) → Tm− t , which
guarantees that the result is βη-equal to t . The key to making this work is the
cast constructor (::≡`−), which makes it possible to include equality proofs in an
implicit term; without (::≡`−) no implicit term could be indexed on t /̀ ρ, for
instance.

Explicit terms are converted to implicit terms using techniques similar to
those in [McBb]. Due to lack of space this conversion is not discussed further
here.

5 Normalisation Proof

This section proves that every explicit term has a normal form. The proof uses
normalisation by evaluation (NBE). Type-based NBE proceeds as follows:

– First terms (in this case implicit terms) are evaluated by a function J·K
(Sect. 5.4), resulting in “values” (Sect. 5.2). Termination issues are avoided
by representing function types using the function space of the meta-language.

– Then these values are converted to normal forms by using two functions,
often called reify and reflect , defined by recursion on the (spines of the)
types of their arguments (Sect. 5.5).

5.1 Normal Forms

Let us begin by defining what a normal form is. Normal forms (actually long βη-
normal forms) and atomic forms are defined simultaneously. Both type families
are indexed on a βη-equivalent term, just like Tm− (see Sect. 4):

data Atom : Γ ` τ → Set where
varAt : (v : Γ 3 τ) → Atom (var v)
(@At) : Atom t1 → NF t2 → Atom (t1@t2)
(::≡At) : Atom t1 → t1 =` t2 → Atom t2

data NF : Γ ` τ → Set where
atom?

NF : {t : Γ ` ?} → Atom t → NF t
atomEl

NF : {t : Γ ` El t ′} → Atom t → NF t
λNF : NF t → NF (λ t)
(::≡NF) : NF t1 → t1 =` t2 → NF t2

The two atomNF constructors ensure that the only normal forms of type Π τ1 τ2

are lambdas and casts; this is how long η-normality is ensured.
A consequence of the inclusion of the cast constructors (::≡At) and (::≡NF) is

that normal forms are not unique. However, the equality on normal and atomic
forms (congruence plus postulates stating that casts can be removed freely)
ensures that equality can be decided by erasing all casts and annotations and
then checking syntactic equality.

A normal form can be converted to a term in the obvious way, and the
resulting term is βη-equal to the index (cf. tm−ToTm in Sect. 4):

nfToTm : {t : Γ ` τ } → NF t → Γ ` τ
nfToTmEq : (nf : NF t) → nfToTm nf =` t

Similar functions are defined for atomic forms.
We also need to weaken normal and atomic forms. In fact, multiple weak-

enings will be performed at once. In order to express these multi-weakenings
context extensions are introduced. The type Ctxt+ Γ stands for context exten-
sions which can be put “to the right of” the context Γ by using (++):

data Ctxt+ (Γ : Ctxt) : Set where
ε+ : Ctxt+ Γ
(.+) : (Γ ′ : Ctxt+ Γ) → Ty (Γ ++ Γ ′) → Ctxt+ Γ

(++) : (Γ : Ctxt) → Ctxt+ Γ → Ctxt
Γ ++ ε+ = Γ
Γ ++ (Γ ′ .+ τ) = (Γ ++ Γ ′) . τ

Now the following type signatures can be understood:

wk∗ : (Γ ′ : Ctxt+ Γ) → Γ ⇒ Γ ++ Γ ′

wk∗At : Atom t → (Γ ′ : Ctxt+ Γ) → Atom (t /̀ wk∗ Γ ′)

5.2 Values

Values are represented using one constructor for each type constructor, plus a
case for casts (along the lines of previously introduced types indexed on terms).
Values of function type are represented using meta-language functions:

data Val : Γ ` τ → Set where
(::Val) : Val t1 → t1 =` t2 → Val t2
?Val : {t : Γ ` ?} → Atom t → Val t
ElVal : {t : Γ ` El t ′} → Atom t → Val t
ΠVal : {t1 : Γ ` Π τ1 τ2}

→ (f : (Γ ′ : Ctxt+ Γ)
→ {t2 : Γ ++ Γ ′ ` τ1 / wk∗ Γ ′}
→ (v : Val t2)
→ Val ((t1 /̀ wk∗ Γ ′)@t2))

→ Val t1

The function f given to ΠVal {t1} essentially takes an argument value and eval-
uates t1 applied to this argument. For technical reasons, however, we need to be
able to weaken t1 (see reify in Sect. 5.5). This makes Val look suspiciously like
a Kripke model [MM91] (suitably generalised to a dependently typed setting);
this has not been verified in detail, though. The application operation of this
supposed model is defined as follows. Notice that the function component of
ΠVal is applied to an empty Ctxt+ here:

(@Val) : Val t1 → Val t2 → Val (t1@t2)
ΠVal f @Val v2 = f ε+ (v2 ::Val . . .) ::Val . . .
(v1 ::Val eq) @Val v2 = (v1 @Val (v2 ::Val . . .)) ::Val . . .

The transition function of the model weakens values:

wk?
Val : Val t → (Γ ′ : Ctxt+ Γ) → Val (t /̀ wk∗ Γ ′)

Note that Val is not a positive data type, due to the negative occurrence of
Val inside of ΠVal , so this data type is not part of the treatment in [DS06]. In

practise this should not be problematic, since the type index of that occurrence,
τ1 / wk∗ Γ ′, is smaller than the type index of ΠVal f , which is Π τ1 τ2. Here
we count just the spine of the type, ignoring the contents of El , so that τ and
τ / ρ have the same size, and two equal types also have the same size. In fact,
by supplying a spine argument explicitly it should not be difficult to define Val
as a structurally recursive function instead of as a data type.

5.3 Environments

The function J·K, defined in Sect. 5.4, makes use of environments, which are
basically substitutions containing values instead of terms:

data Env : Γ ⇒ ∆ → Set where
∅Env : Env ∅
(�Env) : Env ρ → Val t → Env (ρ � t)
(::≡Env) : Env ρ1 → ρ1 =⇒ ρ2 → Env ρ2

Note that the substitutions ∅ and (�) from Sect. 3.7 are used as indices here.
It is straight-forward to define functions for looking up a variable in an en-

vironment and weakening an environment:

lookup : (v : Γ 3 τ) → Env ρ → Val (var v /̀ ρ)
wk?

Env : Env ρ → (∆′ : Ctxt+ ∆) → Env (ρ � wk∗ ∆′)

5.4 Evaluating Terms

Now we can evaluate an implicit term, i.e. convert it to a value. The most
interesting case is λ− t−1 , where t−1 is evaluated in an extended, weakened envi-
ronment:

J·K : Tm− t → Env ρ → Val (t /̀ ρ)
Jvar− vKγ = lookup v γ

Jt−1 @− t−2 Kγ = (Jt−1 Kγ @Val Jt−2 Kγ) ::Val . . .
Jt− ::≡`− eqKγ = Jt−Kγ ::Val . . .

Jλ− t−1 Kγ =
ΠVal (\∆′ v2 → Jt−1 K(wk?

Env γ ∆′ �Env (v2 ::Val . . .)) ::Val . . . β . . .)

(The notation \x → . . . is lambda abstraction in the meta-language.) It would
probably be straightforward to evaluate explicit terms directly, without going
through implicit terms (cf. [Coq02]). Here I have chosen to separate these two
steps, though.

5.5 reify and reflect

Let us now define reify and reflect . These functions are implemented by recursion
over spines (see Sect. 5.2), in order to make them structurally recursive, but to
avoid clutter the spine arguments are not written out below.

The interesting cases correspond to function types, for which reify and reflect
use each other recursively. Notice how reify applies the function component of
ΠVal to a singleton Ctxt+, to enable using the reflection of variable zero, which
has a weakened type; this is the reason for including weakening in the definition
of ΠVal :

reify : (τ : Ty Γ) → {t : Γ ` τ } → Val t → NF t
reify (Π τ1 τ2) (ΠVal f) =

λNF (reify (τ2 / /)
(f (ε+ .+ τ1) (reflect (τ1 /) (varAt vz) ::Val . . .)))

::NF . . . η . . .

reflect : (τ : Ty Γ) → {t : Γ ` τ } → Atom t → Val t
reflect (Π τ1 τ2) at = ΠVal (\Γ ′ v →

reflect (τ2 / /) (wk∗At at Γ ′ @At reify (τ1 /) v))

Above underscores () have been used instead of giving non-hidden arguments
which can be inferred automatically by the AgdaLight type checker, and some
simple and boring cases have been omitted to save space.

5.6 Normalisation

After having defined J·K and reify it is very easy to normalise a term. First
we build an identity environment by applying reflect to all the variables in the
context:

idEnv : (Γ : Ctxt) → Env (id Γ)

Then an explicit term can be normalised by converting it to an implicit term,
evaluating the result in the identity environment, and then reifying:

normalise : (t : Γ ` τ) → NF t
normalise t = reify (JtmToTm− tK(idEnv) ::Val . . .)

Since a normal form is indexed on an equivalent term it is easy to show that
normalise is sound:

normaliseEq : (t : Γ ` τ) → nfToTm (normalise t) =` t
normaliseEq t = nfToTmEq (normalise t)

If this normalising function is to be really useful (as part of a type checker,
for instance) it should also be proved, for the normal form equality (=NF), that
t1 =` t2 implies that normalise t1 =NF normalise t2. This is left for future
work, though.

6 Related Work

As stated in the introduction Dybjer’s formalisation of categories with families
[Dyb96] seems to be the only prior example of a formalisation of a dependently

typed language done using the internal approach to handle the type system
invariants. Other formalisations of dependently typed languages, such as McK-
inna/Pollack [MP99] and Barras/Werner [BW97], have used the external ap-
proach. There is also an example, due to Adams [Ada04], of a hybrid approach
which handles some invariants internally, but not the type system.

Normalisation by evaluation (NBE) seems to have been discovered indepen-
dently by Martin-Löf (for a version of his type theory) [ML75] and Berger and
Schwichtenberg (for simply typed lambda calculus) [BS91]. Martin-Löf has also
defined an NBE algorithm for his logical framework [ML04], and recently Dyb-
jer, Abel and Aehlig have done the same for Martin-Löf type theory with one
universe [AAD07].

NBE has been formalised, using the internal approach, by T. Coquand and
Dybjer, who treated a combinatory version of Gödel’s System T [CD97]. C. Co-
quand has formalised normalisation for a simply typed lambda calculus with
explicit substitutions, also using the internal approach [Coq02]. Her normali-
sation proof uses NBE and Kripke models, and in that respect it bears much
resemblance to this one. McBride has implemented NBE for the untyped lambda
calculus [McBa]. His implementation uses an internal approach (nested types in
Haskell) to ensure that terms are well-scoped, and that aspect of his code is
similar to mine.

My work seems to be the first formalised NBE algorithm for a dependently
typed language.

7 Discussion

I have presented a formalisation of a dependently typed lambda calculus, includ-
ing a proof of normalisation, using the internal approach to handle typing rules.
This formalisation demonstrates that, at least in this case, it is feasible to use the
internal approach when programming with invariants strong enough to encode
the typing rules of a dependently typed language. How this method compares to
other approaches is a more difficult question, which I do not attempt to answer
here.

Acknowledgements

I am grateful to Ulf Norell, who has taught me a lot about dependently typed
programming, discussed many aspects of this work, and fixed many of the bugs in
AgdaLight that I have reported. I would also like to thank Thierry Coquand and
Peter Dybjer for interesting discussions and useful pointers, and Patrik Jansson
and the anonymous referees for helping me with the presentation.

References

[AA02] Andreas Abel and Thorsten Altenkirch. A predicative analysis of structural
recursion. Journal of Functional Programming, 12(1):1–41, 2002.

[AAD07] Andreas Abel, Klaus Aehlig, and Peter Dybjer. Normalization by evaluation
for Martin-Löf type theory with one universe. Submitted for publication,
2007.

[AC06] Thorsten Altenkirch and James Chapman. Tait in one big step. In MSFP
2006, 2006.

[Ada04] Robin Adams. Formalized metatheory with terms represented by an indexed
family of types. In TYPES 2004, volume 3839 of LNCS, pages 1–16, 2004.

[AR99] Thorsten Altenkirch and Bernhard Reus. Monadic presentations of lambda
terms using generalized inductive types. In CSL ’99, volume 1683 of LNCS,
pages 453–468, 1999.

[BS91] Ulrich Berger and Helmut Schwichtenberg. An inverse of the evaluation
functional for typed λ-calculus. In LICS ’91, pages 203–211, 1991.

[BW97] Bruno Barras and Benjamin Werner. Coq in Coq. Unpublished, 1997.
[CD97] Thierry Coquand and Peter Dybjer. Intuitionistic model constructions

and normalization proofs. Mathematical Structures in Computer Science,
7(1):75–94, 1997.

[Coq02] Catarina Coquand. A formalised proof of the soundness and completeness
of a simply typed lambda-calculus with explicit substitutions. Higher-Order
and Symbolic Computation, 15:57–90, 2002.

[Dan07] Nils Anders Danielsson. Personal web page. Available at http://www.cs.

chalmers.se/~nad/, 2007.
[DS06] Peter Dybjer and Anton Setzer. Indexed induction-recursion. Journal of

Logic and Algebraic Programming, 66(1):1–49, 2006.
[Dyb96] Peter Dybjer. Internal type theory. In TYPES ’95, volume 1158 of LNCS,

pages 120–134, 1996.
[McBa] Conor McBride. Beta-normalization for untyped lambda-calculus. Unpub-

lished program.
[McBb] Conor McBride. Type-preserving renaming and substitution. Unpublished.
[ML75] Per Martin-Löf. An intuitionistic theory of types: Predicative part. In Logic

Colloquium ’73, pages 73–118. North-Holland, 1975.
[ML04] Per Martin-Löf. Normalization by evaluation and by the method of com-

putability. Lecture series given at Logikseminariet Stockholm–Uppsala,
2004.

[MM91] John C. Mitchell and Eugenio Moggi. Kripke-style models for typed lambda
calculus. Annals of Pure and Applied Logic, 51:99–124, 1991.

[MM04] Conor McBride and James McKinna. The view from the left. Journal of
Functional Programming, 14(1):69–111, 2004.

[MP99] James McKinna and Robert Pollack. Some lambda calculus and type theory
formalized. Journal of Automated Reasoning, 23(3):373–409, 1999.

[MW06] James McKinna and Joel Wright. A type-correct, stack-safe, provably cor-
rect expression compiler in Epigram. Accepted for publication in the Journal
of Functional Programming, 2006.

[Nor07] Ulf Norell. AgdaLight home page. Available at http://www.cs.chalmers.

se/~ulfn/agdaLight/, 2007.
[NPS90] Bengt Nordström, Kent Petersson, and Jan M. Smith. Programming in

Martin-Löf ’s Type Theory, An Introduction. Oxford University Press, 1990.
[PL04] Emir Pašalić and Nathan Linger. Meta-programming with typed object-

language representations. In GPCE 2004, volume 3286 of LNCS, pages
136–167, 2004.

[XCC03] Hongwei Xi, Chiyan Chen, and Gang Chen. Guarded recursive datatype
constructors. In POPL ’03, pages 224–235, 2003.

