------------------------------------------------------------------------
-- Inductive axiomatisation of subtyping
------------------------------------------------------------------------

module RecursiveTypes.Subtyping.Axiomatic.Inductive where

open import Coinduction hiding (unfold)
open import Data.Nat using (; zero; suc)
open import Data.List using (List; []; _∷_; _++_)
open import Data.List.Any as Any using (Any)
open Any.Membership-≡ using (_∈_)
open import Data.List.Any.Properties
open import Data.List.All as All using (All; []; _∷_)
open import Data.Product
open import Data.Sum as Sum using (_⊎_; inj₁; inj₂; [_,_]′)
open import Function
open import Function.Equality using (_⟨$⟩_)
open import Function.Inverse using (module Inverse)
open import Relation.Nullary
open import Relation.Binary.PropositionalEquality as PropEq
  using (_≡_; refl)

open import RecursiveTypes.Syntax
open import RecursiveTypes.Syntax.UnfoldedOrFixpoint
open import RecursiveTypes.Substitution using (unfold[μ_⟶_])
import RecursiveTypes.Subterm as ST
import RecursiveTypes.Subterm.RestrictedHypothesis as Restricted
open import RecursiveTypes.Subtyping.Semantic.Coinductive as Sem
  using (_≤Coind_)
open import RecursiveTypes.Subtyping.Axiomatic.Coinductive as Ax
  using (_≤_;;; _⟶_; unfold; fold; _∎; _≤⟨_⟩_)

------------------------------------------------------------------------
-- Definition

infixr 10 _⟶_
infix  4  _⊢_≤_
infixr 2  _≤⟨_⟩_
infix  2  _∎

-- This inductive subtyping relation is parameterised on a list of
-- hypotheses. Note Brandt and Henglein's unusual definition of _⟶_.

data _⊢_≤_ {n} (A : List (Hyp n)) : Ty n  Ty n  Set where
  -- Structural rules.
     :  {τ}  A    τ
     :  {σ}  A  σ  
  _⟶_ :  {σ₁ σ₂ τ₁ τ₂} 
        let H = σ₁  σ₂  τ₁  τ₂ in
        (τ₁≤σ₁ : H  A  τ₁  σ₁) (σ₂≤τ₂ : H  A  σ₂  τ₂) 
        A  σ₁  σ₂  τ₁  τ₂

  -- Rules for folding and unfolding μ.
  unfold :  {τ₁ τ₂}  A  μ τ₁  τ₂  unfold[μ τ₁  τ₂ ]
  fold   :  {τ₁ τ₂}  A  unfold[μ τ₁  τ₂ ]  μ τ₁  τ₂

  -- Reflexivity.
  _∎ :  τ  A  τ  τ

  -- Transitivity.
  _≤⟨_⟩_ :  τ₁ {τ₂ τ₃}
           (τ₁≤τ₂ : A  τ₁  τ₂) (τ₂≤τ₃ : A  τ₂  τ₃)  A  τ₁  τ₃

  -- Hypothesis.
  hyp :  {σ τ} (σ≤τ : (σ  τ)  A)  A  σ  τ

------------------------------------------------------------------------
-- Soundness

-- A hypothesis is valid if there is a corresponding proof.

Valid :  {n}  (Ty n  Ty n  Set)  Hyp n  Set
Valid _≤_ (σ₁  σ₂) = σ₁  σ₂

module Soundness where

  -- The soundness proof uses my trick to show that the code is
  -- productive.

  infix 4 _≤P_ _≤W_

  mutual

    -- Soundness proof programs.

    data _≤P_ {n} : Ty n  Ty n  Set where
      sound :  {A σ τ} 
              (valid : All (Valid _≤W_) A) (σ≤τ : A  σ  τ)  σ ≤P τ

    -- Weak head normal forms of soundness proof programs. Note that
    -- _⟶_ takes (suspended) /programs/ as arguments, while _≤⟨_⟩_
    -- takes /WHNFs/.

    data _≤W_ {n} : Ty n  Ty n  Set where
      done   :  {σ τ} (σ≤τ : σ  τ)  σ ≤W τ
      _⟶_    :  {σ₁ σ₂ τ₁ τ₂}
               (τ₁≤σ₁ :  (τ₁ ≤P σ₁)) (σ₂≤τ₂ :  (σ₂ ≤P τ₂)) 
               σ₁  σ₂ ≤W τ₁  τ₂
      _≤⟨_⟩_ :  τ₁ {τ₂ τ₃}
               (τ₁≤τ₂ : τ₁ ≤W τ₂) (τ₂≤τ₃ : τ₂ ≤W τ₃)  τ₁ ≤W τ₃

  -- The following two functions compute the WHNF of a soundness
  -- program. Note the circular, but productive, definition of proof
  -- below.

  soundW :  {n} {σ τ : Ty n} {A} 
           All (Valid _≤W_) A  A  σ  τ  σ ≤W τ
  soundW valid                      = done 
  soundW valid                      = done 
  soundW valid unfold                = done unfold
  soundW valid fold                  = done fold
  soundW valid (τ )                 = done (τ )
  soundW valid (τ₁ ≤⟨ τ₁≤τ₂  τ₂≤τ₃) = τ₁ ≤⟨ soundW valid τ₁≤τ₂ 
                                             soundW valid τ₂≤τ₃
  soundW valid (hyp σ≤τ)             = All.lookup valid σ≤τ
  soundW valid (τ₁≤σ₁  σ₂≤τ₂)       = proof
    where proof =  sound (proof  valid) τ₁≤σ₁ 
                   sound (proof  valid) σ₂≤τ₂

  whnf :  {n} {σ τ : Ty n} 
         σ ≤P τ  σ ≤W τ
  whnf (sound valid σ≤τ) = soundW valid σ≤τ

  -- Computes actual proofs.

  mutual

    ⟦_⟧W :  {n} {σ τ : Ty n}  σ ≤W τ  σ  τ
     done σ≤τ            ⟧W = σ≤τ
     τ₁≤σ₁  σ₂≤τ₂       ⟧W =    τ₁≤σ₁ ⟧P     σ₂≤τ₂ ⟧P
     τ₁ ≤⟨ τ₁≤τ₂  τ₂≤τ₃ ⟧W = τ₁ ≤⟨  τ₁≤τ₂ ⟧W   τ₂≤τ₃ ⟧W

    ⟦_⟧P :  {n} {σ τ : Ty n}  σ ≤P τ  σ  τ
     σ≤τ ⟧P =  whnf σ≤τ ⟧W

-- The subtyping relation defined above is sound with respect to the
-- others.

sound :  {n A} {σ τ : Ty n} 
        All (Valid _≤_) A  A  σ  τ  σ  τ
sound {n} valid σ≤τ =
   S.sound (All.map  {h}  done′ h) valid) σ≤τ ⟧P
  where
  open module S = Soundness

  done′ : (σ₁≲σ₂ : Hyp n)  Valid _≤_ σ₁≲σ₂  Valid _≤W_ σ₁≲σ₂
  done′ (_  _) = done

------------------------------------------------------------------------
-- The subtyping relation is decidable

module Decidable {n} (χ₁ χ₂ : Ty n) where

  open Restricted χ₁ χ₂

  -- The proof below is not optimised for speed. (See Gapeyev, Levin
  -- and Pierce's "Recursive Subtyping Revealed" from ICFP '00 for
  -- more information about the complexity of subtyping algorithms.)

  mutual

    -- A wrapper which applies the U∨Μ view.

    _⊢_,_≤?_,_ :  {A }  A   
                  σ  Subterm σ   τ  Subterm τ 
                  A ⟩⋆  σ  τ  (¬ σ ≤Coind τ)
    T  σ , σ⊑ ≤? τ , τ⊑ = T  u∨μ σ , σ⊑ ≤? u∨μ τ , τ⊑

    -- _⊩_,_≤?_,_ unfolds fixpoints. Note that at least one U∨Μ
    -- argument becomes smaller in each recursive call, while ℓ, an
    -- upper bound on the number of pairs of types yet to be
    -- inspected, is preserved.

    _⊩_,_≤?_,_ :  {A }  A   
                  {σ τ}  U∨Μ σ  Subterm σ  U∨Μ τ  Subterm τ 
                  A ⟩⋆  σ  τ  (¬ σ ≤Coind τ)

    T  fixpoint {σ₁} {σ₂} u , σ⊑ ≤? τ , τ⊑ =
      Sum.map  ≤τ  μ σ₁  σ₂           ≤⟨ unfold 
                      unfold[μ σ₁  σ₂ ]  ≤⟨ ≤τ 
                      u∨μ⁻¹ τ             )
               ≰τ ≤τ  ≰τ (Sem.trans Sem.fold ≤τ))
              (T  u , anti-mono ST.unfold′ σ⊑ ≤? τ , τ⊑)
    T  σ , σ⊑ ≤? fixpoint {τ₁} {τ₂} u , τ⊑ =
      Sum.map  σ≤  u∨μ⁻¹ σ             ≤⟨ σ≤ 
                      unfold[μ τ₁  τ₂ ]  ≤⟨ fold 
                      μ τ₁  τ₂           )
               σ≰ σ≤  σ≰ (Sem.trans σ≤ Sem.unfold))
              (T  σ , σ⊑ ≤? u , anti-mono ST.unfold′ τ⊑)

    T  unfolded σ , σ⊑ ≤? unfolded τ , τ⊑ = T  σ , σ⊑ ≤? τ , τ⊑

    -- _⊪_,_≤?_,_ handles the structural cases. Note that ℓ becomes
    -- smaller in each recursive call.

    _⊪_,_≤?_,_ :  {A }  A   
                  {σ}  Unfolded σ  Subterm σ 
                  {τ}  Unfolded τ  Subterm τ 
                  A ⟩⋆  σ  τ  (¬ σ ≤Coind τ)
    T   , _ ≤? τ , _ = inj₁ 
    T  σ , _ ≤?  , _ = inj₁ 

    T  var x , _ ≤? var y , _ = helper (var x ≡? var y)
      where
      helper :  {A x y}  Dec ((var x  Ty n)  var y) 
                A ⟩⋆  var x  var y  ¬ var x ≤Coind var y
      helper (yes refl) = inj₁ (var _ )
      helper (no  x≠y)  = inj₂ (x≠y  Sem.var:≤∞⟶≡)

    _⊪_,_≤?_,_ {A} T (σ₁  σ₂) σ⊑ (τ₁  τ₂) τ⊑ =
      helper (lookupOrInsert T H)
      where
      H = (, σ⊑)  (, τ⊑)

      helper₂ :
         H  A ⟩⋆  τ₁       σ₁       ¬ τ₁      ≤Coind σ₁      
         H  A ⟩⋆       σ₂       τ₂  ¬      σ₂ ≤Coind      τ₂ 
             A ⟩⋆  σ₁  σ₂  τ₁  τ₂  ¬ σ₁  σ₂ ≤Coind τ₁  τ₂
      helper₂ (inj₁ ≤₁) (inj₁ ≤₂) = inj₁ (≤₁  ≤₂)
      helper₂ (inj₂  ) (_      ) = inj₂ (   Sem.left-proj)
      helper₂ (_      ) (inj₂  ) = inj₂ (  Sem.right-proj)

      helper :  {}  Any (_≈_ H) A  ( λ n    suc n × H  A  n) 
                A ⟩⋆  σ₁  σ₂  τ₁  τ₂  ¬ σ₁  σ₂ ≤Coind τ₁  τ₂
      helper (inj₁ σ≲τ)             = inj₁ $ hyp $ Inverse.to map⇿ ⟨$⟩ σ≲τ
      helper (inj₂ (_ , refl , T′)) = helper₂
        (T′  τ₁ , anti-mono ST.⟶ˡ′ τ⊑ ≤? σ₁ , anti-mono ST.⟶ˡ′ σ⊑)
        (T′  σ₂ , anti-mono ST.⟶ʳ′ σ⊑ ≤? τ₂ , anti-mono ST.⟶ʳ′ τ⊑)

    T         , _ ≤?        , _ = inj₂  ())
    T         , _ ≤? var x   , _ = inj₂  ())
    T         , _ ≤? τ₁  τ₂ , _ = inj₂  ())
    T  var x   , _ ≤?        , _ = inj₂  ())
    T  var x   , _ ≤? τ₁  τ₂ , _ = inj₂  ())
    T  σ₁  σ₂ , _ ≤?        , _ = inj₂  ())
    T  σ₁  σ₂ , _ ≤? var x   , _ = inj₂  ())

  -- Finally we have to prove that an upper bound ℓ actually exists.

  dec : []  χ₁  χ₂  (¬ χ₁  χ₂)
  dec = Sum.map id  σ≰τ  σ≰τ  Ax.sound) $
        empty  χ₁ , inj₁ ST.refl ≤? χ₂ , inj₂ ST.refl

infix 4 []⊢_≤?_ _≤?_

-- The subtyping relation defined above is decidable (when the set of
-- assumptions is empty).

[]⊢_≤?_ :  {n} (σ τ : Ty n)  Dec ([]  σ  τ)
[]⊢ σ ≤? τ with Decidable.dec σ τ
... | inj₁ σ≤τ = yes σ≤τ
... | inj₂ σ≰τ = no (σ≰τ  sound [])

-- The other subtyping relations can also be decided.

_≤?_ :  {n} (σ τ : Ty n)  Dec (σ  τ)
σ ≤? τ with Decidable.dec σ τ
... | inj₁ σ≤τ = yes (sound [] σ≤τ)
... | inj₂ σ≰τ = no σ≰τ

------------------------------------------------------------------------
-- Completeness

-- Weakening (at the end of the list of assumptions).

weaken :  {n A A′} {σ τ : Ty n} 
         A  σ  τ  A ++ A′  σ  τ
weaken                      = 
weaken                      = 
weaken unfold                = unfold
weaken fold                  = fold
weaken (τ )                 = τ 
weaken (τ₁ ≤⟨ τ₁≤τ₂  τ₂≤τ₃) = τ₁ ≤⟨ weaken τ₁≤τ₂  weaken τ₂≤τ₃
weaken (hyp h)               = hyp (Inverse.to ++⇿ ⟨$⟩ inj₁ h)
weaken (τ₁≤σ₁  σ₂≤τ₂)       = weaken τ₁≤σ₁  weaken σ₂≤τ₂

-- The subtyping relation defined above is complete with respect to
-- the others.

complete :  {n A} {σ τ : Ty n} 
           σ  τ  A  σ  τ
complete {σ = σ} {τ} σ≤τ with Decidable.dec σ τ
... | inj₁ []⊢σ≤τ = weaken []⊢σ≤τ
... | inj₂ σ≰τ    with σ≰τ σ≤τ
...   | ()