
Parsing Mixfix Operators

Nils Anders Danielsson1,? and Ulf Norell2

1 University of Nottingham
2 Chalmers University of Technology

Abstract. A simple grammar scheme for expressions containing mixfix
operators is presented. The scheme is parameterised by a precedence
relation which is only restricted to be a directed acyclic graph; this makes
it possible to build up precedence relations in a modular way. Efficient
and simple implementations of parsers for languages with user-defined
mixfix operators, based on the grammar scheme, are also discussed. In
the future we plan to replace the support for mixfix operators in the
language Agda with a grammar scheme and an implementation based
on this work.

1 Introduction

Programming language support for user-defined infix operators is often nice to
have. It enables the use of compact and/or domain-specific notations, especially
if a character set with many symbols is used. The feature can certainly be abused
to create code which the intended audience finds hard to read, but the inclusion
of user-defined infix operators in a number of programming languages, including
Haskell (Peyton Jones 2003), ML (Milner et al. 1997), Prolog (Sterling and
Shapiro 1994), and Scala (Odersky 2009), suggests that this is a risk which
many programmers are willing to take.

Some languages, such as Coq (Coq Development Team 2009), Isabelle (Paul-
son et al. 2008), and Obj (Goguen et al. 1999), take things a step further by
supporting the more general concept of mixfix (also known as distfix) operators.
A mixfix operator can have several name parts and be infix (like the typing
relation ` :), prefix (if then else), postfix (array subscripting: []), or
closed (Oxford brackets: J K). With mixfix operators the advantages of binary
infix operators can be taken one step further, but perhaps also the disadvantages.

An important criterion when designing a programming language feature is
that the feature should be easy to understand. In the case of mixfix operators
the principle explaining how to parse an arbitrary expression should be simple
(even though abuse of the feature may lead to a laborious parsing process).
Mixfix operators are sometimes perceived as being difficult in this respect. Our
aim with this work is to present a method for handling mixfix operators which
is elegant, easy to understand, and easy to implement with sufficient efficiency.

We show how to construct a simple expression grammar, given a set of oper-
ators with specified precedence and associativity (see Sect. 3). We want to avoid
? The author would like to thank EPSRC for financial support.

monolithic precedence relations in which every operator is related to every other,
so we only require the precedences to form a directed acyclic graph (Sect. 2). To
abstract from source language details the language mechanisms used to specify
the operators, precedence graphs etc. are left unspecified.

In Sect. 5 the grammars are defined formally, using the total, dependently
typed language Agda (Norell 2007; Agda Team 2009). The grammars are de-
fined using parser combinators with a well-defined semantics, so as a side effect
a provably correct implementation of a mixfix expression parser is obtained. The
formalisation also shows that the expressions generated by the grammars cor-
respond exactly to a notion of precedence correct expressions. Furthermore the
Agda code provides a number of examples of the use of mixfix operators.

The restriction of precedence relations to acyclic graphs ensures that the
constructed grammars are unambiguous, assuming that all operator name parts
are unique (Sect. 4). Acyclicity also ensures that parsers corresponding to the
generated grammars can be implemented using (backtracking) recursive descent.
However, naive use of recursive descent leads to poor performance. In a prototype
which uses memoising parser combinators (Frost and Szydlowski 1996) we have
achieved sufficient efficiency along with a simple implementation (Sect. 6). In
the future we plan to use this approach to handle mixfix operators in Agda.

The paper ends with a discussion of related work and some conclusions in
Sects. 7–8.

2 Precedence and Associativity

In some languages it is very easy to introduce mixfix operators. For instance,
in Agda a name is an operator if it includes an underscore character. Every
underscore stands for an operator hole, i.e. a position in which an argument
expression is expected. The examples from Sect. 1 are valid operator names in
Agda:3 ` : , [], if then else , and J K. However, typically one wants to
combine operators into larger expressions, and then it is important to specify if
and how they can be combined. How should an expression like

if b ∧ n + n == n ! then n else (n + n - n) (1)

be parsed, for instance?
The traditional way to disambiguate such expressions is to use precedence

and associativity (Aho et al. 1986; Aasa 1995), and we follow this approach.
Precedence specifies if an operator “binds tighter” than another. Associativity
specifies how sequences of infix operators of the same precedence should be inter-
preted; an operator can be left associative, right associative, or non-associative.
The expression x + y * z parses as x + (y * z) if * binds tighter than + ,
and x + y - z parses as (x + y) - z if the two operators have the same prece-
dence and are both left associative. See Table 1 for a summary of how precedence
and associativity affect parsing of infix operators.
3 Unless the wrong colon character is used.

Table 1. Possible outcomes of parsing x + y * z, where + and * are infix oper-
ators. Here + < * means that * binds tighter than + , and + = * means that the
operators have equal precedence.

Precedence Associativity Result of parsing x + y * z

+ < * x + (y * z)
* < + (x + y) * z

+ = * Both left (x + y) * z

+ = * Both right x + (y * z)
None of the above Parse error

Unlike languages like Coq and Isabelle, but following Aasa (1995), we do
not assign any form of precedence to the internal holes of mixfix operators (i.e.
the holes which are surrounded by name parts). Instead, to keep things simple,
expressions of arbitrary precedence are allowed in the holes. This means that one
can effectively define parentheses as a closed mixfix operator (), binding tighter
than everything else, with the semantics of the polymorphic identity function
(as long as the name parts (and) are unambiguous).

Many languages require the precedence relation to be a total order. However,
this can make reading source code more difficult, because it means that every
operator is related to every other, which is likely to make it harder for program-
mers to remember the precedence relation. It also means that one needs to make
unnecessary, possibly arbitrary choices. Why should one have to specify a rela-
tion between + and ∧ , two semantically unrelated operators, for instance?
This goes against modularity.

One might think that partial orders are a good alternative. However, under
the (reasonable) assumption that + binds tighter than == , which binds
tighter than ∧ , transitivity would imply that + binds tighter than ∧ ,
which we want to avoid.

Instead we just require that the precedence relation forms a directed acyclic
graph (DAG), where an edge from one node to another means that the operators
in the second node bind tighter than those in the first one, and operators in
the same node have equal precedence. This makes it possible to define a small
domain-specific library (language) with a couple of operators and a natural,
possibly domain-specific precedence relation, without relating these operators to
those from other libraries. However, we note that partial and total orders are
DAGs, so the results below apply also to those cases.

We require the graphs to be acyclic because cyclic precedence relations very
easily lead to ambiguous grammars. Furthermore acyclicity ensures that the
grammars are not left recursive, thus enabling backtracking recursive descent as
an implementation technique.

Figure 1 contains a small precedence graph. To keep things simple the gram-
mar scheme introduced below is concerned solely with operators, so the prece-
dence graph includes some variables (b and n) and parentheses (()). These
are treated as closed mixfix operators which bind more tightly than all other

∧ (right) == (non)

!

+ (left) - (left)

b n ()

if then else

Fig. 1. A precedence graph. An arrow from node p to node q means that operators in
node q bind tighter than operators in node p. Infix operators are annotated with their
associativity.

operators. Let us interpret the example (1) given above using this precedence
graph.

We can start by noticing that all the operators’ name parts are unique, so
it is easy to identify which name parts belong to which operator. We can then
isolate the internal arguments of if then else and ():

if [b ∧ n + n == n !] then [n] else ([n + n - n]). (2)

Furthermore parentheses bind more tightly than if then else , so the paren-
thesised expression has to be the last argument to the conditional:

if [b ∧ n + n == n !] then [n] else
[
([n + n - n])

]
. (3)

In b ∧ n + n == n ! the operator ∧ is only related to == (plus the
variables), and it binds weaker, so the only possible parse is

[b] ∧
[[

[n] + [n]
]
==
[
[n] !

]]
. (4)

Note that when reading source code which is known to be syntactically correct
(which is the case here) “the only possible parse” translates into “the one and
only correct parse”. Note also that the interpretation of this subexpression would
have been slightly less straightforward if the precedence relation had been a
partial order.

Finally the operators + and - have the same precedence and are both
left associative, so we end up with

if
[
[b] ∧

[[
[n] + [n]

]
==
[
[n] !

]]]
then [n] else

[
(
[[

[n] + [n]
]
- [n]

]
)
]
.

(5)

3 A Grammar Scheme for Mixfix Operators

Section 2 may have given some intuition about precedence and associativity,
but there are still some design choices left. This section makes things precise by
giving a grammar scheme which, when instantiated with a precedence graph,
yields a context-free grammar specifying the syntax of expressions.

First some definitions:

– A mixfix operator consists of a finite sequence of holes (denoted by above)
and name parts (if, then and else in if then else), plus in the case of
an infix operator an associativity (left, right or “non”; note that we do not
restrict the term “infix operator” to binary operators). To reduce the risk of
ambiguity we require that operators contain at least one name part, and that
two holes may not occur next to each other in an operator. Furthermore, for
simplicity, we require that two name parts may not occur next to each other
either.

– A precedence graph is a finite directed acyclic simple graph with unlabelled
edges, whose nodes are annotated with finite sets of operators.

Given such a precedence graph a grammar is constructed. The terminals of the
grammar are the name parts used by the operators in the graph.

We make no assumptions about uniqueness of name parts or operators (ex-
cept that a given operator may only occur once in a given node). The resulting
grammar can hence be ambiguous. We feel that it is overly restrictive to require
the grammar to be unambiguous. For instance, it seems unnecessary to reject a
program just because two imported libraries both define a particular operator,
even though this operator is never used, or only used in such a way that it can
be disambiguated based on context. As another example, the designer of some
library may want to include both if then and if then else , and in order
to keep the library simple it seems reasonable to give both operators the same
precedence. Given the rules below this makes the grammar ambiguous, because
if e then if e then e else e can be parsed in two ways.4 Instead of reject-
ing ambiguous grammars we suggest that ambiguous parses should be rejected,
preferably together with error messages showing all possible parses, thus aiding
debugging. Language designers are of course free to impose further restrictions
to ensure unambiguity. (Ambiguity is discussed further in Sect. 4.)

As mentioned above the language of the constructed grammar only contains
operator applications (possibly nullary). Expressions in a real language usually
contain other constructions as well, like parentheses, let or lambda expressions
and non-operator symbols. To keep things simple such constructs are not treated
here, but we note that it is easy to incorporate several of them by modifying the
grammar scheme (see Sect. 5.4 for one example).

Let us now build up the grammar scheme step by step, starting with a prece-
dence graph where every node is labelled with exactly one infix, non-associative

4 Assuming that e binds tighter than the conditionals.

operator with no internal holes. In this case an expression headed by the opera-
tor op from graph node p consists of an expression headed by an operator which
binds tighter, then op’s only name part, and finally another expression headed
by an operator which binds tighter. We can encode this using the non-terminals

p̂ ::= p↑ opnon
p p↑ and (6)

p↑::=
∨
{ q̂ | p < q } . (7)

Here
∨
S stands for a choice between all the elements in the finite set S, opnon

p

is the single name part of the (non-associative) operator in node p, and p < q
means that there is an edge from node p to node q. An arbitrary expression is an
expression headed by an arbitrary operator, so the non-terminal for expressions
is

expr ::=
∨
{ p̂ | p is a graph node } . (8)

It is straightforward to extend this grammar scheme to infix, non-associative
operators with multiple name parts. All the internal holes can contain arbitrary
expressions, so we can just let opnon

p stand for the non-terminal

opnon
p ::= n1 expr n2 expr · · · nk, (9)

where ni is the i-th name part of the non-associative infix operator with k name
parts annotating node p. For graphs whose nodes are annotated with sets of
operators we change the definition of opnon

p to include one production for every
operator in node p.

Finally let us include other kinds of operators. This amounts to adding more
productions to p̂. When is an expression headed by a right associative infix
operator precedence correct? Both arguments should be allowed to be expressions
headed by operators which bind tighter, and the right argument should also be
allowed to be an application of another right associative operator of the same
precedence. There is scope for allowing other combinations to be precedence
correct as well, though. We choose to view prefix operators as right associative
by including the productions

p̂ ::= −→p + p↑ and (10)
−→p ::= opprefix

p | p↑ opright
p . (11)

Here e+ stands for a positive number of repetitions of e, and opprefix
p and opright

p

are the analogues of opnon
p for prefix and right associative operators, respectively.

(In Sect. 7 a grammar scheme due to Aasa (1995) which handles prefix operators
differently is discussed.)

Note that the parse trees generated for prefix and right associative operators
are not the correct ones; for prefix operators they have the shape (op · · · op)rest
rather than op(· · · (op rest) · · ·). However, this is easily corrected by a post-
processing pass. In our implementation based on parser combinators one simply

expr ::=
_
{ bp | p is a graph node }

bp ::= opclosed
p

| p↑ opnon
p p↑

| −→p + p↑

| p↑ ←−p +

−→p ::= opprefix
p | p↑ opright

p

←−p ::= oppostfix
p | opleft

p p↑

p↑::=
_
{ bq | p < q }

opfix
p ::=

_(
n1 expr n2 expr · · · nk

˛̨̨̨
˛ n1, . . . , nk are the name parts of

an operator in node p with fix-
ity/associativity fix

)

Fig. 2. A grammar scheme for mixfix expressions, parameterised by a precedence graph.

bp ::= bp closed | bp non | bp right | bp left

bp closed ::= opclosed
pbp non ::= p↑ opnon

p p↑bp right ::=
`
opprefix

p | p↑ opright
p

´ ` bp right | p↑
´

bp left ::=
` bp left | p↑

´ `
oppostfix

p | opleft
p p↑

´
Fig. 3. An alternative formulation of bp which leads to grammars which are left and
right recursive, but whose parse trees do not require post-processing.

needs to include a right fold in the semantic action attached to the p̂ production
(see Sect. 5). Furthermore this formulation has the advantage of not being right
recursive.

Note also that it would be reasonable to allow prefix operators to be non-
associative. For instance, if the operators if then and if then else from
the example above were both non-associative then if e then if e then e
else e could only be parsed in one way:5 if e then (if e then e) else e.
To keep things simple we treat all prefix operators as right associative in this
presentation, though.

Postfix operators, left associative infix operators and closed operators can be
handled analogously. The full grammar scheme is shown in Fig. 2. Note that,
because precedence graphs are acyclic, the instantiated grammars are neither
left nor right recursive (see Sects. 5.4–5.5). An alternative definition of p̂ which
avoids the need to post-process the parse trees and accepts the same strings is

5 Unless the grammar contains some other ambiguity.

given in Fig. 3. The grammars resulting from this definition can be left and right
recursive, though.

To make things more concrete, let us instantiate the grammar scheme for the
precedence graph in Fig. 1. After some simplification—removal of productions
which are unused or always fail, together with inlining—we get the following
grammar (with terminals underlined):

expr ::= and | eq | term | fac | if | closed

and ::= (and↑ ∧)+ and↑
and↑::= eq | closed

eq ::= eq↑ == eq↑
eq↑::= term | fac | closed

term ::= closed ((+ | -) closed)+

fac ::= closed !+

if ::= (if expr then expr else)+ closed
closed ::= b | n | (expr)

(12)

4 Unambiguity

An important property of the grammar scheme introduced in Sect. 3 is that,
while the instantiated grammars can in general be ambiguous, this ambiguity
is necessarily introduced by reusing the same name part in several operators:
if all operator name parts in a precedence graph are unique, then the resulting
grammar is unambiguous.

If no operators have internal holes then this result can be proved by adapting
a theorem due to Lotfallah (2009). The general case can be reduced to the simpler
one by using the following observation (following Aasa (1995)): Operators with
internal name parts act like generalised brackets, so given a precedence graph
with unique name parts and a syntactically correct string one can uniquely
identify the substrings corresponding to the non-terminals opfix

p . One can then
treat every instance of one of the opfix

p non-terminals as a terminal of a new
grammar. For instance, the string if b ∧ b else n then n would be treated
as a string containing two terminals: if b ∧ b else n then and n. This new
grammar only contains atoms, unary prefix and postfix operators and binary
infix operators, so unambiguity follows from Lotfallah’s theorem. It remains to
show that the internal expressions of the opfix

p “terminals” are unambiguous, but
this follows by applying the same argument inductively to the proper substrings
corresponding to the expr non-terminal.

Note that Lotfallah’s theorem requires a form of acyclicity. Cyclic precedence
graphs easily lead to ambiguous grammars, even if all name parts are unique.
Consider the graph in Fig. 4, for instance. The grammar corresponding to this
graph can generate the string 0 * 0 + 0 in two ways: with * as the outermost
operator (0 * (0 + 0)) or with + as the outermost operator ((0 * 0) + 0).

+ (non) 0 * (non)

Fig. 4. A cyclic precedence graph.

5 Formalisation

The unambiguity result from Sect. 4 indicates that the grammars are, in some
sense, useful: reasonable expressions will not be rejected because of ambiguities,
as long as all name parts are unique. In this section a notion of precedence correct
expression is defined, and it is proved that the grammars generate exactly the
precedence correct expressions. This amounts to a different aspect of usability:
no precedence correct expression will be rejected because the grammar is too
limited.

We perform this exercise formally, in the total, dependently typed functional
programming language Agda (Agda Team 2009). As part of this development the
grammar scheme introduced above is defined formally using parser combinators.
First operators, precedence graphs and precedence correct expressions are de-
fined (Sects. 5.1–5.3), then a parser combinator library is introduced (Sect. 5.4),
the grammar scheme is defined (Sect. 5.5), and finally the proof mentioned above
is outlined (Sect. 5.6). Note that some minor details of Agda have been changed
in order to aid the presentation.

5.1 Operators

Before defining what an operator is we encode associativities and fixities using
two simple data types. Fixities are combined with associativities, but only for
infix operators; prefix, postfix and closed operators are viewed as being right,
left and non-associative, respectively:

data Associativity : Set where
left : Associativity
right : Associativity
non : Associativity

data Fixity : Set where
prefx : Fixity
infx : Associativity → Fixity
postfx : Fixity
closed : Fixity

(The constructors of a data type are introduced by giving their type signatures.
Note that infix is a reserved word in Agda, hence the strange names.)

An operator is then represented by its fixity plus a vector containing its name
parts. Note that the fixity is exposed in the type, along with the internal arity,
i.e. the number of internal arguments:

record Operator (fix : Fixity) (arity : N) : Set where
field nameParts : Vec NamePart (1 + arity)

(Vec A n is a list of As of length n. NamePart is the type of name parts.) The
operator if then else is represented as follows:

if-then-else : Operator prefx 2
if-then-else = record {nameParts = "if" :: "then" :: "else" :: []}

5.2 Precedence Graphs

For simplicity precedence graphs are represented by their unfoldings as forests,
with one tree (Precedence) for every node in the graph:

data Precedence : Set where
precedence : ((fix : Fixity)→ List (∃ (Operator fix)))→

List Precedence → Precedence
PrecedenceGraph : Set
PrecedenceGraph = List Precedence

Two projection functions are defined for the Precedence nodes, one returning
the operators of the given precedence, and one returning the successor nodes:

ops : Precedence → (fix : Fixity)→ List (∃ (Operator fix))
ops (precedence o s) = o
↑ : Precedence → List Precedence
↑ (precedence o s) = s

(Dependent function spaces are written as (x : A) → B .) Note that the set of
operators annotating a graph node is represented by a function mapping a fixity
to a list of operators of that fixity; the stronger invariants of a set are not needed
for this development.

The type ∃ is used to hide the arity argument of Operator fix , so that op-
erators of different arity can be members of the same list. It is a variant of the
pair type:

data ∃ {A : Set} (B : A→ Set) : Set where
, : (x : A)→ B x → ∃ B

(Note that arguments in braces, like {A}, are implicit ; they do not need to be
given explicitly if Agda can infer them.)

5.3 Expressions

The type of expressions which are precedence correct with respect to a given
precedence graph is defined in a module parameterised by the graph:

module PrecedenceCorrect (g : PrecedenceGraph) where

The definition consists of four mutually inductive types:

– Expr ps stands for expressions where the head operator has one of the prece-
dences in ps:

data Expr (ps : List Precedence) : Set where
• : ∀ {p assoc} → p ∈ ps → Ex p assoc → Expr ps

Ex p assoc, introduced below, stands for expressions where the head oper-
ator has precedence p and associativity assoc. The type ∈ encodes list
membership:

data ∈ {A : Set} : A→ List A→ Set where
here : ∀ {x xs} → x ∈ x :: xs
there : ∀ {x y xs} → x ∈ xs → x ∈ y :: xs

– In ops stands for the application of one of the operators in ops to all its
internal arguments:

data In {fix} (ops : List (∃ (Operator fix))) : Set where
• : ∀ {arity op} →

(arity , op) ∈ ops → Vec (Expr g) arity → In ops

Note that the internal arguments are unrestricted expressions (Expr g). Note
also that constructors are overloaded in Agda.

– Out p assoc contains expressions where the head operator either has prece-
dence p and associativity assoc, or binds strictly tighter than p:

data Out (p : Precedence) (assoc : Associativity) : Set where
similar : Ex p assoc → Out p assoc
tighter : Expr (↑ p) → Out p assoc

Out p left stands for the left arguments of left associative operators of prece-
dence p, and similarly for Out p right.

– Finally Ex p assoc is defined. Note the use of mixfix operators:

data Ex (p : Precedence) : Associativity → Set where
〈〈 〉〉 : In (ops p closed) → Ex p non
〈 〉〉 : Out p left → In (ops p postfx) → Ex p left
〈〈 〉 : In (ops p prefx)→ Out p right→ Ex p right
〈 〉 : Expr (↑ p)→ In (ops p (infx non))→ Expr (↑ p) → Ex p non

〈 〉` : Out p left → In (ops p (infx left))→ Expr (↑ p) → Ex p left
〈 〉r : Expr (↑ p)→ In (ops p (infx right))→ Out p right→ Ex p right

Two “weakening” functions will also be used. The function weakenE takes
an expression headed by an operator which has one of the precedences in ps and
converts it to an expression headed by an operator with one of the precedences
in p :: ps, and weakenI is similar:

weakenE : ∀ {p ps} → Expr ps → Expr (p :: ps)
weakenE (p∈ps • e) = there p∈ps • e
weakenI : ∀ {fix ops} {op : ∃ (Operator fix)} → In ops → In (op :: ops)
weakenI (op∈ops • args) = there op∈ops • args

5.4 Parser Combinators

In order to define the grammar scheme we will use a parser combinator library
based on that described by Danielsson and Altenkirch (2009), but tailored specif-
ically for this task. The type Parser defines the parser combinators:

data Parser : Set → Set where
fail : ∀ {A} → Parser A
| : ∀ {A} → Parser A→ Parser A→ Parser A
‖ : ∀ {I i} {A : I → Set} →

Parser (A i)→ Parser (∃ A)→ Parser (∃ A)
~ : ∀ {A B} → Parser (A→ B)→ Parser A→ Parser B
<$> : ∀ {A B} → (A→ B)→ Parser A→ Parser B
+ : ∀ {A} → Parser A→ Parser (List+ A)
between : ∀ {A n} → ∞ (Parser A)→ Vec NamePart (1 + n)→

Parser (Vec A n)

The semantics of the parser combinators is given by the following inductively
defined type:

data ∈ · : ∀ {A} → A→ Parser A→ List NamePart → Set where
. . .

The type x ∈ p · s is inhabited if and only if one of the possible results of applying
the parser p to the string s is x . The parser combinators come with a parser
backend which takes a parser and a string and computes all parses matching
the string. Because Agda is total (modulo any bugs in the implementation) this
backend is guaranteed to terminate, and it has been proved to be sound and
complete with respect to the semantics.

Let us now explain all the combinators. The parser fail always fails, so there
is no constructor for it in ∈ · . The combinator | encodes symmetric choice:

|` : x ∈ p1 · s → x ∈ p1 | p2 · s
|r : x ∈ p2 · s → x ∈ p1 | p2 · s

(The introduction of the bound variables x , s, p1 and p2 has been omitted here
to avoid clutter.) The combinator ‖ is a variant of | :

‖` : x ∈ p1 · s → (, x) ∈ p1 ‖ p2 · s
‖r : x ∈ p2 · s → x ∈ p1 ‖ p2 · s

(The underscore tells Agda to try to infer what the corresponding expression
should be.) The ~ operator is applicative functor application (McBride and
Paterson 2008): the result of p1 ~ p2 is the result of p1 (a function) applied to
the result of p2. The combinator <$> maps a function over the results of a
parser:

~ : f ∈ p1 · s1 → x ∈ p2 · s2 → f x ∈ p1 ~ p2 · s1 ++ s2

<$> : x ∈ p · s → f x ∈ f <$> p · s

(The function ++ concatenates two lists.) The parser p + parses one or more
occurrences of p:

+[] : x ∈ p · s → [x] ∈ p + · s
+:: : x ∈ p · s1 → xs ∈ p + · s2 → x :: xs ∈ p + · s1 ++ s2

Here List+ A is the type of non-empty lists containing elements of type A.
Finally p between ns parses strings matching p between the name parts in the
non-empty vector ns, returning a vector containing the results from p:

between[] : [] ∈ p between (t :: []) · t :: []
between:: : x ∈ [p · s1 → xs ∈ p between ts · s2 →

x :: xs ∈ p between (t :: ts) · t :: s1 ++ s2

The definition of between uses ∞, which marks its argument as being coin-
ductive. It can be read as a suspension, and comes with “force” and “delay”
operators:

∞ : Set → Set
[: ∀ {A} → ∞ A→ A
] : ∀ {A} → A→∞ A

The rest of the Parser data type is inductive, so the only way to define cyclic or
infinite parsers/grammars is to use between . Note that because the first and
last name parts accepted by p between ns are the first and last name parts in
ns the cycles introduced by between are neither left nor right recursive.

Figure 5 contains a precedence graph for the parser combinators. Note that
in Agda ordinary function application (juxtaposition), non-operator identifiers,
parenthesised expressions and closed operators all bind strictly tighter than every
other operator. This amounts to modifying the grammar in Fig. 2 by removing
opclosed

p from p̂ and adding the following productions:

expr ::= closed+, (13)

p↑::= closed+, and (14)

closed ::= identifier | (expr) |
∨{

opclosed
p

∣∣ p is a graph node
}
. (15)

| (left) ‖ (left) ~ (left) <$> (left) +

between

Fig. 5. A precedence graph for the parser combinators.

The non-terminal identifier stands for ordinary identifiers; this includes the
names of operators, like if then else , but not operator name parts, unless
they are also ordinary identifiers. (Note that this grammar does not correspond
exactly to Agda’s current expression syntax, partly because it omits constructs
like lambda abstractions and dependent function spaces. It should give enough
intuition to enable following the examples in the paper, though.)

5.5 The Grammar Scheme

Now the implementation of the grammar scheme can be presented. The definition
is yet again given in a module parameterised by a precedence graph:

module Mixfix (g : PrecedenceGraph) where

A grammar will be defined for g . The grammar is defined by mutual structural
recursion/guarded corecursion.

The only delayed parser is expr , which corresponds to the non-terminal expr :

expr : ∞ (Parser (Expr g))
expr =] (precs g)

The parser precs ps corresponds to
∨
{ p̂ | p ∈ ps }, and inner (ops p fix)

corresponds to opfix
p :

precs : (ps : List Precedence)→ Parser (Expr ps)
precs [] = fail
precs (p :: ps) = (λ (, e)→ here • e) <$> prec p

| weakenE <$> precs ps
inner : ∀ {fix} (ops : List (∃ (Operator fix)))→ Parser (In ops)
inner [] = fail
inner ((, op) :: ops) =

(λ args → here • args) <$> (expr between nameParts op)
| weakenI <$> inner ops

Finally we get to prec p, which corresponds to the non-terminal p̂. The
definition of prec follows the grammar scheme given in Sect. 3 closely:

prec : (p : Precedence)→ Parser (∃ (Ex p))
prec p@(precedence ops sucs) =
〈〈 〉〉 <$> [closed]
‖ 〈 〉 <$> p↑ ~ [infx non] ~ p↑
‖ appr <$> preRight + ~ p↑
‖ app` <$> p↑ ~ postLeft +
‖ fail
where
[] = λ (fix : Fixity)→ inner (ops fix)
p↑ = precs sucs
preRight : Parser (Out p right→ Ex p right)
preRight = 〈〈 〉 <$> [prefx]

| 〈 〉r <$> p↑ ~ [infx right]
postLeft : Parser (Out p left→ Ex p left)
postLeft = (λ op e1 → e1 〈 op 〉〉) <$> [postfx]

| (λ op e2 e1 → e1 〈 op 〉` e2) <$> [infx left] ~ p↑
appr = λ fs e → foldr (λ f e → f (similar e)) (λ f → f (tighter e)) fs
app` = λ e fs → foldl (λ e f → f (similar e)) (λ f → f (tighter e)) fs

Here [fix] corresponds to opfix
p , p↑ to p↑, preRight to −→p and postLeft to←−p . Note

the use of foldl and foldr to handle the post-processing of the parse trees. These
functions are folds for non-empty lists:

foldr : {A B : Set} → (A→ B → B)→ (A→ B)→ List+ A→ B
foldl : {A B : Set} → (B → A→ B)→ (A→ B)→ List+ A→ B

The right fold foldr applies the argument of type A→ B to the last element of
the list, and the left fold foldl applies it to the first element.

The code above is accepted as total by Agda because it uses a lexicographic
combination of guarded corecursion and structural recursion: every call path
from one definition to itself consists solely of constructors and recursive calls,
and either at least one of the constructors is the coinductive constructor], or
one argument becomes structurally smaller.

5.6 Correctness

Finally let us show that the grammar scheme is sound and complete with respect
to the type of precedence correct expressions, i.e. that the generated expressions
are exactly the precedence correct ones.

Due to the precise types used in the definition of the grammar scheme we
have already established soundness: all expressions generated by the expr non-
terminal have to be precedence correct with respect to the relevant precedence
graph.

In order to show completeness we first define a function show which flattens
expressions (the code is omitted here):

show : ∀ {ps} → Expr ps → List NamePart

We then show, for every expression e, that e is one of the possible results of
parsing show e:

complete : (e : Expr g)→ e ∈ [expr · show e

The proof, which is not included here, is by induction over the structure of e.

6 Implementation

Section 5 describes a (not necessarily efficient) method which, given a precedence
graph, parses expressions containing mixfix operators. However, for a program-
ming language with support for user-defined mixfix operators the precedence
graph is not predetermined, and different precedence graphs can be in effect at
different source locations. If the programming language is defined in a suitable
way, then the following procedure can be used to parse a program:

1. Parse the program, treating expressions as flat lists of tokens.
2. Compute the precedence graph in effect for every expression.
3. Parse the flat token lists into real expressions, using the relevant precedence

graphs.

This requires that one can identify the extent of an expression without parsing it
completely, and also that the relevant precedence graph does not change halfway
through an expression. If expressions can bind new operators—consider lambda
abstractions, for instance—then the procedure does not quite work, but a rea-
sonable workaround is to include all binding constructs in the “outer” grammar
used by the first step above. Note that similar methods are used to parse several
existing languages with user-defined infix operators, for instance Haskell.

Using parser combinators to implement the grammar scheme, like in Sect. 5,
can be nice: the implementation is almost a direct transliteration of the intended
grammar, so it should be easy to understand and modify the code. However, to
ensure sufficient efficiency of parsing one has to choose the implementation of
the parser combinators (the backend) carefully. There are at least two problems
to watch out for:

– The generated grammars are often far from being left factorised.
– The sharing of the precedence DAG might be lost when the DAG is converted

into a parser.

If Wadler’s “list of successes” implementation of parser combinators (1985) is
used, then one can expect worst-case parse times which are (at least) exponential
in the size of the graph, even if the grammar is completely unambiguous. How-
ever, as observed by Norvig (1991), inefficient backtracking parsers can be made
efficient by using memoisation. We have a prototype implementation which uses
memoising parser combinators based on those of Frost and Szydlowski (1996)

and memoises the p̂ non-terminals. This means that when the parser backend
has found all substrings, starting at a given input position, which match p̂, then
the corresponding results and the substrings’ endpoints are stored for later reuse.
Our experiments indicate that this gives sufficient performance for typical pro-
gramming language applications, involving limited ambiguity and moderately
sized graphs and input strings. If precedence graphs are very large (due to large
libraries of operators) it is perhaps a good idea to prune them before parsing,
keeping only those parts of the graphs which are relevant based on the name
parts present in the current expression.

7 Related Work

Peyton Jones (1986) shows how user-defined mixfix operators can be described
using a fixed grammar (as opposed to the grammar scheme defined in this work)
by distinguishing initial, middle and final tokens of mixfix operators lexically.
Support for user-defined precedences is not discussed, and seems hard to incor-
porate. Peyton Jones argues that operators should be lexically distinguishable
from other syntactic constructs, to make them easier to parse for humans. We
partly agree, but think that this task can be performed by syntax highlighting
instead of lexical conventions; in any way, lexical restrictions fit well with the
approach developed in this paper. Peyton Jones also discusses how mixfix opera-
tor sections can be handled. A section is a partial application of an operator; for
instance, the sections [i] and if then else y stand for λ x → x [i]
and λ b x → if b then x else y, respectively. Sections can be straightfor-
wardly integrated into our grammar scheme. To avoid a combinatorial explosion
of the number of productions one can let the lexer distinguish between hole mark-
ers () placed before, between and after name parts (similarly to Peyton Jones’
PRE TOKEN, IN TOKEN and POST TOKEN), and take advantage of this
distinction in the grammar scheme.

The work of Aasa (1995, 1992) is probably closest to ours. She shows how a
class of possibly ambiguous context-free grammars, whose productions are an-
notated with disambiguating precedences and associativities, can be translated
into unambiguous context-free grammars. She also shows how a parser for user-
defined mixfix operators can be implemented using parser combinators. In con-
trast to our work Aasa only considers total precedence orders. Furthermore her
notion of what it means to be precedence correct is more liberal than ours (the
strings accepted are claimed to be exactly those which an operator-precedence
parser (Floyd 1963; Aho et al. 1986) accepts). This might seem like an advantage,
but in order to achieve this result Aasa ends up with an arguably rather compli-
cated grammar scheme, while we have striven to keep the grammars simple and
hence easy to understand. The difference lies in how prefix and postfix operators
are handled. As an example of how Aasa’s system differs from ours, consider the
precedence graph in Fig. 6. In our system the string 0 + $ 0 is syntactically
incorrect since $ binds weaker than + , whereas Aasa’s system accepts arbi-
trary prefix operators immediately to the right of an infix operator, so in her

$ + (left) # 0

Fig. 6. A precedence graph corresponding to a total precedence order (based on a
precedence relation due to Aasa (1995)).

system the string can be unambiguously parsed as 0 + ($ 0). It does not stop
there, though. The string # $ 0 + 0, which is also syntactically incorrect in our
system, is parsed as # ($ (0 + 0)) in Aasa’s. It is accepted because, even though
binds tighter than + , the occurrence of + is covered by $. Our system
has the advantage that one can tell whether a syntax tree is precedence correct
by inspecting every node in isolation and considering the relation between the
node’s operator and the operators of the child nodes. In Aasa’s system this is
not enough: even though the syntax tree # ($ 0) (where the parentheses indi-
cate the structure of the syntax tree) is precedence correct and # binds strictly
tighter than + the syntax tree (# ($ 0)) + 0 is not precedence correct.

Several languages and formalisms which support user-defined mixfix oper-
ators rely on type information to resolve syntactic ambiguities, sometimes in
conjunction with user-specified precedences (Pettersson and Fritzson 1992; Mis-
sura 1997; Goguen et al. 1999; Paulson et al. 2008). One way to accomplish this
is to first parse the input using a possibly ambiguous grammar, then type check
every parse tree, and finally accept the input if exactly one parse tree is type
correct. Such an approach, while possibly costly, can easily be combined with the
grammar scheme described in this work. More optimised approaches are possi-
ble, though. The parser for Missura’s higher-order mixfix syntax (1997), aimed at
parsing (linear) mathematical notation, is integrated with Hindley-Milner style
type inference.

Missura also argues that precedence relations should not have to be total
orders, and Heinlein (2004) argues that precedence relations should be partial
orders. The language Fortress uses a non-transitive precedence relation, hard-
coded in the language’s grammar (Allen et al. 2008).

Finally we note that Missura (1997) and Wansbrough (1999) discuss some
other approaches to handling mixfix operators, and that it is also possible to
support user-defined binding constructs, like ∀x ∈ S. P (Missura 1997; Coq
Development Team 2009; Paulson et al. 2008).

8 Conclusions

We have presented a simple grammar scheme for expressions containing mixfix
operators, and discussed integration of the grammar scheme into the parsing
process of a full-fledged programming language implementation.

The simplicity of our approach comes at a price: other methods, like Aasa’s
(1995), treat more expressions as being precedence correct, and some methods
enable programmers to extend the grammar with other forms of expressions,
like binding constructs. However, we believe that our approach strikes a nice
balance between simplicity and expressiveness. In the future we plan to replace
Agda’s support for mixfix operators (Norell 2007) with a grammar scheme and
an implementation based on this work.

Acknowledgements

We would like to thank Graham Hutton, Wouter Swierstra and the anonymous
reviewers for useful feedback.

References

Annika Aasa. Precedences in specifications and implementations of programming lan-
guages. Theoretical Computer Science, 142(1):3–26, 1995.

Annika Aasa. User Defined Syntax. PhD thesis, Chalmers University of Technology,
1992.

The Agda Team. The Agda Wiki. Available at http://wiki.portal.chalmers.se/

agda/, 2009.
Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques,

and Tools. Addison-Wesley, 1986.
Eric Allen, David Chase, Joe Hallett, Victor Luchangco, Jan-Willem Maessen, Suky-

oung Ryu, Guy L. Steele Jr., Sam Tobin-Hochstadt, et al. The Fortress Language
Specification, Version 1.0, 2008.

The Coq Development Team. The Coq Proof Assistant Reference Manual, Version 8.2,
2009.

Nils Anders Danielsson and Thorsten Altenkirch. Mixing induction and coinduction.
Draft, 2009.

Robert W. Floyd. Syntactic analysis and operator precedence. Journal of the ACM,
10(3):316–333, 1963.

Richard A. Frost and Barbara Szydlowski. Memoizing purely functional top-down
backtracking language processors. Science of Computer Programming, 27(3):263–
288, 1996.

Joseph A. Goguen, Timothy Winkler, José Meseguer, Kokichi Futatsugi, and Jean-
Pierre Jouannaud. Introducing OBJ, 1999.

Christian Heinlein. C+++: User-defined operator symbols in C++. In INFORMATIK
2004 – Informatik verbindet, Band 2, Beiträge der 34. Jahrestagung der Gesellschaft
für Informatik e.V. (GI), volume P-51 of Lecture Notes in Informatics, pages 459–
468, 2004.

Wafik Boulos Lotfallah. Characterizing unambiguous precedence systems in expressions
without superfluous parentheses. International Journal of Computer Mathematics,
86(1):1–20, 2009.

Conor McBride and Ross Paterson. Applicative programming with effects. Journal of
Functional Programming, 18:1–13, 2008.

Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition of
Standard ML, Revised Edition. MIT Press, 1997.

Stephan Albert Missura. Higher-Order Mixfix Syntax for Representing Mathematical
Notation and its Parsing. PhD thesis, ETH Zürich, 1997.

Ulf Norell. Towards a practical programming language based on dependent type theory.
PhD thesis, Chalmers University of Technology and Göteborg University, 2007.

Peter Norvig. Techniques for automatic memoization with applications to context-free
parsing. Computational Linguistics, 17(1):91–98, 1991.

Martin Odersky. The Scala Language Specification, Version 2.7. Programming Methods
Laboratory, EPFL, Switzerland, 2009. Draft.

Lawrence C. Paulson, Tobias Nipkow, and Markus Wenzel. The Isabelle Reference
Manual, 2008.

Mikael Pettersson and Peter Fritzson. A general and practical approach to concrete
syntax objects within ML. In Proceedings of the ACM SIGPLAN Workshop on ML
and its Applications, 1992.

Simon Peyton Jones, editor. Haskell 98 Language and Libraries: The Revised Report.
Cambridge University Press, 2003.

Simon L. Peyton Jones. Parsing distfix operators. Communications of the ACM, 29
(2):118–122, 1986.

Leon Sterling and Ehud Shapiro. The Art of Prolog, 2nd Edition, Advanced Program-
ming Techniques. MIT Press, 1994.

Philip Wadler. How to replace failure by a list of successes; a method for exception
handling, backtracking, and pattern matching in lazy functional languages. In Func-
tional Programming Languages and Computer Architecture, volume 201 of LNCS,
pages 113–128, 1985.

Keith Wansbrough. Macros and preprocessing in Haskell. Unpublished manuscript,
1999.

