Fast and Loose Reasoning is
Morally Correct

Nils Anders Danielsson Jeremy Gibbons
John Hughes Patrik Jansson

Chalmers and Oxford

Sloppy proofs

» Many proofs assume language is total.

» No non-termination.
» No bottoms.
» Often also no infinite values.

Sloppy proofs

» Many proofs assume language is total.

» No non-termination.
» No bottoms.
» Often also no infinite values.

» When this is not the case:
Fast and loose reasoning.

Another example

» Program derived from specification
using total methods.

» Result transcribed into partial language.

This work

Fast and loose reasoning is
morally correct

Example

Total methods sometimes cheaper.

Example
reverse o map (Ax.x — y)
is the left inverse of

map (Ax.y + x) o reverse.

Example, total language

(reverse o map (Ax.x — y)) o (map (Ax.y + x) o reverse)
= {map f omap g = map (f o g), o associative

reverse o map ((Ax.x — y) o (Ax.y + x)) o reverse

— {(/\x.x —y)o(Mxy+x)=id

reverse o map id o reverse

= {map id = id, o associative, idof = f, reverseo reverse = id

id

Example, partial language

(reverse o map (Ax.x — y)) o (map (Ax.y + x) o reverse)
= {map f omap g = map (f o g), o associative
reverse o map (()\x x — y) o (Ax.y + x)) o reverse

{‘ (Ax.x —y)o(Ax.y +x)=id

reverse o map id o reverse
= {map id = id, o associative, idof = f, reverseo reverse = id

id

Problem
data Nat = Zero | Succ Nat

infinity
Succ (Succ Zero)
Succ Zero Succ (Succ 1)

Problem

(y+x)—y=x
» (Succ Zero + Succ 1) — Succ Zero
= 1 # Succ L

> (infinity + Zero) — infinity
= 1 # Zero

Example, partial language

(reverse o map (Ax.x — y)) o (map (Ax.y + x) o reverse)
= {map f omap g = map (f o g), o associative
reverse o map (()\x x — y) o (Ax.y + x)) o reverse

{‘ (Ax.x —y)o(Ax.y +x)=id

reverse o map id o reverse

- {map id = id, o associative, ,

‘ reverse o reverse = id ‘

id

Example, partial language

Assume that xs :: [Nat] and y :: Nat are total, finite.

((reverse o map (Ax.x — y)) o
(map (Ax.y + x) o reverse)) xs

— {map f o map g = map (f o g), definition of o

reverse (map ((Ax.x — y) o (Ax.y + x)) (reverse xs))
{x7y total A y finite = ((Ax.x—y)o(Ax.y+x)) x =id x,

xs total, finite = reverse xs total, finite,
ys total A Vtotal x. fx=gx = mapfys=mapgys

reverse (map id (reverse xs))
{map id=id, id ys = ys,

xs total, finite = reverse (reverse xs) = xs

XS

But. ..

» Programs syntactically identical.

» “Total subset” of partial semantics
basically the same as total semantics.

» So we could just use the total result
extended with some preconditions?

Rest of the talk

» Two languages.
» PER: Moral equality.
» Total equality implies moral equality.

» Translate moral equality.

Two higher-order, typed FPLs

» Same syntax.
» Total, set-theoretic: (t).
» Partial, domain-theoretic: [t].

» Pointed CPOs, lifted types,
strict and non-strict.

» Recursive types (polynomial).
» Inductive/coinductive types.

» fold /unfold, but not fix.

Moral equality (~)

» PER on semantic domains of partial
language.

» Defines the total values.

» Functions:

> fNa—n'g A
f#£1 Ng#LA
Vx,y € o] .
Xr~gy = fxrrg8y

Moral equality (~)

» PER on semantic domains of partial
language.
» Defines the total values.

» Algebraic data types:
» Defined.

» Same constructor.
» Arguments related.

Moral equality (~)

» PER on semantic domains of partial
language.

» Defines the total values.
» Lists:

o O 1 X T i L
> X~ vl e xey

> [Xl,XQ,...] ~lo] [yl,yg,...] =
Xp~g Y1 NXo g Yo AL

Total equality implies
moral equality

() = (&) = [u]~ [zl

t1, tp Closed terms.
(-) Total semantics.

[-] Partial semantics.

Example revisited

Ihs = (reverse o map (Ax.x — 1))
o (map (Ax.1 + x) o reverse)

> (Ihs) = (id)
> [lhs] ~ [id]
» Vxs :: [Nat].
[xs] ~ [xs] = [lhs xs]| ~ [xs]

» V fin, tot xs :: [Nat]|. [lhs xs| = [xs]

Discussion

» Fast and loose proofs OK (in a sense).

» Polymorphism, stronger recursive
types, type constructors.

» Equational reasoning.

Discussion

» Sometimes partial reasoning is to be
preferred.

» Limited to total subset of the
language.

» Inductive and coinductive types
separate:
No hylomorphisms (pretty o parse).

Discussion

» Combining partial and total methods
probably useful, but. ..

> ...~ is not a congruence,
x~y but fxofy.

» Can translate, though.

Fast and loose
reasoning IS
morally correct

Bicartesian closed category

... with initial algebras and final coalgebras.
» Objects: Types.

» Morphisms: Equivalence classes of total
functions.

» (0): The equivalence class of the
underlying (o).

	Introduction
	Example
	Theory
	Closing words
	Final message

