
Operational Semantics Using the Partiality Monad

Nils Anders Danielsson
Chalmers University of Technology and University of Gothenburg

nad@chalmers.se

Abstract
The operational semantics of a partial, functional language is often
given as a relation rather than as a function. The latter approach
is arguably more natural: if the language is functional, why not
take advantage of this when defining the semantics? One can im-
mediately see that a functional semantics is deterministic and, in a
constructive setting, computable.

This paper shows how one can use the coinductive partiality
monad to define big-step or small-step operational semantics for
lambda-calculi and virtual machines as total, computable functions
(total definitional interpreters). To demonstrate that the resulting se-
mantics are useful type soundness and compiler correctness results
are also proved. The results have been implemented and checked
using Agda, a dependently typed programming language and proof
assistant.

Categories and Subject Descriptors F.3.2 [Logics and Mean-
ings of Programs]: Semantics of Programming Languages—Oper-
ational semantics; D.1.1 [Programming Techniques]: Applicative
(Functional) Programming; E.1 [Data Structures]; F.3.1 [Logics
and Meanings of Programs]: Specifying and Verifying and Reason-
ing about Programs—Mechanical verification

Keywords Dependent types; mixed induction and coinduction;
partiality monad

1. Introduction
Consider the untyped λ-calculus with a countably infinite set of
constants c:

t ::= c | x | λx.t | t1 t2
Closed terms written in this language can compute to a value (a
constant c or a closure λx.tρ), but they can also go wrong (crash)
or fail to terminate.

How would you write down an operational semantics for this
language? A common choice is to define the semantics as an induc-
tively defined relation, either using small steps or big steps. For an
example of the latter, see Figure 1: ρ ` t ⇓ v means that the term
t can terminate with the value v when evaluated in the environment
ρ. However, as noted by Leroy and Grall (2009), this definition
provides no way to distinguish terms which go wrong from terms
which fail to terminate. If we want to do this, then we can define
two more relations, see Figure 2: ρ ` t ⇑, defined coinductively,

c© ACM, 2012. This is the author’s version of the work. It is posted here by per-
mission of ACM for your personal use. Not for redistribution. The definitive ver-
sion was published in the Proceedings of the 17th ACM SIGPLAN international
conference on Functional programming (2012), http://doi.acm.org/10.1145/
2364527.2364546.

ρ ` c ⇓ c
ρ(x) = v
ρ ` x ⇓ v

ρ ` λx.t ⇓ λx.tρ

ρ ` t1 ⇓ λx.t′ρ′ ρ ` t2 ⇓ v′ ρ′, x = v′ ` t′ ⇓ v
ρ ` t1 t2 ⇓ v

Figure 1. A call-by-value operational semantics for the untyped λ-
calculus with constants, specifying which terms can terminate with
what values (very close to a semantics given by Leroy and Grall
(2009)).

ρ ` t1 ⇑

ρ ` t1 t2 ⇑

ρ ` t1 ⇓ v ρ ` t2 ⇑

ρ ` t1 t2 ⇑

ρ ` t1 ⇓ λx.t′ρ′ ρ ` t2 ⇓ v′ ρ′, x = v′ ` t′ ⇑

ρ ` t1 t2 ⇑

ρ ` t def
= ¬ (∃v. ρ ` t ⇓ v) ∧ ¬ (ρ ` t ⇑)

Figure 2. Two more operational semantics for the untyped λ-
calculus with constants, specifying which terms can fail to termi-
nate or go wrong. The definition written using double lines is coin-
ductive, and is taken almost verbatim from Leroy and Grall (2009).

means that the term t can fail to terminate when evaluated in the
environment ρ; and ρ ` t means that t goes wrong.

Now we have a complete definition. However, this definition is
somewhat problematic:

1. There are four separate rules which refer to application. For a
small language this may be acceptable, but for large languages
it seems to be easy to forget some rule, and “rule duplication”
can be error-prone.

2. It is not immediately obvious whether the semantics is deter-
ministic and/or computable: these properties need to be proved.

3. If we want to define an interpreter which is correct by construc-
tion, then the setup with three relations is awkward. Consider
the following type-signature, where] is the sum type con-
structor:

eval : ∀ ρ t→ (∃v. ρ ` t ⇓ v)] ρ ` t ⇑] ρ ` t

This signature states that, for any environment ρ and term t , the
interpreter either returns a value v and a proof that t can termi-
nate with this value when evaluated in the given environment;
or a proof that t can fail to terminate; or a proof that t goes
wrong. It should be clear that it is impossible to implement eval

http://doi.acm.org/10.1145/2364527.2364546
http://doi.acm.org/10.1145/2364527.2364546

in a total, constructive language, as this amounts to solving the
halting problem.

The situation may have been a bit less problematic if we had
defined a small-step semantics instead, but small-step semantics are
not necessarily better: Leroy and Grall (2009) claim that “big-step
semantics is more convenient than small-step semantics for some
applications”, including proving that a compiler is correct.

I suggest another approach: define the semantics as a function in
a total meta-language, using the partiality monad (Capretta 2005)
to represent non-termination, where the partiality monad is defined
coinductively as A⊥ = νX. A] X. If this approach is followed
then we avoid all the problems above:

1. We have one clause for applications, and the meta-language is
total, so we cannot forget a clause.

2. The semantics is a total function, and hence deterministic and
computable.

3. The semantics is an interpreter, and its type signature does not
imply that we solve the halting problem:

J K : Term→ Environment→ (Maybe Value)⊥

An additional advantage of using a definitional interpreter is that
this can make it easy to test the semantics (if the interpreter is not
too inefficient). Such tests can be useful in the design of non-trivial
languages (Aydemir et al. 2005).

The main technical contribution of this paper is that I show
that one can prove typical meta-theoretical properties directly for
a semantics defined using the partiality monad:

• A big-step, functional semantics is defined and proved to be
classically equivalent to the relational semantics above (Sec-
tions 3 and 5; for simplicity well-scoped de Bruijn indices are
used instead of names).
• Type soundness is proved for a simple type system with recur-

sive types (Section 4).
• The meaning of a virtual machine is defined as a small-step,

functional semantics (Section 6).
• A compiler correctness result is proved (Section 7).
• The language and the type soundness and compiler correct-

ness results are extended to a non-deterministic setting in or-
der to illustrate that the approach can handle languages where
some details—like evaluation order—are left up to the compiler
writer (Section 8).
• Finally Section 9 contains a brief discussion of term equiva-

lences (applicative bisimilarity and contextual equivalence).

As far as I know these are the first proofs of type soundness or
compiler correctness for operational semantics defined using the
partiality monad. The big-step semantics avoids the rule duplica-
tion mentioned above, and this is reflected in the proofs: there is
only one case for application, as opposed to four cases in some cor-
responding proofs for relational semantics due to Leroy and Grall
(2009). Related work is discussed further in Section 1.3.

1.1 Operational?
At this point some readers may complain that J K does not define
an operational semantics, but rather a denotational one. Perhaps
a better term would be “hybrid operational/denotational”, but the
semantics is not denotational:

• It is not defined in a compositional way: J t K is not defined
by recursion on the structure of t, but rather a combination of
corecursion and structural recursion (see Section 3).

• Furthermore the “semantic domain” is rather syntactic: it in-
cludes closures, and is not defined as the solution to a domain
equation.

I do not see this kind of semantics as an alternative to denotational
semantics, but rather as an alternative to usual operational ones.
(See also the discussion of term equivalences in Section 9.)

1.2 Mechanisation
The development presented below has been formalised in the de-
pendently typed, functional language Agda (Norell 2007; Agda
Team 2012), and the code has been made available to download.

In order to give a clear picture of how the results can be mech-
anised Agda-like code is also used in the paper. Unfortunately
Agda’s support for total corecursion is somewhat limited,1 so to
avoid distracting details the code is written in an imaginary vari-
ant of Agda with a very clever productivity checker (and some
other smaller changes). The accompanying code is written in actual
Agda, sometimes using workarounds (Danielsson 2010) to con-
vince Agda that the code is productive. There are also other, minor
differences between the accompanying code and the code in the
paper.

1.3 Related Work
Reynolds (1972) discusses definitional interpreters, and there is
a large body of work on using monads to structure semantics
and interpreters, going back at least to Moggi (1991) and Wadler
(1992).

The toy language above is taken from Leroy and Grall (2009),
who bring up some of the disadvantages of (inductive) big-step
semantics mentioned above. The type system in Section 4 is also
taken from Leroy and Grall, who discuss various formulations of
type soundness (but not the main formulations given below). Fi-
nally the virtual machine and compiler defined in Sections 6–7 are
also taken from Leroy and Grall, who give a compiler correctness
proof.

Leroy and Grall also define a semantics based on approxima-
tions: First the semantics is defined (functionally) at “recursion
depth” n; if n = 0, then the result ⊥ is returned. This function
is similar to the functional semantics J K defined in Section 3, but
defined using recursion on n instead of corecursion and the partial-
ity monad. The semantics of a term t is then defined (relationally)
to be s if there is a recursion depth n0 such that the semantics at
recursion depth n is s for all n > n0. Leroy and Grall prove that
this semantics is equivalent to a relational, big-step semantics. This
proof is close to the proof in Section 5 which shows that J K is
equivalent to a relational, big-step semantics.

Further comparisons to the work of Leroy and Grall is included
below.

The type soundness proof in Section 4 is close to proofs given
by Tofte (1990) and Milner and Tofte (1991). They use ordinary,
inductive big-step definitions to give semantics of languages with
cyclic closures, define typing relations for values coinductively (as
greatest fixpoints of monotone operators F), and use coinduction
(x ∈ νF if x ∈ X for some X ⊆ F(X)) to prove that certain
values have certain types. In this paper the value typing relation
is defined inductively rather than coinductively. However, another
typing relation, that for possibly non-terminating computations, is
defined coinductively, and the proof still uses coinduction (which
takes the form of corecursion, see Section 2).

Capretta (2005) discusses the partiality monad, and gives a se-
mantics for partial recursive functions (primitive recursive func-
tions plus minimisation) as a function of type ∀ n. (Nn ⇀ N)→
(N⊥n

→ N⊥).

1 The same applies to Coq (Coq Development Team 2011).

Nakata and Uustalu (2009) define coinductive big-step and
small-step semantics, in both relational and functional style, for
a while language. Their definitions do not use the partiality monad,
but are trace-based, and have the property that the trace can be com-
puted (productively) for any source term, converging or diverging.
My opinion is that the relational big-step definition is rather tech-
nical and brittle; the authors discuss several modifications to the
design which lead to absurd results, like while true do skip having
an arbitrary trace. The functional big-step semantics avoids these
issues, because the semantics is required to be a productive func-
tion from a term and an initial state to a trace. Nakata and Uustalu
have extended their work to a while language with interactive in-
put/output (2010), but in this work they use relational definitions.

Paulin-Mohring (2009) defines partial streams using (essen-
tially) the partiality monad, shows that partial streams form a
pointed CPO, and uses this CPO to define a functional semantics
for (a minor variation of) Kahn networks.

Benton et al. (2009) use the partiality monad to construct a lift-
ing operator for CPOs, and use this operator to give denotational
semantics for one typed and one untyped λ-calculus; the former
semantics is crash-free by construction, the latter uses ⊥ to repre-
sent crashes. Benton and Hur (2009) define a compiler from one
of these languages to a variant of the SECD machine (with a rela-
tional, small-step semantics), and prove compiler correctness.

Ghani and Uustalu (2004) introduce the partiality monad trans-
former, λM A. νX. M (A] X). (In the setting of Agda M should
be restricted to be strictly positive.)

Goncharov and Schröder (2011) use the partiality monad trans-
former (they use the term resumption monad transformer) to give a
class of functional semantics for a concurrent language.

Rutten (1999) defines an operational semantics for a while lan-
guage corecursively as a function, using a “non-constructive” vari-
ant of the partiality monad, A⊥ = (A × N)] {∞} (where ∞
represents non-termination and the natural number stands for the
number of computation steps needed to compute the value of type
A). With this variant of the monad the semantics is not a computable
function, because the semantics returns∞ iff a program fails to ter-
minate. Rutten also discusses weak bisimilarity and explains how
to construct a compositional semantics from the operational one.

Cousot and Cousot (1992, 2009) describe bi-inductive defi-
nitions, which generalise inductive and coinductive definitions,
and give a number of examples of their use. One of their ex-
amples is a big-step semantics for a call-by-value λ-calculus.
This semantics captures both terminating and non-terminating be-
haviours in a single definition, with less “duplication” of rules
than in Figures 1–2, but more than in Section 3. An operator F on
℘(Term × (Term ∪ {⊥})), where Term stands for the set of terms
and ⊥ stands for non-termination, is first defined by the following
inference rules (where v ranges over values):

v⇒ v
t1 ⇒ ⊥

t1 t2 ⇒ ⊥
t1 ⇒ v t2 ⇒ ⊥

t1 t2 ⇒ ⊥

t1 ⇒ λx .t t2 ⇒ v t[x := v]⇒ r
t1 t2 ⇒ r

These rules should neither be read inductively nor coinductively.
The semantics is instead obtained as the least fixpoint of F with
respect to the order v defined by

X v Y = X+ ⊆ Y+ ∧ X− ⊇ Y−,

where Z+ = { (t, s) ∈ Z | s 6= ⊥ } and Z− = Z \ Z+. F is not
monotone with respect to v (which forms a complete lattice), so
Cousot and Cousot give an explicit proof of the existence of a least
fixpoint (for a closely related semantics).

2. The Partiality Monad
Agda is a total language (assuming that the implementation is bug-
free, etc.). Ordinary data types are inductive. For instance, we can
define the type Fin n of natural numbers less than n, and the type
Vec A n of A-lists of length n, as follows:

data Fin : N→ Set where
zero : {n : N} → Fin (1 + n)
suc : {n : N} → Fin n→ Fin (1 + n)

data Vec (A : Set) : N→ Set where
[] : Vec A 0

:: : {n : N} → A→ Vec A n→ Vec A (1 + n)

(Cons is an infix operator, :: ; the underscores mark the argument
positions.) Inductive types can be destructed using structural recur-
sion. As an example we can define a safe lookup/indexing function:

lookup : {A : Set} {n : N} → Fin n→ Vec A n→ A
lookup zero (x :: xs) = x
lookup (suc i) (x :: xs) = lookup i xs

The arguments within braces, {. . .}, are implicit, and can be omitted
if Agda can infer them. To avoid clutter most implicit argument
declarations are omitted, together with a few explicit instantiations
of implicit arguments.

Agda also supports “infinite” data through the use of coinduc-
tion (Coquand 1994). Coinductive types can be introduced using
suspensions:∞ A is the type of suspensions, that if forced give us
something of type A. Suspensions can be forced using [, and cre-
ated using] :

[: ∞ A→ A
] : A→∞ A

(Here] is a tightly binding prefix operator. In this paper nothing
binds tighter except for ordinary function application.)

The partiality monad is defined coinductively as follows:

data ⊥ (A : Set) : Set where
now : A → A⊥
later : ∞ (A⊥)→ A⊥

You can read this as the greatest fixpoint νX.A] X .2 The con-
structor now returns a value immediately, and later postpones a
computation. Computations can be postponed forever:

never : A⊥
never = later (] never)

Here never is defined using corecursion, in a productive way: even
though never can unfold forever, the next constructor can always be
computed in a finite number of steps. Note that structural recursion
is not supported for coinductive types, as this would allow the
definition of non-productive functions.

The partiality monad is a monad, with now as its return opera-
tion, and bind defined corecursively as follows:

>>= : A⊥ → (A→ B⊥)→ B⊥
now x >>= f = f x
later x >>= f = later (] ([x >>= f))

If x fails to terminate, then x >>= f also fails to terminate, and if x
terminates with a value, then f is applied to that value.

It is easy to prove the monad laws up to (strong) bisimilarity,
which is a coinductively defined relation:

2 This is not entirely correct in the current version of Agda (Altenkirch
and Danielsson 2010), but for the purposes of this paper the differences
are irrelevant.

data ∼= : A⊥ → A⊥ → Set where
now : now x ∼= now x
later : ∞ ([x ∼= [y)→ later x ∼= later y

(Note that the constructors have been overloaded.) This equivalence
relation relates diverging computations, and it also relates compu-
tations which converge to the same value using the same number of
steps.

Note that ∼= is a type of potentially infinite proof terms.
Proving x ∼= y amounts to constructing a term with this type. This
proof technique is quite different from the usual coinductive proof
technique (where x ∈ νF for a monotone F if x ∈ X for some
X ⊆ F(X)), so let me show in detail how one can prove that bind
is associative:

associative :
(x : A⊥) (f : A→ B⊥) (g : B→ C⊥)→
(x >>= f >>= g) ∼= (x >>= λ y→ f y >>= g)

We can do this using corecursion and case analysis on x:

associative (now x) f g = ?
associative (later x) f g = ?

We can ask Agda what types the two goals (?) have. The first
one has type f x >>= g ∼= f x >>= g, and can be completed by
appeal to reflexivity (refl-∼= : (x : A⊥)→ x ∼= x can be proved
separately):

associative (now x) f g = refl-∼= (f x >>= g)

The second goal has type later s1 ∼= later s2 for some suspensions
s1 and s2, so we can refine the goal using a later constructor and a
suspension:

associative (later x) f g = later (] ?)

The new goal has type

([x >>= f >>= g) ∼= ([x >>= λ y→ f y >>= g),

so we can conclude by appeal to the coinductive hypothesis:

associative (later x) f g = later (] associative ([x) f g)

Note that the proof is productive. Agda can see this, because the
corecursive call is guarded by a constructor and a suspension.

Strong bisimilarity is very strict. In many cases weak bisimilar-
ity, which ignores finite differences in the number of steps, is more
appropriate:3

data ≈ : A⊥ → A⊥ → Set where
now : now x ≈ now x
later : ∞ ([x ≈ [y)→ later x ≈ later y
laterl : [x ≈ y → later x ≈ y
laterr : x ≈ [y → x ≈ later y

This relation is defined using mixed induction and coinduction (in-
duction nested inside coinduction, νX.µY. F X Y). Note that later
is coinductive, while laterl and laterr are inductive. An infinite
sequence of later constructors is allowed, for instance to prove
never ≈ never:

allowed : never ≈ never
allowed = later (] allowed)

However, only a finite number of consecutive laterl and laterr

constructors is allowed, because otherwise we could prove never ≈
now x:

3 Capretta (2005) defines weak bisimilarity in a different but equivalent way.

disallowed : never ≈ now x
disallowed = laterl disallowed

On the other hand, because the induction is nested inside the coin-
duction it is fine to use an infinite number of laterl or laterr con-
structors if they are non-consecutive, with intervening later con-
structors:

also-allowed : never ≈ never
also-allowed = laterr (later (] also-allowed))

If we omit the laterr constructor from the definition of weak
bisimilarity, then we get a preorder & with the property that
x & y holds if y terminates in fewer steps than x (with the same
value), but not if x terminates in strictly fewer steps than y, or if
one of the two computations terminates and the other does not:

data & : A⊥ → A⊥ → Set where
now : now x & now x
later : ∞ ([x & [y)→ later x & later y
laterl : [x & y → later x & y

It is easy to prove that x ∼= y implies x & y, which in turn implies
x ≈ y.

The three relations above are transitive, but one needs to be
careful when using transitivity in corecursive proofs, because other-
wise one can “prove” absurd things. For instance, given refl-≈ :
(x : A⊥)→ x ≈ x and trans-≈ : x ≈ y→ y ≈ z→ x ≈ z
we can “prove” that weak bisimilarity is trivial:

trivial : (x y : A⊥)→ x ≈ y
trivial x y =

trans-≈ (laterr (refl-≈ x))
(trans-≈ (later (] trivial x y))

(laterl (refl-≈ y)))

This “proof” uses the following equational reasoning steps: x ≈

later (] x) ≈ later (] y) ≈ y. The problem is that trivial
is not productive: trans-≈ is “too strict”. This issue is closely
related to the problem of weak bisimulation up to weak bisimilarity
(Sangiorgi and Milner 1992).

Fortunately some uses of transitivity are safe. For instance, if
we are proving a weak bisimilarity, then it is safe to make use of
already proved greater-than results, in the following way (where
y . z is a synonym for z & y):

x & y → y ≈ z → x ≈ z
x ≈ y → y . z → x ≈ z

(Compare Sangiorgi and Milner’s “expansion up to .”.) Agda does
not provide a simple way to show that these lemmas are safe, but
this could be done using sized types as implemented in MiniAgda
(Abel 2010).4 With sized types one can define x ≈i y to stand for
potentially incomplete proofs of x ≈ y of size (at least) i, and
prove the following lemma:

∀ i. x & y → y ≈i z → x ≈i z

This lemma is not “too strict”: the type tells us that the (bound on
the) size of the incomplete definition is preserved. Unfortunately
MiniAgda, which is a research prototype, is very awkward to use
in larger developments.

For more details about coinduction and corecursion in Agda,
and further discussion of transitivity in a coinductive setting, see
Danielsson and Altenkirch (2010).

4 The experimental implementation of sized types in Agda does not support
coinduction.

3. A Functional, Operational Semantics
This section defines an operational semantics for the untyped λ-
calculus with constants. Let us start by defining the syntax of the
language. Just as Leroy and Grall (2009) I use de Bruijn indices to
represent variables, but I use a “well-scoped” approach, using the
type system to keep track of the free variables. Terms of type Tm n
have at most n free variables:

data Tm (n : N) : Set where
con : N → Tm n -- Constant.
var : Fin n → Tm n -- Variable.
lam : Tm (1 + n) → Tm n -- Abstraction.
· : Tm n→ Tm n→ Tm n -- Application.

Environments and values are defined mutually:

mutual
Env : N→ Set
Env n = Vec Value n
data Value : Set where
con : N → Value -- Constant.
lam : Tm (1 + n)→ Env n→ Value -- Closure.

Note that the body of a closure has at most one free variable which
is not bound in the environment.

The language supports two kinds of “effects”, partiality and
crashes. The partiality monad is used to represent partiality, and
the maybe monad is used to represent crashes:

J K : Tm n→ Env n→ (Maybe Value)⊥
(Maybe A has two constructors, nothing : Maybe A and just :
A → Maybe A.) The combined monad is the maybe monad
transformer (λM A. M (Maybe A)) applied to the partiality monad.
We can define a failing computation, as well as return and bind, as
follows:

fail : (Maybe A)⊥
fail = now nothing

return : A→ (Maybe A)⊥
return x = now (just x)
>>= : (Maybe A)⊥ → (A→ (Maybe B)⊥)→ (Maybe B)⊥

now nothing >>= f = fail
now (just x) >>= f = f x
later x >>= f = later (] ([x >>= f))

It should also be possible to use the reader monad transformer to
handle the environment, but I believe that this would make the code
harder to follow.

With the monad in place it is easy to define the semantics using
two mutually (co)recursive functions:

mutual
J K : Tm n→ Env n→ (Maybe Value)⊥
J con i K ρ = return (con i)
J var x K ρ = return (lookup x ρ)
J lam t K ρ = return (lam t ρ)
J t1 · t2 K ρ = J t1 K ρ >>= λ v1 →

J t2 K ρ >>= λ v2 →
v1 • v2

• : Value→ Value→ (Maybe Value)⊥
con i1 • v2 = fail
lam t1 ρ1 • v2 = later (] (J t1 K (v2 :: ρ1)))

Constants are returned immediately, variables are looked up in the
environment, and abstractions are paired up with the environment
to form a closure. The interesting case is application: t1 · t2 is

evaluated by first evaluating t1 to a value v1, then (if the evaluation
of t1 terminates without a crash) t2 to v2, and finally evaluating
the application v1 • v2. If v1 is a constant, then we crash. If v1
is a closure, then a later constructor is emitted and the closure’s
body is evaluated in its environment extended by v2. The result
contains one later constructor for every β-redex that has been
reduced (infinitely many in case of non-termination).

Note that this is a call-by-value semantics, with functions eval-
uated before arguments. Note also that the semantics is not compo-
sitional, i.e. not defined by recursion on the structure of the term, so
it is not a denotational semantics. (It would be if • were defined
prior to J K; it is easy to construct a compositional semantics on
top of this one.)

Agda does not accept the code above; it is not obvious to
the productivity checker that J K and • are total (productive)
functions. If bind had been a constructor, then Agda would have
found that the code uses a lexicographic combination of guarded
corecursion and structural recursion: every call path from J K to
J K is either

1. guarded by one or more constructors and at least one suspension
(and nothing else), or

2. guardedness is “preserved” (zero or more constructors/suspen-
sions), and the term argument becomes strictly smaller.

Now, bind is not a constructor, but it does preserve guardedness:
it takes apart its first argument, but introduces a new suspension
before forcing an old one—in MiniAgda one can show that bind
preserves the sizes of its arguments. For a formal explanation of
totality, see the accompanying code.5

The semantics could also have been defined using continuation-
passing style, and then we could have avoided the use of bind:

mutual
J K

CPS
: Tm n→ Env n→ (Value→ (Maybe A)⊥)→
(Maybe A)⊥

J con i K
CPS

ρ k = k (con i)
J var x K

CPS
ρ k = k (lookup x ρ)

J lam t K
CPS

ρ k = k (lam t ρ)
J t1 · t2 KCPS

ρ k = J t1 KCPS
ρ (λ v1 →

J t2 KCPS
ρ (λ v2 →

(v1 •CPS v2) k))
•CPS : Value→ Value→ (Value→ (Maybe A)⊥)→

(Maybe A)⊥
(con i1 •CPS v2) k = fail
(lam t1 ρ1 •CPS v2) k = later (] (J t1 KCPS

(v2 :: ρ1) k))

This definition would not have made the productivity checker any
happier (it is productive, though, see the accompanying code).
However, it avoids the inefficient implementation of bind; note that
bind traverses the full prefix of later constructors before encounter-
ing the now constructor, if any.

Before we leave this section, let us work out a small example.
The term (λx.xx) (λx.xx) can be defined as follows (writing 0
instead of zero):

� : Tm 0
� = lam (var 0 · var 0) · lam (var 0 · var 0)

It is easy to show that this term does not terminate:

5 In the accompanying code J K is defined using a data type containing
the constructors return, >>= , fail and later, thus ensuring guardedness.
These constructors are interpreted in the usual way in a second pass over
the result. This technique is explained in detail by Danielsson (2010).

�-loops : J � K [] ≈ never
�-loops = later (] �-loops)

4. Type Soundness
To illustrate how the semantics can be used, let us define a type
system and prove type soundness.

I follow Leroy and Grall (2009) and define recursive, simple
types coinductively as follows:

data Ty : Set where
nat : Ty
_ : ∞ Ty→∞ Ty→ Ty

Contexts can be defined as vectors of types:

Ctxt : N→ Set
Ctxt n = Vec Ty n

The type system can then be defined inductively. 0 ` t ∈ σ means
that t has type σ in context 0:

data ` ∈ (0 : Ctxt n) : Tm n→ Ty→ Set where
con : 0 ` con i ∈ nat
var : 0 ` var x ∈ lookup x 0
lam : [σ :: 0 ` t ∈ [τ → 0 ` lam t ∈ σ _ τ

· : 0 ` t1 ∈ σ _ τ → 0 ` t2 ∈ [σ →
0 ` t1 · t2 ∈ [τ

The use of negative recursive types implies that there are well-
typed terms which do not terminate. For instance, � is typeable
with any type:

�-well-typed : (τ : Ty) → [] ` � ∈ τ
�-well-typed τ = · {σ =] σ} {τ =] τ}

(lam (var · var)) (lam (var · var))

where σ =] σ _] τ

(Some implicit arguments which Agda could not infer have been
given explicitly using the {x = . . .} notation.)

Let us now prove that well-typed programs (closed terms) do
not go wrong. It is easy to state what should be proved:

type-soundness : [] ` t ∈ σ → ¬ (J t K [] ≈ fail)

Here ¬ is negation (¬ A = A→ Empty, where Empty is the
empty type). As noted by Leroy and Grall it is harder to state type
soundness for usual big-step semantics, because such semantics do
not distinguish between terms which go wrong and terms which
fail to terminate.

We can start by defining a reusable predicate transformer which
lifts predicates on A to predicates on (Maybe A)⊥. If Lift P x holds,
then we know both that the computation x does not crash, and that
if x terminates with a value, then the value satisfies P. Lift is defined
coinductively as follows:

data Lift (P : A→ Set) : (Maybe A)⊥ → Set where
now-just : P x → Lift P (return x)
later : ∞ (Lift P ([x))→ Lift P (later x)

The proof below uses the fact that bind “preserves” Lift:

>>=-cong : Lift P x→ ({x : A} → P x→ Lift Q (f x))→
Lift Q (x >>= f)

Let us now define some typing predicates for values and com-
putations, introduced mainly as part of the proof of type soundness.
WFV σ v means that the value v is well-formed with respect to the
type σ . This relation is defined inductively, mutually with a corre-
sponding relation for environments:

mutual
data WFV : Ty→ Value→ Set where

con : WFV nat (con i)
lam : [σ :: 0 ` t ∈ [τ → WFE 0 ρ →

WFV (σ _ τ) (lam t ρ)
data WFE : Ctxt n→ Env n→ Set where

[] : WFE [] []
:: : WFV σ v→ WFE 0 ρ → WFE (σ :: 0) (v :: ρ)

The most interesting case above is that for closures. A closure
lam t ρ is well-formed with respect to σ _ τ if there is a context 0
such that 0 ` lam t ∈ σ _ τ and ρ is well-formed with respect to
0. The predicates are related by the following unsurprising lemma:

lookupwf : (x : Fin n) → WFE 0 ρ →
WFV (lookup x 0) (lookup x ρ)

We can use the predicate transformer introduced above to lift
WFV to computations:

WF⊥ : Ty→ (Maybe Value)⊥ → Set
WF⊥ σ x = Lift (WFV σ) x

Non-terminating computations are well-formed, and terminating
computations are well-formed if they are successful (not nothing)
and the value is well-formed. The following lemma implies that
type soundness can be established by showing that J t K [] is well-
formed:

does-not-go-wrong : WF⊥ σ x→ ¬ (x ≈ fail)
does-not-go-wrong (now-just) ()

does-not-go-wrong (later wf) (laterl eq) =
does-not-go-wrong ([wf) eq

Recall that negation is a function into the empty type. The lemma
is proved by structural recursion: induction on the structure of
the proof of x ≈ fail. The first clause contains an “absurd pat-
tern”, (), to indicate that there is no constructor application of type
return v ≈ fail.

We can now prove the main lemma, which states that the
computations resulting from evaluating well-typed terms in well-
formed environments are well-formed. This lemma uses the same
form of nested corecursion/structural recursion as the definition of
the semantics:

mutual
JKwf : 0 ` t ∈ σ → WFE 0 ρ → WF⊥ σ (J t K ρ)
JKwf con ρwf = now-just con
JKwf (var {x = x}) ρwf = now-just (lookupwf x ρwf)
JKwf (lam t∈) ρwf = now-just (lam t∈ ρwf)
JKwf (t1∈ · t2∈) ρwf =
JKwf t1∈ ρwf >>=-cong λ fwf →
JKwf t2∈ ρwf >>=-cong λ vwf →
•wf fwf vwf

•wf : WFV (σ _ τ) f → WFV ([σ) v →
WF⊥ ([τ) (f • v)

•wf (lam t1∈ ρ1wf) v2wf =

later (] JKwf t1∈ (v2wf :: ρ1wf))

The implicit variable pattern {x = x} is used to bind the variable
x, which is used on the right-hand side.

Finally we can conclude:

type-soundness : [] ` t ∈ σ → ¬ (J t K [] ≈ fail)
type-soundness t∈ = does-not-go-wrong (JKwf t∈ [])

Note that there is only one case for application in the proof above
(plus one sub-case in •wf).

The proof of type soundness is formulated for a functional se-
mantics defined using environments and closures, whereas Leroy
and Grall (2009) prove type soundness for relational semantics de-
fined using substitutions. I have chosen to use environments and
closures in this paper to avoid distracting details related to substi-
tutions. However, given an implementation of the operation which
substitutes a term for variable zero it is easy to define a substitution-
based functional semantics using the partiality monad, and given a
proof showing that this operation preserves types it is easy to adapt
the proof above to this semantics. See the accompanying code for
details.

The proof above can be compared to a typical type sound-
ness proof formulated for a relational, substitution-based small-
step semantics. Such a proof often amounts to proving progress
and preservation:

progress : [] ` t ∈ σ → Value t] ∃ λ t′ → t ; t′

preservation : [] ` t ∈ σ → t ; t′ → [] ` t′ ∈ σ

Here Value t means that t is a value, ; is the small-step relation,
and ∃ λ t′ → . . . can be read as “there exists a t′ such that. . . ”.
Given these two lemmas one can prove type soundness using classi-
cal reasoning (Leroy and Grall 2009):

type-soundness : [] ` t ∈ σ →
t ;∞] ∃ λ t′ → t ;? t′ × Value t′

Here ;? is the reflexive transitive closure of ; , t ;∞

means that t can reduce forever, and × can be read as “and”.
(Note that this statement of type soundness is inappropriate for
non-deterministic languages, as it does not rule out the possibility
of crashes.) The lemma JKwf above can be seen as encompassing
both progress and preservation, plus the combination of these two
lemmas into type soundness. This combination does not need to
involve classical reasoning, because WF⊥ is defined coinductively.

5. The Semantics are Classically Equivalent
Let us now prove that the semantics given in Section 3 is classically
equivalent to a relational semantics.

The semantics given in Figures 1–2 can be adapted to a setting
with well-scoped terms and de Bruijn indices in the following way:

data ` ⇓ (ρ : Env n) : Tm n→ Value→ Set where
con : ρ ` con i ⇓ con i
var : ρ ` var x ⇓ lookup x ρ
lam : ρ ` lam t ⇓ lam t ρ
app : ρ ` t1 ⇓ lam t′ ρ′ → ρ ` t2 ⇓ v′ →

v′ :: ρ′ ` t′ ⇓ v → ρ ` t1 · t2 ⇓ v
data ` ⇑ (ρ : Env n) : Tm n→ Set where

appl : ∞ (ρ ` t1 ⇑) → ρ ` t1 · t2 ⇑
appr : ρ ` t1 ⇓ v → ∞ (ρ ` t2 ⇑) → ρ ` t1 · t2 ⇑
app : ρ ` t1 ⇓ lam t′ ρ′ → ρ ` t2 ⇓ v′ →

∞ (v′ :: ρ′ ` t′ ⇑) → ρ ` t1 · t2 ⇑
` : Env n→ Tm n→ Set
ρ ` t = ¬ (∃ λ v→ ρ ` t ⇓ v) × ¬ (ρ ` t ⇑)

Note that ` ⇓ is defined inductively and ` ⇑ coinductively.
How should we state the equivalence of ` ⇓ / ` ⇑/ `

and J K? The following may seem like a suitable statement:

ρ ` t ⇓ v ⇔ J t K ρ ≈ return v
ρ ` t ⇑ ⇔ J t K ρ ≈ never
ρ ` t ⇔ J t K ρ ≈ fail

However, in a constructive setting one cannot prove that J t K ρ ≈
never implies ρ ` t ⇑. To see why, let us try. Assume that we
have a proof p of type J t1 · t2 K ρ ≈ never. Now we need to

construct a proof starting with either appl, appr or app. In order
to do this we need to know whether t1 terminates or not, but this is
not decidable given only the proof p. It also seems unlikely that we
can prove that ρ ` t implies J t K ρ ≈ fail: one might imagine
that this can be proved by just executing J t K ρ until it terminates
and then performing a case analysis, but the fact that t does not fail
to terminate is not (obviously) enough to convince Agda that it does
terminate.

We can avoid these issues by assuming the following form of
excluded middle, which states that everything (in Set) is decidable:

EM : Set1
EM = (A : Set) → A] ¬ A

We end up with the following six proof obligations:

ρ ` t ⇓ v → J t K ρ ≈ return v (1)
ρ ` t ⇑ → J t K ρ ≈ never (2)
J t K ρ ≈ return v → ρ ` t ⇓ v (3)

EM → J t K ρ ≈ never → ρ ` t ⇑ (4)
EM → ρ ` t → J t K ρ ≈ fail (5)

J t K ρ ≈ fail → ρ ` t (6)

The last two follow easily from the previous ones, so let us focus
on the first four:

1. Given p : ρ ` t ⇓ v it is easy to prove J t K ρ ≈ return v by
recursion on the structure of p.
The only interesting case is application. Let us introduce the
following abbreviation:

x1 J·K x2 = x1 >>= λ v1 → x2 >>= λ v2 → v1 • v2

We can then proceed as follows (using the same names as in the
app constructor’s type signature):

J t1 · t2 K ρ ∼=

J t1 K ρ J·K J t2 K ρ ≈

return (lam t′ ρ′) J·K return v′ &

J t′ K (v′ :: ρ′) ≈

return v

The inductive hypothesis is used twice in the second step and
once in the last one.

2. One can prove that ρ ` t ⇑ implies J t K ρ ≈ never using
corecursion plus an inner recursion on the structure of t.
In the case of the app constructor we can proceed as follows:

J t1 · t2 K ρ ∼=

J t1 K ρ J·K J t2 K ρ &

return (lam t′ ρ′) J·K return v′ ∼=
later (] J t′ K (v′ :: ρ′)) ≈

never

The second step uses (1) twice, once for p1 : ρ ` t1 ⇓ lam t′ ρ′
and once for p2 : ρ ` t2 ⇓ v′, plus the fact that x ≈ now v
implies that x & now v. The last step uses the coinductive hy-
pothesis (under a guard) for p3 : v′ :: ρ′ ` t′ ⇑.

The appl case is different:

J t1 · t2 K ρ ∼=

J t1 K ρ J·K J t2 K ρ ≈
never J·K J t2 K ρ ∼=
never

The last step uses the fact that never is a left zero of bind. The
second step uses the inductive hypothesis for p : ρ ` t1 ⇑;
note that t1 is structurally smaller than t1 · t2, and that this call
is not guarded.

The appr case is similar to the appl one, and omitted.
Note that the use of transitivity in this proof is safe, as discussed
in Section 2.

3. Given p : J t K ρ ≈ return v one can observe that p cannot
contain the constructors later or laterr: it must have the form
laterl (. . . (laterl now) . . .), with a finite number of laterl

constructors—one for every β-reduction in the computation of
J t K ρ. Let the size of p be this number. One can prove that
J t K ρ ≈ return v implies ρ ` t ⇓ v by complete induction
on this size.
Only the application case is interesting. We can prove the fol-
lowing inversion lemma:

(x >>= f) ≈ return v →
∃ λ v′ → (x ≈ return v′) × (f v′ ≈ return v)

Here the size of the left-hand proof is equal to the sum of the
sizes of the two right-hand proofs. If we have J t1 · t2 K ρ ≈
return v, then we can use inversion twice plus case analysis
to deduce that J t1 K ρ ≈ return (lam t′ ρ′) and J t2 K ρ ≈
return v′ for some t′, ρ′, v′ such that J t′ K (v′ :: ρ′) ≈ return v.
We can finish by applying app to three instances of the induc-
tive hypothesis, after making sure that the proofs are small
enough.
This proof is a bit awkward when written out in detail, due to
the use of sizes.

4. Finally we should prove that excluded middle and J t K ρ ≈
never imply ρ ` t ⇑. This can be proved using corecursion.
As before the only interesting case is application. We can prove
the following inversion lemma by using excluded middle:

(x >>= f) ≈ never →
x ≈ never]
∃ λ v→ (x ≈ return v) × (f v ≈ never)

If x >>= f does not terminate, then either x fails to terminate,
or x terminates with a value v and f v does not terminate. Given
a proof of J t1 · t2 K ρ ≈ never we can use inversion twice to
determine which of appl, appr and app to emit, in each case
continuing corecursively (and in the latter two cases also using
(3)).

6. Virtual Machine
This section defines a virtual machine (VM), following Leroy and
Grall (2009) but defining the semantics functionally instead of
relationally, and using a well-scoped approach. (The accompanying
code contains a relational semantics and a proof showing that it is
equivalent to the functional one.)

The VM is stack-based, and uses the following instructions:

mutual
data Instr (n : N) : Set where

var : Fin n → Instr n -- Push variable.
con : N → Instr n -- Push constant.
clo : Code (1 + n)→ Instr n -- Push closure.
app : Instr n -- Apply function.
ret : Instr n -- Return.

Code : N→ Set
Code n = List (Instr n)

Instructions of type Instr n have at most n free variables. The type
family Code consists of sequences of instructions.

Values and environments (VM-Value and VM-Env) are defined
as in Section 3, but using Code instead of Tm in the definition of
closures. Stacks contain values and return frames:

data Stack-element : Set where
val : VM-Value → Stack-element
ret : Code n→ VM-Env n→ Stack-element

Stack : Set
Stack = List Stack-element

The VM operates on states containing three components, the
code, a stack, and an environment:

data State : Set where
〈 , , 〉 : Code n→ Stack→ VM-Env n→ State

The result of running the VM one step, starting in a given state, is
either a new state, normal termination with a value, or abnormal
termination (a crash):

data Result : Set where
continue : State → Result
done : VM-Value→ Result
crash : Result

The function step (see Figure 3) shows how the result is computed.
Given step it is easy to define the VM’s semantics corecursively:

exec : State→ (Maybe VM-Value)⊥
exec s with step s
... | continue s′ = later (] exec s′)
... | done v = return v
... | crash = fail

In a state s, run step s. If the result is continue s′, continue running
from s′; if it is done v, return v; and if it is crash, fail.

The function exec is an example of a functional, small-step
operational semantics. As before it is clear that the semantics is
deterministic and computable, and just as with a relational small-
step semantics we avoid duplication of rules. However, the use of a
wild-card in the last clause of step means that it is possible to forget
a rule. If we tried to omit one of the clauses from the definition of
J K (Section 3), then the definition would be rejected, but this is not
the case for the first six clauses of step.

7. Compiler Correctness
Let us now define a compiler from Tm to Code and prove that
it preserves the semantics of the input program. The definition
follows Leroy and Grall (2009), but uses a code continuation to
avoid the use of list append and some proof overhead (Hutton 2007,
Section 13.7):

comp : Tm n→ Code n→ Code n
comp (con i) c = con i :: c
comp (var x) c = var x :: c
comp (lam t) c = clo (comp t [ret]) :: c
comp (t1 · t2) c = comp t1 (comp t2 (app :: c))

We can also “compile” values:

compv : Value→ VM-Value
compv (con i) = con i
compv (lam t ρ) = lam (comp t [ret]) (map compv ρ)

I state compiler correctness as follows:

correct : (t : Tm 0)→
exec 〈 comp t [], [], [] 〉 ≈
(J t K [] >>= λ v→ return (compv v))

Given a closed term t, the result of running the corresponding
compiled code (comp t []) on the VM (starting with an empty stack
and environment), should be the same as evaluating the term (in

step : State→ Result
step 〈 [] , val v :: [] , [] 〉 = done v
step 〈 var x :: c, s, ρ 〉 = continue 〈 c , val (lookup x ρ) :: s, ρ 〉
step 〈 con i :: c, s, ρ 〉 = continue 〈 c , val (con i) :: s, ρ 〉

step 〈 clo c′ :: c, s, ρ 〉 = continue 〈 c , val (lam c′ ρ) :: s, ρ 〉

step 〈 app :: c, val v :: val (lam c′ ρ′) :: s, ρ 〉 = continue 〈 c′, ret c ρ :: s, v :: ρ′ 〉
step 〈 ret :: c, val v :: ret c′ ρ′ :: s, ρ 〉 = continue 〈 c′, val v :: s, ρ′ 〉
step = crash

Figure 3. A function which computes the result of running the virtual machine one step from a given state.

an empty environment) and, if evaluation terminates with a value,
return the “compiled” variant of this value.

We can compare this statement to a corresponding statement
phrased for relational semantics:

([] ` t ⇓ v ⇔ 〈 comp t [], [], [] 〉;?

〈 [], val (compv v) :: [], [] 〉) ×
([] ` t ⇑ ⇔ 〈 comp t [], [], [] 〉;∞) ×

([] ` t ⇔ 〈 comp t [], [], [] 〉;)

Here ; : State→ State→ Set is the VM’s small-step relation,
;? its reflexive transitive closure, s ;∞ means that there is an

infinite transition sequence starting in s, and s ; means that there
is a “stuck” transition sequence starting in s (i.e., a sequence which
cannot be extended further, and which does not end with a state of
the form 〈 [], val :: [], [] 〉). I prefer the statement of correct
above: I find it easier to understand and get correct.

Let us now prove correct. In order to do this the statement can
be generalised as follows:

correct′ :
(t : Tm n) {k : Value→ (Maybe VM-Value)⊥}
(hyp : (v : Value)→

exec 〈 c, val (compv v) :: s,map compv ρ 〉 ≈ k v)→
exec 〈 comp t c, s,map compv ρ 〉 ≈ (J t K ρ >>= k)

This statement is written in continuation-passing style to avoid
some uses of transitivity (which can be problematic, as discussed
in Section 2). The statement is proved mutually with the following
one:

•-correct :
(v1 v2 : Value) {k : Value→ (Maybe VM-Value)⊥}
(hyp : (v : Value)→

exec 〈 c, val (compv v) :: s,map compv ρ 〉 ≈ k v)→
exec 〈 app :: c, val (compv v2) :: val (compv v1) :: s,

map compv ρ 〉
≈ (v1 • v2 >>= k)

The statements can be proved using the same recursion structure as
J K

CPS
/ •CPS : mixed corecursion/structural recursion.

The interesting case of correct′ is application, where we can
proceed as follows (with safe uses of transitivity):

exec 〈 comp t1 (comp t2 (app :: c)), s,map compv ρ 〉 ≈

J t1 K ρ >>= λ v1 → J t2 K ρ >>= λ v2 → v1 • v2 >>= k ∼=
J t1 K ρ >>= λ v1 → (J t2 K ρ >>= λ v2 → v1 • v2) >>= k ∼=
(J t1 K ρ >>= λ v1 → J t2 K ρ >>= λ v2 → v1 • v2) >>= k ∼=
J t1 · t2 K ρ >>= k

The last three steps use associativity of bind twice. (These uses
of associativity could have been avoided by using continuation-
passing style instead of bind when defining the semantics. See the
accompanying code.) The first step is more complicated. Here is its
proof term:

correct′ t1 (λ v1 → correct′ t2 (λ v2 → •-correct v1 v2 hyp))

First an appeal to the inductive hypothesis (t1 is structurally smaller
than t1 · t2), then, in the continuation, another appeal to the in-
ductive hypothesis, and finally, in the nested continuation, a use
of •-correct.

The interesting case of •-correct is when v1 is a closure,
lam t1 ρ1, in which case we need to prove that

exec 〈 app :: c, val (compv v2) :: val (compv (lam t1 ρ1)) :: s,
map compv ρ 〉

is weakly bisimilar to

lam t1 ρ1 • v2 >>= k.

We can start by emitting a later constructor and suspension:

later (] ?)

The question mark should be replaced by a proof showing that

exec 〈 comp t1 [ret], ret c (map compv ρ) :: s,
map compv (v2 :: ρ1) 〉

is weakly bisimilar to

J t1 K (v2 :: ρ1) >>= k.

This can be proved by appeal to the coinductive hypothesis:

correct′ t1 (λ v→ laterl (hyp v))

Here the use of laterl corresponds to the reduction of

exec 〈 [ret], val (compv v) :: ret c (map compv ρ) :: s,
map compv (v2 :: ρ1) 〉

to

exec 〈 c, val (compv v) :: s,map compv ρ 〉,

which has the right form for the use of hyp.
The proof sketch above—and especially the compact proof

terms—may look a bit bewildering. Fortunately one does not have
to understand every detail of a machine-checked proof. It is more
important to understand the statement of the theorem.6 Further-
more, the writer of the proof has the support of a proof assistant,
that in my case provided much help with the construction of the
proof terms.

The proof above can be compared to that of Leroy and Grall
(2009), who prove the following two implications (in their slightly
different setting):

[] ` t ⇓ v → 〈 comp t [], [], [] 〉;?

〈 [], val (compv v) :: [], [] 〉
[] ` t ⇑ → 〈 comp t [], [], [] 〉;∞

6 With the caveat that one should not put too much trust into Agda, which
is a very experimental system.

Consider application. In the proof above there is one case for ap-
plication, with two sub-cases, one for crashes and one for closures.
In the proof of the two implications there are four cases for ap-
plication: one in case of termination and three for non-terminating
applications. The rule duplication in the semantics shows up as rule
duplication in the proof.

8. Non-determinism
The compiler correctness statement used above is sometimes too
restrictive (Leroy 2009). For instance, evaluation order may be
left up to the compiler. This section illustrates how this kind of
situation can be handled by defining a non-deterministic language,
and implementing a compiler that implements one out of many
possible semantics for this language.

The syntax of the language defined in Section 3 is extended with
a term-former for non-deterministic choice:

| : Tm n→ Tm n→ Tm n

The semantic domain is now the maybe monad transformer applied
to the partiality monad transformer (λM A. νX. M (A] X) for
strictly positive monads M) applied to a non-determinism monad
(λA. µX. A] X × X; Moggi (1990)), implemented monolithi-
cally as follows:

data D (A : Set) : Set where
fail : D A
return : A → D A
| : D A→ D A→ D A

later : ∞ (D A) → D A

>>= : D A→ (A→ D B)→ D B
fail >>= f = fail
return x >>= f = f x
(x1 | x2) >>= f = (x1 >>= f) | (x2 >>= f)
later x >>= f = later (] ([x >>= f))

As before the monad laws hold up to strong bisimilarity, which can
be defined as follows:

data ∼= : D A→ D A→ Set where
fail : fail ∼= fail
return : return x ∼= return x
| : x1 ∼= y1 → x2 ∼= y2 → x1 | x2 ∼= y1 | y2

later : ∞ ([x ∼= [y) → later x ∼= later y

Finally we can extend the semantics by adding a clause for choice
(note that | is overloaded):

J t1 | t2 K ρ = J t1 K ρ | J t2 K ρ

It may be worth pointing out that now the semantics is no longer
deterministic, despite being defined as a function.

As an example we can define a call-by-value fixpoint combi-
nator (Z = λf . (λg. f (λx. g g x)) (λg. f (λx. g g x))) and a non-
deterministic non-terminating term (t = Z (λf x. f x | f x) 0):

Z : Tm 0
Z = lam (h · h)

where h = lam (var 1 · lam (var 1 · var 1 · var 0))
t : Tm 0
t = Z · lam (lam (var 1 · var 0 | var 1 · var 0)) · con 0

The semantics of t, J t K [], is strongly bisimilar to t-sem:

t-sem : D Value
t-sem = later (] later (] later (] later (] (t-sem | t-sem)))))

The virtual machine is unchanged, so the compiler correctness
statement will relate deterministic and non-deterministic computa-

tions. To do this we can use the following variant of weak bisimi-
larity:

data ≈∈ : (Maybe A)⊥ → D A→ Set where
fail : now nothing ≈∈ fail

return : now (just x) ≈∈ return x

|
l : x ≈∈ y1 → x ≈∈ y1 | y2
|
r : x ≈∈ y2 → x ≈∈ y1 | y2

later : ∞ ([x ≈∈ [y)→ later x ≈∈ later y
laterl : [x ≈∈ y → later x ≈∈ y
laterr : x ≈∈ [y → x ≈∈ later y

You can read x ≈∈ y as “x implements one of the allowed seman-
tics of y”.

Compiler correctness can now be stated as follows:

correct : (t : Tm 0)→
exec 〈 comp t [], [], [] 〉 ≈∈

J t K [] >>= λ v→ return (compv v)

If we extend the compiler in the following way, then we can prove
that it is correct using an argument which is very similar to that in
Section 7:

comp (t1 | t2) c = comp t1 c

We can also prove type soundness for the non-deterministic
language, using the type system from Section 4 extended with the
following rule:

| : 0 ` t1 ∈ σ → 0 ` t2 ∈ σ → 0 ` t1 | t2 ∈ σ

Type soundness can be stated using ≈
∈ . Type-correct terms

should not crash, no matter how the non-determinism is resolved:

type-soundness : [] ` t ∈ σ →
¬ (now nothing ≈∈ J t K [])

It is easy to prove this statement by adapting the proof from Sec-
tion 4. All it takes is to extend the Lift type with the constructor

| : Lift P x → Lift P y → Lift P (x | y),

and then propagating this change through the rest of the proof.
Note that the new definition of Lift uses induction nested inside
coinduction (as do D and ≈∈).

9. Term Equivalences
Let us now return to the deterministic language from Section 3.
Weak bisimilarity as defined in Section 2 is, despite its name, a very
strong notion of equality for the semantic domain (Maybe Value)⊥.
We can lift this equality to closed terms in the following way:

≡ : Tm 0→ Tm 0→ Set
t1 ≡ t2 = J t1 K [] ≈ J t2 K []

This is a very syntactic equality, which distinguishes the obser-
vationally equivalent terms t1 = lam (lam (var 0)) · con 0 and
t2 = lam (var 0), because

J t1 K [] ≈

return (lam (var 0) (con 0 :: [])) 6≈
return (lam (var 0) []) ≈
J t2 K [].

The relational big-step semantics from Section 5 is no different:
[] ` t1 ⇓ v does not imply that we have [] ` t2 ⇓ v.

This section defines some less syntactical term equivalences.
Discussion of the finer points of these equivalences is out of scope
for this paper; the main point is that they can be defined without too
much fuss.

Let us start by defining a notion of applicative bisimilarity
(Abramsky 1990). Computations are equivalent (≈⊥) if they
are weakly bisimilar, with equivalent (rather than equal) possi-
bly exceptional values; possibly exceptional values are equivalent
(≈MV) if they are of the same kind and, in the case of success,
contain equivalent values; and values are equivalent (≈V) if they
are either equal constants, or closures which are equivalent when
evaluated with the free variables bound to an arbitrary value:7

mutual
data ≈⊥ :

(Maybe Value)⊥ → (Maybe Value)⊥ → Set where
now : u ≈MV v → now u ≈⊥ now v
later : ∞ ([x ≈⊥ [y)→ later x ≈⊥ later y
laterl : [x ≈⊥ y → later x ≈⊥ y
laterr : x ≈⊥ [y → x ≈⊥ later y

data ≈MV : Maybe Value→ Maybe Value→ Set where
just : u ≈V v→ just u ≈MV just v
nothing : nothing ≈MV nothing

data ≈V : Value→ Value→ Set where
con : con i ≈V con i
lam : (∀ v→∞ (J t1 K (v :: ρ1) ≈⊥ J t2 K (v :: ρ2)))→

lam t1 ρ1 ≈V lam t2 ρ2

This is yet again a definition which uses induction nested inside
coinduction. Note that the lam constructor is coinductive. If this
constructor were inductive, then the relations would not be reflex-
ive: lam (var zero) [] would be provably distinct from itself.

Using the relations above we can define applicative bisimilarity
by stating that terms are equivalent if they are equivalent when
evaluated in an arbitrary context:

≈T : Tm n→ Tm n→ Set
t1 ≈T t2 = ∀ ρ → J t1 K ρ ≈⊥ J t2 K ρ

The definition of ≈⊥ is very similar to the definition of weak
bisimilarity in Section 2. It is possible to define a single notion of
weak bisimilarity, parametrised by a relation to use for values. The
accompanying code uses such a definition.

Let us now turn to contextual equivalence. Contexts with zero
or more holes can be defined as follows:

data Context (m : N) : N→ Set where
hole : Context m m
con : N → Context m n
var : Fin n → Context m n
lam : Context m (1 + n) → Context m n
· : Context m n→ Context m n→ Context m n

The type Context m n contains contexts whose holes expect terms
of type Tm m. If we fill the holes, then we get a term of type Tm n:

[] : Context m n→ Tm m→ Tm n
hole [t] = t
con i [t] = con i
var x [t] = var x
lam C [t] = lam (C [t])
(C1 · C2) [t] = C1 [t] · C2 [t]

Contextual equivalence can be defined in two equivalent ways.
The usual one states that t1 and t2 are contextually equivalent if
C [t1] terminates iff C [t2] terminates, for any closing context C:

⇓ : A⊥ → Set
x ⇓ = ∃ λ v→ x ≈ now v

7
∀ v→ . . . means the same as (v :)→ . . .; Agda tries to infer the value

of the underscore automatically.

≈C : Tm n→ Tm n→ Set
t1 ≈C t2 = ∀ C → J C [t1] K [] ⇓ ⇔ J C [t2] K [] ⇓

However, we can also define contextual equivalence using weak
bisimilarity:

≈
′
C : Tm n→ Tm n→ Set

t1 ≈′C t2 = ∀ C → J C [t1] K [] ≈◦ J C [t2] K []

Here ≈◦ is a notion of weak bisimilarity which identifies all
terminating computations:

now : now u ≈◦ now v

It is easy to prove that these two notions of contextual equivalence
are equivalent.

As an aside one can note that the contextual equivalences above
are a bit strange, because there is no context which distinguishes
con 0 from con 1. This could be fixed by extending the language
with suitable constructions for observing the difference between
distinct constants.

10. Conclusions
When writing down a semantics I think one of the main priorities
should be to make it easy to understand. Sometimes a more com-
plicated definition may be more convenient for certain tasks, but
in that case one can define two semantics and prove that they are
equivalent.

I hope I have convinced you that functional operational seman-
tics defined using the partiality monad are easy to understand. I
have also used two such semantics to state a compiler correctness
result, and I find this statement to be easier to understand than a cor-
responding statement phrased using relational semantics (see Sec-
tion 7).

The semantics also seem to be useful when it comes to proving
typical meta-theoretic properties, at least for the simple languages
discussed in this paper. I have proved type soundness and com-
piler correctness directly for the semantics given above. The type
soundness proof in Section 4 is given in relatively complete, formal
detail, yet it is short and should be easy to follow. Furthermore, as
mentioned in Section 7, the compiler correctness proof avoids some
duplication which is present in a corresponding proof for relational
semantics.

As discussed above the support for total corecursion in lan-
guages like Agda and Coq is somewhat limited: definitions like
J K are often rejected. However, my experience with sized types
in MiniAgda (see Section 2) is encouraging. I suspect that a more
polished implementation of sized types could be quite satisfying to
work with.

Finally I want to mention a drawback of this kind of semantics:
proofs which proceed by induction on the structure of ` ⇓
when a relational big-step semantics is used can become somewhat
awkward when transferred to this setting, as illustrated by the proof
in Section 5 showing that J t K ρ ≈ return v implies ρ ` t ⇓ v.
However, it is unclear to me how often this is actually a problem.
For instance, neither the type soundness proofs nor the compiler
correctness proofs in this paper are affected by this drawback.

Acknowledgements
I want to thank Thorsten Altenkirch for encouraging this line of
work, Peter Dybjer for useful feedback on a draft of the paper, and
Tarmo Uustalu for pointing out some related work. I would also
like to thank the anonymous reviewers for lots of useful feedback.

Large parts of this work were done when I was working at
the University of Nottingham, with financial support from EPSRC
(grant code: EP/E04350X/1). I have also received support from the

ERC: “The research leading to these results has received funding
from the European Research Council under the European Union’s
Seventh Framework Programme (FP7/2007-2013) / ERC grant
agreement n◦ 247219.”

References
Andreas Abel. MiniAgda: Integrating sized and dependent types. In Pro-

ceedings Workshop on Partiality and Recursion in Interactive Theorem
Provers (PAR 2010), volume 43 of EPTCS, 2010. doi:10.4204/EPTCS.
43.2.

Samson Abramsky. The lazy lambda calculus. In Research Topics in
Functional Programming. Addison-Wesley, 1990.

The Agda Team. The Agda Wiki. Available at http://wiki.portal.
chalmers.se/agda/, 2012.

Thorsten Altenkirch and Nils Anders Danielsson. Termination checking
in the presence of nested inductive and coinductive types. Short note
supporting a talk given at the Workshop on Partiality and Recursion in
Interactive Theorem Provers (PAR 2010), 2010.

Brian E. Aydemir, Aaron Bohannon, Matthew Fairbairn, J. Nathan Foster,
Benjamin C. Pierce, Peter Sewell, Dimitrios Vytiniotis, Geoffrey Wash-
burn, Stephanie Weirich, and Steve Zdancewic. Mechanized metatheory
for the masses: The PoplMark challenge. In Theorem Proving in Higher
Order Logics, 18th International Conference, TPHOLs 2005, volume
3603 of LNCS, pages 50–65, 2005. doi:10.1007/11541868 4.

Nick Benton and Chung-Kil Hur. Biorthogonality, step-indexing and com-
piler correctness. In ICFP’09, Proceedings of the 2009 ACM SIGPLAN
International Conference on Functional Programming, pages 97–107,
2009. doi:10.1145/1596550.1596567.

Nick Benton, Andrew Kennedy, and Carsten Varming. Some domain theory
and denotational semantics in Coq. In Theorem Proving in Higher Order
Logics, 22nd International Conference, TPHOLs 2009, volume 5674 of
LNCS, pages 115–130, 2009. doi:10.1007/978-3-642-03359-9 10.

Venanzio Capretta. General recursion via coinductive types. Logical Meth-
ods in Computer Science, 1(2):1–28, 2005. doi:10.2168/LMCS-1(2:
1)2005.

The Coq Development Team. The Coq Proof Assistant, Reference Manual,
Version 8.3pl3, 2011.

Thierry Coquand. Infinite objects in type theory. In Types for Proofs and
Programs, International Workshop TYPES ’93, volume 806 of LNCS,
pages 62–78, 1994. doi:10.1007/3-540-58085-9 72.

Patrick Cousot and Radhia Cousot. Inductive definitions, semantics
and abstract interpretations. In POPL ’92, Proceedings of the 19th
ACM SIGPLAN-SIGACT symposium on Principles of programming lan-
guages, pages 83–94, 1992. doi:10.1145/143165.143184.

Patrick Cousot and Radhia Cousot. Bi-inductive structural semantics. Infor-
mation and Computation, 207(2):258–283, 2009. doi:10.1016/j.ic.2008.
03.025.

Nils Anders Danielsson. Beating the productivity checker using embedded
languages. In Proceedings Workshop on Partiality and Recursion in
Interactive Theorem Provers (PAR 2010), volume 43 of EPTCS, pages
29–48, 2010. doi:10.4204/EPTCS.43.3.

Nils Anders Danielsson and Thorsten Altenkirch. Subtyping, declaratively:
An exercise in mixed induction and coinduction. In Mathematics of Pro-
gram Construction, 10th International Conference, MPC 2010, volume
6120 of LNCS, pages 100–118, 2010. doi:10.1007/978-3-642-13321-3
8.

Neil Ghani and Tarmo Uustalu. Monad combinators, non-determinism
and probabilistic choice. Extended abstract distributed at the work-
shop on Categorical Methods in Concurrency, Interaction and Mobility
(CMCIM 2004), 2004.

Sergey Goncharov and Lutz Schröder. A coinductive calculus for asyn-
chronous side-effecting processes. In Fundamentals of Computation
Theory, 18th International Symposium, FCT 2011, volume 6914 of
LNCS, pages 276–287, 2011. doi:10.1007/978-3-642-22953-4 24.

Graham Hutton. Programming in Haskell. Cambridge University Press,
2007.

Xavier Leroy. Formal verification of a realistic compiler. Communications
of the ACM, 52:107–115, 2009. doi:10.1145/1538788.1538814.

Xavier Leroy and Hervé Grall. Coinductive big-step operational semantics.
Information and Computation, 207(2):284–304, 2009. doi:10.1016/j.ic.
2007.12.004.

Robin Milner and Mads Tofte. Co-induction in relational semantics.
Theoretical Computer Science, 87(1):209–220, 1991. doi:10.1016/
0304-3975(91)90033-X.

Eugenio Moggi. An abstract view of programming languages. Technical
Report ECS-LFCS-90-113, Lab. for Found. of Comp. Sci., University of
Edinburgh, 1990.

Eugenio Moggi. Notions of computation and monads. Information and
Computation, 93(1):55–92, 1991. doi:10.1016/0890-5401(91)90052-4.

Keiko Nakata and Tarmo Uustalu. Trace-based coinductive operational
semantics for While: Big-step and small-step, relational and functional
styles. In Theorem Proving in Higher Order Logics, 22nd International
Conference, TPHOLs 2009, volume 5674 of LNCS, pages 375–390,
2009. doi:10.1007/978-3-642-03359-9 26.

Keiko Nakata and Tarmo Uustalu. Resumptions, weak bisimilarity and
big-step semantics for While with interactive I/O: An exercise in mixed
induction-coinduction. In Proceedings Seventh Workshop on Structural
Operational Semantics (SOS 2010), volume 32 of EPTCS, pages 57–75,
2010. doi:10.4204/EPTCS.32.5.

Ulf Norell. Towards a practical programming language based on depen-
dent type theory. PhD thesis, Chalmers University of Technology and
Göteborg University, 2007.

Christine Paulin-Mohring. A constructive denotational semantics for Kahn
networks in Coq. In From Semantics to Computer Science: Essays in
Honour of Gilles Kahn, pages 383–413. Cambridge University Press,
2009.

John C. Reynolds. Definitional interpreters for higher-order programming
languages. In ACM ’72, Proceedings of the ACM annual conference,
volume 2, pages 717–740, 1972. doi:10.1145/800194.805852.

J.J.M.M. Rutten. A note on coinduction and weak bisimilarity for while
programs. Theoretical Informatics and Applications, 33:393–400, 1999.
doi:10.1051/ita:1999125.

Davide Sangiorgi and Robin Milner. The problem of “weak bisimulation
up to”. In CONCUR ’92, Third International Conference on Concur-
rency Theory, volume 630 of LNCS, pages 32–46, 1992. doi:10.1007/
BFb0084781.

Mads Tofte. Type inference for polymorphic references. Information and
Computation, 89(1):1–34, 1990. doi:10.1016/0890-5401(90)90018-D.

Philip Wadler. The essence of functional programming. In POPL ’92,
Proceedings of the 19th ACM SIGPLAN-SIGACT symposium on Princi-
ples of programming languages, pages 1–14, 1992. doi:10.1145/143165.
143169.

http://dx.doi.org/10.4204/EPTCS.43.2
http://dx.doi.org/10.4204/EPTCS.43.2
http://wiki.portal.chalmers.se/agda/
http://wiki.portal.chalmers.se/agda/
http://dx.doi.org/10.1007/11541868_4
http://dx.doi.org/10.1145/1596550.1596567
http://dx.doi.org/10.1007/978-3-642-03359-9_10
http://dx.doi.org/10.2168/LMCS-1(2:1)2005
http://dx.doi.org/10.2168/LMCS-1(2:1)2005
http://dx.doi.org/10.1007/3-540-58085-9_72
http://dx.doi.org/10.1145/143165.143184
http://dx.doi.org/10.1016/j.ic.2008.03.025
http://dx.doi.org/10.1016/j.ic.2008.03.025
http://dx.doi.org/10.4204/EPTCS.43.3
http://dx.doi.org/10.1007/978-3-642-13321-3_8
http://dx.doi.org/10.1007/978-3-642-13321-3_8
http://dx.doi.org/10.1007/978-3-642-22953-4_24
http://dx.doi.org/10.1145/1538788.1538814
http://dx.doi.org/10.1016/j.ic.2007.12.004
http://dx.doi.org/10.1016/j.ic.2007.12.004
http://dx.doi.org/10.1016/0304-3975(91)90033-X
http://dx.doi.org/10.1016/0304-3975(91)90033-X
http://dx.doi.org/10.1016/0890-5401(91)90052-4
http://dx.doi.org/10.1007/978-3-642-03359-9_26
http://dx.doi.org/10.4204/EPTCS.32.5
http://dx.doi.org/10.1145/800194.805852
http://dx.doi.org/10.1051/ita:1999125
http://dx.doi.org/10.1007/BFb0084781
http://dx.doi.org/10.1007/BFb0084781
http://dx.doi.org/10.1016/0890-5401(90)90018-D
http://dx.doi.org/10.1145/143165.143169
http://dx.doi.org/10.1145/143165.143169

	Introduction
	Operational?
	Mechanisation
	Related Work

	The Partiality Monad
	A Functional, Operational Semantics
	Type Soundness
	The Semantics are Classically Equivalent
	Virtual Machine
	Compiler Correctness
	Non-determinism
	Term Equivalences
	Conclusions

