
Total Definitional Interpreters for Looping Programs

NILS ANDERS DANIELSSON, University of Gothenburg & Chalmers University of Technology, Sweden

A question has been raised regarding how useful total definitional interpreters are in a setting in which
programs run forever. For instance, is it possible to give a semantics in the form of a total definitional
interpreter in such a way that one can distinguish between non-terminating programs that run in bounded
space and those that do not? Here it is shown that this is possible.

The main object of study is an untyped λ-calculus with named recursive definitions. The semantics of this
language is specified using a “big-step” definitional interpreter, using the delay monad to ensure that the
definition is a total function. A (provably correct) compiler is given to the language of a virtual machine with
tail calls, which is specified using a “small-step” definitional interpreter. A big-step definitional interpreter
which is instrumented with information about stack sizes is also given for the λ-calculus, and these stack
sizes are shown to agree with those encountered by the virtual machine. Two non-terminating programs are
presented, and it is shown that one runs in bounded stack space, and that the other does not.

The development is accompanied by machine-checked proofs.

Additional Key Words and Phrases: coinduction, sized types, space complexity

1 INTRODUCTION
One can define the semantics of a programming language in many different ways. One approach
is to use definitional interpreters [Reynolds 1972], i.e. interpreters that define the semantics of a
language. If the aim is to use the semantics to produce machine-checked proofs about the language
or programs written in the language, then it may be beneficial to define the interpreter using some
kind of proof assistant. When the language that is interpreted has some kind of effect, and the
internal programming language or function definition facility of the proof assistant that is used
does not have direct support for that effect, then some kind of workaround is needed. For the effect
of general (unrestricted) recursion several workarounds have been investigated, including the delay
monad and other coinductive types [Capretta 2005; Nakata and Uustalu 2009; Paulin-Mohring 2009;
Benton et al. 2009; Danielsson 2012], step-counting/fuel [Leroy and Grall 2009; Siek 2013; Owens
et al. 2016; Amin and Rompf 2017; Bach Poulsen et al. 2018], and guarded recursive types [Paviotti
et al. 2015].1

Recently Ancona et al. [2017b] introduced amethod for defining the semantics of non-terminating
languages based on coaxioms. They expressed some scepticism towards how well definitional
interpreters can handle certain properties of non-terminating programs, and gave a concrete
example: “For instance, if a program consists of an infinite loop that allocates new heap space at
each step without releasing it, one would like to conclude that it will eventually crash even though
a definitional interpreter returns timeout for all possible values of the step counter.”

In this work I show that it is possible to handle this kind of situation using definitional interpreters.
More concretely:

• In order to focus on the essentials I define a tiny programming language where programs are
potentially infinite lists of the instructions “allocate” and “deallocate” (see Section 4). I define
a definitional interpreter for this language using the delay monad (which is discussed in
Section 3). The interpreter models a situation with bounded memory, so it takes the memory
size as an input parameter, and if memory runs out, then it crashes. I provide an example of

1For the purpose of this set of references I count denotational semantics as definitional interpreters.

Draft from 2018-07-13.

:2 Nils Anders Danielsson

a program that provably crashes, and some examples of programs that provably run forever
in bounded memory.

• In response to correspondence with Ancona et al. I define a second semantics of the program-
ming language (Section 5). This semantics allows the memory to grow without limit, but
instead I reason about the memory usage. I show that one non-terminating program requires
an unbounded amount of memory, whereas other non-terminating programs only require
bounded memory. I also define a simple program optimiser (Section 7), and show that this
optimiser never increases maximum memory usage, but sometimes decreases it.

• As a somewhat more realistic example I present definitional interpreters for a small λ-calculus
with booleans and recursive, unary definitions (Section 8) and a simple virtual machine with
tail calls (Section 9), and a provably correct compiler from the former to the latter (Section 10).
These languages and the compiler are based onwork by Leroy and Grall [2009] and Danielsson
[2012]. The interpreter for the λ-calculus is then instrumented with information about the
stack size, and I prove that the compiler preserves maximum stack usage (Section 11). I
give two examples of non-terminating programs, one that runs in bounded stack space, and
one that does not (Section 12). I prove this by using the instrumented interpreter, not the
lower-level virtual machine.

Related work is discussed in Section 13.
All the main results and examples in this paper have been formalised using Agda [Agda Team

2018], with the K rule turned off, and the code is available to inspect. The formalisation makes
heavy use of sized types (see Section 2 for a quick introduction). In order to provide readers with
some experience of what it is like to use sized types in practice, and because Agda is perhaps the
only fairly mature proof assistant with support for sized types, I will use Agda code in the text
below. (There are some differences between the text and the accompanying code, but they are
minor. For instance, the accompanying code is sometimes more general due to the use of universe
polymorphism.)

2 SIZED TYPES
Agda provides sized types as a mechanism to make it easier to write corecursive definitions. This
section contains a quick introduction to (one kind of) sized types as implemented in Agda. Sized
types can be used for both induction and coinduction, but in this text they are only used for
coinduction.
I will introduce the concept by showing how to define the type of “conatural numbers”—the

greatest fixpoint νX .1 + X , representing natural numbers extended with infinity—along with some
related definitions. (The conatural numbers are used in several sections below.)

The conatural numbers can be defined in the following rather verbose way using sized types:

mutual

data Conat (i : Size) : Set where
zero : Conat i
suc : Conat ′ i → Conat i

record Conat ′ (i : Size) : Set where
coinductive
field force : {j : Size< i} → Conat j

The constructor zero stands for the conatural number zero, and suc n is the successor of n. (Set is a
type of small types.)

Total Definitional Interpreters for Looping Programs :3

Sizes can be thought of as some kind of ordinals, and the type Conat i can be thought of as a type
of possibly not fully defined conatural numbers of size at least i. The notation j : Size< i means
(roughly) that j is strictly smaller than i. The type Conat ′ i can be seen as standing for conatural
numbers of size at least j, for any j : Size< i.

There is a special size ∞, and Conat ∞ can be seen as a type of fully defined conatural numbers
of any size. The size ∞ can be thought of as a closure ordinal for which there is some kind of
isomorphism between Conat ∞ and Conat ′ ∞: we have that i : Size< ∞ holds for every size i,
including ∞ itself.
Agda also supports a notion of subtyping: values of type Conat i (“conatural numbers of size

at least i”) can be used where values of type Conat j (“conatural numbers of size at least j”) are
expected, for any j : Size< i.
A basic method for defining values in coinductive types is to use corecursion. Agda supports

corecursion with copatterns [Abel et al. 2013]. Here is one way to define “infinity”:2

mutual

infinity : ∀ {i} → Conat i
infinity = suc infinity′

infinity′ : ∀ {i} → Conat ′ i
infinity′ .force = infinity

The code above states that infinity is the successor of infinity′. Agda treats infinity′ as a value that
is only unfolded if the force projection is applied to it, in which case the result is infinity (which
can be unfolded further). The following, more compact notation with an anonymous copattern is
also available:

infinity : ∀ {i} → Conat i
infinity = suc λ { .force→ infinity }

Notation like ∀ {i} → . . . means that the argument i is an implicit argument. Implicit arguments do
not need to be given explicitly if Agda manages to infer them. However, it is possible to give a fully
explicit definition of infinity:

infinity : ∀ {i} → Conat i
infinity {i} = suc λ { .force {j} → infinity {j} }

There is no way to match on a size, sizes are only used to give information to the termination
checker. The termination checker accepts the last definition of infinity above because, for every
cycle in the call graph, there is a strict decrease in the size (if we ignore∞), and the strictly smaller
size (j : Size< i) is associated in a certain way to a copattern corresponding to a field (force) of the
coinductive record type Conat ′. If ∞ is ignored, then one can see infinity as being defined by some
kind of transfinite recursion.

Note that the current, experimental Agda implementation of sized types is buggy. The fact that
∞ : Size< ∞ has led to problems, and a slightly different design has been discussed. However, I
would be surprised if any bugs in Agda invalidated the main ideas presented below.

The approach to sized types presented here is based on deflationary iteration [Abel 2012]. Abel
and Pientka [2016] present a normalisation proof for this approach to sized types, but for a language
without dependent types. Sacchini [2015] studies a language with dependent types, and sketches a
normalisation proof, but his language is designed somewhat differently from Agda.
2Agda does not by default make the projection force available unqualified. I do not include code that only manipulates what
names are in scope in this text.

:4 Nils Anders Danielsson

As an example of a coinductively defined relation, consider the following definition of “less than
or equals” for conatural numbers:

mutual

data [_]_≤_ (i : Size) : Conat ∞→ Conat ∞→ Set where
zero : ∀ {n} → [i] zero ≤ n
suc : ∀ {m n} → [i] m .force ≤′ n .force→ [i] suc m ≤ suc n

record [_]_≤′_ (i : Size) (m n : Conat ∞) : Set where
coinductive
field force : {j : Size< i} → [j] m ≤ n

Note that Agda allows constructors to be overloaded. This definition states that the number zero
is less than or equal to any conatural number, and that suc preserves the ordering relation (in a
coinductive sense).
For technical reasons Agda’s equality type is not always appropriate for use with coinduc-

tive types. For the conatural numbers it often makes more sense to use the following notion of
bisimilarity:

mutual

data [_]_∼N_ (i : Size) : Conat ∞→ Conat ∞→ Set where
zero : [i] zero ∼N zero
suc : ∀ {m n} → [i] m .force ∼N

′ n .force→ [i] suc m ∼N suc n

record [_]_∼N
′_ (i : Size) (m n : Conat ∞) : Set where

coinductive
field force : {j : Size< i} → [j] m ∼N n

3 THE DELAY MONAD
This section contains a brief presentation of the delay monad [Capretta 2005], which is used in
several sections below. The delay monad represents potentially non-terminating computations:

mutual

data Delay (A : Set) (i : Size) : Set where
now : A → Delay A i
later : Delay′ A i → Delay A i

record Delay′ (A : Set) (i : Size) : Set where
coinductive
field force : {j : Size< i} → Delay A j

The constructor application now x represents a situation in which a computation terminates
immediately with the value x, and later x stands for a program that may or may not terminate later.
The computation never represents non-termination:

never : ∀ {A i} → Delay A i
never = later λ { .force → never }

The delay monad is a monad. The return and bind combinators can be defined in the following
way:

Total Definitional Interpreters for Looping Programs :5

return : ∀ {A i} → A → Delay A i
return x = now x

>>= : ∀ {A B i} → Delay A i → (A → Delay B i) → Delay B i
now x >>= f = f x
later x >>= f = later λ { .force→ x .force >>= f }

The monad laws can be proved up to strong bisimilarity, defined in the following way:
mutual

data [_]_∼D_ {A : Set} (i : Size) : Delay A ∞→ Delay A ∞→ Set where
now : ∀ {x} → [i] now x ∼D now x
later : ∀ {x y} → [i] x .force ∼D

′ y .force→ [i] later x ∼D later y

record [_]_∼D
′_ {A : Set} (i : Size) (x y : Delay A ∞) : Set where

coinductive
field force : {j : Size< i} → [j] x ∼D y

In many cases strong bisimilarity is too strong, because it only relates terminating computations
if they terminate in the same number of steps (later constructors). An alternative is to use weak
bisimilarity, which relates any computations that terminate with the same value. Here is one way
to define this relation [Danielsson and Altenkirch 2010; Danielsson 2018]:

mutual

data [_]_≈D_ {A : Set} (i : Size) : Delay A ∞→ Delay A ∞→ Set where
now : ∀ {x} → [i] now x ≈D now x
later : ∀ {x y} → [i] x .force ≈D′ y .force→ [i] later x ≈D later y
later l : ∀ {x y} → [i] x .force ≈D y → [i] later x ≈D y
laterr : ∀ {x y} → [i] x ≈D y .force → [i] x ≈D later y

record [_]_≈D′_ {A : Set} (i : Size) (x y : Delay A ∞) : Set where
coinductive
field force : {j : Size< i} → [j] x ≈D y

Note that the definition above uses a mixture of induction and coinduction: the later constructor is
“coinductive”, because it takes a primed argument, whereas later l and laterr are “inductive”, because
they take unprimed arguments. The definition should be read as an inductive definition nested
inside a coinductive one.

4 AN INTERPRETERWITH BOUNDED MEMORY
Now let us see one way to distinguish between looping programs that require bounded and
unbounded memory, while using a definitional interpreter to give semantics to the programs. I will
define an interpreter which models a machine with bounded memory. The interpreter keeps track
of how much memory is used, and crashes if memory runs out.
In order to avoid cluttering the presentation with details I use a very basic programming lan-

guage, where programs consist of potentially infinite lists of instructions, and there are only two
instructions, allocate and deallocate:

data Stmt : Set where
allocate deallocate : Stmt

:6 Nils Anders Danielsson

Program : Size → Set
Program i = Colist Stmt i

Potentially infinite lists, or colists, are defined coinductively in the following way:

mutual

data Colist (A : Set) (i : Size) : Set where
[] : Colist A i
:: : A → Colist ′ A i → Colist A i

record Colist ′ (A : Set) (i : Size) : Set where
coinductive
field force : {j : Size< i} → Colist A j

The type Heap limit represents a heap with at most limit memory cells. In this simple setting
the heap does not contain any data, it consists merely of the heap size and a proof that this number
is at most limit:

record Heap (limit : N) : Set where
field size : N

bounded : size ≤ limit

It is straightforward to shrink a heap. The following function shrinks the heap by one, unless
it is empty, in which case the size is left unchanged (pred is the predecessor function on natural
numbers; I have omitted the proof component of the heap record):

shrink : ∀ {l} → Heap l → Heap l
shrink h = record { size = pred (h .size) }

I have also defined a function that tries to increase the heap size by one. This function fails if the
heap size limit would be exceeded. It makes use of the following proof-producing comparison
operator (where A ⊎ B is the binary sum of A and B, with constructors inj1 : A → A ⊎ B and
inj2 : B → A ⊎ B):

≤⊎> : ∀ m n → m ≤ n ⊎ n < m

If the current heap size is equal to or greater than the limit, then nothing is returned, and
otherwise the heap size is increased (Maybe A has two constructors, nothing : Maybe A and
just : A → Maybe A):

grow : ∀ {l} → Heap l → Maybe (Heap l)
grow {l} h with l ≤⊎> h .size
... | inj1 _ = nothing
... | inj2 h<l = just (record { size = suc (h .size) })

Here suc is the (overloaded) successor constructor for the unary, inductive representation of natural
numbers that I use. (Note that ≤⊎> and h<l are single tokens with—hopefully—informative names.)

Now let us turn to the interpreter. The step function performs one step of computation. Dealloca-
tion always succeeds, whereas allocation can fail if memory runs out:

step : ∀ {l} → Stmt → Heap l → Maybe (Heap l)
step deallocate heap = just (shrink heap)
step allocate heap = grow heap

Total Definitional Interpreters for Looping Programs :7

The interpreter takes a program and a heap to a potentially non-terminating, potentially crashing
computation that, if it is successful, returns the final heap. It uses step repeatedly until the program
ends or crashes:

J_K : ∀ {i l} → Program i → Heap l → Delay (Maybe (Heap l)) i
J [] K heap = now (just heap)
J s :: p K heap with step s heap
... | nothing = crash
... | just new-heap = later λ { .force→ J p .force K new-heap }

Here the crash function constructs crashing computations:

crash : ∀ {i l} → Delay (Maybe (Heap l)) i
crash = now nothing

Note that crash is not weakly bisimilar to never :3

¬ [i] now x ≈D never

(The negation of A is the type of functions from A to the empty type.)
Now let us consider some examples. Here are two looping programs that run in constant space,

and one that does not run in bounded space:

constant-space : ∀ {i} → Program i
constant-space = allocate ::′ deallocate :: λ { .force→ constant-space }

constant-space2 : ∀ {i} → Program i
constant-space2 = allocate ::′ allocate ::′

deallocate ::′ deallocate :: λ { .force → constant-space2 }

unbounded-space : ∀ {i} → Program i
unbounded-space = allocate :: λ { .force→ unbounded-space }

The definitions make use of _::′_, a variant of _::_ with an unprimed second argument, in order to
avoid some clutter:

::′ : ∀ {A i} → A → Colist A i → Colist A i
x ::′ xs = x :: λ { .force → xs }

The first program, constant-space, is an endless sequence alternating between allocate and
deallocate. This program crashes if the initial heap is full, but otherwise it runs forever. More
precisely, in the former case the value returned by the interpreter is weakly bisimilar to crash, and
otherwise it is weakly bisimilar to never :

(h : Heap l) → h .size ≡ l → [i] J constant-space K h ≈D crash
(h : Heap l) → h .size < l → [i] J constant-space K h ≈D never

The proofs are simple and omitted. It is also easy to prove that constant-space2 runs forever if it is
possible to allocate at least two more memory cells in the initial heap:

(h : Heap l) → 2 + h .size ≤ l → [i] J constant-space2 K h ≈D never

However, because unbounded-space is an infinite sequence of allocate instructions it always runs
out of memory and crashes:

(h : Heap l) → [i] J unbounded-space K h ≈D crash

3Here and below I sometimes omit argument type declarations, in this case for i and x, from type signatures.

:8 Nils Anders Danielsson

Before leaving this section, let me define a relation that relates programs that behave the same
for all heaps with sufficient capacity:

≃ : Program ∞→ Program ∞→ Set
p ≃q = ∃ λ c →∀ l (h : Heap l) → c + h .size ≤ l → [∞] J p K h ≈D J q K h

Two programs p and q are related if there is a natural number c (“capacity”) such that, for any
heap which can be extended with at least c memory cells, the semantics of p is weakly bisimilar to
the semantics of q. (If B has type A → Set, then the type ∃ B consists of dependent pairs (x , y),
where—at least if we ignore subtyping—x has type A and y has type B x.) This relation is an
equivalence relation, and it is preserved by the cons operator:

p .force ≃q .force → s :: p ≃ s :: q

One can prove that constant-space and constant-space2 are related by letting the capacity be 2
and using some of the results mentioned above:

constant-space ≃ constant-space2
However, constant-space and unbounded-space are not related:

¬ constant-space ≃unbounded-space

In order to prove this, let us assume that we have constant-space ≃unbounded-space. This means
that there is some value c for which, for any limit l and heap h : Heap l such that c + h .size is
bounded by l, J constant-space K h is weakly bisimilar to J unbounded-space K h. If we let l be c + 1
and h be an empty heap, then we get a contradiction, because J constant-space K h is never , and
J unbounded-space K h is crash.

5 AN INTERPRETERWITH UNBOUNDED MEMORY
As a follow-up to the development in the previous section I asked Ancona et al. for further examples
of properties for which it is not clear to them if definitional interpreters work well. One part of
the response was that they wondered if I could define a semantics that returns the largest heap
size used by the program, or infinity if there is no bound on this size. A second step might be to
show that some program transformation preserves or improves on the maximum heap size. In this
section I will address the first part, and the second part in Section 7.
Definitional interpreters have the feature/drawback that they are computable functions. It is a

hard ask to compute the maximummemory consumption of a program. (Under certain assumptions
I can show that this is impossible in Agda, see Section 6.) Thus I will instead settle for returning a
trace of the encountered heap sizes, and reason about this trace. Thus my solution does not quite
match what Ancona et al. asked for.
The choice to just return a trace of heap sizes makes the definitional interpreter very simple.

The function modify computes the new heap size, given an instruction and the previous heap size:

modify : Stmt → N→ N

modify allocate = suc
modify deallocate = pred

The interpreter uses this function repeatedly, returning all the encountered heap sizes (including
the initial one):

mutual

J_K : ∀ {i} → Program i → N→ Colist N i
J p K h = h :: J p K′ h

Total Definitional Interpreters for Looping Programs :9

J_K′ : ∀ {i} → Program i → N→ Colist ′ N i
J [] K′ h .force = []
J s :: p K′ h .force = J p .force K (modify s h)

This may not seem like much of an interpreter. However, in Section 11 below I will use a similar
technique to instrument a definitional interpreter for a λ-calculus with information about stack
sizes. The current section and Section 7 introduce some of the main ideas that will be employed
later.
Given a colist (potentially infinite list) of natural numbers, what is its least upper bound? An

upper bound predicate can be defined in the following way (where ⌜_⌝ maps natural numbers to
the corresponding conatural numbers):

[_]_⊑_ : Size → Colist N∞→ Conat ∞→ Set
[i] ms ⊑ n = □ i (λ m → [∞] ⌜ m ⌝ ≤ n) ms

This says that the conatural number n is an upper bound of ms if every natural number in ms is
bounded by n; □∞ P xs means that the predicate P holds for every element in xs:

mutual

data □ {A : Set} (i : Size) (P : A → Set) : Colist A ∞→ Set where
[] : □ i P []
:: : ∀ {x xs} → P x → □′ i P (xs .force) → □ i P (x :: xs)

record □′ {A : Set} (i : Size) (P : A → Set) (xs : Colist A ∞) : Set where
coinductive
field force : {j : Size< i} → □ j P xs

Below the following primed variant of [_]_⊑_ will also be used:

[_]_⊑′_ : Size → Colist N∞→ Conat ∞→ Set
[i] ms ⊑′ n = □′ i (λ m → [∞] ⌜ m ⌝ ≤ n) ms

Given a definition of upper bounds it is easy to define a least upper bound predicate:

LUB : Colist N∞→ Conat ∞→ Set
LUB ns n = [∞] ns ⊑ n × (∀ n′ → [∞] ns ⊑ n′ → [∞] n ≤ n′)

A least upper bound is an upper bound that is bounded by every upper bound. Least upper bounds
are unique up to bisimilarity:

LUB ns n1 → LUB ns n2 → [i] n1 ∼N n2

This follows from antisymmetry for conatural numbers.
Now the maximum heap usage of a program that starts with an empty heap can be defined:

Maximum-heap-usage : Program ∞→ Conat ∞→ Set
Maximum-heap-usage p n = LUB (J p K 0) n

Because least upper bounds are unique the maximum heap usage is also unique.
Let us now revisit the example programs from Section 4. When the trace semantics from this

section is used all three programs are non-terminating, in the sense that their traces are infinitely
long. However, they have different space complexities: the maximum heap usage of constant-space
is one, the maximum heap usage of constant-space2 is two, and the maximum heap usage of
unbounded-space is infinity:

:10 Nils Anders Danielsson

Maximum-heap-usage constant-space ⌜ 1 ⌝
Maximum-heap-usage constant-space2 ⌜ 2 ⌝
Maximum-heap-usage unbounded-space infinity

The first two statements are easy to prove. For the last one I made use of the following lemma:

∀ p → (∀ n → ¬ [∞] J p K 0 ⊑ ⌜ n ⌝) → Maximum-heap-usage p infinity

If no natural number is an upper bound of the heap usage of p, then the maximum heap usage of p
is infinity. This lemma can be proved by using the following lemma:

(∀ n → ¬ [∞] ms ⊑ ⌜ n ⌝) → [∞] ms ⊑ m → [∞] m ∼N infinity

If no natural number is an upper bound of ms, but the conatural number m is, then m is bisimilar
to infinity.

6 THE MAXIMUM HEAP USAGE CANNOT BE COMPUTED
It might be nice if one could always compute a maximum heap usage for a program. However, one
can prove that (one form of) this statement implies the “weak limited principle of omniscience”,
a constructive taboo that should neither be provable nor disprovable in Agda (in the absence of
bugs):

(∀ p → ∃ λ n → Maximum-heap-usage p n) → WLPO

WLPO is the statement that, for an arbitrary function from natural numbers to booleans, one can
determine if this function returns false for all inputs:

Dec : Set → Set
Dec P = P ⊎ ¬ P

WLPO : Set
WLPO = (f : N→ Bool) → Dec (∀ n → f n ≡ false)

Note that WLPO follows from excluded middle (and, when excluded middle is formulated as in
homotopy type theory, extensionality for functions).

Given a decision procedure for Maximum-heap-usage with the type given above one can prove
WLPO by constructing a program whose maximum heap usage is zero if and only if the function
always returns false:

p : ∀ {i} → (N→ Bool) → Program i
p f = if f 0 then allocate ::′ []

else deallocate :: λ { .force→ p (λ n → f (1 + n)) }

It is also possible to go in the other direction. If WLPO holds, then a least upper bound can be
determined for every colist:4

WLPO → (∀ ms → ∃ λ n → LUB ms n)

In order to prove this, let us define the following function:

>0 : Colist N∞→ N→ Bool
>0 [] _ = false
>0 (m :: ms) (suc n) = >0 (ms .force) n
>0 (zero :: ms) zero = false
>0 (suc m :: ms) zero = true

4This result was obtained in collaboration with Andreas Abel and Ulf Norell.

Total Definitional Interpreters for Looping Programs :11

The boolean >0 ms n is true if and only if ms contains a positive number at position n (counting
from zero). Now the least upper bound can be computed in the following way, by making use of
wlpo : WLPO:

lub : ∀ {i} → Colist N∞→ Conat i
lub ms with wlpo (>0 ms)
... | inj1 _ = zero
... | inj2 _ = suc λ { .force→ lub (map pred ms) }

If there is no number greater than zero in ms, then the least upper bound is zero. If there is some
number greater than zero, then we know that the least upper bound must start with a successor
constructor. We can emit this constructor, and continue by computing the least upper bound of a
variant of ms where every positive number has been decreased by one.

Given the results above we can conclude that WLPO is logically equivalent to both of the
computability statements for maximum heap usages and least upper bounds:

WLPO ⇔ (∀ p → ∃ λ n → Maximum-heap-usage p n)
WLPO ⇔ (∀ ms → ∃ λ n → LUB ms n)

7 AN OPTIMISER
In this section I will define an optimiser for the simple allocation language, and show that this
optimiser works as it should. The optimiser takes subsequences consisting of allocate, allocate and
deallocate, and replaces them with allocate:

optimise : ∀ {i} → Program ∞→ Program i
optimise [] = []
optimise (deallocate :: p) = deallocate :: λ { .force→ optimise (p .force) }
optimise {i} (allocate :: p) = optimise1 (p .force)
module Optimise where
default : Program i
default = allocate :: λ { .force→ optimise (p .force) }

optimise2 : Program ∞→ Program i
optimise2 (deallocate :: p′′) = allocate :: λ { .force→ optimise (p′′ .force) }
optimise2 _ = default

optimise1 : Program ∞→ Program i
optimise1 (allocate :: p′) = optimise2 (p′ .force)
optimise1 _ = default

The named where clause makes it possible to refer to the local definitions in the proof below. For
instance, Optimise.optimise2 refers to the local definition optimise2. Note that Optimise.optimise2
takes two extra arguments, one implicit and one explicit, corresponding to the bound variables i
and p from the clause optimise {i} (allocate :: p).
One might think that it would be better to replace subsequences consisting of allocate and

deallocate with nothing, but if such an optimiser could be implemented, then it would not produce
any output at all (not even []) for the program constant-space.

The optimiser improves the space complexity of at least one program, because the semantics of
optimise constant-space2 matches that of constant-space:

[i] J optimise constant-space2 K n ∼L J constant-space K n

:12 Nils Anders Danielsson

Here [∞] ms ∼L ns means that the colists ms and ns are bisimilar. Bisimilarity of colists is defined
analogously to bisimilarity of conatural numbers and strong bisimilarity for the delay monad.

It remains to prove that the maximum heap usage of an optimised program is at most as high as
that of the original program (assuming that these maximums exist):

Maximum-heap-usage (optimise p) m → Maximum-heap-usage p n → [i] m ≤ n

Proving this directly using corecursion might be tricky. Instead I will make use of the following
relation, which states that every upper bound of the second colist is also an upper bound of the
first:

[_]_≲_ : Size → Colist N∞→ Colist N∞→ Set
[i] ms ≲ ns = ∀ {n} → [∞] ns ⊑ n → [i] ms ⊑ n

Read [∞] ms ≲ ns as “ms is bounded by ns”. If ms has the least upper bound m, and ns has the
least upper bound n, then ms is bounded by ns if and only if m is bounded by n:

LUB ms m → LUB ns n → [∞] ms ≲ ns ⇔ [∞] m ≤ n

Thus the following statement implies that the optimiser never increases a program’s maximum
heap usage:

[i] J optimise p K h ≲ J p K h

I have defined four combinators which can be used to prove that one colist is bounded by another
(I give their types but no names here; the implementations are straightforward and omitted):

[i] [] ≲ ns
[i] ms ≲ ns .force→ [i] ms ≲ n :: ns
Bounded m ns → [i] ms .force ≲′ ns → [i] m :: ms ≲ ns
[i] ms .force ≲′ ns .force → [i] m :: ms ≲ m :: ns

Here Bounded m ns means that m is either less than or equal to some element in ns, or equal to
zero. The last combinator is implemented using the previous two.

The last two combinators take a primed variant of the relation as an argument:

[_]_≲′_ : Size → Colist N∞→ Colist N∞→ Set
[i] ms ≲′ ns = ∀ {n} → [∞] ns ⊑ n → [i] ms ⊑′ n

However, the second combinator takes the unprimed variant of the relation as an argument instead.
This means that, while the second combinator can be used in corecursive proofs, it does not
introduce a size change, whereas the others do. If the second combinator had taken the primed
variant of the relation as an argument instead, then one could have proved that any colist was
bounded by any infinite colist by using this combinator repeatedly in a corecursive proof. This
leads to a contradiction:

¬ (∀ {i ms ns n} → [i] ms ≲′ ns .force→ [i] ms ≲ n :: ns)

The “bounded by” relation is a preorder. However, the transitivity proof is only size-preserving
in the first argument:

[i] ms ≲ ns → [∞] ns ≲ os → [i] ms ≲ os

One can derive a contradiction from the assumption that the transitivity proof is size-preserving in
the other argument (see the accompanying code for details):

¬ (∀ {i ms ns os} → [∞] ms ≲ ns → [i] ns ≲ os → [i] ms ≲ os)

Total Definitional Interpreters for Looping Programs :13

This means, roughly speaking, that one can only use corecursive calls in the first argument of
transitivity. As a workaround one can sometimes use the following variant of transitivity, which
takes a bisimilarity proof as the first argument:

[i] ms ∼L ns → [i] ns ≲ os → [i] ms ≲ os

For more discussion of transitivity proofs that are not size-preserving, see Danielsson [2018].
Let me now show how I finished the correctness proof:

[i] J optimise p K h ≲ J p K h

The proof is corecursive, based on the call structure of the optimiser, and uses the combinators
discussed above. The most interesting case is perhaps the one corresponding to the first clause
of Optimise.optimise2. I focus on that one. The goal is to prove the following statement (in the
presence of some assumptions that are not needed):

[i] J Optimise.optimise2 p (deallocate :: p′′) K h ≲ h ::′ 1 + h ::′ J deallocate :: p′′ K (2 + h)

The proof proceeds in the following way:

J Optimise.optimise2 p (deallocate :: p′′) K h ∼

h ::′ J optimise (p′′ .force) K (1 + h) ≲

h ::′ J p′′ .force K (1 + h) ≲

h ::′ 1 + h ::′ 2 + h ::′ J p′′ .force K (1 + h) ∼

h ::′ 1 + h ::′ J deallocate :: p′′ K (2 + h)

The first and last steps basically amount to unfolding of definitions. The second step uses the last
proof combinator mentioned above (which—importantly—has a primed argument), followed by
a corecursive call to the top-level correctness proof. The third step uses three applications of the
proof combinators mentioned above (first the last one, and then two applications of the second
one), followed by a use of reflexivity.
The formal proof in the accompanying source code is written using equational reasoning com-

binators (based on an idea due to Norell [2007]) that allow it to be formatted like the chain of
reasoning steps above, but with explanations inserted for each of the steps.

8 A SIMPLE LAMBDA CALCULUS
The language treated in the previous sections was admittedly very minimal. Let me now instead
treat a somewhat more interesting language. The language that I present is based on the one used
in Leroy and Grall’s study of coinductive big-step semantics [2009]. Danielsson [2012] later used
the same language to study the use of the delay monad to define total definitional interpreters; he
used a well-scoped representation, and I take the same approach here. I have replaced the infinite
set of uninterpreted constants used in those previous works with booleans, and added calls to
unary, named definitions.

The syntax is defined in the following way:

data Tm (n : N) : Set where
var : Fin n → Tm n
lam : Tm (suc n) → Tm n
· : Tm n → Tm n → Tm n
call : Name → Tm n → Tm n
con : Bool → Tm n
if : Tm n → Tm n → Tm n → Tm n

:14 Nils Anders Danielsson

As mentioned above I use a well-scoped representation: the term data type is parametrised by
an upper bound on the number of free variables, and uses de Bruijn indices. The term var x is a
variable; Fin n stands for natural numbers strictly less than n. The term lam t stands for a lambda
abstraction, and t1 · t2 is an application. The term call f t is a call to the named, unary function f : I
assume that a type of names, Name, is given. Finally we have con b, a literal boolean, and if t1 t2 t3,
which stands for “if t1 then t2 else t3”.

The interpreter uses closures (following Leroy and Grall). Environments and values are defined
mutually in the following way:

mutual

Env : N→ Set
Env n = Vec Value n

data Value : Set where
lam : ∀ {n} → Tm (suc n) → Env n → Value
con : Bool → Value

A value of type Env n is a list of values of length n. The value lam t ρ is a closure, a combination
of a term with at most 1 + n free variables, and an environment containing values for n of those
variables. Boolean literals are turned into values by the constructor con.

I define a total, definitional interpreter for the syntax above by using the delay monad, following
Danielsson [2012] (who used the term “partiality monad” for what is now commonly called the
delay monad). However, unlike Danielsson I use sized types, which makes the definition a little
easier.
The interpreter can both crash and fail to terminate, so I combine the delay monad with the

maybe monad transformer:
Delay-crash : Set → Size → Set
Delay-crash A i = Delay (Maybe A) i

In this section return, _>>=_ and do notation refers to this combined monad. An immediate crash
(as opposed to one that happens later) is defined in the following way:

crash : ∀ {A i} → Delay-crash A i
crash = now nothing

The interpreter is parametrised by a definition of a term with at most one free variable for every
name:

def : Name → Tm 1
The interpreter is defined in a “big-step” way using three mutually (co)recursive functions. The
first one tries to apply one value to another. If the first value is a boolean literal this leads to a crash.
In the case of a closure the interpreter proceeds with the evaluation of the body of the closure in
the closure’s environment, extended with the second value:

• : ∀ {i} → Value → Value → Delay-crash Value i
lam t1 ρ • v2 = later λ { .force→ J t1 K (v2 :: ρ) }
con _ • _ = crash

The main function interprets a term in an environment of matching size:

Total Definitional Interpreters for Looping Programs :15

J_K : ∀ {i n} → Tm n → Env n → Delay-crash Value i
J var x K ρ = return (index x ρ)

J lam t K ρ = return (lam t ρ)
J t1 · t2 K ρ = do v1 ← J t1 K ρ

v2 ← J t2 K ρ
v1 • v2

J call f t K ρ = do v ← J t K ρ
lam (def f) [] • v

J con b K ρ = return (con b)
J if t1 t2 t3 K ρ = do v1 ← J t1 K ρ

Jif K v1 t2 t3 ρ

The value of a variable is the corresponding entry in the environment, and the value of a lambda
abstraction is a closure. Applications are interpreted by first interpreting the function, then (if the
first computation terminates with a value) the argument, and finally (if also the second computation
terminates with a value) using _•_ to apply the first value to the second. Note that this means
that the semantics is a call-by-value semantics. Calls to named functions are evaluated similarly to
applications. Boolean literals are returned directly. If expressions are interpreted by interpreting
the scrutinee, and then an auxiliary function determines how to proceed:

Jif K : ∀ {i n} → Value → Tm n → Tm n → Env n → Delay-crash Value i
Jif K (lam _ _) _ _ _ = crash
Jif K (con true) t2 t3 ρ = J t2 K ρ
Jif K (con false) t2 t3 ρ = J t3 K ρ

The definitions above are total. They are defined using an outer corecursion and an inner
recursion on the structure of terms. A decrease of the size argument is introduced in _•_, and
otherwise the size argument is kept unchanged.

9 A VIRTUAL MACHINE WITH TAIL CALLS
This section presents a virtual machine, and Section 10 a compiler from the terms of the previous
section to this virtual machine.
The virtual machine is defined corecursively in a “small-step” way, following Leroy and Grall

[2009] and Danielsson [2012]. Danielsson used the monad of the previous section (defined without
sized types) to define the semantics. Later I want to analyse the stack usage of compiled programs,
so I use a variant of this monad that allows the virtual machine to return a trace of all states that it
encounters.

The monad is some kind of combination of Delay-crash and a writer monad producing colists:

mutual

data Delay-crash-trace (A B : Set) (i : Size) : Set where
now : B → Delay-crash-trace A B i
crash : Delay-crash-trace A B i
later : A → Delay-crash-trace′ A B i → Delay-crash-trace A B i
tell : A → Delay-crash-trace A B i → Delay-crash-trace A B i

:16 Nils Anders Danielsson

record Delay-crash-trace′ (A B : Set) (i : Size) : Set where
coinductive
field force : {j : Size< i} → Delay-crash-trace A B j

The type Delay-crash-trace A B i stands for computations that, in addition to perhaps terminating
with a value of type B, also produce traces (colists) containing values of type A:

trace : ∀ {A B i} → Delay-crash-trace A B i → Colist A i
trace (now x) = []
trace crash = []
trace (later x m) = x :: λ { .force→ trace (m .force) }
trace (tell x m) = x :: λ { .force→ trace m }

Note that the later constructor takes a first argument of type A, which is used when constructing
colists. There is also a tell constructor which is an inductive variant of later. The traces can be
removed from the computations, leading to trace-less computations of type Delay-crash B i:

delay-crash : ∀ {A B i} → Delay-crash-trace A B i → Delay-crash B i
delay-crash (now x) = now (just x)
delay-crash crash = now nothing
delay-crash (later x m) = later λ { .force→ delay-crash (m .force) }
delay-crash (tell x m) = delay-crash m

The delay-crash function removes the first argument from later constructors, and tell constructors
are removed entirely.

Delay-crash-trace can be turned into a monad in much the same way as the delay monad. If
(strong) bisimilarity is defined for Delay-crash-trace in the obvious way, then it is easy to prove
that the monad laws hold up to bisimilarity (see the accompanying code for details).

The virtual machine (VM) uses the following instruction set:

mutual

data Instr (n : N) : Set where
var : Fin n → Instr n
clo : Code (suc n) → Instr n
app : Instr n
ret : Instr n
cal : Name → Instr n
tcl : Name → Instr n
con : Bool → Instr n
bra : Code n → Code n → Instr n

Code : N→ Set
Code n = List (Instr n)

This definition is based on Leroy and Grall’s, but well-scoped (following Danielsson), and with
some changes to support booleans and calls to named functions. Instr n represents instructions
with at most n free variables, and Code n stands for lists of arbitrary length of instructions of type
Instr n. The individual instructions are explained when the semantics is given further down.
Environments and values are defined as for the interpreter, but using Code instead of Tm. The

interpreter is stack-based, with two kinds of stack elements, values and return frames:

Total Definitional Interpreters for Looping Programs :17

data Stack-element : Set where
val : VM-Value → Stack-element
ret : ∀ {n} → Code n → VM-Env n → Stack-element

Stack : Set
Stack = List Stack-element

The VM’s state consists of a piece of code (with at most n free variables for some n : N), a stack,
and an environment of size n:

data State : Set where
⟨_,_,_⟩ : ∀ {n} → Code n → Stack → VM-Env n → State

The VM’s semantics is parametrised by a function mapping names to pieces of code with at most
one free variable:

def : Name → Code 1

As mentioned above the semantics is given in a small-step way. The result of running the VM one
step is either a new state, a final value, or an indication that the VM has crashed:

data Result : Set where
cont : State → Result
done : VM-Value → Result
crash : Result

The following function is similar to the single-step relation of a typical small-step semantics:

step : State → Result
step ⟨ var x :: c , s , ρ ⟩ = cont ⟨ c , val (index x ρ) :: s , ρ ⟩

step ⟨ clo c′ :: c , s , ρ ⟩ = cont ⟨ c , val (lam c′ ρ) :: s , ρ ⟩

step ⟨ app :: c , val v ::
val (lam c′ ρ ′) :: s , ρ ⟩ = cont ⟨ c′ , ret c ρ :: s , v :: ρ ′ ⟩

step ⟨ ret :: c , val v :: ret c′ ρ ′ :: s , ρ ⟩ = cont ⟨ c′ , val v :: s , ρ ′ ⟩

step ⟨ cal f :: c , val v :: s , ρ ⟩ = cont ⟨ def f , ret c ρ :: s , v :: [] ⟩
step ⟨ tcl f :: c , val v :: s , ρ ⟩ = cont ⟨ def f , s , v :: [] ⟩
step ⟨ con b :: c , s , ρ ⟩ = cont ⟨ c , val (con b) :: s , ρ ⟩

step ⟨ bra c1 c2 :: c , val (con true) :: s , ρ ⟩ = cont ⟨ c1 ++ c , s , ρ ⟩

step ⟨ bra c1 c2 :: c , val (con false) :: s , ρ ⟩ = cont ⟨ c2 ++ c , s , ρ ⟩

step ⟨ [] , val v :: [] , [] ⟩ = done v
step _ = crash

The different instructions are interpreted in the following way:
• var x (variable): Push the value corresponding to x in the environment onto the stack.
• clo c′ (closure): Push a closure formed from c′ and the environment onto the stack.
• app (application): If two values are on top of the stack, the second of which is a closure,
pop these values, push a return frame consisting of the current code and environment onto
the stack, form a new environment from the first value and the closure’s environment, and
continue with the closure’s code.

• ret (return): If a value and a return frame are on top of the stack, pop the return frame, and
continue with the return frame’s code and environment.

:18 Nils Anders Danielsson

• cal f (call): If a value is on top of the stack, pop this value and put it into a new environment
with a single binding. Push a return frame with the remainder of the code and the old
environment onto the stack, and continue with def f .

• tcl f (tail call): Like cal f , but do not push a return frame onto the stack. The idea is that
there should already be a return frame on the stack that can be reused.

• con b (constructor): Push the boolean b onto the stack.
• bra c1 c2 (branch): If there is a boolean on top of the stack, pop this boolean and continue
with either c1 or c2, depending on the boolean, followed by the remainder of the old code.

If the machine encounters a state with an empty piece of code and an empty environment, and a
single value on the stack, then the machine terminates with this value. If no rule matches, then the
machine crashes.

The full semantics is defined by iterating step corecursively:

mutual

exec+ : ∀ {i} → State → Delay-crash-trace State VM-Value i
exec+ s = later s λ { .force → exec+ ′ (step s) }

exec+ ′ : ∀ {i} → Result → Delay-crash-trace State VM-Value i
exec+ ′ (cont s) = exec+ s
exec+ ′ (done v) = now v
exec+ ′ crash = crash

Note that the resulting trace contains all the encountered states. A semantics without states can be
obtained by using delay-crash:

exec : ∀ {i} → State → Delay-crash VM-Value i
exec = delay-crash ◦ exec+

The following function returns the length of a state’s stack component:

stack-size : State → N
stack-size ⟨ _ , s , _ ⟩ = length s

This function can be used to construct a trace of all the encountered stack sizes:

stack-sizes : ∀ {i} → State → Colist N i
stack-sizes = map stack-size ◦ trace ◦ exec+

10 A CORRECT COMPILER
Let us now see how one can construct a provably correct compiler from the λ-calculus in Section 8
to the language of the virtual machine in Section 9. The compiler and its correctness proof are
based on the work by Leroy and Grall [2009] and Danielsson [2012].
Unlike these previous works I provide support for tail calls. The compiler takes an argument

with information about whether the compiled term should be treated as if it is in a tail context:

In-tail-context : Set
In-tail-context = Bool

I have based the definition of tail contexts on the one used by Kelsey et al. [1998].
The main compilation function is defined in the following way. Note the use of a code continua-

tion:

Total Definitional Interpreters for Looping Programs :19

mutual

comp : ∀ {n} → In-tail-context → Tm n → Code n → Code n
comp _ (var x) c = var x :: c
comp _ (lam t) c = clo (comp-body t) :: c
comp _ (t1 · t2) c = comp false t1 (comp false t2 (app :: c))
comp true (call f t) c = comp false t (tcl f :: c)
comp false (call f t) c = comp false t (cal f :: c)
comp _ (con b) c = con b :: c
comp tc (if t1 t2 t3) c = comp false t1 (bra (comp tc t2 []) (comp tc t3 []) :: c)

comp-body : ∀ {n} → Tm (suc n) → Code (suc n)
comp-body t = comp true t (ret :: [])

The body of an abstraction is compiled in a tail context, but the two arguments to application, the
single argument to a call, and the scrutinee of an if-then-else expression are not. The two branches
of if-then-else are compiled in a tail context if the if-then-else expression as a whole is.

Just like the interpreter the compiler is parametrised by a definition for each name:

def : Name → Tm 1

The following function compiles such definitions:

comp-name : Name → Code 1
comp-name f = comp-body (def f)

When compiler correctness is stated below the function comp-name is used to provide an imple-
mentation of def for the virtual machine. For the purposes of stating compiler correctness I also
define functions that compile environments and values:

mutual

comp-env : ∀ {n} → Env n → VM-Env n
comp-env [] = []
comp-env (v :: ρ) = comp-val v :: comp-env ρ

comp-val : Value → VM-Value
comp-val (lam t ρ) = lam (comp-body t) (comp-env ρ)

comp-val (con b) = con b

The following function is the top-level entry point to the compiler:

comp0 : Tm 0→ Code 0
comp0 t = comp false t []

The top-level expression is not compiled in a tail context, because when the VM starts the stack is
empty, so there is no return frame that can be reused on the stack.

Now compiler correctness can be stated (following Danielsson [2012]):

[∞] exec ⟨ comp0 t , [] , [] ⟩ ≈D J t K [] >>= λ v → return (comp-val v)

This statement says that the result of running the code obtained by compiling the program t on the
virtual machine (with an empty stack) is weakly bisimilar to the semantics of t, provided that if
the interpreter produces a value, then this value is compiled before it is returned. Note that this

:20 Nils Anders Danielsson

correctness statement applies to programs that terminate with a value, programs that crash, and
programs that fail to terminate.

The correctness proof is rather similar to the one given by Danielsson; use of sized types makes
the proof a little easier. Here is the type of the key lemma:

Stack-OK i k tc s →
Cont-OK i ⟨ c , s , comp-env ρ ⟩ k →

[i] exec ⟨ comp tc t c , s , comp-env ρ ⟩ ≈D J t K ρ >>= k

Note the two assumptions. The second assumption relates the code continuation c, the stack s and
the environment ρ to the monadic continuation k:

Cont-OK : Size → State → (Value → Delay-crash VM-Value ∞) → Set
Cont-OK i ⟨ c , s , ρ ⟩ k = ∀ v → [i] exec ⟨ c , val (comp-val v) :: s , ρ ⟩ ≈D k v

The first assumption is targeted at tail-calls:

data Stack-OK (i : Size) (k : Value → Delay-crash VM-Value ∞) :
In-tail-context → Stack → Set where

unrestricted : ∀ {s} → Stack-OK i k false s
restricted : ∀ {s n} {c : Code n} {ρ : VM-Env n} →

Cont-OK i ⟨ c , s , ρ ⟩ k → Stack-OK i k true (ret c ρ :: s)

For programs compiled in a tail context the stack has to start with a return frame, and it has to
satisfy a certain assumption that also involves the monadic continuation. The Stack-OK predicate
is perhaps the main addition to Danielsson’s correctness proof.

11 AN INSTRUMENTED INTERPRETER
Let me now show an instrumented interpreter that makes it possible to reason about a program’s
stack usage without reasoning directly about compiled programs and the virtual machine. I want to
emphasise that it was not immediately obvious to me how to construct this instrumented semantics,
it was developed together with its correctness proof.

The interpreter produces a trace of size change functions that is then turned into a trace of sizes.
Here is the instrumented application function:

[_, _]_•I_ : ∀ {i} → (N→ N) → (N→ N) → Value → Value →
Delay-crash-trace (N→ N) Value i

[f 1 , f 2] lam t1 ρ •I v2 = later f 1 λ { .force→ do
v ← J t1 KI (v2 :: ρ) true
tell f 2 (return v) }

[_ , _] con _ •I _ = crash

The function is used in different ways, so it is parametrised by two stack change functions. One is
used before the body of the closure (if any) is evaluated, and one is used after the body has been
evaluated successfully (if ever).

The instrumentedmain function is defined in the followingway. Note that tail context information
is passed around:

J_KI : ∀ {i n} → Tm n → Env n → In-tail-context → Delay-crash-trace (N→ N) Value i
J var x KI ρ _ = tell suc (return (index x ρ))

J lam t KI ρ _ = tell suc (return (lam t ρ))

Total Definitional Interpreters for Looping Programs :21

J t1 · t2 KI ρ _ = do v1 ← J t1 KI ρ false
v2 ← J t2 KI ρ false
[pred , pred] v1 •I v2

J call f t KI ρ tc = do v ← J t KI ρ false
[δ 1 tc , δ 2 tc] lam (def f) [] •I v

J con b KI ρ _ = tell suc (return (con b))
J if t1 t2 t3 KI ρ tc = do v1 ← J t1 KI ρ false

Jif KI v1 t2 t3 ρ tc

The stack size is increased for variables, abstractions and literal booleans (which correspond to
pushing something onto the stack). When an application is evaluated the application function is
used with pred and pred: the stack size is reduced by one for the app constructor, and by one for
the ret constructor. If a tail call is evaluated, then the stack size is decreased before the call is made,
and when a non-tail call is evaluated, then the stack size is decreased after the call has completed
successfully (if ever):

δ 1 : In-tail-context → N→ N

δ 1 true = pred
δ 1 false = id

δ 2 : In-tail-context → N→ N

δ 2 true = id
δ 2 false = pred

The stack size is also decreased when the scrutinee of an if-then-else expression has been evaluated
successfully to a boolean literal:

Jif KI : ∀ {i n} → Value → Tm n → Tm n → Env n → In-tail-context →
Delay-crash-trace (N→ N) Value i

Jif KI (lam _ _) _ _ _ _ = crash
Jif KI (con true) t2 t3 ρ tc = tell pred (J t2 KI ρ tc)
Jif KI (con false) t2 t3 ρ tc = tell pred (J t3 KI ρ tc)

Given a computation yielding a trace of stack size functions, and an initial stack size, it is easy to
construct a trace of stack sizes by starting with the inital value, and then applying the functions,
one after another. This is captured by the following application of the standard scanl function
(implemented for colists):

numbers : ∀ {A i} → Delay-crash-trace (N→ N) A i → N→ Colist N i
numbers x n = scanl (λ m f → f m) n (trace x)

The stack sizes encountered when evaluating a (closed) program can then be defined in the following
way:

stack-sizesI : ∀ {i} → Tm 0→ Colist N i
stack-sizesI t = numbers (J t KI [] false) 0

Note that false is used as the In-tail-context argument, matching the use of false in comp0.
If the traces are removed, then the instrumented semantics produces computations that are

strongly bisimilar to those produced by the semantics given in Section 8:

[i] delay-crash (J t KI ρ tc) ∼D J t K ρ

:22 Nils Anders Danielsson

Perhaps more interestingly, if the trace of stack sizes produced by the instrumented semantics has
the least upper bound i, and the corresponding trace produced by the virtual machine has the least
upper bound v, then i and v are bisimilar:

LUB (stack-sizesI t) i → LUB (stack-sizes ⟨ comp0 t , [] , [] ⟩) v → [∞] i ∼N v

However, the traces are not necessarily bisimilar (see the accompanying code for a counterexample).
I had a previous version of the instrumented interpreter for which the traces were bisimilar, but I
decided to simplify the interpreter a little. In a more complicated setting it might be useful not to
couple the instrumented semantics too closely to the lower-level semantics.

Instead of proving that the traces are bisimilar I have proved the following property:

[∞] stack-sizes ⟨ comp0 t , [] , [] ⟩ ≂ stack-sizesI t

The relation used here states that the two colists are bounded by each other, and is defined using
the “bounded by” relation from Section 7:

[_]_≂_ : Size → Colist N∞→ Colist N∞→ Set
[i] ms ≂ns = [i] ms ≲ ns × [i] ns ≲ ms

Colists that are related by this relation have the same least upper bounds (if any):

[∞] ms ≂ns → LUB ms n ⇔ LUB ns n

One approach to proving that two colists are upper bounds of each other would be to prove that
one is an upper bound of the other, and vice versa, for instance by using some combinators from
Section 7. As a possibly more direct alternative I provide some combinators that work directly with
the “bounded by each other” relation, as well as the following primed variant:

[_]_≂′_ : Size → Colist N∞→ Colist N∞→ Set
[i] ms ≂′ ns = [i] ms ≲′ ns × [i] ns ≲′ ms

I give the combinators’ types but no names here (the implementations are straightforward and
omitted):

Bounded n ms → [i] ms ≂ns .force→ [i] ms ≂n :: ns
Bounded m ns → [i] ms .force≂ns → [i] m :: ms ≂ns
Bounded m (n :: ns) → Bounded n (m :: ms) →
[i] ms .force≂′ ns .force→ [i] m :: ms ≂n :: ns

[i] ms .force≂′ ns .force→ [i] m :: ms ≂m :: ns

The relation is an equivalence relation. I provide three transitivity-like results, two of which preserve
the size of one argument:

[∞] ms ≂ ns → [∞] ns ≂ os → [i] ms ≂ os
[∞] ms ∼L ns → [i] ns ≂ os → [i] ms ≂ os
[i] ms ≂ ns → [∞] ns ∼L os → [i] ms ≂ os

The correctness proof has a similar structure to the correctness proof given in Section 10. Here
is the type of the key lemma:

Stack-OK i k tc s →
Cont-OK i ⟨ c , s , comp-env ρ ⟩ k →

[i] stack-sizes ⟨ comp tc t c , s , comp-env ρ ⟩ ≂numbers (J t KI ρ tc >>= k) (length s)

The Cont-OK and Stack-OK predicates are defined in the following way:

Total Definitional Interpreters for Looping Programs :23

Cont-OK : Size → State → (Value → Delay-crash-trace (N→ N) VM-Value ∞) → Set
Cont-OK i ⟨ c , s , ρ ⟩ k =
∀ v → [i] stack-sizes ⟨ c , val (comp-val v) :: s , ρ ⟩ ≂numbers (k v) (1 + length s)

data Stack-OK (i : Size) (k : Value → Delay-crash-trace (N→ N) VM-Value ∞) :
In-tail-context → Stack → Set where

unrestricted : ∀ {s} → Stack-OK i k false s
restricted : ∀ {s n} {c : Code n} {ρ : VM-Env n} →

(∀ v → [i] 2 + length s ::′ stack-sizes ⟨ c , val (comp-val v) :: s , ρ ⟩ ≂
numbers (k v) (2 + length s)) →

Stack-OK i k true (ret c ρ :: s)

For full details of the correctness proof, see the accompanying code.

12 TWO EXAMPLES
This section contains two examples of non-terminating programs, one that runs in bounded stack
space, and one that does not. I prove this without reasoning directly about the compiler or virtual
machine, instead using the instrumented semantics.
The first example is the term (λx .x x) (λx .x x), implemented in the following way (where

fzero : Fin 1 stands for zero):

ω : Tm 0
ω = lam (var fzero · var fzero)

Ω : Tm 0
Ω = ω · ω

It is easy to show that this program is non-terminating:

Ω-loops : ∀ {i} → [i] J Ω K [] ∼D never
Ω-loops = later λ { .force → Ω-loops }

The stack-sizes encountered when interpreting Ω are captured by the colist Ω-sizes 0 (which
expands to 0, 1, 2, 1, 2, 3, 2, 3, 4. . .):

Ω-sizes : ∀ {i} → N→ Colist N i
Ω-sizes n = n ::′ 1 + n ::′ 2 + n :: λ { .force → Ω-sizes (1 + n) }

This can be proved straightforwardly using corecursion:

[i] stack-sizesI Ω ∼L Ω-sizes 0

Note that this is a statement about the instrumented semantics, not about the virtual machine. It
should come as no surprise that the least upper bound of Ω-sizes 0 is infinity:

LUB (Ω-sizes 0) infinity

Thus Ω does not run in bounded stack space:

LUB (stack-sizesI Ω) infinity

The second example is a non-terminating program that gets compiled into code using a tail call.
Here the Name parameter is the unit type ⊤, with a single inhabitant tt. The only definition is a
term that ignores its argument and calls itself repeatedly:

:24 Nils Anders Danielsson

def : ⊤→ Tm 1
def tt = call tt (con true)

In the remainder of this section the interpreter and the instrumented interpreter are instantiated
with this definition of def . The following top-level program is used to get things going:

go : Tm 0
go = call tt (con true)

It is easy to verify that go does not terminate:

go-loops : ∀ {i} → [i] J go K [] ∼D never
go-loops = later λ { .force→ go-loops }

The stack sizes encountered when interpreting go are captured by go-sizes (which expands to 0, 1,
1, 2, 1, 2, 1, 2. . .):

loop-sizes : ∀ {i} → Colist N i
loop-sizes = 1 ::′ 2 :: λ { .force→ loop-sizes }

go-sizes : Colist N∞

go-sizes = 0 ::′ 1 ::′ loop-sizes

The corecursive proof is straightforward and omitted:

[i] stack-sizesI go ∼L go-sizes

The least upper bound of go-sizes is two:

LUB go-sizes ⌜ 2 ⌝

Thus go runs in bounded stack space:

LUB (stack-sizesI go) ⌜ 2 ⌝

13 RELATEDWORK
I have already mentioned some parts of the work of Leroy and Grall [2009] above. They also
provide an example of how one might get unintended consequences when defining coinductive
big-step semantics, showing that if one interprets the inductive inference rules of a simple big-step
semantics coinductively, then the resulting relation is not what one might have naively expected.

Nakata and Uustalu [2009] define trace-based, functional and relational, small-step and big-step
semantics for a while language in Coq. Traces are non-empty, potentially infinite lists of states
(mappings of variables to integers), and the functional semantics are defined using corecursion
and structural recursion. The use of traces makes it possible to distinguish between different
non-terminating computations (but memory usage is not tracked).

Nakata and Uustalu provide several examples of how alternative definitions of their coinductive
big-step relational semantics can lead to subtle problems. Danielsson [2012] sees Nakata and
Uustalu’s relational big-step semantics as technical and brittle, noting that the problems discussed
by Nakata and Uustalu are avoided in the definition of the functional big-step semantics, which
(because Coq is a constructive type theory) has to be a productive function from terms and initial
states to traces.
Danielsson [2012] and Owens et al. [2016] argue that total definitional interpreters (in the

former case defined using the delay monad, in the latter case using step counters) have some
desirable properties compared to relational big-step semantics, especially if one is interested in

Total Definitional Interpreters for Looping Programs :25

giving semantics to programs that can crash or fail to terminate, and not only to programs that
terminate successfully.

Ancona et al. [2017a, 2018] have developed an approach to inference systems which is a kind of
mixture of induction and coinduction: the inference rules are read coinductively, with the condition
that every node in a proof tree has to be provable inductively, using the regular inference rules plus
some extra rules called corules. They provide some examples of trace-based semantics defined in
their framework [2018]. These semantics make it possible to distinguish between different non-
terminating programs. In private communication they have also showed me a big-step semantics for
a kind of λ-calculus with references. The judgements of this semantics include information about
the maximum heap size (potentially∞) required for a (potentially non-terminating) computation.

My observation about this approach is that I find it hard to understand the presented semantics.
I can see that the corules work in certain examples, but it is harder to see that the semantics
matches the intentions. Are there enough corules? Too many? In my opinion an advantage of total
definitional interpreters is that they provide a format which makes it harder to make mistakes:
you are forced to explain exactly what the semantics is for every piece of abstract syntax. Ancona
et al. [2018] state that they do not claim that their approach is easier than using a more standard
approach (a labelled small-step semantics), but they claim that it allows more direct reasoning.
The CerCo project [Amadio et al. 2014] included the development of an optimising compiler

from a subset of C to machine code. It was argued (roughly) that, in a setting where the aim is to
establish upper bounds on (non-asymptotic) worst-case execution times, uniform cost models for
high-level source code may not be sufficiently precise, because one piece of source code can have
different performance characteristics depending on how it is used. This project took a different
approach: the compiler produced a source program annotated with cost information (processor
cycles and stack space usage).
Note that my instrumented interpreter does not provide a cost model that is uniform in this

sense, because the stack space usage for a call depends on whether or not it is compiled to a
tail call. However, I do not claim that the approach I have taken scales to precise analysis of
optimised machine code. Perhaps it could be used for reasoning about asymptotic time and/or space
complexity.

The CerCo compiler seems to have been partly verified in Matita (I found a number of axioms in
the source code). Campbell et al. [2013] state that the main correctness theorem does not guarantee
directly that the compiled program has the same result or termination behaviour as the source
program, but it is suggested that a stronger result could have been proved with more effort. Other
than this partial proof (in a setting which is much more ambitious than my little case study) I am
not aware of any other machine-checked compiler correctness proofs that are applicable to non-
terminating programs and involve guarantees about time or space complexity. However, there are
a number of machine-checked compiler correctness proofs that are applicable to non-terminating
programs, and I would not be surprised if there are also machine-checked proofs showing that
non-terminating programs satisfy properties related to resource consumption.

14 CONCLUSIONS
I have shown that one can give a semantics, using a total definitional interpreter, to at least
one programming language in such a way that non-terminating programs that require different
amounts of stack space can be distinguished. I also defined a compiler that preserves the stack
space guarantees and proved that it is correct.
I have only treated toy examples in this text, but I hope that the examples provide guidance to

others who want to try the same approach.

:26 Nils Anders Danielsson

ACKNOWLEDGEMENTS
I would like to thank Davide Ancona, Francesco Dagnino and Elena Zucca for providing the starting
point of this work. I would also like to thank Andreas Abel and Ulf Norell for helping me improve
a result that is presented (in improved form) in Section 5, and Robin Adams and Ulf Norell for
providing other useful feedback.

This work has been supported by a grant from the Swedish Research Council (621-2013-4879).

REFERENCES
Andreas Abel. 2012. Type-Based Termination, Inflationary Fixed-Points, and Mixed Inductive-Coinductive Types. In

Proceedings 8th Workshop on Fixed Points in Computer Science. https://doi.org/10.4204/EPTCS.77.1
Andreas Abel and Brigitte Pientka. 2016. Well-founded recursion with copatterns and sized types. Journal of Functional

Programming (2016). https://doi.org/10.1017/S0956796816000022
Andreas Abel, Brigitte Pientka, David Thibodeau, and Anton Setzer. 2013. Copatterns: Programming Infinite Structures by

Observations. In POPL ’13, Proceedings of 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. https://doi.org/10.1145/2429069.2429075

The Agda Team. 2018. The Agda Wiki. Retrieved 2018-07-11 from http://wiki.portal.chalmers.se/agda/
Roberto M. Amadio, Nicolas Ayache, Francois Bobot, Jaap P. Boender, Brian Campbell, Ilias Garnier, Antoine Madet, James

McKinna, Dominic P. Mulligan, Mauro Piccolo, Randy Pollack, Yann Régis-Gianas, and Claudio Sacerdoti Coen. 2014.
Certified Complexity (CerCo). In Foundational and Practical Aspects of Resource Analysis, Third International Workshop,
FOPARA 2013. https://doi.org/10.1007/978-3-319-12466-7_1

Nada Amin and Tiark Rompf. 2017. Type Soundness Proofs with Definitional Interpreters. In POPL’17, Proceedings of the
44th ACM SIGPLAN Symposium on Principles of Programming Languages. https://doi.org/10.1145/3009837.3009866

Davide Ancona, Francesco Dagnino, and Elena Zucca. 2017a. Generalizing Inference Systems by Coaxioms. In Pro-
gramming Languages and Systems, 26th European Symposium on Programming, ESOP 2017. https://doi.org/10.1007/
978-3-662-54434-1_2

Davide Ancona, Francesco Dagnino, and Elena Zucca. 2017b. Reasoning on Divergent Computations with Coaxioms.
Proceedings of the ACM on Programming Languages 1, OOPSLA (2017). https://doi.org/10.1145/3133905

Davide Ancona, Francesco Dagnino, and Elena Zucca. 2018. Modeling Infinite Behaviour by Corules. In 32nd European
Conference on Object-Oriented Programming, ECOOP 2018. https://doi.org/10.4230/LIPIcs.ECOOP.2018.21

Casper Bach Poulsen, Arjen Rouvoet, Andrew Tolmach, Robbert Krebbers, and Eelco Visser. 2018. Intrinsically-Typed
Definitional Interpreters for Imperative Languages. Proceedings of the ACM on Programming Languages 2, POPL (2018).
https://doi.org/10.1145/3158104

Nick Benton, Andrew Kennedy, and Carsten Varming. 2009. Some Domain Theory and Denotational Semantics in Coq.
In Theorem Proving in Higher Order Logics, 22nd International Conference, TPHOLs 2009. https://doi.org/10.1007/
978-3-642-03359-9_10

Brian Campbell, Ilias Garnier, James McKinna, and Ian Stark. 2013. Project FP7-ICT-2009-C-243881 CerCo, Report n. D3.4
Front-end Correctness Proofs, Version 1.0. Technical Report. Retrieved 2018-07-11 from https://cordis.europa.eu/docs/
projects/cnect/1/243881/080/deliverables/001-D34.pdf

Venanzio Capretta. 2005. General Recursion via Coinductive Types. Logical Methods in Computer Science (2005). https:
//doi.org/10.2168/LMCS-1(2:1)2005

Nils Anders Danielsson. 2012. Operational Semantics Using the Partiality Monad. In ICFP’12, Proceedings of the 17th ACM
SIGPLAN International Conference on Functional Programming. https://doi.org/10.1145/2364527.2364546

Nils Anders Danielsson. 2018. Up-to Techniques using Sized Types. Proceedings of the ACM on Programming Languages 2,
POPL (2018). https://doi.org/10.1145/3158131

Nils Anders Danielsson and Thorsten Altenkirch. 2010. Subtyping, Declaratively: An Exercise in Mixed Induction and
Coinduction. In Mathematics of Program Construction, 10th International Conference, MPC 2010. https://doi.org/10.1007/
978-3-642-13321-3_8

Richard Kelsey, William Clinger, and Jonathan Rees (Eds.). 1998. Revised5 Report on the Algorithmic Language Scheme.
Higher-Order and Symbolic Computation (1998). https://doi.org/10.1023/A:1010051815785

Xavier Leroy and Hervé Grall. 2009. Coinductive big-step operational semantics. Information and Computation (2009).
https://doi.org/10.1016/j.ic.2007.12.004

Keiko Nakata and Tarmo Uustalu. 2009. Trace-Based Coinductive Operational Semantics for While: Big-step and Small-step,
Relational and Functional Styles. In Theorem Proving in Higher Order Logics, 22nd International Conference, TPHOLs 2009.
https://doi.org/10.1007/978-3-642-03359-9_26

https://doi.org/10.4204/EPTCS.77.1
https://doi.org/10.1017/S0956796816000022
https://doi.org/10.1145/2429069.2429075
http://wiki.portal.chalmers.se/agda/
https://doi.org/10.1007/978-3-319-12466-7_1
https://doi.org/10.1145/3009837.3009866
https://doi.org/10.1007/978-3-662-54434-1_2
https://doi.org/10.1007/978-3-662-54434-1_2
https://doi.org/10.1145/3133905
https://doi.org/10.4230/LIPIcs.ECOOP.2018.21
https://doi.org/10.1145/3158104
https://doi.org/10.1007/978-3-642-03359-9_10
https://doi.org/10.1007/978-3-642-03359-9_10
https://cordis.europa.eu/docs/projects/cnect/1/243881/080/deliverables/001-D34.pdf
https://cordis.europa.eu/docs/projects/cnect/1/243881/080/deliverables/001-D34.pdf
https://doi.org/10.2168/LMCS-1(2:1)2005
https://doi.org/10.2168/LMCS-1(2:1)2005
https://doi.org/10.1145/2364527.2364546
https://doi.org/10.1145/3158131
https://doi.org/10.1007/978-3-642-13321-3_8
https://doi.org/10.1007/978-3-642-13321-3_8
https://doi.org/10.1023/A:1010051815785
https://doi.org/10.1016/j.ic.2007.12.004
https://doi.org/10.1007/978-3-642-03359-9_26

Total Definitional Interpreters for Looping Programs :27

Ulf Norell. 2007. Towards a practical programming language based on dependent type theory. Ph.D. Dissertation. Chalmers
University of Technology and Göteborg University.

Scott Owens, Magnus O. Myreen, Ramana Kumar, and Yong Kiam Tan. 2016. Functional Big-Step Semantics. In Pro-
gramming Languages and Systems, 25th European Symposium on Programming, ESOP 2016. https://doi.org/10.1007/
978-3-662-49498-1_23

Christine Paulin-Mohring. 2009. A constructive denotational semantics for Kahn networks in Coq. In From Semantics to
Computer Science: Essays in Honour of Gilles Kahn. Cambridge University Press.

Marco Paviotti, Rasmus Ejlers Møgelberg, and Lars Birkedal. 2015. A Model of PCF in Guarded Type Theory. In The 31st
Conference on the Mathematical Foundations of Programming Semantics (MFPS XXXI). https://doi.org/10.1016/j.entcs.
2015.12.020

John C. Reynolds. 1972. Definitional interpreters for higher-order programming languages. In ACM ’72, Proceedings of the
ACM annual conference. https://doi.org/10.1145/800194.805852

Jorge Luis Sacchini. 2015. Well-Founded Sized Types in the Calculus of (Co)Inductive Constructions. Draft. Retrieved
2018-07-11 from http://web.archive.org/web/20160531152811/http://www.qatar.cmu.edu:80/~sacchini/well-founded/
well-founded.pdf

Jeremy Siek. 2013. Type Safety in Three Easy Lemmas. Blog post. Retrieved 2018-07-11 from http://siek.blogspot.com/2013/
05/type-safety-in-three-easy-lemmas.html

https://doi.org/10.1007/978-3-662-49498-1_23
https://doi.org/10.1007/978-3-662-49498-1_23
https://doi.org/10.1016/j.entcs.2015.12.020
https://doi.org/10.1016/j.entcs.2015.12.020
https://doi.org/10.1145/800194.805852
http://web.archive.org/web/20160531152811/http://www.qatar.cmu.edu:80/~sacchini/well-founded/well-founded.pdf
http://web.archive.org/web/20160531152811/http://www.qatar.cmu.edu:80/~sacchini/well-founded/well-founded.pdf
http://siek.blogspot.com/2013/05/type-safety-in-three-easy-lemmas.html
http://siek.blogspot.com/2013/05/type-safety-in-three-easy-lemmas.html

	Abstract
	1 Introduction
	2 Sized Types
	3 The Delay Monad
	4 An Interpreter with Bounded Memory
	5 An Interpreter with Unbounded Memory
	6 The Maximum Heap Usage Cannot Be Computed
	7 An Optimiser
	8 A Simple Lambda Calculus
	9 A Virtual Machine with Tail Calls
	10 A Correct Compiler
	11 An Instrumented Interpreter
	12 Two Examples
	13 Related Work
	14 Conclusions
	Acknowledgements
	References

