
Isomorphism is equality

Thierry Coquand∗, Nils Anders Danielsson∗

University of Gothenburg and Chalmers University of Technology

Abstract

The setting of this work is dependent type theory extended with the univa-
lence axiom. We prove that, for a large class of algebraic structures, isomorphic
instances of a structure are equal—in fact, isomorphism is in bijective correspon-
dence with equality. The class of structures includes monoids whose underlying
types are “sets”, and also posets where the underlying types are sets and the
ordering relations are pointwise “propositional”. For monoids on sets equality
coincides with the usual notion of isomorphism from universal algebra, and for
posets of the kind mentioned above equality coincides with order isomorphism.

Keywords: Dependent type theory; Proof assistants; Univalence

1. Introduction

De Bruijn argued that it is more natural for mathematicians to work with
a typed language than with the untyped universe of set theory (1975). In this
paper we explore a possible mathematical advantage of working in a type the-
ory—inspired by the ones designed by de Bruijn and his coworkers1 (de Bruijn
1980)—over working in set theory.

Consider the following two monoids:

(N, λmn. m+ n, 0)

and
(N \ { 0 }, λmn. m+ n− 1, 1).

These monoids are isomorphic, as witnessed by the isomorphism λn. n + 1.
However, in set theory they are not equal : there are properties that are satisfied
by only one of them. For instance, only the first one satisfies the property that
the carrier set contains the element 0.

In (a certain) type theory extended with the univalence axiom (see Section 2)
the situation is different. This is the focus of the present paper:

• We prove that monoidsM1 andM2 that are isomorphic, i.e. for which there
is a homomorphic bijection f : M1 → M2, are equal (see Section 3.5).

∗Corresponding author.
Email addresses: thierry.coquand@cse.gu.se (Thierry Coquand), nad@cse.gu.se (Nils

Anders Danielsson)
1The AUTOMATH project team included van Benthem Jutting, van Daalen, Kornaat,

Nederpelt, de Vrijer, Zandleven, Zucker, and others (Nederpelt and Geuvers 1994).
Notice: This is the authors’ version of a work that was accepted for publication in Indagationes
Mathematicae. Changes resulting from the publishing process, such as peer review, editing, cor-
rections, structural formatting, and other quality control mechanisms may not be reflected in
this document. Changes may have been made to this work since it was submitted for publication.
A definitive version was subsequently published in Indagationes Mathematicae 24(4):1105–1120,
2013, doi:10.1016/ j.indag.2013.09.002.

http://dx.doi.org/10.1016/j.indag.2013.09.002

In fact, we show that isomorphism is in bijective correspondence with
equality.

Note that the equality that we use is substitutive. This means that, unlike
in set theory, any property that holds for the first monoid above also holds
for the second one.

(The result is restricted to monoids whose carrier types are “sets”. This
term is defined in Section 2.5. Many types, including the natural numbers,
are sets.)

• The result about monoids follows directly from a more general theorem
(see Section 3.3), which applies to a large class of algebraic structures,
including posets and discrete fields (defined as in Section 3.5).

All the main results in the paper have been formalised using the proof assis-
tant Agda2 (Norell 2007; The Agda Team 2013), which is based on Martin-Löf
type theory (Martin-Löf 1975; Nordström et al. 1990). Unlike in regular Martin-
Löf type theory we use a “non-computing” J rule (i.e. the computation rule for
J only holds propositionally, not definitionally); this choice, which makes the
result more generally applicable, is motivated in Section 2.3. We believe that
our arguments carry over to other variants of type theory, but do not make any
formal claims in this direction.

Note that our theorem is proved inside the type theory, using the univalence
axiom. In the absence of this axiom we can still observe, meta-theoretically, that
we cannot prove any statement that distinguishes the two monoids above (given
the consistency of the axiom). A related observation was made already in the
1930s by Lindenbaum and Tarski (1983, see also Tarski (1986)): in a certain
variant of type theory every sentential function is invariant under bijections.

The formulation of “isomorphism is equality” that is used in this paper is not
intended to be as general as possible; we try to strike a good balance between
generality and ease of understanding. Other variations of this result have been
developed concurrently by Aczel (The Univalent Foundations Program 2013)
and Ahrens et al. (2013). See Section 4 for further discussion of related work.

2. Preliminaries

This section introduces some concepts, terminology and results used below.
We assume some familiarity with type theory.

The presentation in this and subsequent sections is close to the Agda formal-
isation, but differs in minor details. In particular, we do not always use proper
Agda syntax.

2.1. Hierarchy of types

We assume that we have an infinite hierarchy of “types of types” Type0 :
Type1 : Type2 : . . . (and use the synonym Type = Type0). Below we define
some concepts using certain types Typei and Typej . These definitions are ap-
plicable to arbitrary “universe levels” i and j .

2Using the --without-K flag; the code has been made available to download.

2

In Agda a member of Typei is not automatically a member of Typej for
i < j , but one can manually lift types from one level to another. In this paper
we omit such liftings.

2.2. Quantifiers

If we have A : Typei and B : A → Typej , then we can introduce the Π-
type, or dependent function type, (x : A) → B x (this type is sometimes writ-
ten ∀ x . B x). If we have f : (x : A) → B x and t : A, then the application
f t has type B t . Simple (non-dependent) function types are written A → B .

In order to reduce clutter we sometimes use “implicit” function types. The
notations {x : A} → B x and ∀ {x}. B x mean the same as (x : A) → B x
and ∀ x . B x , respectively, except that the function’s argument is not given
explicitly: we write f rather than f t , with the hope that readers can infer t
from the context.

Sometimes we combine several quantifiers into one: (x y : A) → B x y
means the same as (x : A) → (y : A) → B x y , and ∀ x {y z}. B x y z means
the same as ∀ x . ∀ {y}. ∀ {z}. B x y z .

Σ-types, or dependent pairs, are written Σ x : A. B x (or Σ x . B x). If
we have t : A and u : B t , then (t , u) has type Σ x : A. B x . Σ-types come
with two projection functions. The first projection is written proj1 and the sec-
ond proj2. Cartesian products (non-dependent pairs) are defined as A × B =
Σ : A. B .

We make use of η-equality for both Π-types and Σ-types: the function
f : (x : A) → B x is definitionally equal to λ x . f x (where x is not free in f),
and the pair p : Σ x : A. B x is definitionally equal to (proj1 p, proj2 p). (Def-
initional equality is discussed below.) We suspect that the use of definitional
η-equality is not essential, but have used it in our Agda formalisation.

2.3. Equality

Following de Bruijn (1975) we distinguish between definitional (or judge-
mental) and propositional (or book) equality. Definitional equality (βη-equality
plus unfolding of user-made definitions) is inferred automatically by the type
checker, and comes with no term formers. If we have t : A, and A is defi-
nitionally equal to B , then we have t : B as well: definitional equalities are
“invoked automatically”. Propositional equality, on the other hand, is a type
with corresponding term formers.

The propositional equality type, containing proofs of equality between x and
y , is written x ≡ y . Here x and y must have the same type A, and if we have
A : Typei, then we also have x ≡ y : Typei. There is one introduction rule for
equalities—reflexivity:

refl : {A : Typei} → (x : A) → x ≡ x

The equality eliminator is traditionally called J :

J : {A : Typei} →
(P : (x y : A) → x ≡ y → Typej) →
(∀ x . P x x (refl x)) →
∀ {x y}. (eq : x ≡ y) → P x y eq

3

Typically J and refl come together with a “computation rule”, a definitional
equality stating how applications of the form J P r (refl x) compute (Martin-
Löf 1975). We include such a rule, but stated as a propositional equality:

J-refl : {A : Typei} →
(P : (x y : A) → x ≡ y → Typej) →
(r : ∀ x . P x x (refl x)) →
∀ x . J P r (refl x) ≡ r x

The reason for using a propositional computation rule is the ongoing quest
to find a computational interpretation of the univalence axiom (described in
Section 2.5): perhaps we will end up with a computational interpretation in
which J-refl does not hold definitionally.

As mentioned in the introduction the propositional equality type is substi-
tutive. This follows directly from the J rule:

subst : {A : Typei} → (P : A → Typej) →
{x y : A} → x ≡ y → P x → P y

subst P = J (λ u v . P u → P v) (λ p. p)

We sometimes make use of axioms stating that propositional equality of
functions is extensional:

Extensionality : (A : Typei) → (B : A → Typej) →
(f g : (x : A) → B x) →
(∀ x . f x ≡ g x) → f ≡ g

When we use the term “extensionality” below we refer to this kind of exten-
sionality. In the Agda formalisation we explicitly pass around assumptions of
extensionality (foo : Extensionality → . . .), thus making it clear when this as-
sumption is not used. To avoid clutter we do not do so below.

The type of bijections between the types A : Typei and B : Typej is written
A ↔ B . This type can be defined as a nested Σ-type:

A ↔ B = Σ to : A → B . Σ from : B → A.
(∀ x . to (from x) ≡ x) × (∀ x . from (to x) ≡ x)

If we have f : A ↔ B , then we use the notation to f for the “forward” function
of type A → B , and from f for the “backward” function of type B → A.

A key property of equality of Σ-types is that equality of pairs p, q of type
Σ x : A. B x is in bijective correspondence with pairs of equalities:

p ≡ q ↔ Σ eq : proj1 p ≡ proj1 q . subst B eq (proj2 p) ≡ proj2 q

This property can be proved using J and J-refl. By assuming extensionality we
can prove a similar key property of equality of Π-types (Voevodsky 2011):

f ≡ g ↔ ∀ x . f x ≡ g x

4

2.4. More types

The unit type is denoted > (with sole element tt : >), and the empty type
⊥. Agda comes with η-equality for >: all values of this type are definitionally
equal.

The binary (disjoint) sum of the types A and B is written A + B . If we
have t : A and u : B , then we also have inj1 t : A + B and inj2 u : A + B .

The natural numbers are defined as an inductive data type N with con-
structors zero : N and suc : N → N. Natural numbers can be eliminated using
structural recursion.

Two types A and B are logically equivalent, written A ⇔ B , if there are
functions going from A to B and back: A ⇔ B = (A → B) × (B → A).

2.5. Univalent foundations

Let us now introduce some terminology and results from the “univalent foun-
dations of mathematics”, largely but not entirely based on work done by Voe-
vodsky (2010, 2011), and verified to apply in our setting (with a propositional
computation rule for J).

Contractibility is defined as follows:

Contractible : Typei → Typei

Contractible A = Σ x : A. ∀ y . x ≡ y

Homotopy levels or h-levels are defined recursively:

H-level : N → Typei → Typei

H-level zero A = Contractible A
H-level (suc n) A = (x y : A) → H-level n (x ≡ y)

Types at level 0 are contractible. We call types at level 1 propositions and types
at level 2 sets:

Is-proposition : Typei → Typei

Is-proposition = H-level 1

Is-set : Typei → Typei

Is-set = H-level 2

The following results can be used to establish that a type has a certain
h-level:

• A type which has h-level n also has h-level suc n.

• A type A is contractible iff it is in bijective correspondence with the unit
type: > ↔ A.

• A type A is a proposition iff all its values are equal: (x y : A) → x ≡ y .
In particular, ⊥ is a proposition.

• A type A is a set iff it satisfies the “uniqueness of identity proofs” property
(UIP): (x y : A) → (p q : x ≡ y) → p ≡ q .

• If a type A has decidable equality, (x y : A)→ (x ≡ y) + (x ≡ y → ⊥),
then it satisfies UIP (Hedberg 1998), so it is a set. In particular, N is a
set.

5

• H-level n A is a proposition (assuming extensionality).

• If A has h-level n, and, for all x , B x has h-level n, then Σ x : A. B x has
h-level n.

• If, for all x , B x has h-level n, then (x : A) → B x has h-level n (assum-
ing extensionality).

• If A and B both have h-level n, where n > 2, then A + B has h-level n.

• If A has h-level n > 1, then W x : A. B x has h-level n (assuming ex-
tensionality). Here W x : A. B x is a W-type, or well-founded tree type
(Nordström et al. 1990).

• When proving that a type A has a positive h-level one can assume that A
is inhabited: (A → H-level (suc n) A) → H-level (suc n) A.

• If there is a “split surjection” from A to B (i.e. a triple consisting of
two functions to : A → B and from : B → A along with a proof of
∀ x . to (from x) ≡ x), and A has h-level n, then B has h-level n.

If a type is known to be propositional, then one can use this knowledge to
simplify certain equalities—propositionally typed second components of pairs
can be dropped:

(p q : Σ x : A. B x) →
Is-proposition (B (proj1 q)) →
(p ≡ q) ↔ (proj1 p ≡ proj1 q)

A non-dependent function is an equivalence if all its “preimages” are con-
tractible:

Is-equivalence : {A B : Typei} → (A → B) → Typei

Is-equivalence f = ∀ y . Contractible (Σ x . f x ≡ y)

Observe that Is-equivalence f is a proposition (assuming extensionality). One
example of an equivalence is subst P eq : P x → P y (for any P , x , y and
eq : x ≡ y).

Two types A and B are equivalent, written A ' B , if there is an equivalence
from A to B :

Σ f : A → B . Is-equivalence f

If we have eq : A ' B , then we use the (overloaded) notation to eq for the
first projection of eq . Given eq : A ' B it is also easy to construct a function
of type B → A. We use the overloaded notation from eq for this function:
from eq = λ y . proj1 (proj1 (proj2 eq y)).

It is straightforward to prove that to eq and from eq are inverses, which im-
plies that equivalent types are in bijective correspondence. In fact, there is a log-
ical equivalence between A ' B and A ↔ B that, in both directions, preserves
the to and from components. When A is a set we can, assuming extensionality,
strengthen this logical equivalence to a bijection: (A ' B) ↔ (A ↔ B). If
both A and B are propositions, then we can take this one step further—in this

6

case equivalences are, again assuming extensionality, in bijective correspondence
with logical equivalences: (A ' B) ↔ (A ⇔ B).

The following property provides one way to prove that two types Σ x : A.
B x and Σ x : C . D x are equivalent:

(eq : A ' C) → (∀ x . B x ' D (to eq x)) →
(Σ x : A. B x) ' (Σ x : C . D x)

If we assume extensionality, then we can prove a corresponding property for
Π-types:

(eq : A ' C) → (∀ x . B x ' D (to eq x)) →
((x : A) → B x) ' ((x : C) → D x)

Similar properties can be proved for other type formers.
It is easy to show that equality implies equivalence:

≡⇒' : (A B : Typei) → A ≡ B → A ' B
≡⇒' = J (λ A B . A ' B) (λ . id)

(Here id is the identity equivalence.) The univalence axiom states that this
function is an equivalence:

Univalence : (A B : Typei) → Is-equivalence (≡⇒' A B)

As immediate consequences of the univalence axiom we get that equality is in
bijective correspondence with equivalence, (A ≡ B) ↔ (A ' B), and that
we can convert equivalences to equalities:

'⇒≡ : {A B : Typei} → A ' B → A ≡ B

The univalence axiom (two instances, one at level j and one at level j + 1) also
implies extensionality (at levels i and j). Furthermore univalence (at level i)
can be used to prove the transport theorem:

(P : Typei → Typej) →
(resp : ∀ {A B}. A ' B → P A → P B) →
(resp-id : ∀ {A}. (p : P A) → resp id p ≡ p) →
∀ {A B}. (eq : A ' B) → (p : P A) →
resp eq p ≡ subst P ('⇒≡ eq) p

This theorem states that if we have a function resp that witnesses that a predi-
cate P respects equivalence, and resp id is the identity function, then resp eq is
pointwise equal to subst P ('⇒≡ eq). By using the fact that subst P ('⇒≡ eq)
is an equivalence we get that resp eq is also an equivalence. Furthermore we
can prove that resp eq preserves compositions (if we, in addition to univalence,
assume extensionality).

We mentioned above that we make use of a global assumption of extension-
ality in the text. We also make use of a global assumption of univalence. To be
precise, below we use univalence at the first three universe levels. These three
instances of univalence can be used to prove all instances of extensionality that
we make use of.

7

3. Isomorphism is equality

In this section we prove that isomorphism is equality for a large class of
algebraic structures. First we prove the result for arbitrary “universes” satis-
fying certain properties, then we define a universe that is closed under (non-
dependent) function spaces, cartesian products, and binary sums, and finally
we give some examples.

3.1. Parameters

We parametrise the general result by four components, U , El , resp and
resp-id.

The first two components form a universe, i.e. a type of codes along with a
decoding function:

U : Type2

El : U → Type1 → Type1

We have chosen to use Type2 and Type1 (rather than, say, Type and Type) in
order to support the example universe given in Section 3.4. However, other
choices are possible.

The third component is a requirement that El a, when seen as a predicate,
respects equivalences:

resp : ∀ a {B C}. B ' C → El a B → El a C

Finally the resp function should map the identity equivalence id to the identity
function:

resp-id : ∀ a {B}. (x : El a B) → resp a id x ≡ x

The idea is that a value a : U corresponds to a kind of structure, that El a B
is the type of a-structures on the “carrier type” B , and that the operation resp
corresponds to “transport of structure” (Bourbaki 1957): if x : El a B and
eq : B ' C then resp a eq x is the a-structure on C obtained by transporting
x along eq .

It follows from the transport theorem, instantiated with resp and resp-id,
that resp a eq x is equal to subst (El a) ('⇒≡ eq) x (assuming univalence), so
it is perhaps natural to wonder what the purpose of resp is. The resp function is
used to define a notion of isomorphism (see Section 3.2). In the examples below
we instantiate resp in such a way that this notion of isomorphism is, arguably,
closer to conventional definitions of isomorphism than what we would get if we
used the definition resp a eq x = subst (El a) ('⇒≡ eq) x .

3.2. Codes for structures

Given these parameters we define a notion of codes for “extended” structures.
The codes consist of two parts, a code in U and a family of propositions:

Code : Type3

Code =
Σ a : U .
(C : Type1) → El a C → Σ P : Type1. Is-proposition P

8

The codes are decoded in the following way (values of type Instance c are in-
stances of the structure coded by c):

Instance : Code → Type2

Instance (a,P) =
Σ C : Type1. -- Carrier type.
Σ x : El a C . -- Element.
proj1 (P C x) -- The element satisfies the corresponding

-- proposition.

We can also define what it means for two instances to be isomorphic. First
we use resp to define a predicate that specifies when a given equivalence is an
isomorphism from one element to another:

Is-isomorphism : ∀ a {B C}. B ' C → El a B → El a C → Type1

Is-isomorphism a eq x y = resp a eq x ≡ y

Two instances are then defined to be isomorphic if there is an equivalence be-
tween the carrier types that relates the elements; the propositions are ignored:

Isomorphic : ∀ c. Instance c → Instance c → Type1

Isomorphic (a,) (C , x ,) (D , y ,) =
Σ eq : C ' D . Is-isomorphism a eq x y

The following projections, one for carrier types and one for elements, are
easy to define:

Carrier : ∀ c. Instance c → Type1

element : ∀ c. (X : Instance c) → El (proj1 c) (Carrier c X)

We use the projections to state that equality of instances is in bijective corre-
spondence with a type of pairs containing one equality for the carrier types and
one for the elements:

equality-pair-lemma :
∀ c. (X Y : Instance c) →
(X ≡ Y)
↔

Σ eq : Carrier c X ≡ Carrier c Y .
subst (El (proj1 c)) eq (element c X) ≡ element c Y

Our proof of this statement is straightforward. Assume that c = (a,P), X =
(C , x , p) and Y = (D , y , q). We proceed by “bijectional reasoning” (note that
↔ is a transitive relation):

(C , x , p) ≡ (D , y , q) ↔
((C , x), p) ≡ ((D , y), q) ↔
(C , x) ≡ (D , y) ↔
Σ eq : C ≡ D . subst (El a) eq x ≡ y

In the first step we apply a bijection to both sides of the equality, in the second
step we drop the propositionally typed second components of the tuples, and
the last step uses the key property of equality of Σ-types that was mentioned
in Section 2.3.

9

3.3. Main theorem

Let us now prove the main result:

isomorphism-is-equality : ∀ c X Y . Isomorphic c X Y ↔ (X ≡ Y)

Assume that c = (a,P), X = (C , x , p) and Y = (D , y , q). As above we
proceed by bijectional reasoning (after unfolding some definitions):

Σ eq : C ' D . resp a eq x ≡ y ↔
Σ eq : C ' D . subst (El a) ('⇒≡ eq) x ≡ y ↔
Σ eq : C ≡ D . subst (El a) eq x ≡ y ↔
X ≡ Y

The first step uses the transport theorem instantiated with resp and resp-id,
the second step univalence, and the last step equality-pair-lemma.

An immediate consequence of isomorphism-is-equality and univalence is that
Isomorphic c X Y is equal to X ≡ Y : isomorphism is equality.

Above we have established that Isomorphic c X Y and X ≡ Y are in bi-
jective correspondence, but we have not given concrete implementations of all
lemmas that we have used. When the lemmas are implemented as in our Agda
formalisation we can prove that the right-to-left direction of the bijection is
propositionally equal to a simple function defined using the J rule—reflexivity
is mapped to the identity equivalence and an application of resp-id:

∀ c X Y .
from (isomorphism-is-equality c X Y) ≡
J (λ X Y . Isomorphic c X Y) (λ (, x ,). (id , resp-id (proj1 c) x))

3.4. A universe

Let us now define a concrete universe. The codes and the decoding function
are defined as follows:

data U : Type2 where
id : U -- The argument.
type : U -- Type.
k : Type1 → U -- A constant.
_ : U → U → U -- Function space.
⊗ : U → U → U -- Cartesian product.
⊕ : U → U → U -- Binary sum.

El : U → Type1 → Type1

El id C = C
El type C = Type
El (k A) C = A
El (a _ b) C = El a C → El b C
El (a ⊗ b) C = El a C × El b C
El (a ⊕ b) C = El a C + El b C

Here U is an inductive data type, with constructors id, type, k, etc., and El a is
defined by recursion on the structure of a. The notation _ is used to declare
an infix operator: the underscores mark the argument positions.

10

We do not define resp directly, instead we define a “cast” operator that
shows that El a preserves logical equivalences:

cast : ∀ a {B C}. B ⇔ C → El a B ⇔ El a C

The cast operator is defined by recursion on the structure of the code a:

cast id eq = eq
cast type eq = id
cast (k A) eq = id
cast (a _ b) eq = cast a eq →-eq cast b eq
cast (a ⊗ b) eq = cast a eq ×-eq cast b eq
cast (a ⊕ b) eq = cast a eq +-eq cast b eq

Here id is the identity logical equivalence. We omit the definitions of the logical
equivalence combinators; they have the following types (for arbitrary types A,
B , C , D):

→-eq : A ⇔ B → C ⇔ D → (A → C) ⇔ (B → D)
×-eq : A ⇔ B → C ⇔ D → (A × C) ⇔ (B × D)
+-eq : A ⇔ B → C ⇔ D → (A + C) ⇔ (B + D)

We define resp using cast (in the obvious way). It is easy to prove that cast
maps the identity to the identity (assuming extensionality), from which we get
resp-id.

Some readers may wonder why we include both type and k in U : in the
development above type is treated in exactly the same way as k Type. The
reason is that we want to discuss the following variant of Is-isomorphism, defined
recursively as a logical relation:

Is-isomorphism′ : ∀ a {B C}. B ' C → El a B → El a C → Type1

Is-isomorphism′ id eq = λ x y . to eq x ≡ y
Is-isomorphism′ type eq = λ X Y . X ' Y
Is-isomorphism′ (k A) eq = λ x y . x ≡ y
Is-isomorphism′ (a _ b) eq = Is-isomorphism′ a eq →-rel

Is-isomorphism′ b eq
Is-isomorphism′ (a ⊗ b) eq = Is-isomorphism′ a eq ×-rel

Is-isomorphism′ b eq
Is-isomorphism′ (a ⊕ b) eq = Is-isomorphism′ a eq +-rel

Is-isomorphism′ b eq

Note that the type and k cases are not identical. The relation combinators used
above are defined as follows:

(P →-rel Q) f g = ∀ x y . P x y → Q (f x) (g y)

(P ×-rel Q) (x , u) (y , v) = P x y × Q u v

(P +-rel Q) (inj1 x) (inj1 y) = P x y
(P +-rel Q) (inj1 x) (inj2 v) = ⊥
(P +-rel Q) (inj2 u) (inj1 y) = ⊥
(P +-rel Q) (inj2 u) (inj2 v) = Q u v

The definition of Is-isomorphism′ can perhaps be seen as more natural than
that of Is-isomorphism. However, we can prove that they are in bijective corre-
spondence by recursion on the structure of a:

11

∀ a B C x y . (eq : B ' C) →
Is-isomorphism a eq x y ↔ Is-isomorphism′ a eq x y

We omit our proof, but note that only the type case makes direct use of univa-
lence (the _ case uses extensionality).

3.5. Examples

Let us now consider some examples.

Monoids. We can define monoids in the following way:

monoid : Code
monoid =

((id _ id _ id) -- Binary operation.
⊗

id -- Identity.
, λ C (• , e).

((Is-set C × -- C is a set.
(∀ x . e • x ≡ x) × -- Left identity.
(∀ x . x • e ≡ x) × -- Right identity.
(∀ x y z . x • (y • z) ≡ (x • y) • z) -- Associativity.

)
, . . . -- The laws are propositional (assuming extensionality).
)

)

Note that we require the carrier type C to be a set. We omit the proof showing
that the monoid laws are propositional. The proof makes use of the fact that
C is a set (which implies that C -equality is propositional); recall that, when
proving that a type is propositional, one can assume that it is inhabited (see
Section 2.5).

If we unfold Instance monoid in a suitable way, then we see that we get a
proper definition of monoids on sets:

Σ C : Type1.
Σ (• , e) : (C → C → C) × C .
Is-set C ×
(∀ x . e • x ≡ x) ×
(∀ x . x • e ≡ x) ×
(∀ x y z . x • (y • z) ≡ (x • y) • z)

Let us now assume that we have two monoids M1 = (C1, (•1 , e1), laws1)
and M2 = (C2, (•2 , e2), laws2). Isomorphic monoid M1 M2 has the following
unfolding:

Σ eq : C1 ' C2.
((λ x y . to eq (from eq x •1 from eq y)), to eq e1) ≡ (•2 , e2)

Monoid isomorphisms are typically defined as homomorphic bijections, whereas
our definition states that an isomorphism is a homomorphic equivalence. How-
ever, because C1 and C2 are sets there is a bijection between C1 ↔ C2 and
C1 ' C2 that, in both directions, preserves the to and from components (as-
suming extensionality).

12

Posets. Let us now define posets:

poset : Code
poset =

(id _ id _ type -- The ordering relation.
, λ C 6 .

((Is-set C × -- C is a set.
(∀ x y . Is-proposition (x 6 y)) × -- Pointwise

-- propositionality.
(∀ x . x 6 x) × -- Reflexivity.
(∀ x y z . x 6 y → y 6 z → x 6 z) × -- Transitivity.
(∀ x y . x 6 y → y 6 x → x ≡ y) -- Antisymmetry.

)
, . . . -- The laws are propositional (assuming extensionality).
)

)

It is easy to prove that the laws are propositional by making use of the assump-
tions that the carrier type is a set and that the ordering relation is pointwise
propositional.

Instance poset has the following unfolding:

Σ C : Type1.
Σ 6 : C → C → Type.
Is-set C ×
(∀ x y . Is-proposition (x 6 y)) ×
(∀ x . x 6 x) ×
(∀ x y z . x 6 y → y 6 z → x 6 z) ×
(∀ x y . x 6 y → y 6 x → x ≡ y)

For posets P1 = (C1, 61 , laws1) and P2 = (C2, 62 , laws2) we get that
Isomorphic poset P1 P2 is definitionally equal to

Σ eq : C1 ' C2. (λ a b. from eq a 61 from eq b) ≡ 62 .

This definition is not identical to the following definition of order isomorphism:

Σ eq : C1 ↔ C2. ∀ a b. (a 61 b) ⇔ (to eq a 62 to eq b)

However, in the presence of univalence the two definitions are in bijective cor-
respondence (and hence equal):

Σ eq : C1 ' C2. (λ a b. from eq a 61 from eq b) ≡ 62 ↔
Σ eq : C1 ↔ C2. (λ a b. from eq a 61 from eq b) ≡ 62 ↔
Σ eq : C1 ↔ C2. ∀ a b. (from eq a 61 from eq b) ≡ (a 62 b) ↔
Σ eq : C1 ↔ C2. ∀ a b. (a 61 b) ≡ (to eq a 62 to eq b) ↔
Σ eq : C1 ↔ C2. ∀ a b. (a 61 b) ' (to eq a 62 to eq b) ↔
Σ eq : C1 ↔ C2. ∀ a b. (a 61 b) ⇔ (to eq a 62 to eq b)

The first step uses the fact that bijections between sets are in bijective corre-
spondence with equivalences, the second step uses the key property of equality
of Π-types from Section 2.3, the third step uses the fact that from eq and to eq

13

are inverses, the fourth step uses univalence, and finally the last step uses the
fact that, for propositions, equivalences and logical equivalences are in bijective
correspondence. (Every step makes use of the assumption of extensionality.)

If we had used Is-isomorphism′ (see Section 3.4) instead of Is-isomorphism
in the definition of Isomorphic, then Isomorphic poset P1 P2 would have been
definitionally equal to

Σ eq : C1 ' C2.
∀ a b. to eq a ≡ b → ∀ c d . to eq c ≡ d → (a 61 c) ' (b 62 d).

One can prove that this type is in bijective correspondence with the definition
of order isomorphism above without using the univalence axiom. (Our proof
does use extensionality.)

Discrete fields. In constructive mathematics there are several non-equivalent
definitions of fields. One kind of discrete field consists of a commutative ring
with zero distinct from one, plus a multiplicative inverse operator. We restrict
attention to the specification of this operator, and choose to specify it as a
partial operation:

id _ (k > ⊕ id)

Let us use the name −1 for the operator. It should satisfy the following laws,
where 0, 1 and · stand for the ring’s zero, one and multiplication:

∀ x . x −1 ≡ inj1 tt → x ≡ 0
∀ x y . x −1 ≡ inj2 y → x · y ≡ 1

These laws are propositional, given the other laws and extensionality, so this
specification of discrete fields fits into our framework.

(We have proved that our definition of discrete fields is in bijective corre-
spondence with non-trivial discrete fields, as defined by Bridges and Richman
(1987), using ≡ as the equality relation, and λ x y . x ≡ y → ⊥ as the in-
equality relation. In fact, Bridges and Richman’s definition, restricted in this
way, also fits into our framework.)

Fixpoint operators. All the examples above use first-order operators. As an
example of the use of higher-order types we consider sets equipped with fixpoint
operators:

set-with-fixpoint-operator : Code
set-with-fixpoint-operator =

((id _ id) _ id
, λ C fix .

((Is-set C ×
(∀ f . f (fix f) ≡ fix f)

)
, . . .
)

)

Given the instances F1 = (C1,fix 1, laws1) and F2 = (C2,fix 2, laws2) we get
that Isomorphic set-with-fixpoint-operator F1 F2 is definitionally equal to

14

Σ eq : C1 ' C2. (λ f . to eq (fix 1 (λ x . from eq (f (to eq x))))) ≡ fix 2.

If we had used Is-isomorphism′ instead of Is-isomorphism in the definition of
Isomorphic, then Isomorphic set-with-fixpoint-operator F1 F2 would have been
definitionally equal to

Σ eq : C1 ' C2.
∀ f g . (∀ x y . to eq x ≡ y → to eq (f x) ≡ g y) →
to eq (fix 1 f) ≡ fix 2 g .

This type is perhaps a bit easier to understand.

4. Conclusions and related work

We have shown that, for a large class of algebraic structures, isomorphism
is in bijective correspondence with equality.

The first use of Σ-types—or “telescopes” (de Bruijn 1991)—to formalise
abstract mathematical structures is possibly due to Zucker (1977), one of the
members of the AUTOMATH project team.

The notion of structure used in Section 3 (instantiated as in Section 3.4)
can be seen as a type-theoretic variant of Bourbaki’s notion of structure (1957),
using type-theoretic function spaces instead of power sets. Furthermore the
notion of isomorphism that Bourbaki associates to a structure is very similar to
the one used in this paper.

The main theorem in Section 3.3 can be compared to what happens for
Bourbaki’s notion of structure formulated in set theory. As observed in the in-
troduction the membership relation can be used to distinguish between isomor-
phic monoids. However, it is possible to restrict attention to relations that are
“transportable”, i.e. relations that respect isomorphisms (Bourbaki 1957). Mar-
shall and Chuaqui (1991) state that set-theoretical sentences are transportable
iff they are equivalent (in a certain sense) to type-theoretical sentences (for
certain variants of set and type theory).

The univalence axiom was introduced by Voevodsky (2010), who motivated
it using a model construction inspired by the connection between identity types
in type theory and path spaces in homotopy theory (Awodey and Warren 2009).
Previously Hofmann and Streicher had introduced a related but more restricted
set of axioms, referred to as “universe extensionality” (1998).

The simple result that we present in this paper, a first, limited version of
which was formalised in Agda in March 2011, is only a starting point. Aczel’s
structure identity principle3 (The Univalent Foundations Program 2013) is more
abstract. An important point of our formalisation is that we do not assume that
we have a definitional computation rule for J (as discussed in Section 2.3). The
accompanying Agda code contains a proof of the structure identity principle for
1-categories, proved without using such a computation rule. It is also shown
how the structure identity principle can be used to prove a slightly restricted
variant of our main theorem.

3Peter Aczel informed us that the principle was conjectured by him and proved by
“[Michael] Shulman and colleagues”.

15

Ahrens et al. (2013) present a different but related result. We can state it
as follows: in type theory extended with the axiom of univalence, and using
natural definitions of “category” and “equivalence of categories”, equivalence of
two categories C and D is in bijective correspondence with equality of C and
D , and the right-to-left direction of the bijection maps reflexivity to the identity
equivalence.

Acknowledgements

We would like to thank an anonymous reviewer for useful feedback.
The research leading to these results has received funding from the European

Research Council under the European Union’s Seventh Framework Programme
(FP7/2007-2013) / ERC grant agreement n◦ 247219.

References

Benedikt Ahrens, Krzysztof Kapulkin, and Michael Shulman. Univalent categories and the
Rezk completion. arXiv:1303.0584v1 [math.CT], 2013.

Steve Awodey and Michael A. Warren. Homotopy theoretic models of identity types.
Mathematical Proceedings of the Cambridge Philosophical Society, 146(1):45–55, 2009.
doi:10.1017/S0305004108001783.

N. Bourbaki. Théorie des ensembles, volume 1 of Éléments de Mathématique, chapter 4:
Structures. Hermann, 1957.

Douglas Bridges and Fred Richman. Varieties of Constructive Mathematics, volume 97 of
London Mathematical Society Lecture Note Series. Cambridge University Press, 1987.
doi:10.1017/CBO9780511565663.

N. G. de Bruijn. Telescopic mappings in typed lambda calculus. Information and Computa-
tion, 91(2):189–204, 1991. doi:10.1016/0890-5401(91)90066-B.

N.G. de Bruijn. Set theory with type restrictions. In Infinite and Finite Sets, to Paul
Erdős on his 60th birthday, Vol. I, volume 10 of Colloquia Mathematica Societatis János
Bolyai, pages 205–214. North-Holland Publishing Company, 1975. A reprint is available
(doi:10.1016/S0049-237X(08)70229-5).

N.G. de Bruijn. A survey of the project AUTOMATH. In To H.B. Curry: Essays on
Combinatory Logic, Lambda Calculus and Formalism, pages 579–606. Academic Press,
1980. A reprint is available (doi:10.1016/S0049-237X(08)70203-9).

Michael Hedberg. A coherence theorem for Martin-Löf’s type theory. Journal of Functional
Programming, 8(4):413–436, 1998. doi:10.1017/S0956796898003153.

Martin Hofmann and Thomas Streicher. The groupoid interpretation of type theory. In
Twenty-five Years of Constructive Type Theory: Proceedings of a Congress Held in Venice,
October 1995, volume 36 of Oxford Logic Guides, pages 83–111. Oxford University Press,
1998.

Adolf Lindenbaum and Alfred Tarski. On the limitations of the means of expression of deduc-
tive theories. In Logic, Semantics, Metamathematics: Papers from 1923 to 1938, second
edition. Hackett Publishing Company, 1983. Translated by J. H. Woodger.

M. Victoria Marshall and Rolando Chuaqui. Sentences of type theory: The only sentences
preserved under isomorphisms. The Journal of Symbolic Logic, 56(3):932–948, 1991. doi:10.
2307/2275062.

Per Martin-Löf. An intuitionistic theory of types: Predicative part. In Logic Colloquium ’73,
volume 80 of Studies in Logic and the Foundations of Mathematics, pages 73–118, 1975.
doi:10.1016/S0049-237X(08)71945-1.

R.P. Nederpelt and J.H. Geuvers. Twenty-five years of Automath research. Studies in Logic
and the Foundations of Mathematics, 133:3–54, 1994. doi:10.1016/S0049-237X(08)70198-8.

Bengt Nordström, Kent Petersson, and Jan M. Smith. Programming in Martin-Löf ’s Type
Theory: An Introduction. Oxford University Press, 1990.

Ulf Norell. Towards a practical programming language based on dependent type theory. PhD
thesis, Chalmers University of Technology and Göteborg University, 2007.

Alfred Tarski. What are logical notions? History and Philosophy of Logic, 7(2):143–154,
1986. doi:10.1080/01445348608837096. Published posthumously, edited by John Corcoran.

16

http://arxiv.org/abs/1303.0584v1
http://dx.doi.org/10.1017/S0305004108001783
http://dx.doi.org/10.1017/CBO9780511565663
http://dx.doi.org/10.1016/0890-5401(91)90066-B
http://dx.doi.org/10.1016/S0049-237X(08)70229-5
http://dx.doi.org/10.1016/S0049-237X(08)70203-9
http://dx.doi.org/10.1017/S0956796898003153
http://dx.doi.org/10.2307/2275062
http://dx.doi.org/10.2307/2275062
http://dx.doi.org/10.1016/S0049-237X(08)71945-1
http://dx.doi.org/10.1016/S0049-237X(08)70198-8
http://dx.doi.org/10.1080/01445348608837096

The Agda Team. The Agda wiki. Available at http://wiki.portal.chalmers.se/agda/,
2013.

The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of
Mathematics. First edition, 2013.

Vladimir Voevodsky. Univalent foundations project (a modified version of an NSF grant
application). Unpublished, 2010.

Vladimir Voevodsky. Development of the univalent foundations of mathematics in Coq. Avail-
able at https://github.com/vladimirias/Foundations/, 2011.

J. Zucker. Formalization of classical mathematics in AUTOMATH. In Colloque International
de Logique, Clermont-Ferrand, 18-25 juillet 1975, volume 249 of Colloques Internationaux
du Centre National de la Recherche Scientifique, pages 135–145, 1977. A reprint is available
(doi:10.1016/S0049-237X(08)70202-7).

17

http://wiki.portal.chalmers.se/agda/
https://github.com/vladimirias/Foundations/
http://dx.doi.org/10.1016/S0049-237X(08)70202-7

	Introduction
	Preliminaries
	Hierarchy of types
	Quantifiers
	Equality
	More types
	Univalent foundations

	Isomorphism is equality
	Parameters
	Codes for structures
	Main theorem
	A universe
	Examples

	Conclusions and related work

