
Fast and Loose Reasoning is
Morally Correct

Nils Anders Danielsson Jeremy Gibbons

John Hughes Patrik Jansson

Chalmers and Oxford

Sloppy proofs

I Many proofs assume language is total.

I No non-termination.

I No bottoms.

I Often also no infinite values.

I When this is not the case:

Fast and loose reasoning.

Sloppy proofs

I Many proofs assume language is total.

I No non-termination.

I No bottoms.

I Often also no infinite values.

I When this is not the case:

Fast and loose reasoning.

Another example

I Program derived from specification

using total methods.

I Result transcribed into partial language.

This work

Fast and loose reasoning is
morally correct

Example

Total methods sometimes cheaper.

Example

reverse ◦map (λx .x − y)

is the left inverse of

map (λx .y + x) ◦ reverse.

Example, total language

(reverse ◦map (λx .x − y)) ◦ (map (λx .y + x) ◦ reverse)

= {map f ◦map g = map (f ◦ g), ◦ associative

reverse ◦map ((λx .x − y) ◦ (λx .y + x)) ◦ reverse

= {(λx .x − y) ◦ (λx .y + x) = id

reverse ◦map id ◦ reverse

= {map id = id , ◦ associative, id ◦ f = f , reverse ◦ reverse = id

id

Example, partial language

(reverse ◦map (λx .x − y)) ◦ (map (λx .y + x) ◦ reverse)

= {map f ◦map g = map (f ◦ g), ◦ associative

reverse ◦map ((λx .x − y) ◦ (λx .y + x)) ◦ reverse

= { (λx .x − y) ◦ (λx .y + x) = id

reverse ◦map id ◦ reverse

= {map id = id , ◦ associative, id ◦ f = f , reverse ◦ reverse = id

id

Problem

data Nat = Zero | Succ Nat

⊥

Zero Succ ⊥

Succ Zero Succ (Succ ⊥)

Succ (Succ Zero)
infinity

Problem

(y + x)− y = x

I (Succ Zero + Succ ⊥)− Succ Zero

= ⊥ 6= Succ ⊥
I (infinity + Zero)− infinity

= ⊥ 6= Zero

Example, partial language

(reverse ◦map (λx .x − y)) ◦ (map (λx .y + x) ◦ reverse)

= {map f ◦map g = map (f ◦ g), ◦ associative

reverse ◦map ((λx .x − y) ◦ (λx .y + x)) ◦ reverse

= { (λx .x − y) ◦ (λx .y + x) = id

reverse ◦map id ◦ reverse

=
{

map id = id , ◦ associative, id ◦ f = f ,

reverse ◦ reverse = id

id

Example, partial language
Assume that xs :: [Nat] and y :: Nat are total, finite.

((reverse ◦map (λx .x − y)) ◦
(map (λx .y + x) ◦ reverse)) xs

= {map f ◦map g = map (f ◦ g), definition of ◦

reverse (map ((λx .x − y) ◦ (λx .y + x)) (reverse xs))

=

{
x , y total ∧ y finite ⇒ ((λx .x−y)◦ (λx .y +x)) x = id x ,
xs total, finite ⇒ reverse xs total, finite,
ys total ∧ ∀ total x . f x = g x ⇒ map f ys = map g ys

reverse (map id (reverse xs))

=
{

map id = id , id ys = ys,
xs total, finite ⇒ reverse (reverse xs) = xs

xs

But. . .

I Programs syntactically identical.

I “Total subset” of partial semantics

basically the same as total semantics.

I So we could just use the total result

extended with some preconditions?

Rest of the talk

I Two languages.

I PER: Moral equality.

I Total equality implies moral equality.

I Translate moral equality.

Two higher-order, typed FPLs

I Same syntax.

I Total, set-theoretic: 〈〈t〉〉.
I Partial, domain-theoretic: JtK.

I Pointed CPOs, lifted types,

strict and non-strict.

I Recursive types (polynomial).

I Inductive/coinductive types.

I fold/unfold , but not fix .

Moral equality (∼)

I PER on semantic domains of partial

language.

I Defines the total values.

I Functions:

I f ∼σ→τ g ⇔
f 6= ⊥ ∧ g 6= ⊥ ∧
∀x , y ∈ JσK .

x ∼σ y ⇒ f x ∼τ g y

Moral equality (∼)

I PER on semantic domains of partial

language.

I Defines the total values.

I Algebraic data types:

I Defined.

I Same constructor.

I Arguments related.

Moral equality (∼)

I PER on semantic domains of partial

language.

I Defines the total values.

I Lists:

I [] ∼[σ] [], [] 6∼[σ] [x], [] 6∼[σ] ⊥
I [x] ∼[σ] [y] ⇔ x ∼σ y

I [x1, x2, . . .] ∼[σ] [y1, y2, . . .] ⇔
x1 ∼σ y1 ∧ x2 ∼σ y2 ∧ . . .

Total equality implies
moral equality

〈〈t1〉〉 = 〈〈t2〉〉 ⇒ Jt1K ∼ Jt2K

t1, t2 Closed terms.

〈〈·〉〉 Total semantics.

J·K Partial semantics.

Example revisited

lhs = (reverse ◦map (λx .x − 1))

◦ (map (λx .1 + x) ◦ reverse)

I 〈〈lhs〉〉 = 〈〈id〉〉
I JlhsK ∼ JidK
I ∀xs :: [Nat].

JxsK ∼ JxsK ⇒ Jlhs xsK ∼ JxsK
I . . .

I ∀ fin, tot xs :: [Nat]. Jlhs xsK = JxsK

Discussion

I Fast and loose proofs OK (in a sense).

I Polymorphism, stronger recursive

types, type constructors.

I Equational reasoning.

Discussion

I Sometimes partial reasoning is to be

preferred.

I Limited to total subset of the

language.

I Inductive and coinductive types

separate:

No hylomorphisms (pretty ◦ parse).

Discussion

I Combining partial and total methods

probably useful, but. . .

I . . .∼ is not a congruence,

x ∼ y but f x 6∼ f y .

I Can translate, though.

Fast and loose
reasoning is

morally correct

Bicartesian closed category

. . . with initial algebras and final coalgebras.

I Objects: Types.

I Morphisms: Equivalence classes of total

functions.

I (◦): The equivalence class of the

underlying (◦).

	Introduction
	Example
	Theory
	Closing words
	Final message

