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Abstract
This text develops some theory for a type constructor Erased, which

turns out to be a modality. Erased is similar to an identity function
for types, but values of type Erased 𝐴 should be erased by the compiler.
Special typing rules are used to avoid getting into a situation in which
a program has to make a decision based on an erased piece of data, and
this arguably makes the theory of Erased more interesting than that of
the identity function.

The theory has been formalised in Agda. It is developed based on
some assumptions that are satisfied in Cubical Agda, and also in more
traditional Agda with the K rule.

The text focuses on the logical properties of Erased, provable inside
Agda, rather than external properties related to, say, time or space com-
plexity. One question is when an erased value can be resurrected. In an
attempt to shed some light on this question the text develops some theory
of two notions of stability, one of which corresponds to the concept of a
modal type.

The text includes an example suggesting how the theory can be put
to use in practice: a type that is equivalent to the unary natural numbers
and computes roughly like the unary natural numbers at compile-time
(for some operations), but computes roughly like an arbitrary, possibly
efficient implementation of natural numbers at run-time.

1 Introduction
Dependently typed programs, especially those written using the “intrinsic” ap-
proach in which invariants and other proofs are mixed with programs, can ex-
hibit poor performance if the proof parts are not erased by the compiler. As a
simple example (Brady et al. 2004), consider length-indexed vectors:

data Vec (𝐴 ∶ Set) ∶ ℕ → Set where
[] ∶ Vec 𝐴 0
_∷_ ∶ 𝐴 → Vec 𝐴 𝑛 → Vec 𝐴 (1 + 𝑛)

It may seem as if the cons constructor (_∷_) takes two arguments—the head
and the tail—but it also takes a third one: the length of the tail. If the length of
every tail is stored, without any sharing, and a unary representation of natural
numbers is used, then the space required for a vector of length 𝑛 is Ω(𝑛2).

Data or code that is not required to actually run a program can be erased
by the compiler. One can erase types (Coquand and Huet 1988; Augustsson
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1998) or other things that lack computational content (Hayashi and Nakano
1988), or let the system figure out things that can be erased automatically
(Brady et al. 2004; Brady 2005; Mishra-Linger 2008; Fredriksson and Gustafs-
son 2011; Tejiščák and Brady 2015). One can also let the programmer mark
parts that should be erased, and let the type-checker check that erased parts
cannot influence the results of run-time computations (Paulin-Mohring 1989;
Paulin-Mohring and Werner 1993; Raamsdonk and Severi 2002; Letouzey 2003;
Fernandez et al. 2003; Barras and Bernardo 2008; Mishra-Linger and Sheard
2008; Mishra-Linger 2008; Gundry and McBride 2013; Bernardy and Moulin
2013; Gundry 2013; Weirich et al. 2017). One variant of this approach—based
on ideas due to McBride (2016) and Atkey (2018)—is available in Agda (this
feature was implemented by Andreas Abel). Function arguments and definitions
can be marked as erased using @0 (“used zero times”):

data Vec (@0 𝐴 ∶ Set) ∶ @0 ℕ → Set where
[] ∶ Vec 𝐴 0
_∷_ ∶ {@0 𝑛 ∶ ℕ} → 𝐴 → Vec 𝐴 𝑛 → Vec 𝐴 (1 + 𝑛)

With this definition of vectors the natural number indices can safely be erased
by the compiler (assuming that the type-checker does its job).

Note that @0 is not a type former. However, this is easily rectified (Mishra-
Linger 2008):

record Erased (@0 𝐴 ∶ Set 𝑎) ∶ Set 𝑎 where
constructor [_]
field

@0 erased ∶ 𝐴

Erased 𝐴 is a record type with a single, erased field (called erased) of type 𝐴.
This text is dedicated to the study of this type former.

It may seem as if Erased, which is similar to an identity function for types
(Set 𝑎 is a universe of types), is not very interesting. However, it is possible to
develop quite a bit of theory for it:

• Erased is a monad that commutes with several type constructors, including
“is an 𝑛-type” (see Section 3).

• An equivalence between erased equality and equality of erased values turns
out to be a key property for the development of the theory (see Sec-
tion 3.4). This property can be proved in cubical type theory, or in plain
type theory with the K rule (given some assumptions). It can also be
proved in plain type theory without the K rule if one assumes that equal-
ity of functions is extensional (see Section 4.6).

• Erased and the constructor [_] form a left exact modality in the sense of
Rijke et al. (2019), see Section 3.6.

• Section 4 discusses a number of conditions under which a type 𝐴 is stable
(when Erased 𝐴 implies 𝐴), or very stable (when 𝐴 is modal, i.e. when [_]
is an equivalence at type 𝐴 → Erased 𝐴).

• While it may not be possible to prove that, say, the natural numbers
are very stable, this can be proved for equality of natural numbers—and
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many other types—and this turns out to be sufficient to develop some
applications (see Section 5). The property of having very stable equality
can be characterised in the following way: equality is very stable for a
type 𝐴 if and only if [_] is an embedding for 𝐴 (see Section 4.3).
The main example in Section 5 is an implementation of natural numbers
that computes roughly like the unary natural numbers at compile-time
(for some operations), but roughly like an arbitrary, possibly efficient im-
plementation of natural numbers at run-time.

The text is accompanied by machine-checked proofs: all of the main results
in the text—including everything with an equation number—have been checked
using Agda (but no claim is made that Agda is free of bugs, and there are
minor differences between the source code and the text). The source code is,
at the time of writing, available from http://www.cse.chalmers.se/~nad/.
Some parts of the code are developed in plain Agda with the K rule turned
off, others with the K rule turned on, and the rest in Cubical Agda; the text
describes which parts of the development depend on the K rule or Cubical Agda.
Except when Cubical Agda is used it is also documented which results depend
on extensionality for functions (which is provable in Cubical Agda).

2 The annotation @0
The annotation @0 is based on Atkey’s quantitative type theory (2018), instan-
tiated with the boolean semiring containing 0 (used for things that are unused
at run-time) and 𝜔 (used for things that are allowed to be used an arbitrary
number of times).

Let me use some examples to illustrate how the annotation works. The
following code is OK, because the result of the function can be computed without
making use of the (implicit) type argument 𝐴:

ok ∶ {@0 𝐴 ∶ Set} → 𝐴 → 𝐴
ok 𝑥 = 𝑥

However, the following code is not OK (in a non-erased context), because the
argument of type 𝐴 is marked as erased:

not-ok ∶ {@0 𝐴 ∶ Set} → @0 𝐴 → 𝐴
not-ok 𝑥 = 𝑥

Erased arguments and definitions can always be used in erased contexts, which
include type signatures, erased function arguments (for instance the subexpres-
sion e of the expression 𝑓 e, if the first explicit argument of 𝑓 is erased), and
definitions that have been marked as erased. Thus the following variant of
not-ok is OK:

@0 ok-in-an-erased-context ∶ {@0 𝐴 ∶ Set} → @0 𝐴 → 𝐴
ok-in-an-erased-context 𝑥 = 𝑥

Pattern matching on erased arguments is not allowed in non-erased contexts,
for data types with two or more constructors:
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not-ok ∶ @0 Bool → Bool
not-ok true = false
not-ok false = true

However, pattern matching is allowed for the empty type, a data type with zero
constructors:

data ⊥ ∶ Set where

OK ∶ @0 ⊥ → Set
OK ()

Should pattern matching be allowed for single-constructor data types? Atkey
only treats a non-recursive tensor product, not recursive types like W-types or
inductive families like the equality (or identity) type. My guess is that this kind
of pattern matching is fine for non-indexed types (if constructor arguments are
treated as erased): code of the form 𝑓 (c 𝑥) = 𝐶 [𝑥], where 𝑥 is only used in
erased contexts, can almost be rewritten to 𝑓 𝑦 = 𝐶 [proj 𝑦], where proj (c 𝑥) =
𝑥 is an erased definition. The termination checker might not accept the resulting
definition of 𝑓, but if the code is only used for execution of closed terms this
might not matter. (If strict evaluation is used, then complete removal of the
erased argument might lead to an infinite loop. An alternative is to replace the
argument with a dummy one (Letouzey 2003).)

The situation is perhaps more interesting for inductive families. Consider
the equality type, defined as an inductive family (here Set 𝑎 is a universe with
universe level 𝑎):

data_≡_ {𝐴 ∶ Set 𝑎} (𝑥 ∶ 𝐴) ∶ 𝐴 → Set 𝑎 where
refl ∶ 𝑥 ≡ 𝑥

In a setting with the K rule—and thus uniqueness of identity proofs—it might
be OK to allow pattern-matching for erased values from this type family: in
the terminology of Brady et al. (2004) it is concretely collapsible. (I have not
checked to what extent the theory of Brady et al. is compatible with that of
Atkey.) However, in a setting with computing univalence this seems to make less
sense. Consider the following code, where swap ∶ Bool ≡ Bool is constructed
by applying univalence to the equivalence corresponding to the not function:

transport ∶ (𝑃 ∶ 𝐴 → Set 𝑝) → @0 𝑥 ≡ 𝑦 → 𝑃 𝑥 → 𝑃 𝑦
transport 𝑃 refl 𝑝 = 𝑝
t 𝑓 ∶ Bool
t = transport id refl true
𝑓 = transport id swap true

The result of running t should be true, and the result of running 𝑓 should be false,
but if the equality proof is erased these computations presumably return the
same value. Currently there is no implementation of type theory that properly
supports computing univalence and the equality type given above, but perhaps
such an implementation emerges in the future.

Given that the theory of pattern-matching for erased single-constructor data
types (in non-erased contexts) has, to my knowledge, not been worked out
properly, I will point out which results below depend on this feature.
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Another point worth mentioning is that there is currently no compiler for
Cubical Agda, and it is not known if erasure can be handled in a sensible way
in this setting. Here I do not count the approach of simply ignoring the @0
annotations in the compiler as sensible, but this approach at least suggests that
the presence of @0 should not introduce any inconsistencies into the theory
(but as far as I know this has not been proved). Below I point out which results
depend on Cubical Agda.

3 Erased
Let us now discuss some properties of Erased:

record Erased (@0 𝐴 ∶ Set 𝑎) ∶ Set 𝑎 where
constructor [_]
field

@0 erased ∶ 𝐴
(1)

This record type has a single field, erased, which is erased, and a constructor
[_]—read this as box. It is only the field that is marked as erased, not the entire
record type. However, Agda’s compiler (at least the GHC backend) erases record
types where all fields are erased.

Below the following variant of [_] with an explicit type argument will also
be used:

[_∣_] ∶ (@0 𝐴 ∶ Set 𝑎) → @0 𝐴 → Erased 𝐴
[_ ∣ 𝑥 ] = [ 𝑥 ]

3.1 Erased is a monad
Erased is a monad (Mishra-Linger 2008), with [_] as the return function, and
bind defined in the following way:

_>>=_ ∶ {@0 𝐴 ∶ Set 𝑎} {@0 𝐵 ∶ Set 𝑏} →
Erased 𝐴 → (𝐴 → Erased 𝐵) → Erased 𝐵

𝑥 >>= 𝑓 = [ erased (𝑓 (erased 𝑥)) ]
(2)

It is OK to use the erased projection above, because the argument of [_] is
erased. The monad laws hold by definition (in the case of the left and right
identity laws this follows from a definitional 𝜂-law for Erased, 𝑥 = [ erased 𝑥 ]).

Note that I have given type signatures for some of the implicit arguments
of bind (𝐴 and 𝐵), but not others (the universe levels 𝑎 and 𝑏). In this text I
usually do not omit implicit argument declarations for erased arguments, and
in cases where such a declaration is omitted it is mentioned in the text. Thus it
should be clear when an argument is assumed to be erased and when it is not.

We also have the following property (Mishra-Linger 2008):

{@0 𝐴 ∶ Set 𝑎} → Erased (Erased 𝐴) ≃ Erased 𝐴 (3)

Here 𝐴 ≃ 𝐵 means that 𝐴 and 𝐵 are equivalent, in the sense of The Univalent
Foundations Program (2013). Two types 𝐴 and 𝐵 are equivalent if and only if
there are two functions, one from 𝐴 to 𝐵 and one from 𝐵 to 𝐴, that are inverses
of each other.
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3.2 The relationship between @0 and Erased
How is @0 related to Erased? Mishra-Linger (2008) notes (basically) that the
following equivalence can be proved:

(Erased 𝐴 → 𝐵) ≃ (@0 𝐴 → 𝐵) (4)

We can prove a similar property for dependent functions:

{𝑃 ∶ Erased 𝐴 → Set 𝑝} →
((𝑥 ∶ Erased 𝐴) → 𝑃 𝑥) ≃ ((@0 𝑥 ∶ 𝐴) → 𝑃 [ 𝑥 ]) (5)

The proof is very easy (using definitional 𝜂-equality for Erased and Π) and
omitted. However, note that it can be tricky to use this result in non-erased
contexts: the argument 𝑃 is not erased, so it cannot use erased in a non-erased
context. Can the result be proved when 𝑃 is erased?

Agda supports several definitions of equality (including the data type given
in Section 2, Cubical Agda paths, and the Cubical Agda identity type family
(Cohen et al. 2018; Swan 2016)). Some of the code accompanying this paper,
including the property above, has not been developed using a concrete definition
of equality, but instead under the assumption that there is an equality type
family _≡_, a canonical proof of reflexivity refl, a J rule, and a propositional
computation rule for J:

_≡_ ∶ {𝐴 ∶ Set 𝑎} → 𝐴 → 𝐴 → Set 𝑎
refl ∶ (𝑥 ∶ 𝐴) → 𝑥 ≡ 𝑥
J ∶ (𝑃 ∶ {𝑥 𝑦 ∶ 𝐴} → 𝑥 ≡ 𝑦 → Set 𝑝) →

(∀ 𝑥 → 𝑃 (refl 𝑥)) →
(eq ∶ 𝑥 ≡ 𝑦) → 𝑃 eq

J-refl ∶ (𝑃 ∶ {𝑥 𝑦 ∶ 𝐴} → 𝑥 ≡ 𝑦 → Set 𝑝)
(r ∶ ∀ 𝑥 → 𝑃 (refl 𝑥)) →
J 𝑃 r (refl 𝑥) ≡ r 𝑥

(6)

Using this formulation of equality I have not been able to prove the following
variant of Lemma 5:

{@0 𝐴 ∶ Set 𝑎} {@0 𝑃 ∶ Erased 𝐴 → Set 𝑝} →
((𝑥 ∶ Erased 𝐴) → 𝑃 𝑥) ≃ ((@0 𝑥 ∶ 𝐴) → 𝑃 [ 𝑥 ]) (7)

One reason is that the arguments of refl are not erased. However, this property
can be proved in the following settings:

• In Cubical Agda, using paths for equality.

• If the equality type is defined as a data type as in Section 2, the K rule is
active, and pattern matching is allowed for erased equality proofs. Below
I call this setting traditional Agda.

3.3 Erased commutes
Erased commutes with the unit and empty types, Π and Σ in the following ways
(note that Π satisfies two properties):

Erased ⊤ ≃ ⊤ (8)
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Erased ⊥ ≃ ⊥ (9)
{@0 𝑃 ∶ 𝐴 → Set 𝑝} →

Erased ((𝑥 ∶ 𝐴) → 𝑃 𝑥) ≃ ((𝑥 ∶ 𝐴) → Erased (𝑃 𝑥)) (10)

{@0 𝐴 ∶ Set 𝑎} {@0 𝑃 ∶ 𝐴 → Set 𝑝} →
Erased ((𝑥 ∶ 𝐴) → 𝑃 𝑥) ≃
((𝑥 ∶ Erased 𝐴) → Erased (𝑃 (erased 𝑥)))

(11)

{@0 𝐴 ∶ Set 𝑎} {@0 𝑃 ∶ 𝐴 → Set 𝑝} →
Erased (Σ 𝐴 𝑃) ≃ Σ (Erased 𝐴) (𝜆 𝑥 → Erased (𝑃 (erased 𝑥))) (12)

The proofs are very simple.
Does Erased commute with W-types, defined in the following way?

data W (𝐴 ∶ Set 𝑎) (𝑃 ∶ 𝐴 → Set 𝑝) ∶ Set (𝑎 ⊔ 𝑝) where
sup ∶ (𝑥 ∶ 𝐴) → (𝑃 𝑥 → W 𝐴 𝑃) → W 𝐴 𝑃 (13)

(Here (𝑎 ⊔ 𝑝) is the maximum of the universe levels 𝑎 and 𝑝.) We can start by
proving the following logical equivalence:

{@0 𝐴 ∶ Set 𝑎} {@0 𝑃 ∶ 𝐴 → Set 𝑝} →
Erased (W 𝐴 𝑃) ⇔ W (Erased 𝐴) (𝜆 𝑥 → Erased (𝑃 (erased 𝑥))) (14)

The right-to-left direction is easy to implement:

from (sup [ 𝑥 ] 𝑓) = [ sup 𝑥 (𝜆 𝑦 → erased (from (𝑓 [ 𝑦 ]))) ]

The other direction can be defined if matching is allowed for erased arguments
of W-types:

to [ sup 𝑥 𝑓 ] = sup [ 𝑥 ] (𝜆 ([ 𝑦 ]) → to [ 𝑓 𝑦 ])

It is also easy to prove that these two functions are inverses of each other, given
the assumptions that equality is extensional for functions, and that we can prove
[]‐cong.

3.4 The []‐cong property
[]‐cong is a lemma with the following type:

[]‐cong ∶ {@0 𝐴 ∶ Set 𝑎} {@0 𝑥 𝑦 ∶ 𝐴} →
Erased (𝑥 ≡ 𝑦) → [ 𝑥 ] ≡ [ 𝑦 ]

Given an erased proof of equality between two (erased) values of type 𝐴 this
lemma returns a proof of equality between two values of type Erased 𝐴.

A large part of the development below relies on this lemma. I have not
managed to prove the lemma using just the J rule (6). The problem is that
none of the arguments of the J rule are allowed to be erased (in a non-erased
context). However, it is easy to prove the lemma in traditional Agda:

[]‐cong [ refl ] = refl (15)

It is also easy to prove the lemma in Cubical Agda, if_≡_ stands for the path
type family. A path of type _≡_ {𝐴 = 𝐴} 𝑥 𝑦 (where {𝐴 = 𝐵} means that
the implicit argument 𝐴 is 𝐵) is a kind of function 𝑓 from the “interval” to 𝐴,
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subject to the restriction that 𝑓 0 has to be definitionally equal to 𝑥, and 𝑓 1 to
𝑦, where 0 and 1 are the two endpoints of the interval. Thus the lemma can be
proved in the following way:

[]‐cong [ eq ] = 𝜆 𝑖 → [ eq 𝑖 ] (16)

Note that the erased proof eq is only used in an erased context, and that there
is no pattern matching on erased arguments.

Every family of equality types satisfying the axioms (6) given in Section 3.2 is
pointwise equivalent to every other, with the equivalences mapping reflexivity to
reflexivity. This fact can be used to define []‐cong for any such family of equality
types, in terms of []‐cong for paths (see the accompanying code for details). Thus
we get that []‐cong can be defined also for Cubical Agda’s identity type family.

All definitions of []‐cong mentioned above satisfy further properties that will
be used below:

{@0 𝐴 ∶ Set 𝑎} {@0 𝑥 𝑦 ∶ 𝐴} →
Is-equivalence (𝜆 (eq ∶ Erased (𝑥 ≡ 𝑦)) → []‐cong eq) (17)

{@0 𝐴 ∶ Set 𝑎} {@0 𝑥 ∶ 𝐴} → []‐cong [ refl 𝑥 ] ≡ refl [ 𝑥 ] (18)

[]‐cong is an equivalence that interacts with the canonical proof of reflexivity in
a specific way. The latter property will be referred to as the computation rule
for []‐cong.

As we will see in Section 4.6 it is also possible to define []‐cong, in such a
way that the two properties above hold, given the assumption that equality of
functions is extensional.

3.5 H-levels
In homotopy type theory/univalent foundations there is the concept of an 𝑛-
type (The Univalent Foundations Program 2013). I use the following definition,
numbering the levels from 0 rather than −2:

H-level ∶ ℕ → Set 𝑎 → Set 𝑎
H-level 𝑛 𝐴 = For-iterated-equality 𝑛 Contractible 𝐴 (19)

A type 𝐴 has h-level 𝑛 if every iterated equality type with 𝑛 levels above 𝐴 is
contractible. For-iterated-equality and Contractible are defined in the following
way:

For-iterated-equality ∶ ℕ → (Set 𝑎 → Set 𝑎) → (Set 𝑎 → Set 𝑎)
For-iterated-equality zero 𝑃 𝐴 = 𝑃 𝐴
For-iterated-equality (suc 𝑛) 𝑃 𝐴 =

(𝑥 𝑦 ∶ 𝐴) → For-iterated-equality 𝑛 𝑃 (𝑥 ≡ 𝑦)
(20)

Contractible ∶ Set 𝑎 → Set 𝑎
Contractible 𝐴 = Σ 𝐴 (𝜆 𝑥 → ∀ 𝑦 → 𝑥 ≡ 𝑦) (21)

How does Erased interact with H-level? We can prove that Erased commutes
with H-level 𝑛:

{@0 𝐴 ∶ Set 𝑎} →
∀ 𝑛 → Erased (H-level 𝑛 𝐴) ≃ H-level 𝑛 (Erased 𝐴) (22)
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The proof proceeds by induction on the natural number. In the base case we
can calculate in the following way:

Erased (H-level zero 𝐴) ≃
Erased (Σ 𝐴 (𝜆 𝑥 → (𝑦 ∶ 𝐴) → 𝑥 ≡ 𝑦)) ≃
Σ (Erased 𝐴) (𝜆 𝑥 → Erased ((𝑦 ∶ 𝐴) → erased 𝑥 ≡ 𝑦)) ≃
Σ (Erased 𝐴) (𝜆 𝑥 →

(𝑦 ∶ Erased 𝐴) → Erased (erased 𝑥 ≡ erased 𝑦)) ≃
Σ (Erased 𝐴) (𝜆 𝑥 → (𝑦 ∶ Erased 𝐴) → 𝑥 ≡ 𝑦) ≃
H-level zero (Erased 𝐴)

The first and last steps hold by definition, the second and third steps use com-
mutation properties from Section 3.3, and the fourth step uses the assumption
that []‐cong is an equivalence. In the step case we can calculate in the following
way:

Erased (H-level (suc 𝑛) 𝐴) ≃
Erased ((𝑥 𝑦 ∶ 𝐴) → H-level 𝑛 (𝑥 ≡ 𝑦)) ≃
((𝑥 𝑦 ∶ Erased 𝐴) → Erased (H-level 𝑛 (erased 𝑥 ≡ erased 𝑦))) ≃
((𝑥 𝑦 ∶ Erased 𝐴) → H-level 𝑛 (Erased (erased 𝑥 ≡ erased 𝑦))) ≃
((𝑥 𝑦 ∶ Erased 𝐴) → H-level 𝑛 (𝑥 ≡ 𝑦)) ≃
H-level (suc 𝑛) (Erased 𝐴)

Again the first and last steps hold by definition. The second step uses a commu-
tation property for Π (11) twice, the third step uses the induction hypothesis,
and the fourth step uses the assumption that []‐cong is an equivalence.

The proof above makes use of extensionality for functions, which is used
to prove that H-level 𝑛 preserves equivalences, and similarly for Π. However,
one can prove that Erased commutes with H-level 𝑛 up to logical equivalence
without making use of extensionality:

{@0 𝐴 ∶ Set 𝑎} →
∀ 𝑛 → Erased (H-level 𝑛 𝐴) ⇔ H-level 𝑛 (Erased 𝐴) (23)

3.6 Erased is a modality
Now we can show that Erased is a left exact (or lex) modality in the sense of
Rijke et al. (2019), with Erased as the modal operator and [_] as the modal
unit. First one can show that Erased is a (uniquely eliminating) modality:

Is-equivalence (𝜆 (𝑓 ∶ (𝑥 ∶ Erased 𝐴) → Erased (𝑃 𝑥)) → 𝑓 ∘ [_]) (24)

The function 𝜆 (𝑓 ∶ (𝑥 ∶ Erased 𝐴) → Erased (𝑃 𝑥)) → 𝑓 ∘ [_] has the following
type:

((𝑥 ∶ Erased 𝐴) → Erased (𝑃 𝑥)) → ((𝑥 ∶ 𝐴) → Erased (𝑃 [ 𝑥 ]))
It is easy to prove that the domain and the codomain are equivalent using two
commutation properties for Π (Lemmas 10 and 11):

((𝑥 ∶ Erased 𝐴) → Erased (𝑃 𝑥)) ≃
Erased ((𝑥 ∶ 𝐴) → (𝑃 [ 𝑥 ])) ≃
((𝑥 ∶ 𝐴) → Erased (𝑃 [ 𝑥 ]))
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If these two equivalences are defined as in the accompanying code, then it turns
out that the forward direction of the obtained equivalence is definitionally equal
to the given function.

The modality is also left exact:

{𝑥 𝑦 ∶ 𝐴} →
Contractible (Erased 𝐴) → Contractible (Erased (𝑥 ≡ 𝑦)) (25)

Given that Erased 𝐴 is contractible we get an erased proof of Contractible 𝐴 (us-
ing the fact that Erased commutes with H-level 𝑛 up to logical equivalence (23)).
We can use the following map function to turn this into an erased proof of
Contractible (𝑥 ≡ 𝑦):

map ∶
{@0 𝐴 ∶ Set 𝑎} {@0 𝑃 ∶ 𝐴 → Set 𝑝} →
@0 ((𝑥 ∶ 𝐴) → 𝑃 𝑥) → (𝑥 ∶ Erased 𝐴) → Erased (𝑃 (erased 𝑥))

map 𝑓 [ 𝑥 ] = [ 𝑓 𝑥 ]
(26)

Finally we can commute Erased and Contractible again, thus showing that
Erased (𝑥 ≡ 𝑦) is contractible.

Rijke et al. (2019) have developed a fair amount of theory for modalities, and
some of the theory in this text is an instance of their theory. Some connections
are pointed out below, and some results above that were not used to prove
that Erased is a (lex) modality could perhaps have been obtained via their
general theory. For instance, Rijke et al. prove that map [_] is an equivalence
(Lemma 1.22), and that lex modalities preserve 𝑛-types for 𝑛 ≥ −1 (see the
proof of Corollary 3.9).

However, Rijke et al. state that they “will freely use function extensionality
and the univalence axiom, often without comment”. In this text I try to avoid
using these axioms/constructions, and document when they are used, because I
want the results to be applicable in multiple settings (for instance in traditional
Agda, which is incompatible with univalence, and in which it should not be
possible to prove function extensionality).

Rijke et al. are more careful in the Coq code that accompanies their paper.
For instance, while they prove that map [_] is an equivalence for any reflective
subuniverse without using any extra assumptions (they use a definition of re-
flective subuniverse that differs from the one in their paper, partly to avoid uses
of extensionality for functions), the proof showing that lex modalities preserve
𝑛-types for 𝑛 ≥ −1 does depend on extensionality for functions. I have not
tried to find every relevant lemma from their paper in their Coq code to find
out exactly what assumptions are used for each result (and some results from
the paper are not formalised in the Coq development). However, I have proved
that, if []‐cong can be proved, then Erased is a Σ-closed reflective subuniverse,
using a definition of reflective subuniverses that is based on the Coq code of
Rijke et al. (see the accompanying code for details).

Rijke et al. define a function 𝑓 ∶ 𝐴 → 𝐵 to be Erased-connected when Erased
applied to Σ 𝐴 (𝜆 𝑥 → 𝑓 𝑥 ≡ 𝑦) is contractible for every 𝑦. In the present
setting this property can be expressed in a different way:

((𝑦 ∶ 𝐵) → Contractible (Erased (Σ 𝐴 (𝜆 𝑥 → 𝑓 𝑥 ≡ 𝑦)))) ≃
Erased (Is-equivalence 𝑓) (27)
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This equivalence can be proved assuming that equality is extensional for func-
tions. In the absence of this assumption one can still prove the corresponding
logical equivalence. The equivalence can be established through the following
calculation:

((𝑦 ∶ 𝐵) → Contractible (Erased (Σ 𝐴 (𝜆 𝑥 → 𝑓 𝑥 ≡ 𝑦)))) ≃
((𝑦 ∶ 𝐵) → Erased (Contractible (Σ 𝐴 (𝜆 𝑥 → 𝑓 𝑥 ≡ 𝑦)))) ≃
Erased ((𝑦 ∶ 𝐵) → Contractible (Σ 𝐴 (𝜆 𝑥 → 𝑓 𝑥 ≡ 𝑦))) ≃
Erased (Is-equivalence 𝑓)

The first step uses Lemma 22, the second step uses Lemma 10, and the final step
holds by definition. (Is-equivalence can be defined in several ways. If another,
equivalent definition were used, then the final step could also make use of the
fact that Erased preserves equivalences, which is proved below (34).)

3.7 Is [_] an embedding?
In general one should perhaps not expect it to be possible to prove that [_] is an
equivalence, because this would mean that one could always resurrect identical
copies of erased data. However, can one at least show that [_] is injective, or an
embedding?

A function 𝑓 is an embedding if the functions of type 𝑥 ≡ 𝑦 → 𝑓 𝑥 ≡ 𝑓 𝑦
obtained from cong ∶ (𝑓 ∶ 𝐴 → 𝐵) → 𝑥 ≡ 𝑦 → 𝑓 𝑥 ≡ 𝑓 𝑦 (which is unique up
to pointwise equality if it is required to map the canonical proof of reflexivity
to the canonical proof of reflexivity) are always equivalences:

Is-embedding ∶ {𝐴 ∶ Set 𝑎} {𝐵 ∶ Set 𝑏} → (𝐴 → 𝐵) → Set (𝑎 ⊔ 𝑏)
Is-embedding 𝑓 =

∀ 𝑥 𝑦 → Is-equivalence (𝜆 (eq ∶ 𝑥 ≡ 𝑦) → cong 𝑓 eq)
(28)

Note that embeddings are injective.
To start with we can note that [_] is an embedding when the underlying type

is a (mere) proposition (i.e. if it has h-level 1):

H-level 1 𝐴 → Is-embedding [ 𝐴 ∣_] (29)

A function between sets (types of h-level 2) is an embedding if and only if it is
injective, and a function from a proposition is always injective. (Note that the
type of [ 𝐴 ∣_] is @0 𝐴 → Erased 𝐴. Agda supports subtyping for @0, which is
why the expression can be used at type 𝐴 → Erased 𝐴 above.)

If we restrict ourselves to traditional Agda, then [_] is always injective and
an embedding (the proofs are easy and omitted):

{@0 𝐴 ∶ Set 𝑎} → Injective [ 𝐴 ∣_] (30)
{@0 𝐴 ∶ Set 𝑎} → Is-embedding [ 𝐴 ∣_] (31)

In this setting it is also easy to prove that 𝐴 is a proposition whenever Erased 𝐴
is:

{@0 𝐴 ∶ Set 𝑎} → H-level 1 (Erased 𝐴) → H-level 1 𝐴 (32)

This result strengthens Lemma 23. (There is no point in considering h-levels
greater than 1, because in this setting every type is a set.)

In Section 4 we will see that [_] can be an embedding also in cases not
covered above.
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3.8 More commutation properties
In Section 3.3 we saw that Erased commutes with Π (11). Here we will see
that Erased commutes with several other kinds of “function formers”—those
for logical equivalences, equivalences, split surjections (or retractions), functions
with quasi-inverses, injections and embeddings (using definitions based on those
of The Univalent Foundations Program (2013)):

Erased (𝐴 ⇔ 𝐵) ≃ (Erased 𝐴 ⇔ Erased 𝐵) (33)
Erased (𝐴 ≃ 𝐵) ≃ (Erased 𝐴 ≃ Erased 𝐵) (34)
Erased (𝐴 ↠ 𝐵) ≃ (Erased 𝐴 ↠ Erased 𝐵) (35)
Erased (𝐴 ↔ 𝐵) ≃ (Erased 𝐴 ↔ Erased 𝐵) (36)
Erased (𝐴 ↣ 𝐵) ≃ (Erased 𝐴 ↣ Erased 𝐵) (37)
Erased (Embedding 𝐴 𝐵) ≃ Embedding (Erased 𝐴) (Erased 𝐵) (38)

(In all these cases 𝐴 ∶ Set 𝑎 and 𝐵 ∶ Set 𝑏 are erased.) All these results, except
for the one for logical equivalences, have been proved assuming that equality
of functions is extensional. However, if the results are stated as logical equiva-
lences instead of equivalences, then they can be proved without making use of
extensionality.

Let us start with the proof for logical equivalences. The proof makes use of
the following preservation lemma for equivalences, which is easy to prove (using
[]‐cong):

{@0 𝐴 ∶ Set 𝑎} {@0 𝐵 ∶ Set 𝑏} →
@0 𝐴 ≃ 𝐵 → Erased 𝐴 ≃ Erased 𝐵 (39)

We can calculate in the following way:

Erased (𝐴 ⇔ 𝐵) ≃
Erased ((𝐴 → 𝐵) × (𝐵 → 𝐴)) ≃
Erased (𝐴 → 𝐵) × Erased (𝐵 → 𝐴) ≃
(Erased 𝐴 → Erased 𝐵) × (Erased 𝐵 → Erased 𝐴) ≃
(Erased 𝐴 ⇔ Erased 𝐵)

The first and last steps use the fact that a logical equivalence is equivalent to
two functions, and the first step also uses Lemma 39. The second and third
steps use commutation properties from Section 3.3.

Let us now prove the following equivalence, which refers to the map func-
tion (26):

{@0 𝐴 ∶ Set 𝑎} {@0 𝐵 ∶ Set 𝑏} {@0 𝑓 ∶ 𝐴 → 𝐵} →
Erased (Is-equivalence 𝑓) ≃ Is-equivalence (map 𝑓) (40)

Given Lemma 27 this equivalence is related to some results due to Rijke et al.
(2019, Lemma 1.35 and Theorem 3.1 (xii)). The proof is a simple calculation
(with ∃ 𝑃 = Σ_ 𝑃 ):

Erased (Is-equivalence 𝑓) ≃
Erased (∀ 𝑦 → Contractible (∃ (𝜆 𝑥 → 𝑓 𝑥 ≡ 𝑦))) ≃
(∀ 𝑦 → Erased (Contractible (∃ (𝜆 𝑥 → 𝑓 𝑥 ≡ erased 𝑦)))) ≃
(∀ 𝑦 → Contractible (Erased (∃ (𝜆 𝑥 → 𝑓 𝑥 ≡ erased 𝑦)))) ≃
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(∀ 𝑦 → Contractible (∃ (𝜆 𝑥 → Erased (𝑓 (erased 𝑥) ≡ erased 𝑦)))) ≃
(∀ 𝑦 → Contractible (∃ (𝜆 𝑥 → map 𝑓 𝑥 ≡ 𝑦))) ≃
Is-equivalence (map 𝑓)

The first and last steps are unfoldings of the definition of Is-equivalence, the
second and fourth steps use commutation properties from Section 3.3, the third
step uses the commutation property for H-level (22), and the fifth step uses the
assumption that []‐cong is an equivalence. (The proof makes use of extension-
ality for functions; again this is not needed if the result is stated as a logical
equivalence instead of as an equivalence.)

Using this property we can now prove that Erased commutes with_≃_:

Erased (𝐴 ≃ 𝐵) ≃
Erased (Σ (𝐴 → 𝐵) (𝜆 𝑓 → Is-equivalence 𝑓)) ≃
Σ (Erased (𝐴 → 𝐵)) (𝜆 𝑓 → Erased (Is-equivalence (erased 𝑓))) ≃
Σ (Erased 𝐴 → Erased 𝐵) (𝜆 𝑓 → Is-equivalence 𝑓) ≃
Erased 𝐴 ≃ Erased 𝐵

The third step uses a commutation property (11), the forward direction of which
is 𝜆 ([ 𝑓 ]) → map 𝑓, the previously proved equivalence for Is-equivalence, and
the following preservation result (where_≃_.to gives the forward direction of an
equivalence):

(𝑓 ∶ 𝐴 ≃ 𝐵) → (∀ 𝑥 → 𝑃 𝑥 ≃ 𝑄 (_≃_.to 𝑓 𝑥)) → Σ 𝐴 𝑃 ≃ Σ 𝐵 𝑄 (41)

The proofs for split surjections, functions with quasi-inverses, injections,
and embeddings are similar, relying on the following lemmas, where 𝐴, 𝐵 and
𝑓 ∶ 𝐴 → 𝐵 are erased:

Erased (Split-surjective 𝑓) ≃ Split-surjective (map 𝑓) (42)
Erased (Has-quasi-inverse 𝑓) ≃ Has-quasi-inverse (map 𝑓) (43)
Erased (Injective 𝑓) ≃ Injective (map 𝑓) (44)
Erased (Is-embedding 𝑓) ≃ Is-embedding (map 𝑓) (45)

These lemmas can be proved by making use of the assumption that []‐cong is
an equivalence (as well as extensionality for functions; yet again extensionality
is not required if the results are stated as logical equivalences instead of equiv-
alences). Let us study the proof of the last lemma. Again it is a calculation:

Erased (Is-embedding 𝑓) ≃
Erased (∀ 𝑥 𝑦 → Is-equivalence (𝜆 (eq ∶ 𝑥 ≡ 𝑦) → cong 𝑓 eq)) ≃
(∀ 𝑥 𝑦 → Erased (Is-equivalence

(𝜆 (eq ∶ erased 𝑥 ≡ erased 𝑦) → cong 𝑓 eq))) ≃
(∀ 𝑥 𝑦 → Is-equivalence

(map (𝜆 (eq ∶ erased 𝑥 ≡ erased 𝑦) → cong 𝑓 eq))) ≃
(∀ 𝑥 𝑦 → Is-equivalence

(𝜆 (eq ∶ Erased (erased 𝑥 ≡ erased 𝑦)) →
[]‐cong−1 (cong (map 𝑓) ([]‐cong eq)))) ≃

(∀ 𝑥 𝑦 → Is-equivalence (𝜆 (eq ∶ 𝑥 ≡ 𝑦) → cong (map 𝑓) eq)) ≃
Is-embedding (map 𝑓)

The first and last steps hold by definition, the second step uses a commutation
property for Π twice, and the third step uses the equivalence for Is-equivalence
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proved above. The fifth step uses the 2-out-of-3 property (The Univalent Foun-
dations Program 2013) and the assumption that []‐cong is an equivalence. The
fourth step uses the fact that Is-equivalence 𝑓 is equivalent to Is-equivalence 𝑔
when the functions 𝑓 and 𝑔 have the same type and are pointwise equal (as-
suming that equality of functions is extensional). It also uses the following
family of equalities, where []‐cong−1 is the inverse of []‐cong obtained from the
assumption that []‐cong is an equivalence:

{@0 𝐴 ∶ Set 𝑎} {@0 𝐵 ∶ Set 𝑏} {@0 𝑥 𝑦 ∶ 𝐴}
{@0 𝑓 ∶ 𝐴 → 𝐵} {eq ∶ Erased (𝑥 ≡ 𝑦)} →
map (cong 𝑓) eq ≡ []‐cong−1 (cong (map 𝑓) ([]‐cong eq))

(46)

This lemma can be proved by using the J rule and the computation rule for
[]‐cong.

The commutation properties established above can be turned into preserva-
tion lemmas (where 𝐴 and 𝐵 are erased):

@0 𝐴 ⇔ 𝐵 → Erased 𝐴 ⇔ Erased 𝐵 (47)
@0 𝐴 ≃ 𝐵 → Erased 𝐴 ≃ Erased 𝐵 (48)
@0 𝐴 ↠ 𝐵 → Erased 𝐴 ↠ Erased 𝐵 (49)
@0 𝐴 ↔ 𝐵 → Erased 𝐴 ↔ Erased 𝐵 (50)
@0 𝐴 ↣ 𝐵 → Erased 𝐴 ↣ Erased 𝐵 (51)
@0 Embedding 𝐴 𝐵 → Embedding (Erased 𝐴) (Erased 𝐵) (52)

(Lemma 48 has the same type as Lemma 39.) Note that these lemmas can be
proved without making use of extensionality for functions.

The map function is functorial, in the sense that it maps identity to iden-
tity and commutes with composition (Rijke et al. (2019, Lemma 1.21) prove
that there is a non-dependent variant of map that preserves identity and com-
position up to homotopy). This is true also for these preservation lemmas, at
least when they are proved exactly as in the accompanying code. The proof
is easy for logical equivalences. The proofs are also easy for equivalences and
embeddings, because these kinds of functions are defined as functions that sat-
isfy propositional properties (assuming that equality of functions is extensional).
The proofs are a little trickier for injections, split surjections and functions with
quasi-inverses, see the accompanying code for details (in all three cases the
proofs make use of extensionality, and in the latter two cases they also make
use of the computation rule for []‐cong, as well as some results from Section 4).

4 Stability
When can erased values be resurrected? This section discusses two notions of
stability.

4.1 Stable types
A type 𝐴 is stable if Erased 𝐴 implies 𝐴:

Stable ∶ Set 𝑎 → Set 𝑎
Stable 𝐴 = Erased 𝐴 → 𝐴 (53)
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The term stability is also used for stability under double-negation. The two
concepts are related. Stability under double-negation implies stability under
Erased:

{@0 𝐴 ∶ Set 𝑎} → (¬ ¬ 𝐴 → 𝐴) → Stable 𝐴 (54)

This follows from the following fact, which is easy to prove:

{@0 𝐴 ∶ Set 𝑎} → Erased 𝐴 → ¬ ¬ 𝐴 (55)

Types for which it is known whether or not they are inhabited are also stable
(Dec 𝐴 is the binary sum 𝐴 ⊎ ¬ 𝐴):

{@0 𝐴 ∶ Set 𝑎} → Dec 𝐴 → Stable 𝐴 (56)

If the type 𝐴 is inhabited, then it is stable, and if it is not inhabited, then the
assumption that Erased 𝐴 is inhabited leads to a contradiction.

4.2 Very stable types
A type is very stable if [_] is an equivalence:

Very-stable ∶ Set 𝑎 → Set 𝑎
Very-stable 𝐴 = Is-equivalence [ 𝐴 ∣_] (57)

The property of being very stable is perhaps more interesting than plain stabil-
ity, because for very stable types one can resurrect the erased element, not just
some element of the same type.

The definition of Very-stable 𝐴 says that 𝐴 is modal with respect to the
Erased modality (Rijke et al. 2019). I was not aware of the concept of a modal
type when I came up with the definition above. Before I had tried something
like the following definition:

Very-stable′ ∶ Set 𝑎 → Set 𝑎
Very-stable′ 𝐴 = Erased 𝐴 ≃ 𝐴 (58)

However, I found it easier to work with the former definition (see Lemma 81),
and I have not found a way to prove that Very-stable′ 𝐴 implies Very-stable 𝐴
in a non-erased context (the other direction is immediate).

Note that very stable types are stable. Because equivalences are embeddings
we also get that [_] is an embedding for very stable types.

Stable types are very stable if [_] is a right inverse of the proof of stability
(Rijke et al. 2019, Lemma 1.20):

(𝑠 ∶ Stable 𝐴) → (∀ 𝑥 → 𝑠 [ 𝑥 ] ≡ 𝑥) → Very-stable 𝐴 (59)

In this case one can prove that [_] is also a left inverse of 𝑠: it suffices to prove
that [ 𝑠 [ 𝑥 ] ] ≡ [ 𝑥 ] for an arbitrary erased 𝑥, which follows from []‐cong and
the assumption that 𝑠 is a right inverse of [_].

Erased 𝐴 is a proposition if 𝐴 is (23), so when 𝐴 is a stable proposition [_]
has an inverse. Thus stable propositions are very stable:

Stable 𝐴 → H-level 1 𝐴 → Very-stable 𝐴 (60)
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However, it is not the case that every very stable type is a proposition. Erased 𝐴
is always very stable (because the function 𝜆 ([ 𝑥 ]) → [ erased 𝑥 ] is an inverse
of [_]; see also Rijke et al. (2019, Lemma 1.11)):

{@0 𝐴 ∶ Set 𝑎} → Very-stable (Erased 𝐴) (61)

Thus, if every very stable type were a proposition, then Erased Bool would be
a proposition, but it is not (23).

Rijke et al. (2019, Theorem 3.11) prove that an accessible modality is left
exact if and only if a certain universe of modal types is modal in a certain sense.
I do not know if Erased is accessible, but I can prove that universes of very stable
types are very stable (assuming extensionality for functions and univalence):

Very-stable (Σ (Set 𝑎) Very-stable) (62)

By Lemma 59 it suffices to prove that there is a stability proof which is a left
inverse of [_]. It is easy to prove that the type is stable (this result does not
rely on []‐cong, function extensionality or univalence):

stable ∶ Stable (Σ (Set 𝑎) Very-stable)
stable [ 𝐴 ] = (Erased (proj1 𝐴) , Very-stable-Erased) (63)

Here proj1 returns the first projection of a pair, and Very-stable-Erased is a proof
of Lemma 61. To prove that stable [ (𝐴 , 𝑠) ] is equal to (𝐴 , 𝑠) we can note that
it suffices to prove that the first projections are equal, because Very-stable is
propositional (assuming extensionality for functions). The first projections are
Erased 𝐴 and 𝐴. By the assumption 𝑠 ∶ Very-stable 𝐴 these types are equiva-
lent, so by univalence it follows that they are equal.

4.3 Stability for equality types
Let us now investigate stability for equality types. Equality is (very) stable for
𝐴 if 𝑥 ≡ 𝑦 is (very) stable for all 𝑥, 𝑦 ∶ 𝐴:

Stable-≡ ∶ Set 𝑎 → Set 𝑎
Stable-≡ = For-iterated-equality 1 Stable (64)

Very-stable-≡ ∶ Set 𝑎 → Set 𝑎
Very-stable-≡ = For-iterated-equality 1 Very-stable (65)

Above it was proved that stable propositions are very stable. This result
can be generalised:

∀ 𝑛 → For-iterated-equality 𝑛 Stable 𝐴 → H-level (1 + 𝑛) 𝐴 →
For-iterated-equality 𝑛 Very-stable 𝐴 (66)

For 𝑛 equal to 1 we get that equality is very stable for 𝐴 if it is stable and 𝐴 is a
set. If equality is decidable for a type, then equality is stable (56). Furthermore
the type is a set (Hedberg 1998). Thus we get the following lemma:

((𝑥 𝑦 ∶ 𝐴) → Dec (𝑥 ≡ 𝑦)) → Very-stable-≡ 𝐴 (67)

Contractible types are very stable because they are stable propositions. This
result can be generalised (using a preservation lemma for For-iterated-equality):
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∀ 𝑛 → H-level 𝑛 𝐴 → For-iterated-equality 𝑛 Very-stable 𝐴 (68)

For 𝑛 equal to 1 we get that equality is very stable for propositions.
Equality is stable for a type if and only if [_] is injective:

Stable-≡ 𝐴 ⇔ Injective [ 𝐴 ∣_] (69)

These two types are very similar: one uses Erased (𝑥 ≡ 𝑦) and one [ 𝑥 ] ≡ [ 𝑦 ], so
the result follows from the assumption that []‐cong is an equivalence. If equality
is extensional for functions, then the logical equivalence can be strengthened to
an equivalence.

In a similar vein equality is very stable for a type if and only if [_] is an
embedding:

Very-stable-≡ 𝐴 ⇔ Is-embedding [ 𝐴 ∣_] (70)

We can prove this result using the following calculation:

Very-stable-≡ 𝐴 ⇔
((𝑥 𝑦 ∶ 𝐴) → Is-equivalence (𝜆 (eq ∶ 𝑥 ≡ 𝑦) → [ eq ])) ⇔
((𝑥 𝑦 ∶ 𝐴) → Is-equivalence (𝜆 (eq ∶ 𝑥 ≡ 𝑦) → []‐cong [ eq ])) ⇔
((𝑥 𝑦 ∶ 𝐴) → Is-equivalence (𝜆 (eq ∶ 𝑥 ≡ 𝑦) → cong [_] eq)) ⇔
Is-embedding [ 𝐴 ∣_]

The first and last steps hold by definition, and the second step uses the 2-out-of-3
property and the assumption that []‐cong is an equivalence. The third step uses
the fact that Is-equivalence 𝑓 is logically equivalent to Is-equivalence 𝑔 when
the functions 𝑓 and 𝑔 have the same type and are pointwise equal, as well as the
J rule and the computation rule for []‐cong. Again, if equality is extensional for
functions, then the logical equivalence can be strengthened to an equivalence
(in this case both sides are propositions).

As mentioned in Section 3.7 [_] is an embedding in traditional Agda (31).
Thus equality is always very stable in this setting.

4.4 Map-like functions
Let us now take a look at some map-like functions for stability. If 𝐴 and 𝐵 are
logically equivalent and 𝐴 is stable, then 𝐵 is stable:

𝐴 ⇔ 𝐵 → Stable 𝐴 → Stable 𝐵 (71)

One can go from Erased 𝐵 to Erased 𝐴 using the logical equivalence and the
map function (26), then to 𝐴 using the stability proof, and finally to 𝐵 using the
other direction of the logical equivalence. This proof does not rely on []‐cong.

A similar result, stated using equivalence instead of logical equivalence, can
be proved for Very-stable (using []‐cong):

𝐴 ≃ 𝐵 → Very-stable 𝐴 → Very-stable 𝐵 (72)

If equality is extensional for functions, then the last function space can be
replaced by an equivalence (because in that case Very-stable is propositional):

𝐴 ≃ 𝐵 → Very-stable 𝐴 ≃ Very-stable 𝐵 (73)
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Lemma 72 can be used to prove the following lemma, where_;_ stands for
regular functions or any of the “function formers” discussed in Section 3.8:

{@0 𝐴 ∶ Set 𝑎} {@0 𝐵 ∶ Set 𝑏} →
Very-stable (Erased 𝐴 ; Erased 𝐵) (74)

Erased (𝐴 ; 𝐵) is very stable (61), and the commutation properties from Sec-
tions 3.3 and 3.8 tell us that Erased (𝐴 ; 𝐵) is equivalent to Erased 𝐴 ;

Erased 𝐵. (This result makes use of extensionality in all cases except for regu-
lar functions and logical equivalences. One can prove that the types are stable,
rather than very stable, without using extensionality.)

4.5 Closure properties
Above we have seen some examples of types that are stable or very stable (in
some cases assuming that equality of functions is extensional, and in one case
assuming univalence):

• Types that are inhabited or uninhabited are stable.

• Types that are stable under double-negation are stable.

• Equality is stable if and only if [_] is injective.

• Very stable types are stable.

• Erased 𝐴 is very stable.

• Erased 𝐴 ; Erased 𝐵 is very stable.

• Contractible types are very stable.

• Equality is very stable for propositions.

• Stable types for which [_] is a right inverse of the proof of stability are
very stable.

• Stable propositions are very stable.

• Equality is very stable for stable sets.

• Equality is very stable if it is decidable.

• Equality is very stable if and only if [_] is an embedding.

• Universes of very stable types are very stable.

This section contains a number of closure properties (or similar results) that
can be used to prove that a type is stable or very stable.

First note that equality is very stable for very stable types (Rijke et al. 2019,
Lemma 1.25):

Very-stable 𝐴 → Very-stable-≡ 𝐴 (75)

If 𝐴 is very stable, then [_] is an equivalence for 𝐴, and thus also an embedding,
which implies that equality is very stable for 𝐴 (70). This property can be
generalised:
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∀ 𝑛 →
For-iterated-equality 𝑛 Very-stable 𝐴 →
For-iterated-equality (1 + 𝑛) Very-stable 𝐴

(76)

Many properties can be generalised in this way, but such generalised properties
are typically not included below.

Some of the closure properties do not rely on []‐cong. The commutation
properties for the unit (8) and empty (9) types can be used to prove that these
types are very stable (and thus also stable; for the second property, see also
Rijke et al. (2019, Lemma 1.27)):

Very-stable ⊤ (77)
Very-stable ⊥ (78)

The right-to-left directions of these commutation properties are defined to be
[_].

One of the commutation properties for Π (10) can in turn be used to prove
the following closure properties (the second proof uses the assumption that
equality is extensional for functions; see also Rijke et al. (2019, Lemma 1.26)):

(∀ 𝑥 → Stable (𝑃 𝑥)) → Stable ((𝑥 ∶ 𝐴) → 𝑃 𝑥) (79)
(∀ 𝑥 → Very-stable (𝑃 𝑥)) → Very-stable ((𝑥 ∶ 𝐴) → 𝑃 𝑥) (80)

Erased ((𝑥 ∶ 𝐴) → 𝑃 𝑥) is equivalent to (𝑥 ∶ 𝐴) → Erased (𝑃 𝑥), which due to
stability implies (𝑥 ∶ 𝐴) → 𝑃 𝑥. For the closure property involving Very-stable
the second step is an equivalence (assuming that equality is extensional for
functions), and one can check that the right-to-left direction of the equivalence
from Erased ((𝑥 ∶ 𝐴) → 𝑃 𝑥) to (𝑥 ∶ 𝐴) → 𝑃 𝑥 is [_] (given that the commutation
property is defined in a suitable way, and using definitional 𝜂-equality for Π).

In a similar way the commutation property for Σ can be used to prove
two closure properties (for the second one, see also Rijke et al. (2019, Theo-
rem 1.32)):

Very-stable 𝐴 → (∀ 𝑥 → Stable (𝑃 𝑥)) → Stable (Σ 𝐴 𝑃) (81)
Very-stable 𝐴 → (∀ 𝑥 → Very-stable (𝑃 𝑥)) →

Very-stable (Σ 𝐴 𝑃) (82)

Note here that the closure property for stability has Very-stable 𝐴 as an as-
sumption, rather than Stable 𝐴. In fact, I have not been able to prove this
property even with Very-stable′ 𝐴 as the assumption. The commutation prop-
erty for Σ gives that Erased (Σ 𝐴 𝑃) is equivalent to Σ (Erased 𝐴) (𝜆 𝑥 →
Erased (𝑃 (erased 𝑥))). How can one prove that the latter type implies Σ 𝐴 𝑃 ?
Given a function 𝑠 from Erased 𝐴 to 𝐴 it suffices to find a function of type
(𝑥 ∶ Erased 𝐴) → Erased (𝑃 (erased 𝑥)) → 𝑃 (𝑠 𝑥). A function of this type is
easy to construct from a proof showing that 𝑃 is pointwise stable if 𝑠 is a right
inverse of [_].

If the Σ-types are replaced by non-dependent cartesian products, then it
suffices to have Stable 𝐴 as the assumption:

Stable 𝐴 → Stable 𝐵 → Stable (𝐴 × 𝐵) (83)
Very-stable 𝐴 → Very-stable 𝐵 → Very-stable (𝐴 × 𝐵) (84)
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If []‐cong is available, pattern matching is allowed for erased arguments of
single-constructor data types, and equality is extensional for functions, then the
following closure property can be proved for W-types:

Very-stable 𝐴 → Very-stable (W 𝐴 𝑃) (85)

W 𝐴 𝑃 is equivalent to Σ 𝐴 (𝜆 𝑥 → 𝑃 𝑥 → W 𝐴 𝑃), which might explain why
I failed to find a similar closure property for plain stability.

If equality is stable for 𝐴, then the property of being a proposition is stable
for 𝐴:

Stable-≡ 𝐴 → Stable (H-level 1 𝐴) (86)

The fact that 𝐴 is a proposition if and only if all values of type 𝐴 are equal
means that this result follows from Stable-≡ 𝐴 → Stable ((𝑥 𝑦 ∶ 𝐴) → 𝑥 ≡ 𝑦)
(using a map-like function (71)). This lemma can in turn be proved using a
closure property for Π (10). The result can be generalised:

∀ 𝑛 → For-iterated-equality (1 + 𝑛) Stable 𝐴 →
Stable (H-level (1 + 𝑛) 𝐴) (87)

A similar result can also be proved for the property of being very stable (if
[]‐cong is available and equality is extensional for functions):

∀ 𝑛 → For-iterated-equality 𝑛 Very-stable 𝐴 →
Very-stable (H-level 𝑛 𝐴) (88)

Note that this result starts “one level lower”:

Very-stable 𝐴 → Very-stable (Contractible 𝐴) (89)

This latter result can be proved using the closure properties for Σ (82) and
Π (80), and the fact that equality is very stable for very stable types (75) (again
assuming that []‐cong is available and that equality is extensional for functions).
See also Rijke et al. (2019, Remark 1.29).

Let us now consider data types with several constructors, like the booleans.
The booleans are stable, because they are inhabited. However, resurrecting an
identical copy of an erased boolean, without any knowledge of which boolean
it was, seems hard, suggesting that it might not be possible to prove that the
booleans are very stable in a non-erased context. (The booleans are provably
very stable in an erased context, just like every other type, so it should not be
possible to prove that they are not very stable in a non-erased context.) If we
move one level up we can note that equality is decidable for the booleans, so
equality is very stable for them.

What if we take general binary sums for which equality might not be decid-
able? In this case we can prove the following closure properties (the proof of
the second one makes use of []‐cong):

Stable-≡ 𝐴 → Stable-≡ 𝐵 → Stable-≡ (𝐴 ⊎ 𝐵) (90)
Very-stable-≡ 𝐴 → Very-stable-≡ 𝐵 → Very-stable-≡ (𝐴 ⊎ 𝐵) (91)

The first result can be proved by case analysis: if the two values of type 𝐴 ⊎ 𝐵
are both left injections or both right injections, then the assumptions can be
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used, and otherwise a contradiction is obtained, because a left injection is not
equal to a right injection. The second result can also be proved by case analysis.

This kind of result is not limited to non-recursive data types. It can also be
proved for lists (again the proof of the second one makes use of []‐cong):

Stable-≡ 𝐴 → Stable-≡ (List 𝐴) (92)
Very-stable-≡ 𝐴 → Very-stable-≡ (List 𝐴) (93)

The proofs use recursion on the structure of lists. As another example this
kind of result can be proved for set quotients, defined using a higher inductive
type (in Cubical Agda, roughly following The Univalent Foundations Program
(2013)):

Is-equivalence-relation 𝑅 → (∀ 𝑥 𝑦 → H-level 1 (𝑅 𝑥 𝑦)) →
(∀ 𝑥 𝑦 → Stable (𝑅 𝑥 𝑦)) → Very-stable-≡ (𝐴 / 𝑅) (94)

The proof uses the fact that if 𝑅 is a propositional equivalence relation, then
𝑅 𝑥 𝑦 is equivalent to [ 𝑥 ] ≡ [ 𝑦 ], where [_] is the (overloaded) canonical
surjection for the quotient 𝐴 / 𝑅.

4.6 []‐cong can be proved using extensionality
If extensionality holds for functions, then one can prove []‐cong, show that it
is an equivalence, and prove its computation rule. All the main results in this
section make use of function extensionality for a fixed universe level 𝑎.

First note that one can prove Lemma 59 without making use of []‐cong (this
proof is based on the proof of Lemma 1.20 due to Rijke et al. (2019)):

{𝐴 ∶ Set 𝑎} (𝑠 ∶ Stable 𝐴) → (∀ 𝑥 → 𝑠 [ 𝑥 ] ≡ 𝑥) → Very-stable 𝐴 (95)

The following calculation shows that if 𝑠 ∶ Stable 𝐴 is a left inverse of [_], then
it is also a right inverse, which implies that 𝐴 is very stable:

(∀ 𝑥 → 𝑠 [ 𝑥 ] ≡ 𝑥) →
(∀ 𝑥 → [ 𝑠 [ 𝑥 ] ] ≡ [ 𝑥 ]) →
[_] ∘ 𝑠 ∘ [_] ≡ [_] →
[_] ∘ 𝑠 ≡ id →
(∀ 𝑥 → [ 𝑠 𝑥 ] ≡ 𝑥)

The first step uses the fact that any non-dependent function, including [_],
preserves equality. The second step uses extensionality, and the final step uses
the inverse of extensionality. The third step uses the fact that Erased is a
uniquely eliminating modality (24), along with the following fact:

(A≃B ∶ 𝐴 ≃ 𝐵) → (_≃_.to A≃B 𝑥 ≡_≃_.to A≃B 𝑦) ≃ (𝑥 ≡ 𝑦) (96)

One can also prove Lemma 75 without using []‐cong (this proof is based on
the proof of Lemma 1.25 due to Rijke et al. (2019)):

{𝐴 ∶ Set 𝑎} → Very-stable 𝐴 → Very-stable-≡ 𝐴 (97)

If 𝐴 is very stable, then [_] has an inverse 𝑠 ∶ Stable 𝐴. Using this inverse we can
prove that equality is stable for 𝐴. Given 𝑥 ∶ 𝐴, 𝑦 ∶ 𝐴 and eq ∶ Erased (𝑥 ≡ 𝑦)
we can calculate in the following way:
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𝑥 ≡
𝑠 [ 𝑥 ] ≡
𝑠 [ 𝑦 ] ≡
𝑦

The first and last steps use the assumption that 𝑠 is an inverse of [_]. For
the second step we can start by noticing that extensionality implies that the
function 𝜆 (_ ∶ 𝑥 ≡ 𝑦) → [ 𝑥 ] is equal to 𝜆 (_ ∶ 𝑥 ≡ 𝑦) → [ 𝑦 ]. The fact that
Erased is a uniquely eliminating modality (24) implies that

𝜆 (𝑓 ∶ Erased (𝑥 ≡ 𝑦) → Erased 𝐴) → 𝑓 ∘ [_]

is injective, so we get that the function 𝜆 (_ ∶ Erased (𝑥 ≡ 𝑦)) → [ 𝑥 ] is equal
to 𝜆 (_ ∶ Erased (𝑥 ≡ 𝑦)) → [ 𝑦 ]. If we apply the function

𝜆 (𝑓 ∶ Erased (𝑥 ≡ 𝑦) → Erased 𝐴) → 𝑠 (𝑓 eq)

to these functions we get 𝑠 [ 𝑥 ] and 𝑠 [ 𝑦 ]. If we can prove that this stability
proof is a left inverse of [_] (for every 𝑥 and 𝑦), then Lemma 95 implies that
equality is very stable for 𝐴. For details of such a proof, see the accompanying
code.

Let us now prove []‐cong:

{@0 𝐴 ∶ Set 𝑎} {@0 𝑥 𝑦 ∶ 𝐴} → Erased (𝑥 ≡ 𝑦) → [ 𝑥 ] ≡ [ 𝑦 ] (98)

This will be done in two steps. First a preliminary variant of []‐cong will be
given, and then this variant will be used to define a variant that is an equivalence.
For the first variant we can calculate in the following way:

Erased (𝑥 ≡ 𝑦) →
Erased ([ 𝑥 ] ≡ [ 𝑦 ]) →
[ 𝑥 ] ≡ [ 𝑦 ]

The first step uses the map function (26), and the second step uses the fact
that erased types are very stable (61) and the previous lemma (97). Using this
preliminary definition of []‐cong we can easily prove the following preservation
lemma for equivalences:

{@0 𝐴 𝐵 ∶ Set 𝑎} → @0 𝐴 ≃ 𝐵 → Erased 𝐴 ≃ Erased 𝐵

(Note that, unlike Lemma 39, this preservation lemma is defined for a fixed
universe level.) This preservation lemma can then be used to define the second
variant of []‐cong, which is an equivalence, using the following calculation:

Erased (𝑥 ≡ 𝑦) ≃
Erased ([ 𝑥 ] ≡ [ 𝑦 ]) ≃
[ 𝑥 ] ≡ [ 𝑦 ]

One can also prove that this definition satisfies the computation rule for []‐cong.
The proof is similar to the final, omitted step of the proof of Lemma 97, see the
accompanying code for details.

Rijke et al. prove that for a lex modality a certain function with the same
type as []‐cong (except for the @0 annotations) is an equivalence (2019, Theo-
rem 3.1 (ix)).
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5 Examples
This section contains some examples showing how Erased and the theory devel-
oped above can be used.

5.1 Singleton types with erased equality proofs
First let us discuss singleton types. Singleton types of the form Σ 𝐴 (𝜆 𝑦 → 𝑦
≡ 𝑥) are contractible. What if the equality proof is erased? In that case the
following result can be proved:

Very-stable-≡ 𝐴 → Contractible (Σ 𝐴 (𝜆 𝑦 → Erased (𝑦 ≡ 𝑥))) (99)

If equality is very stable for 𝐴, then Erased (𝑦 ≡ 𝑥) is equivalent to 𝑦 ≡ 𝑥,
so the type is equivalent to a regular singleton type. If 𝑥, which witnesses the
inhabitance of 𝐴, is erased, then one can still prove that the type is a proposition:

{@0 𝑥 ∶ 𝐴} →
Very-stable-≡ 𝐴 → H-level 1 (Σ 𝐴 (𝜆 𝑦 → Erased (𝑦 ≡ 𝑥))) (100)

In an erased context Σ 𝐴 (𝜆 𝑦 → Erased (𝑦 ≡ 𝑥)) is contractible, and thus also a
proposition. We can conclude if H-level 1 (Σ 𝐴 (𝜆 𝑦 → Erased (𝑦 ≡ 𝑥))) is stable.
This type is stable if equality is stable for Σ 𝐴 (𝜆 𝑦 → Erased (𝑦 ≡ 𝑥)) (86).
Given the assumption that equality is very stable for 𝐴 we in fact get that
equality is very stable for this type: this follows from the fact that Very-stable-≡
is closed under Σ (this is an instance of a generalisation of Lemma 82), the fact
that Erased 𝐵 is always very stable (61), and the fact that if 𝐶 is very stable,
then equality is very stable for 𝐶 (75).

We can also prove the following lemma:

Σ (Erased 𝐴) (𝜆 𝑥 → Σ 𝐴 (𝜆 𝑦 → Erased (𝑦 ≡ erased 𝑥))) ≃ 𝐴 (101)

The proof is a simple calculation:

Σ (Erased 𝐴) (𝜆 𝑥 → Σ 𝐴 (𝜆 𝑦 → Erased (𝑦 ≡ erased 𝑥))) ≃
Σ 𝐴 (𝜆 𝑦 → Σ (Erased 𝐴) (𝜆 𝑥 → Erased (𝑦 ≡ erased 𝑥))) ≃
Σ 𝐴 (𝜆 𝑦 → Erased (Σ 𝐴 (𝜆 𝑥 → 𝑦 ≡ 𝑥))) ≃
𝐴 × Erased ⊤ ≃
𝐴

The second and fourth steps use commutation properties from Section 3.3, and
the third step uses a preservation lemma (48) as well as the fact that singleton
types are equivalent to the unit type.

5.2 Efficient natural numbers
Natural numbers can be represented in several ways. One common representa-
tion is the inductive data type with two constructors, zero ∶ ℕ and suc ∶ ℕ →
ℕ. This representation is perhaps more suited for proofs than for computation.
If one cares about performance—or at least asymptotic complexity—then some
other representation (perhaps a binary one) might be more suitable.
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In this section I will outline how one can have a natural number type
that—for some operations—computes roughly like the unary representation at
compile-time (when code is type-checked), but gets compiled to something pos-
sibly more efficient.

The following development works for any type of (possibly) efficient natural
numbers Nat′ ∶ Set which is equivalent to the unary natural numbers, Nat′ ≃ ℕ.
Let us denote the forward direction of this equivalence by to-ℕ, and the other
direction by from-ℕ. The efficient natural number 𝑛 is assumed to stand for the
unary natural number to-ℕ 𝑛. As an example the accompanying code contains
an implementation of natural numbers as lists of bits with the least significant
bit first and an erased invariant that ensures that there are no trailing zeros.
(No claim is made that this representation is efficient compared to something
based on machine integers.)

Let us start by defining a type of efficient natural numbers representing a
specific natural number 𝑛:

Nat-[_] ∶ @0 ℕ → Set
Nat-[ 𝑛 ] = Σ Nat′ (𝜆 m → Erased (to-ℕ m ≡ 𝑛)) (102)

The equality proof is erased, to make sure that it is not present at run-time.
Note that it might be better to switch to a variant of the Σ-type where the second
field is erased: a compiler might generate actual pairs for the type above, rather
than just truncated efficient natural numbers. However, such a change would
presumably not affect the asymptotic complexity of the code.

The type Nat-[ 𝑛 ] is a proposition:

{@0 𝑛 ∶ ℕ} → H-level 1 (Nat-[ 𝑛 ]) (103)

Equality is very stable for the unary natural numbers (this follows from Lemma
67, because equality is decidable for this type). Thus equality is very stable also
for Nat′ (this follows from Lemma 72), so by Lemma 100 the type

Σ Nat′ (𝜆 m → Erased (m ≡ from-ℕ 𝑛))

is a proposition. Furthermore this type is equivalent to Nat-[ 𝑛 ], and H-level 1
respects equivalences.

Given the definition above one can now define another type of (possibly
efficient) natural numbers:

Nat ∶ Set
Nat = Σ (Erased ℕ) (𝜆 𝑛 → Nat-[ erased 𝑛 ]) (104)

A value of type Nat is an erased unary natural number index 𝑛, and an under-
lying natural number that represents 𝑛.

Let the (erased) function ⌊_⌋ return the erased index:

@0 ⌊_⌋ ∶ Nat → ℕ
⌊ ([ 𝑛 ] ,_) ⌋ = 𝑛 (105)

Assume that we have two values m, 𝑛 ∶ Nat. Because the second projections
are propositional (103) there is an equivalence between m ≡ 𝑛 and equality of
the first projections, proj1 m ≡ proj1 𝑛. By combining this observation with the
equivalence []‐cong we get the following lemma:
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{m 𝑛 ∶ Nat} → Erased (⌊ m ⌋ ≡ ⌊ 𝑛 ⌋) ≃ (m ≡ 𝑛) (106)

One can prove that two values of type Nat are equal by constructing an erased
proof showing that the erased indices are equal.

5.2.1 Arithmetic

Let us now see how one can implement arithmetic operations for Nat-[_] and
Nat. I will focus on unary operations; other arities can be treated in a similar
way. Given a function 𝑓 ′ on Nat′ that corresponds in a certain sense to a
function 𝑓 on ℕ one can construct a function from Nat-[ 𝑛 ] to Nat-[ 𝑓 𝑛 ]:

unary‐[] ∶
{@0 𝑛 ∶ ℕ} {@0 𝑓 ∶ ℕ → ℕ} (𝑓 ′ ∶ Nat′ → Nat′) →
@0 (∀ 𝑛 → to-ℕ (𝑓 ′ 𝑛) ≡ 𝑓 (to-ℕ 𝑛)) →
Nat-[ 𝑛 ] → Nat-[ 𝑓 𝑛 ]

(107)

Note that 𝑛, 𝑓 and the proof are erased. The input of type Nat-[ 𝑛 ] gives us
an efficient natural number n′ and an erased proof of type to-ℕ n′ ≡ 𝑛. We can
return a pair containing 𝑓 ′ n′ and an erased proof of the equality to-ℕ (𝑓 ′ n′)
≡ 𝑓 𝑛.

We can also construct a function on Nat:

unary ∶
(@0 𝑓 ∶ ℕ → ℕ) (𝑓 ′ ∶ Nat′ → Nat′) →
@0 (∀ 𝑛 → to-ℕ (𝑓 ′ 𝑛) ≡ 𝑓 (to-ℕ 𝑛)) →
Nat → Nat

unary 𝑓 𝑓 ′ eq ([ 𝑛 ] , n′) = ([ 𝑓 𝑛 ] , unary‐[] 𝑓 ′ eq n′)

(108)

Note that the index computes like 𝑓. Because equality for Nat is equivalent
to (erased) equality of the erased indices this means that one can ignore the
second components at compile-time. However, at run-time the first components
are erased, and the computational behaviour should be, roughly speaking, that
of the underlying, possibly efficient natural numbers. (There is one caveat to
the previous statement: as mentioned in Section 2 there is currently no compiler
for Cubical Agda, and it is not known if there is a reasonable way to handle
erasure in this setting. However, there is at least one compiler for traditional
Agda that respects erasure annotations.)

5.2.2 Converting Nat to ℕ
At this point one may wonder whether natural numbers of type Nat can be used
for other things than computing new values of the same type. For instance, can
these natural numbers be converted to (non-erased) unary natural numbers? It
turns out that there is a run-time equivalence between Nat and ℕ.

First note that, because Nat′ is equivalent to ℕ, we get an equivalence be-
tween Nat-[ 𝑛 ] and a type that does not refer to Nat′:

{@0 𝑛 ∶ ℕ} → Nat-[ 𝑛 ] ≃ Σ ℕ (𝜆 m → Erased (m ≡ 𝑛)) (109)

We can now construct an equivalence between Nat and ℕ:
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Nat ≃
Σ (Erased ℕ) (𝜆 𝑛 → Nat-[ erased 𝑛 ]) ≃
Σ (Erased ℕ) (𝜆 𝑛 → Σ ℕ (𝜆 m → Erased (m ≡ erased 𝑛))) ≃
ℕ

(110)

The first step holds by definition, the second step uses the previous equivalence
(note that it is important that this equivalence is proved for an erased argument
𝑛), and the last step is an instance of Lemma 101.

Let us denote the forward direction of the equivalence by Nat�ℕ. This
function does not simply return the index (which is erased), it computes a run-
time natural number based on non-erased information. However, in an erased
context we can prove that this function returns something that is equal to the
index:

@0 Nat�ℕ-returns-index ∶ ∀ 𝑛 → Nat�ℕ 𝑛 ≡ ⌊ 𝑛 ⌋ (111)

Note that 𝑛 must have the form ([ m ] , m′ , eq) for some index m, number
m′ ∶ Nat′ and proof eq ∶ Erased (to-ℕ m′ ≡ m). The application of Nat�ℕ to
such a tuple is definitionally equal to to-ℕ m′. (This text does not include every
detail of every function. The definitional equality holds if the functions are
implemented as in the accompanying code.) Furthermore ⌊ 𝑛 ⌋ is definitionally
equal to m, so the proof can be completed by using erased eq.

We can now show that unary (108) is well-behaved in the following sense:

{@0 eq ∶ ∀ 𝑛 → to-ℕ (𝑓 ′ 𝑛) ≡ 𝑓 (to-ℕ 𝑛)} →
∀ 𝑛 → Nat�ℕ (unary 𝑓 𝑓 ′ eq 𝑛) ≡ 𝑓 (Nat�ℕ 𝑛) (112)

We can calculate in the following way:

Nat�ℕ (unary 𝑓 𝑓 ′ eq 𝑛) ≡
⌊ unary 𝑓 𝑓 ′ eq 𝑛 ⌋ ≡
𝑓 ⌊ 𝑛 ⌋ ≡
𝑓 (Nat�ℕ 𝑛)

The second step holds by definition, and the first and third steps follow from
Lemma 111. However, note that ⌊_⌋ and Lemma 111 can only be used in erased
contexts. The proof can be completed by making use of the fact that equality
is stable for the natural numbers.

5.2.3 Decidable equality

As mentioned in Section 5.2.1 the function unary 𝑓 𝑓 ′ eq computes roughly like
𝑓 at compile-time: when the function is applied to a pair ([ 𝑛 ] , n′) the first
projection of the result is [ 𝑓 𝑛 ]. However, there are functions that do not have
Nat as their codomain. The forward direction of the equivalence between Nat
and ℕ (110) provides one example, and in this section an equality test of the
following type is constructed:

(m 𝑛 ∶ Nat) → Dec (Erased (⌊ m ⌋ ≡ ⌊ 𝑛 ⌋)) (113)

Recall that Dec 𝐴 is the binary sum 𝐴 ⊎ ¬ 𝐴: the function either returns an
erased proof showing that the two numbers’ indices are equal, or a refutation
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of such proofs. If the erasure mechanism works properly, then the choice of
whether to return the left injection or the right injection must be taken based
on information that is present at run-time, which means that the function cannot
return any useful information based only on the erased indices. Note that this
argument applies to any function with a type of the form (𝑥 ∶ 𝐴) → 𝑃 𝑥 ⊎ 𝑄 𝑥
where the result can be both a left injection and a right injection.

So, how can the equality test be defined? Let us assume that there is a
(possibly efficient) equality test for Nat′:

∀ m 𝑛 → Dec (Erased (to-ℕ m ≡ to-ℕ 𝑛))

Using this equality test we can implement an equality test for Nat-[_]:

{@0 m 𝑛 ∶ ℕ} → Nat-[ m ] → Nat-[ 𝑛 ] → Dec (Erased (m ≡ 𝑛)) (114)

We can take apart the two Nat-[_] arguments and apply the equality test for
Nat′ to the underlying efficient natural numbers. The erased equalities from
the Nat-[_] arguments can then be used to construct an answer of the right
type. Finally it is very easy to construct the equality test for Nat (113): it
suffices to apply the equality test for Nat-[_] to the second projections of the
two arguments of type Nat.

5.3 Queues
The technique discussed above is not restricted to natural numbers. The accom-
panying code contains a similar construction for queues, using lists as the erased
indices. Here are the type signatures of the enqueue and dequeue operations:

enqueue ∶ 𝐴 → Queue 𝐴 → Queue 𝐴 (115)
dequeue ∶ Very-stable-≡ 𝐴 → Queue 𝐴 → Maybe (𝐴 × Queue 𝐴) (116)

(Maybe 𝐴 is the binary sum ⊤ ⊎ 𝐴.) Note that the dequeue operation requires
that equality is very stable for the carrier type: this assumption is used to prove
that certain types are propositions, using Lemma 100. The enqueue operation
computes similarly to the function unary (108), but the dequeue operation com-
putes more like the equality test for Nat (113): note that the dequeue operation’s
return type is a binary sum, just like the equality test’s.

6 Discussion and related work
I have presented some theory of Erased, along with some examples of how this
modality can be used.

Erased is defined in Agda, using the @0 annotation. I would like to know
whether something similar can be defined, along with the theory, in related
systems. For instance, it should be possible to define something like Erased in
Coq, using the Prop universe (which is used to control erasure (Letouzey 2003)),
but I do not know if the theory can be developed in that setting.

Note that Erased is not the same thing as the squash operator (Constable
et al. 1986; Mendler 1990), or the bracket operator (Awodey and Bauer 2004),
or the propositional truncation operator (The Univalent Foundations Program
2013), because Erased 𝐴 is not necessarily a proposition (23). Thus these type
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formers are not replacements for Erased, and Erased is not a replacement for
them.

Perhaps it is instructive to see what happens if Erased ℕ is replaced by
the propositional truncation ∥ ℕ ∥ in the type Nat (104). First note that the
type Σ Set Contractible is a proposition (assuming univalence). Furthermore
Nat-[ 𝑛 ] is contractible (because it is an inhabited proposition), so it can be the
first projection of a pair of type Σ Set Contractible. Thus we can implement a
function from truncated natural numbers that constructs this kind of pair using
the recursion principle for the propositional truncation (which gives access to
a natural number 𝑛), and then returns the first projection of the pair. If we
call this function Nat-[_]′, then we get the following alternative implementation
of Nat: Σ ∥ ℕ ∥ Nat-[_]′. However, this implementation has a problem: it is
equivalent to the unit type, and thus not equivalent to ℕ (see the accompanying
code for details).

I am aware of two previous works discussing something like Erased in some
detail: the general theory of modalities developed by Rijke et al. (2019), which
has been mentioned frequently above, and the work of Mishra-Linger (2008).
Mishra-Linger defines a type function that he calls squash or ○. He discusses
this function in two settings, EPTS and EPTS•. EPTS has support for era-
sure, roughly like the @0 annotation of Agda. EPTS• additionally incorporates
erasure into definitional equality, so that terms are compared after erasure. In
the setting of EPTS• Mishra-Linger’s squash type always produces propositions.
However, in the setting of EPTS it seems to be closer to Erased. Mishra-Linger
notes that in this setting he can prove that ○ is an applicative functor (McBride
and Paterson 2008), and he notes that he can also prove that it is a monad and
that ○ ○ 𝐴 is isomorphic to ○ 𝐴 if “token type target erasure”—basically
support for pattern-matching for erased arguments of single-constructor data
types—is allowed for ○ (but he argues against allowing this). He also proves
that ○ 𝐴 → 𝐵 is isomorphic to @0 𝐴 → 𝐵 (his notation is different), and states
that (𝑥 ∶ ○ 𝐴) → 𝐵 is not equivalent to (@0 𝑥 ∶ 𝐴) → 𝐵, where 𝐵 can mention
𝑥. It is unclear to me what this means, because 𝑥 does not have the same type in
the two expressions. Mishra-Linger views this difference between ○ and @0 “as
a principal advantage of [his] approach over squash types”. As noted above (7)
something like this can be proved for Erased in Agda:

{@0 𝐴 ∶ Set 𝑎} {@0 𝑃 ∶ Erased 𝐴 → Set 𝑝} →
((𝑥 ∶ Erased 𝐴) → 𝑃 𝑥) ≃ ((@0 𝑥 ∶ 𝐴) → 𝑃 [ 𝑥 ])

I suspect that the projection erased is not supported in Mishra-Linger’s setting,
and this equivalence seems less interesting then.
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