
Compiling Programs with Erased Univalence
(Extended version)

ANDREAS ABEL, University of Gothenburg, Sweden
NILS ANDERS DANIELSSON, University of Gothenburg, Sweden
ANDREA VEZZOSI, IT University Copenhagen, Denmark

We present a variant of cubical type theory with an erasure modality to mark data that should be erased by
compilers. In this variant glue types—used to prove univalence—as well as higher constructors may only be
used in compile-time code. We show, under certain assumptions, that every closed, run-time natural number
reduces to the right value after erasure.

We have developed a variant of Cubical Agda based on the ideas presented here, thereby providing what
appears to be the first compiler for some variant of cubical type theory, and we present a case study intended
to illustrate that the resulting language is useful in practice.

1 INTRODUCTION
Programs written in dependently typed functional languages often contain “proofs” mixed up with
the program logic. By proofs wemean code that does not actually influence the result of the program,
yet is present to ensure that, say, all pattern matches are exhaustive, or that some invariant is not
broken. Such proofs can affect the performance of a program, including its asymptotic complexity
[Tejiščák 2020]. As a simple example, consider the following type of fixed-length lists in Agda [The
Agda Team 2021]:

data Vec (A : Type a) : N→ Type a where
[] : Vec A zero
:: : ∀ {n} → A → Vec A n → Vec A (suc n)

(1)

Note the implicit argument n of the list constructor: this argument does not need to be given
explicitly if it can be inferred from the context, but (depending on what optimisations are used) it
might still be present at run-time.

Brady et al. [2004] have presented a way to automatically erase the argument n, but this method
cannot handle every conceivable situation in which one might want to erase something [Tejiščák
2020]. One way to address this problem is to give programmers the means to state that certain
data should be erased by the compiler, and to let the type-checker ensure that such marked data
indeed does not affect the results of run-time computations. There are a number of variants of this
approach [Paulin-Mohring 1989; Paulin-Mohring and Werner 1993; Van Raamsdonk and Severi
2002; Letouzey 2003; Fernandez et al. 2003; Barras and Bernardo 2008; Mishra-Linger and Sheard
2008; Mishra-Linger 2008; Gundry and McBride 2013; Bernardy and Moulin 2013; Gundry 2013;
Sjöberg 2015; McBride 2016; Weirich et al. 2017; Atkey 2018; Tejiščák 2020; Brady 2021]. For
instance, in Agda one can mark function and constructor arguments as well as certain definitions
as erased using the attribute @0 (or @𝑒𝑟𝑎𝑠𝑒𝑑):
data Vec (A : Type a) : N→ Type a where
[] : Vec A zero
:: : ∀ {@0 n} → A → Vec A n → Vec A (suc n)

(2)

Cubical Agda [Vezzosi et al. 2019] is a variant of Agda with support for higher inductive types
(which can be used to define things like quotient types) and the univalence axiom [The Univalent
Foundations Program 2013]. In fact, the univalence axiom is no axiom in Cubical Agda: it can be
proved, and computes. This “axiom” can be used both in mathematics and in program verification.

HTTPS://ORCID.ORG/0000-0003-0420-4492
HTTPS://ORCID.ORG/0000-0001-8688-0333

2 Andreas Abel, Nils Anders Danielsson, and Andrea Vezzosi

For instance, in some situations it can be used to “transport” proofs from an inefficient but simple
data structure to an efficient but more complicated one [Tabareau et al. 2021; Angiuli et al. 2021b].
If the univalence axiom computes, does this mean that one can use it without restriction for

programming? No, at least not yet. Compiling Cubical Agda programs is nontrivial: the computation
rules involve evaluation under binders, and typical compilation techniques for functional languages
only support computation for closed terms. Perhaps this can be addressed following work on
compiled execution of open Coq terms [Grégoire and Leroy 2002; Boespflug et al. 2011], but we
suspect that such an approach would lead to overheads for code that does not use cubical features.
Instead we take a different approach:

• We have implemented a variant of Cubical Agda in which certain cubical features may only
be used in an erased setting. In particular, the feature which is used to prove univalence, Glue,
may not be used in run-time code. However, the equality type (the type of paths) can be used
in run-time code.

• We also introduce the concept of an erased constructor, i.e. a constructor which may only be
used in an erased setting (see Section 2). Higher inductive types may only be used if all the
higher constructors are erased.

• With these restrictions in place it is easy to compile Cubical Agda programs. However, we
note that it is important to design the rules for erasure correctly: it is easy to end up with a
broken system (see Section 3).

• A type-checker and a compiler are available as part of a currently unreleased version of
Agda,1 and the implementation is discussed in Section 5.

• We demonstrate by a larger case study2 that a system with only erased univalence and only
erased higher constructors can be useful in practice, see Section 6. In fact, we have also found
a use for erased regular (point) constructors, see Section 6.2.

• In Section 4we outline a correctness proof for a small language,CTT0𝜔 , with some key features
of the Cubical Agda implementation. (We do not make any claims about the correctness
of Cubical Agda, which is a large piece of software.) Note that the proof relies on some
metatheoretical results, for instance injectivity of type formers, that we simply assume (see
Conjecture 4.1). We believe that these assumptions can be proven by extending Huber’s work
on canonicity [2019] to our theory. Note also that Sterling and Angiuli [2021] have recently
presented a normalisation proof for cubical type theory, although not based on reduction.

To the best of our knowledge this piece of work provides the first integration of erasure and cubical
type theory, as well as the first “reasonable” way to compile some variant of cubical type theory.
(One could presumably “compile” a program by pairing up its source code with an interpreter.) We
are also not aware of any previous work on erased constructors. Related work is discussed further
in Section 7.

2 CUBICAL AGDA
Cubical Agda [Vezzosi et al. 2019] is a variant of Agda with support for a variant of cubical type
theory (CTT) [Cohen et al. 2018b; Angiuli et al. 2021a]. This section contains an introduction to
Cubical Agda, including its support for erasure.

Let us start by discussing erasure. We do not explain all the nuances here, see the typing rules in
Section 4.1 for more details. As mentioned above one can mark arguments as erased using @0. For
instance, the following function takes one erased argument, and one that is not erased:

1At the time of writing available at https://github.com/agda/agda/tree/5018aa45c18e3bd2b7de323c789daefc920cbbe7.
2The code for this case study is at the time of writing available at https://www.cse.chalmers.se/~nad/.

https://github.com/agda/agda/tree/5018aa45c18e3bd2b7de323c789daefc920cbbe7
https://www.cse.chalmers.se/~nad/

Compiling Programs with Erased Univalence 3

const : Bool → @0 Bool → Bool
const x _ = x

(3)

Variables corresponding to erased arguments can only be used in “erased contexts”, for instance to
construct erased arguments:

const-true : @0 Bool → Bool
const-true y = const true y

(4)

Run-time decisions must not be made based on erased data, so the following piece of code is
rejected:

not : @0 Bool → Bool
not true = false
not false = true

(5)

Top-level function definitions can also be marked as erased, in which case they can only be used in
erased contexts, but on the other hand erased names can be used in the bodies of such definitions
(with an exception related to pattern-matching lambdas that we prefer not to discuss here).

A key part of Cubical Agda is the notion of a path, which is a kind of equality. Paths of type x ≡ y
are functions from the interval I , subject to the restriction that they map the two endpoints of the
interval, 0 and 1, to x and y, respectively. This makes it easy to prove that equality is a congruence,
and that equality of functions is extensional:

cong : (f : A → B) → x ≡ y → f x ≡ f y
cong f eq = 𝜆 i → f (eq i) (6)

ext : (∀ x → f x ≡ g x) → f ≡ g
ext eq = 𝜆 i x → eq x i

(7)

To avoid clutter we use Agda’s generalisable variables [The Agda Team 2021], which make it
possible to specify once and for all what the types of undeclared variables like f should be. The full
type of cong is (almost) the following one:

{a : Level} {A : Type a} {b : Level} {B : Type b} {x y : A} (f : A → B) → x ≡ y → f x ≡ f y (8)
Here Level is the type of universe levels, and Type a is the universe with universe level a. Arguments
in braces are implicit, and do not have to be given explicitly if they can be inferred by Agda. Below
we omit argument specifications, but for clarity we take care to never omit any erased argument.

One can use a path by applying it to an interval argument. One can also transport via a path,
using the following function:

transp : {p : I → Level} (P : (i : I) → Type (p i)) → I → P 0→ P 1 (9)
This type signature comes with a side condition. For full details, see Section 4.1.4. However, let us
consider two cases here: If the interval argument is 1, then the function returns its final argument,
so P must be definitionally constant. If the interval argument is 0, then there is no side condition,
and the computational behaviour depends on P .
Cubical Agda also supports higher inductive types. Such types are data types that can have

both regular (point) constructors and higher constructors. Here is an example, the propositional
truncation operator [The Univalent Foundations Program 2013]:

data ∥_∥ (A : Type a) : Type a where
|_| : A → ∥ A ∥
trunc : (x y : ∥ A ∥) → x ≡ y

(10)

4 Andreas Abel, Nils Anders Danielsson, and Andrea Vezzosi

The higher constructor trunc ensures that all elements of the propositional truncation of a type are
equal. The following map function illustrates how functions from the propositional truncation can
be defined by pattern matching:

map : (A → B) → ∥ A ∥ → ∥ B ∥
map f | x | = | f x |
map f (trunc x y i) = trunc (map f x) (map f y) i

(11)

Note that the constructor trunc is applied to three arguments in the left-hand side. This ensures
that the application has the same type, namely A, as the corresponding pattern on the previous line.
Agda imposes two side conditions on the right-hand side of the final clause: If 0 is substituted for i,
then the right-hand side must be definitionally equal to map f (trunc x y 0), i.e. map f x. Similarly,
if 1 is substituted for i, then the right-hand side must be definitionally equal to map f (trunc x y 1),
i.e. map f y.
As part of the work presented in this text we have made it possible to mark constructors as

erased. Here is a contrived example:
data D : Type where
here : D
@0 gone : D

(12)

An erased constructor cannot be used in run-time code, and conversely the right-hand side of
a function clause that contains a match on an erased constructor in a non-erased position is not
run-time code. For instance, the following code is allowed:

ok : D →@0 Bool → Bool
ok here _ = true
ok gone x = x

(13)

Note that the erased argument x can be used in the right-hand side of the final clause. The constructor
gone is not present at run-time, so this clause can only trigger at compile-time. However, the
following code is not allowed:

bad : @0 D → Bool
bad here = true
bad gone = false

(14)

If bad were allowed, then both bad here and bad gone would be valid pieces of run-time code. The
first one is equal to true, and the second one is equal to false, but the only difference between these
two pieces of code is the first argument of bad, which is erased.

A prime motivation for erased constructors is to have higher inductive types in which the higher
constructors are erased, and hence guaranteed not to interfere in the execution of run-time code.
Here is one example, the propositional truncation operator with an erased truncation constructor:

data ∥_∥E (A : Type a) : Type a where
|_| : A → ∥ A ∥E
@0 trunc : (x y : ∥ A ∥E) → x ≡ y

(15)

The propositional truncation operator (10) is recursive, so it might be non-trivial to predict the
performance of code that uses it. However, for this variant of truncation only the point constructor
|_| is available at run-time.
One may wonder if there is any point in allowing erased point constructors. We have found a

use for this, see Section 6.

Compiling Programs with Erased Univalence 5

The type of (half adjoint) equivalences [The Univalent Foundations Program 2013] from the type
A to the type B can be defined in the following way:

Is-equivalence : {A : Type a} {B : Type b} → (A→ B) → Type (a ⊔ b)
Is-equivalence {A = A} {B = B} f =
(f −1 : B → A) × (f -f −1 : ∀ x → f (f −1 x) ≡ x) × (f −1-f : ∀ x → f −1 (f x) ≡ x) ×
∀ x → cong f (f −1-f x) ≡ f -f −1 (f x)

(16)

≃ : Type a → Type b → Type (a ⊔ b)
A ≃ B = (f : A → B) × Is-equivalence f

(17)

Here the function _⊔_ returns the least upper bound of two universe levels, and the notation {x = y}
is used to bind the variable y to the implicit argument x. We use the notation (x : A) × P x—which
is not currently valid Agda code—for Σ-types, i.e. pairs where the type of the second component
can depend on the value of the first component. The two projections are called fst and snd.

One can map paths to equivalences using transp and the identity equivalence id≃:
≡→≃ : (A B : Type a) → A ≡ B → A ≃ B
≡→≃ A _ eq = transp (𝜆 i → A ≃ eq i) 0 id≃ (18)

Univalence can be stated in the following way (where lsuc is the successor function for universe
levels):

Univalence : (a : Level) → Type (lsuc a)
Univalence a = {A B : Type a} → Is-equivalence (≡→≃ A B) (19)

A consequence of univalence is that equivalent types (in the same universe Type a) are equal.
Univalence can be proved in Cubical Agda using the Glue type former [Cohen et al. 2018b; Vezzosi
et al. 2019].

3 POSTULATING ERASED UNIVALENCE
In this text we discuss how one can have a system where univalence can be used in erased settings,
but not at run-time. One might wonder if one could avoid the theoretical development of this paper
by just postulating univalence, in such a way that the postulate could only be used in erased code.
This would mean that univalence would not compute at compile-time, and one might also miss
another benefit of our approach, namely that one can prove function extensionality in a non-erased
setting (7). However, would anything worse happen?
This section contains some examples that show that certain typing rules are problematic in

the presence of erased univalence (postulated or not): we construct pairs of terms where one is
provably equal to true and one to false, but where the only differences are erased by the compiler.
Unless otherwise noted we use the typing rules of Agda 2.6.2, with the --with-K flag, in this

section. However, we do not make use of the K rule, which is incompatible with (even postulated)
univalence. Rather, when the K rule is turned on using --with-K Agda allows some other things
that are potentially incompatible with univalence. Here we give some examples related to erasure
that were discovered by us.

Let us consider the equality, or identity, type defined as an inductive family in the following way:
data Id {A : Type a} (x : A) : A→ Type a where
refl : Id x x

(20)

Brady et al. [2004] show that, in a certain setting, one can erase values of types like this one. The
idea is that, in a closed context, values of type Id x y must be constructed using the only constructor.

6 Andreas Abel, Nils Anders Danielsson, and Andrea Vezzosi

One might thus expect that it would be fine to use the following definition, where the identity
proof argument is erased:

subst2 : (P : A → Type p) → @0 Id x y → P x → P y
subst2 _ refl p = p

(21)

This is valid Agda code (when the --with-K flag is enabled), and Idris 2 (version 0.3.0-2287a7ff3)
supports something similar. However, in the presence of erased univalence (expressed using Id)
this definition is problematic. If we postulate erased univalence, then we can construct an erased
proof corresponding to the not function:

@0 not : Id Bool Bool (22)
We can thus construct the following terms:

should-be-true : Bool
should-be-true = subst2 (𝜆 B → B) refl true (23)

should-be-false : Bool
should-be-false = subst2 (𝜆 B → B) not true (24)

In an erased context we can also prove that the first term is equal to true, while the second term is
equal to false. However, the second argument of subst2 is erased, thus the only difference between
these two terms is erased.

We break for the definition of the erasure type [Mishra-Linger 2008] that incorporates the erasure
modality as a type constructor. It can be encoded in CTT0𝜔 (see Section 4.1.2) and we shall use it
for our case study (Section 6) and for the continued discussion of subst.

record Erased (@0 A : Type a) : Type a where
constructor [_]
field @0 erased : A

(25)

Note that the only field is erased. The erasure annotation @0 cannot be used everywhere. For
instance, the following piece of code is not valid: Bool × (@0 Bool). In this case one can instead
use Erased: Bool × Erased Bool. Danielsson [2019] has investigated some of the theory of Erased,
and the following is a key lemma (here expressed using Id):

[]-cong : {@0 A : Type a} {@0 x y : A} → Erased (Id x y) → Id [x] [y]
[]-cong [refl] = refl

(26)

Again Idris 2 accepts similar code.
Picking up our discussion, the definition of subst2 above, with an erased second argument, is

problematic in the presence of erased univalence. What about the following variant, with an erased
first argument?
subst1 : (@0 P : A → Type p) → Id x y → P x → P y
subst1 _ refl p = p

(27)

(This definition is currently allowed by Cubical Agda, which does not have proper support for
inductive families like Id, but there are plans to add proper support for inductive families and at
the same time make Cubical Agda reject this definition.) Note that the first argument is unused.
However, the combination of this definition and []-cong is problematic. Consider the following
two definitions:

should-be-true : Bool
should-be-true = subst1 (𝜆 ([B]) → B) ([]-cong [refl]) true (28)

Compiling Programs with Erased Univalence 7

should-be-false : Bool
should-be-false = subst1 (𝜆 ([B]) → B) ([]-cong [not]) true (29)

Because the first argument of subst1 is erased Agda allows us to return the erased variable B. Again
we can prove, in an erased context, that the first term is equal to true, while the second term is
equal to false. Furthermore the argument of [_] is erased, so the only difference between these two
terms is erased (given the assumptions mentioned above).

Let us instead use the following standard variant of subst1 and subst2, with no erased arguments:

subst : (P : A → Type p) → Id x y → P x → P y
subst _ refl p = p

(30)

Let us now consider the following type:

record Box (@0 A : Type a) : Type a where
constructor [_]
field unbox : A

(31)

This type is also problematic, and again Idris 2 accepts similar code. The problem is that the erased
type argument A is used in a non-erased context. We can use Box to construct the following
definition, and prove (in an erased context) that it is equal to false:

should-be-false : Bool
should-be-false = unbox (subst (𝜆 ([A]) → Box A) ([]-cong [not]) [true]) (32)

If the arguments of the Π or Σ type constructors were erased, then we could also construct similar
examples:

should-be-false : Bool
should-be-false = subst (𝜆 ([A]) → ⊤→ A) ([]-cong [not]) (𝜆 _→ true) tt (33)

should-be-false : Bool
should-be-false = snd (subst (𝜆 ([A]) → ⊤ × A) ([]-cong [not]) (tt , true)) (34)

(Here ⊤ is the unit type, with constructor tt. The first example is not valid Agda code, because the
function type ⊤ → 𝐴, mentioning the erased 𝐴, is ill-formed in non-erased position. The second
example could have been constructed—with the K rule turned on—if the Σ-type had been defined
using erased type arguments.)
These examples show that, even though it might be possible to postulate erased univalence,

running the resulting compiled code might not give the intended result if the typing rules are not
designed correctly. We would also like to point out that problems like this could affect Cubical
Agda. For instance, if the first explicit argument of transp (9) were erased, then we could define
functions corresponding to subst1 and subst2, but expressed using paths instead of Id. Note that a
variant of []-cong expressed using paths can be proved in Cubical Agda:

[]-cong : {@0 A : Type a} {@0 x y : A} → Erased (x ≡ y) → [x] ≡ [y]
[]-cong [eq] = 𝜆 i → [eq i]

(35)

After having marked pitfalls in our terrain, let us turn to the formal presentation of CTT0𝜔 .

8 Andreas Abel, Nils Anders Danielsson, and Andrea Vezzosi

4 CUBICAL TYPE THEORYWITH ERASURE
4.1 The Type Theory
In this section we present CTT0𝜔 , a variant of Cubical Type Theory [Cohen et al. 2018b] augmented
with erasure annotations on variables and one higher inductive type, namely propositional trunca-
tion ∥𝐴∥E. The grammar is given in Figure 1 as an overview; the role of the individual constructs
will become clearer with the typing rules.

𝑝, 𝑞 ::= 0 | 𝜔 erasure modalities
𝑟, 𝑠 ::= 0 | 1 | 𝑟 ∨ 𝑠 | 𝑟 ∧ 𝑠 | 1 − 𝑟 | 𝑖 coordinates (interval expressions)
𝜑,𝜓 ::= 0F | 1F | 𝜑 ∨𝜓 | 𝜑 ∧𝜓 | 𝑖 = 0 | 𝑖 = 1 constraints (face expr.s, F often omitted)
Γ,Δ ::= 𝜀 empty typing context (usually omitted)

| Γ, 𝑥 :𝑝 𝐴 assumption (runtime-available if 𝑝 = 𝜔)
| Γ, 𝑖 : I interval variable declaration
| Γ, 𝜑 assumption of constraint

𝐴, 𝐵,𝐶,𝑇 , 𝑎, 𝑒, 𝑡,𝑢, 𝑣,𝑤 types and terms
::= 𝑥 variable
| U𝑛 𝑛-th universe
| (𝑥 :𝑝 𝐴) → 𝐵 | 𝜆𝑥𝑝 . 𝑡 | 𝑡 𝑝𝑢 Π formation, introduction, elimination
| (𝑥 :𝑝 𝐴) × 𝐵 | ⟨𝑝𝑡1, 𝑡2⟩ | 𝜋𝑖 𝑡 Σ form, intro, elim
| ⊤ | ⟨⟩ unit form, intro
| ⊥ | ⊥-elim𝐴 𝑡 empty form, elim
| N | zero | suc 𝑡 | N-elim𝑧.𝐶 𝑢 (𝑥𝑝𝑦𝑞 .𝑣) 𝑡 Nat form, intros, elim
| Path𝐴 𝑡 𝑢 | 𝜆𝑖. 𝑡 | 𝑡 𝑟 path form, intro, elim
| transp𝑖 𝐴𝜑 𝑢0 transport
| hcomp𝑖𝐴 [𝜑 ↦→ 𝑢] 𝑢0 homogeneous composition
| [𝜑1 ↩→ 𝑢1, . . . , 𝜑𝑛 ↩→ 𝑢𝑛] system
| ∥𝐴∥E propositional truncation formation
| tr 𝑡 | trunc 𝑡 𝑢 𝑟 propositional truncation introductions
| ∥∥E-elim (𝑥 .𝐶) (𝑥 .𝑡) (𝑥 .𝑦.𝑖 .𝑢)𝑤 propositional truncation elimination
| hcomp-intro𝑖 .𝐵 [𝜑 ↦→ 𝑡] 𝑎 homogeneous comp. introduction
| hcomp-elim [𝜑 ↦→ 𝑖 .𝐵] 𝑡 homogeneous comp. elimination
| Glue [𝜑 ↦→ (𝑇, 𝑒)]𝐴 glue formation
| glue [𝜑 ↦→ 𝑡] 𝑎 glue introduction
| unglue [𝜑 ↦→ 𝑒] 𝑡 glue elimination

Fig. 1. Syntax

Figure 2 shows how CTT0𝜔 -expressions are erased to an untyped λ-calculus with booleans,
tuples, natural numbers and a wrapper construct tr 𝑣 with elimination ∥∥E-elim (𝑥 .𝑡)𝑤 for which
∥∥E-elim (𝑥 .𝑡) (tr 𝑣) reduces to 𝑡 [𝑣/𝑥]. The 𝑛-clause conditional [𝑏1 ↩→ 𝑣1, . . . , 𝑏𝑛 ↩→ 𝑣𝑛] reduces
to the first branch 𝑣𝑘 for which the guard 𝑏𝑘 evaluates to 1 (true).

The dummy replaces certain erased subexpressions. Our typing rules aim to guarantee that
will never appear in evaluation position during execution of the compiled program (Corollary 4.3).
Canonical types (U, Π, Σ,⊤,⊥,N, Path, ∥_∥E,Glue) compile to , as well as⊥-elim and expressions
that can only appear or happen to appear in erased position. The operational semantics of the
target language is weak head call-by-name reduction 𝑣 {∗ 𝑤 , where is an inert constant.

Compiling Programs with Erased Univalence 9

In the presentation to follow, the reader is invited to match the compilation function |𝑡 | with the
typing rules for runtime terms Γ ⊢ 𝑡 :𝜔 𝐴.

Target language.
𝑢, 𝑣,𝑤,𝑏 ::= dummy

| 𝑥 | 𝜆𝑥 . 𝑣 | 𝑣 𝑤 | ⟨⟩ | ⟨𝑣, 𝑤⟩ | 𝜋𝑘 𝑣 lambda calculus with tuples
| zero | suc 𝑣 | N-elim 𝑢 (𝑥𝑦 .𝑣)𝑤 natural numbers
| tr 𝑣 | ∥∥E-elim (𝑥 .𝑣)𝑤 truncation (wrapper)
| 0 | 1 | 𝑏1 ∨ 𝑏2 | 𝑏1 ∧ 𝑏2 | 1 − 𝑏 booleans
| [𝑏1 ↩→ 𝑣1, . . . , 𝑏𝑛 ↩→ 𝑣𝑛] 𝑛-clause conditional

Erasure |𝑡 | of expressions 𝑡 .
|𝑇 | = (𝑇 type)
|𝑥 | = 𝑥

𝜆𝑥0. 𝑡	= 𝜆_.	𝑡		
𝜆𝑥𝜔 . 𝑡	= 𝜆𝑥 .	𝑡		
𝑡 0𝑢	=	𝑡		
𝑡 𝜔𝑢	=	𝑡		𝑢
⟨0𝑡, 𝑢⟩	= ⟨ ,	𝑢	⟩	
⟨𝜔𝑡, 𝑢⟩	= ⟨	𝑡	,	𝑢
𝜋𝑘 𝑡	= 𝜋𝑘	𝑡		
⟨⟩	= ⟨⟩			
⊥-elim𝐴 𝑡	=			
zero	= zero			
suc 𝑡	= suc	𝑡		

N-elim𝑧.𝐶 𝑢 (𝑥𝑝𝑦𝑞 .𝑣) 𝑡	= N-elim	𝑢	(𝑥𝑦 .	𝑣)	𝑡
𝜆𝑖. 𝑡	= 𝜆𝑖.	𝑡				
𝑡 𝑟	=	𝑡		𝑟		
transp𝑖 𝐴𝜑 𝑢0	=	𝑢0				
hcomp𝑖𝐴 [𝜑 ↦→ 𝑢] 𝑢0	=	𝑢0				
[𝜑1 ↩→ 𝑢1, . . . , 𝜑𝑛 ↩→ 𝑢𝑛]	= [𝜑1	↩→	𝑢1	, . . . ,	𝜑𝑛
tr 𝑡	= tr	𝑡				
trunc 𝑡 𝑢 𝑟	=					
∥∥E-elim (𝑥 .𝐶) (𝑥 .𝑡) (𝑥 .𝑦.𝑖 .𝑢)𝑤	= ∥∥E-elim (𝑥 .	𝑡)	𝑤		
hcomp-intro𝑖 .𝐵 [𝜑 ↦→ 𝑡] 𝑎	=	𝑎				
hcomp-elim [𝜑 ↦→ 𝑖 .𝐵] 𝑡	=	𝑡				
glue [𝜑 ↦→ 𝑡] 𝑎	=					
unglue [𝜑 ↦→ 𝑒] 𝑡	=					

Erasure |𝑟 | of coordinates 𝑟 to booleans is homeomorphic.
Erasure |𝜑 | of constraints 𝜑 to booleans is homeomorphic, except for |𝑖 = 1| = 𝑖 and |𝑖 = 0| = 1 − 𝑖 .

Fig. 2. Erasure function

⊢ Γ context Γ is well-formed
Γ ⊢ 𝑡 :𝑝 𝐴 in context Γ, term 𝑡 has type 𝐴 and erasure status 𝑝
Γ ⊢ 𝑟 : I in context Γ, coordinate 𝑟 is well-formed
Γ ⊢ 𝜑 : F in context Γ, constraint 𝜑 is well-formed
Γ ⊢ 𝑡 = 𝑢 : 𝐴 in context Γ, terms 𝑡 and 𝑢 of type 𝐴 are equal
Γ ⊢ 𝑟 = 𝑠 : I in context Γ, coordinates 𝑟 and 𝑠 are equal
Γ ⊢ 𝜑 = 𝜓 : F in context Γ, constraints 𝜑 and𝜓 are equal
Γ ⊢ 𝐴 ⇐⇒ ∃𝑛. Γ ⊢ 𝐴 :0 U𝑛 in context Γ, type 𝐴 is well-formed
Γ ⊢ 𝐴 = 𝐵 ⇐⇒ ∃𝑛. Γ ⊢ 𝐴 = 𝐵 : U𝑛 in context Γ, types 𝐴 and 𝐵 are equal

Fig. 3. Judgements

4.1.1 Judgments. Figure 3 lists the judgements of CTT0𝜔 . The judgements are designed to enjoy
the following standard properties (but we have not proved this in detail):

10 Andreas Abel, Nils Anders Danielsson, and Andrea Vezzosi

(1) (Context well-formedness, weakening, substitution:) All judgements of the form Γ ⊢ 𝐽 entail
⊢ Γ and are closed under weakening with wellformed context extensions and under well-typed
substitution.

(2) (Syntactic validity/presupposition:) The judgements Γ ⊢ 𝑡 :𝑝 𝐴 and Γ ⊢ 𝑡 = 𝑢 : 𝐴 entail Γ ⊢ 𝐴.
Judgement Γ ⊢ 𝑡 = 𝑢 : 𝐴 is designed to entail both Γ ⊢ 𝑡 :0 𝐴 and Γ ⊢ 𝑢 :0 𝐴, and analogously
for the other equality judgements. These entailments allow us to drop redundant premises
from the typing rules.

(3) (Subsumption:) If Γ ⊢ 𝑡 :𝜔 𝐴 then Γ ⊢ 𝑡 :0 𝐴 and analogously for the other typing judgements.
From this follows a context subsumption property: If Γ, 𝑥 :0 𝐴,Δ ⊢ 𝐽 then Γ, 𝑥 :𝜔 𝐴,Δ ⊢ 𝐽 .

Judgemental equality is only defined for the sake of type conversion, and types to the right of
the typing judgement’s colon are not present at runtime, so premises of equality rules are typed in
the erased world (0).
In the following we present typing and equality rules for CTT0𝜔 , starting with standard type

formers from Martin-Löf Type Theory and moving on to the cubical parts. Due to lack of space we
do not spell out all equality rules, e.g. not the congruence rules, or rules covered by the literature
that are not essential for the discussion.

4.1.2 Standard Type Theory. Our augmentation of Martin-Löf Type Theory with erasure annota-
tions is based on the presentations of McBride [2016] and Atkey [2018], but there are some notable
differences: On the one hand, even though the erasure function erases all type constructors, types
are not always treated as runtime irrelevant in the type system, because then we could construct
problematic examples like some of those discussed in Section 3. Thus we sometimes require that
types are well-formed in the non-erased world (Γ ⊢ 𝐴 :𝜔 U𝑛), and we assign erasure modalities
more carefully in the type formation rules. On the other hand, because we do not support linearity
but only erasure, we have full weakening and can freely project the components of a record.

Contexts, universes and conversion. CTT0𝜔 has a non-cumulative infinite hierarchy of predicative
universes U𝑛 (𝑛 ∈ N). Non-cumulativity is not essential, but simplifies the presentation as we do
not need a subtyping relation.

⊢ 𝜀
⊢ Γ Γ ⊢ 𝐴
⊢ Γ, 𝑥 :𝑝 𝐴 𝑥 ∉ dom(Γ) ⊢ Γ

⊢ Γ, 𝑖 : I 𝑖 ∉ dom(Γ) ⊢ Γ Γ ⊢ 𝜑 : F
⊢ Γ, 𝜑

univ ⊢ Γ

Γ ⊢ U𝑛 :𝑝 U𝑛+1
conv Γ ⊢ 𝑡 :𝑝 𝐴 Γ ⊢ 𝐴 = 𝐵

Γ ⊢ 𝑡 :𝑝 𝐵

Functions. In CTT0𝜔 we have two dependent function types, the ordinary (𝑥 :𝜔 𝐴) → 𝐵, and the
“erased Π-type” that types functions whose argument cannot be inspected at runtime, thus, can
be erased to a dummy value by the compiler (erasing it completely might change the behaviour
under call-by-value [Letouzey 2003], thus, we abstain). The following rules ensure the correctness
of erasure annotations, e.g. in applications, so that compiled programs do not go wrong.
In the variable rule we use modality subsumption 𝑞 ≤ 𝑝 which holds unless 𝑞 = 0 and 𝑝 = 𝜔 .

Thus non-erased variables (𝑞 = 𝜔) can always be used, and any variable can be used in an erased
position (𝑝 = 0). The product 𝑝𝑞 of two modalities is 0 unless both are 𝜔 . The product is used in
the application rule (ΠE), where the argument 𝑢 is checked at the quantity 𝑝𝑞, which is 0 if either 𝑝
or 𝑞 is 0. Thus the argument is checked at quantity 0 if we are in an erased context (𝑝 = 0), or if the

Compiling Programs with Erased Univalence 11

function treats its argument as erased (𝑞 = 0).

var ⊢ Γ (𝑥 :𝑞 𝐴) ∈ Γ

Γ ⊢ 𝑥 :𝑝 𝐴 𝑞 ≤ 𝑝 ΠF Γ ⊢ 𝐴 :𝑝𝑞 U𝑚 Γ, 𝑥 :𝑞 𝐴 ⊢ 𝐵 :𝑝 U𝑛

Γ ⊢ (𝑥 :𝑞 𝐴) → 𝐵 :𝑝 Umax(𝑚,𝑛)

ΠI Γ ⊢ (𝑥 :𝑞 𝐴) → 𝐵 Γ, 𝑥 :𝑞 𝐴 ⊢ 𝑡 :𝑝 𝐵
Γ ⊢ 𝜆𝑥𝑞 . 𝑡 :𝑝 (𝑥 :𝑞 𝐴) → 𝐵

ΠE Γ ⊢ 𝑡 :𝑝 (𝑥 :𝑞 𝐴) → 𝐵 Γ ⊢ 𝑢 :𝑝𝑞 𝐴
Γ ⊢ 𝑡 𝑞𝑢 :𝑝 𝐵 [𝑢/𝑥]

Πβ Γ, 𝑥 :𝑞 𝐴 ⊢ 𝑡 :0 𝐵 Γ ⊢ 𝑢 :0 𝐴
Γ ⊢ (𝜆𝑥𝑞 . 𝑡) 𝑞𝑢 = 𝑡 [𝑢/𝑥] : 𝐵 [𝑢/𝑥] Πη Γ ⊢ 𝑡 :0 (𝑥 :𝑞 𝐴) → 𝐵

Γ ⊢ 𝜆𝑥𝑞 . (𝑡 𝑞𝑥) = 𝑡 : (𝑥 :𝑞 𝐴) → 𝐵

Note that the modality of a variable is irrelevant in the erased world (𝑝 = 0). Thus, in rule Πβ we
could change the hypothesis 𝑥 :𝑞 𝐴 to 𝑥 :𝑞′ 𝐴 for any other 𝑞′. Likewise, we could change the
hypothesis 𝑥 :𝑝 𝐴 in rules ΠF and ΠI to 𝑥 :𝑝𝑞 𝐴 without changing the typing relation: If 𝑞 = 𝜔 , then
𝑝𝑞 = 𝑝 , and if 𝑞 = 0, then the modality of 𝑥 does not matter at all.

Some comment is in order for the typing Γ ⊢ 𝐴 :𝑝𝑞 U𝑚 of the domain in Π-formation (ΠF). If the
function argument is erased (𝑞 = 0), then any cubical transport happens in erased context and is
thus runtime-irrelevant. Thus, we then do not need 𝐴 at runtime.

Pairing. Components of a tuple can be marked as erased; following Atkey [2018] we achieve this
by putting an erasure annotation in the first component of a pair ⟨𝑝𝑡1, 𝑡2⟩. The second component
can also be erased if it is wrapped in another pair (see Section 4.1.2). The formation of Σ-types
follows Π-types, for analogous reasons: If the first component of a pair is erased, we do not need to
transport it at runtime, thus, its type 𝐴 can be erased as well.

ΣF Γ ⊢ 𝐴 :𝑝𝑞 U𝑚 Γ, 𝑥 :𝑞 𝐴 ⊢ 𝐵 :𝑝 U𝑛

Γ ⊢ (𝑥 :𝑞 𝐴) × 𝐵 :𝑝 Umax(𝑚,𝑛)
ΣE1

Γ ⊢ 𝑡 :𝑝𝑞 (𝑥 :𝑞 𝐴) × 𝐵
Γ ⊢ 𝜋1 𝑡 :𝑝𝑞 𝐴

ΣI Γ ⊢ (𝑥 :𝑞 𝐴) × 𝐵 Γ ⊢ 𝑡1 :𝑝𝑞 𝐴 Γ ⊢ 𝑡2 :𝑝 𝐵 [𝑡1/𝑥]
Γ ⊢ ⟨𝑞𝑡1, 𝑡2⟩ :𝑝 (𝑥 :𝑞 𝐴) × 𝐵 ΣE2

Γ ⊢ 𝑡 :𝑝 (𝑥 :𝑞 𝐴) × 𝐵
Γ ⊢ 𝜋2 𝑡 :𝑝 𝐵 [𝜋1 𝑡/𝑥]

Σβ Γ ⊢ 𝑡𝑘 :0 𝐴𝑘 (∀𝑘 = 1, 2)
Γ ⊢ 𝜋𝑘 ⟨𝑞𝑡1, 𝑡2⟩ = 𝑡𝑘 : 𝐴𝑘

Ση Γ ⊢ 𝑡 :0 (𝑥 :𝑞 𝐴) × 𝐵
Γ ⊢ 𝑡 = ⟨𝑞𝜋1 𝑡, 𝜋2 𝑡⟩ : (𝑥 :𝑞 𝐴) × 𝐵

Unit and empty type. CTT0𝜔 has a unit type ⊤ with 𝜂-equality and an empty type ⊥ with ex falso
quodlibet. Note that even in the non-erased world ⊥-elim takes an erased proof of ⊥, this means
that at compile-time information can flow from the erased to the non-erased world. Yet as there is
no closed term of type ⊥, compilation can erase ⊥-elim as a whole, fixing the “leak”.

⊤F
⊢ Γ

Γ ⊢ ⊤ :𝑝 U𝑛

⊤I
⊢ Γ

Γ ⊢ ⟨⟩ :𝑝 ⊤

⊤η
Γ ⊢ 𝑡 :0 ⊤

Γ ⊢ 𝑡 = ⟨⟩ : ⊤

⊥F
⊢ Γ

Γ ⊢ ⊥ :𝑝 U𝑛

⊥E
Γ ⊢ 𝐴 Γ ⊢ 𝑡 :0 ⊥
Γ ⊢ ⊥-elim𝐴 𝑡 :𝑝 𝐴

Natural numbers. The eliminator N-elim for unary numbers can be configured such that the
step term 𝑠 may not use the current number 𝑥 at runtime (𝑞 = 0), turning it into an iterator (so
natural numbers act as Church numerals, cf. McBride [2016, Section 5]). Furthermore the recursive
call 𝑦 can be unavailable at runtime (when 𝑟 = 0), then N-elim is simply a case distinction on the

12 Andreas Abel, Nils Anders Danielsson, and Andrea Vezzosi

scrutinee 𝑡 .

NF ⊢ Γ

Γ ⊢ N :𝑝 U𝑛

NI1
⊢ Γ

Γ ⊢ zero :𝑝 N NI2
Γ ⊢ 𝑡 :𝑝 N

Γ ⊢ suc 𝑡 :𝑝 N

NE
Γ, 𝑥 :𝜔 N ⊢ 𝐴 Γ ⊢ 𝑧 :𝑝 𝐴[zero/𝑥] Γ, 𝑥 :𝑞 N, 𝑦 :𝑟 𝐴 ⊢ 𝑠 :𝑝 𝐴[suc𝑥/𝑥] Γ ⊢ 𝑡 :𝑝 N

Γ ⊢ N-elim𝑥.𝐴 𝑧 (𝑥𝑞𝑦𝑟 .𝑠) 𝑡 :𝑝 𝐴[𝑡/𝑥]
The N-eliminator comes with the usual 𝛽-equalities.

Erasure type. Record types can be encoded as nested Σ-types ending in ⊤. This way, each field
can be given an erasure status. In particular, we can encode the erasure type (25) of Section 3 as a
record with a single erased field:

Erased𝐴 = (_ :0 𝐴) × ⊤
[𝑡] = ⟨0𝑡, ⟨⟩⟩
erased 𝑡 = 𝜋1 𝑡

The reader is invited to check that the following typing and equality rules for Erased are derivable.

Γ ⊢ 𝐴 :0 U𝑛

Γ ⊢ Erased𝐴 :𝑝 U𝑛

Γ ⊢ 𝑡 :0 𝐴
Γ ⊢ [𝑡] :𝑝 Erased𝐴

Γ ⊢ 𝑡 :0 Erased𝐴
Γ ⊢ erased 𝑡 :0 𝐴

Γ ⊢ 𝑡 :0 𝐴
Γ ⊢ erased [𝑡] = 𝑡 : 𝐴

Γ ⊢ 𝑡 :0 Erased𝐴
Γ ⊢ [erased 𝑡] = 𝑡 : Erased𝐴

4.1.3 Coordinates, Constraints and Partial Elements. Following Cohen et al. [2018b], a coordinate 𝑟
is wellformed, Γ ⊢ 𝑟 : I, if (𝑖 : I) ∈ Γ for all free variables 𝑖 in 𝑟 . The same holds for well-formed
constraints Γ ⊢ 𝜑 : F.
Equalities Γ ⊢ 𝑟 = 𝑠 : I are derivable if they hold by the laws of De Morgan algebras, i.e.,

any Boolean algebra minus the laws of excluded middle (𝑟 ∨ (1 − 𝑟) = 1) and noncontradiction
(𝑟∧(1−𝑟) = 0). The standardmodel is the real interval [0; 1] with∨ beingmaximum and∧minimum.
Equalities Γ ⊢ 𝜑 = 𝜓 : F follow from the laws of distributive lattices and (𝑖 = 0) ∧ (𝑖 = 1) = 0F.
Moreover both equality judgments include the congruence induced by context restrictions Γ, 𝜑 .
Examples of valid equalities are:

𝑖 : I, 𝑗 : I, 𝑖 = 0, 𝑖 = 1 ⊢ 𝑗 = 1 : I
𝑖 : I, 𝑗 : I, 𝑖 = 0 ∨ 𝑗 = 0, 𝑖 = 1 ⊢ (𝑗 = 0) = 1 : F

A collection of constraints {𝜑𝑘 }𝑘=1..𝑛 is covering in Γ if Γ ⊢ (𝜑1 ∨ . . . ∨ 𝜑𝑛) = 1 : F. The rule
Cover allows judgements to branch on covering constraints:

Cover Γ, 𝜑1 ⊢ 𝐽 . . . Γ, 𝜑𝑛 ⊢ 𝐽
Γ ⊢ 𝐽 Γ ⊢ (𝜑1 ∨ . . . ∨ 𝜑𝑛) = 1 : F

A so-called system is a 𝑛-ary conditional [𝜑1 ↩→ 𝑡1, . . . , 𝜑𝑛 ↩→ 𝑡𝑛] whose conditions are covering.
Systems reduce to one of their branches 𝑡𝑘 if the condition 𝜑𝑘 holds. Systems need to be consistent,
so if two conditions 𝜑𝑘 and 𝜑𝑙 hold, the respective branches 𝑡𝑘 and 𝑡𝑙 must be judgementally equal.

SysF Γ, 𝜑𝑘 ⊢ 𝑡𝑘 :𝑝 𝐴 (∀𝑘) Γ, 𝜑𝑘 ∧ 𝜑𝑙 ⊢ 𝑡𝑘 = 𝑡𝑙 : 𝐴 (∀𝑘 ≠ 𝑙)
Γ ⊢ [𝜑1 ↩→ 𝑡1, . . . , 𝜑𝑛 ↩→ 𝑡𝑛] :𝑝 𝐴

Γ ⊢ (𝜑1 ∨ . . . ∨ 𝜑𝑛) = 1 : F

Sysβ Γ ⊢ [𝜑1 ↩→ 𝑡1, . . . , 𝜑𝑛 ↩→ 𝑡𝑛] :0 𝐴 Γ ⊢ 𝜑𝑘 = 1 : F
Γ ⊢ [𝜑1 ↩→ 𝑡1, . . . , 𝜑𝑛 ↩→ 𝑡𝑛] = 𝑡𝑘 : 𝐴 Γ ⊢ (𝜑1 ∨ . . . ∨ 𝜑𝑛) = 1 : F

Compiling Programs with Erased Univalence 13

For a partial element Γ, 𝜑 ⊢ 𝑢 :𝑝 𝐴, existing under the constraint 𝜑 , Γ ⊢ 𝑡 :𝑝 𝐴[𝜑 ↦→ 𝑢] is an
abbreviation for the conjunction of Γ ⊢ 𝑡 :𝑝 𝐴 and Γ, 𝜑 ⊢ 𝑡 = 𝑢 : 𝐴. This notation allows us to
constrain terms and we will use it both in premises and conclusions of rules (where it specifies a
second consequence). Further details and motivations are presented by Cohen et al. [2018b].

4.1.4 Basic Path Primitives. Figure 4 lists rules for paths, the cubical replacement for propositional
equality. On top of the Path type former itself and the transport operation transp, already discussed
previously, we also introduce the homogeneous composition operator hcomp𝑖𝐴 [𝜑 ↦→ 𝑢] 𝑢0 which
allows to compose paths together, e.g. to implement transitivity of path equality: given 𝑝 : Path𝐴𝑥 𝑦
and 𝑞 : Path𝐴𝑦 𝑧 we can define a path Path𝐴𝑥 𝑧 by 𝜆𝑖. hcomp𝑗

𝐴
[(𝑖 = 0) ↦→ 𝑥, (𝑖 = 1) ↦→ 𝑞 𝑗] (𝑝𝑖).

While a more comprehensive introduction to these primitives is given by Vezzosi et al. [2019], let
us note that the 𝐴 argument of transp needs to be provided at quantity 𝜔 when the operation is
used at quantity 𝜔 , preventing the problematic variants of subst discussed in Section 3.
Both transp and hcomp also have associated judgmental equalities which depend on the type

𝐴. For these we mostly adopt the formulation presented by Huber [2017], with the term typing
premises at quantity 0. The only exception is hcompU𝑛

, which we handle as a dedicated type
former with its own associated judgmental equalities for transp and hcomp. These equalities can
be constructed from the reduction rules in Section 4.2.7 by dropping the premise Γ ⊢ 𝜑 ≠ 1F : F.

4.1.5 Glue Types and Homogeneous Composition in the Universe. Cohen et al. [2018b] reduce
composition in the universe to a use of Glue by turning the (partial) line in the universe into
an equivalence. In the prototype implementation by Cohen et al. [2018a] this was found to be
quite inefficient and a dedicated type former was introduced as an optimization instead. For our
purposes having hcomp𝑖U𝑛

[𝜑 ↦→ 𝐵]𝐴 as its own type former allows transports over compositions
in the universe to compute without the use of Glue, so that reduction (Section 4.2) of a term
typed at 𝜔 will always result in a term typed at 𝜔 . The introduction and elimination forms for
hcomp𝑖U𝑛

[𝜑 ↦→ 𝐵]𝐴 are designed (see Figure 4) so that they are compatible with the equality
hcomp𝑖U𝑛

[1F ↦→ 𝐵]𝐴 = 𝐵 [1/𝑖] and so that we can prove that the type is equivalent to 𝐴. In
particular hcomp-elim [𝜑 ↦→ 𝑖 .𝐵] is the equivalence map, which agrees with transport along 𝐵
when 𝜑 = 1F. The rules for Glue, glue, and unglue are taken directly from Cohen et al. [2018b], as
those terms are in the 0 fragment of the theory.

(See Figure 5.)

4.1.6 Propositional Truncation. The following formalizes the higher inductive type ∥_∥E (15), albeit
with a dedicated eliminator.

TruncF
Γ ⊢ 𝐴 :𝑝 U𝑚

Γ ⊢ ∥𝐴∥E :𝑝 U𝑚

TruncI1
Γ ⊢ 𝑡 :𝑝 𝐴

Γ ⊢ tr 𝑡 :𝑝 ∥𝐴∥E

TruncI2
Γ ⊢ 𝐴 Γ ⊢ 𝑡,𝑢 :0 ∥𝐴∥E Γ ⊢ 𝑟 : I

Γ ⊢ trunc 𝑡 𝑢 𝑟 :0 ∥𝐴∥E
[
𝑟 = 0 ↦→ 𝑡

𝑟 = 1 ↦→ 𝑢

]
TruncE

Γ ⊢ 𝐴 Γ, 𝑥 :𝑝 ∥𝐴∥E ⊢ 𝐶 :𝑝 U𝑘 Γ, 𝑥 :𝑝 𝐴 ⊢ 𝑡 :𝑝 𝐶 [tr𝑥/𝑥]
Γ, 𝑥 𝑦 :0 ∥𝐴∥E, 𝑖 : I ⊢ 𝑢 :0 𝐶 [trunc𝑥 𝑦 𝑖/𝑥] [𝑖 = 0 ↦→ 𝑥, 𝑖 = 1 ↦→ 𝑦] Γ ⊢ 𝑤 :𝑝 ∥𝐴∥E

Γ ⊢ ∥∥E-elim (𝑥 .𝐶) (𝑥 .𝑡) (𝑥 .𝑦.𝑖 .𝑢)𝑤 :𝑝 𝐶 [𝑤/𝑥]

14 Andreas Abel, Nils Anders Danielsson, and Andrea Vezzosi

PathF
Γ ⊢ 𝐴 :𝑝 U𝑛 Γ ⊢ 𝑡,𝑢 :𝑝 𝐴

Γ ⊢ Path𝐴 𝑡 𝑢 :𝑝 U𝑛

PathI
Γ, 𝑖 : I ⊢ 𝑡 :𝑝 𝐴

Γ ⊢ 𝜆𝑖.𝑡 :𝑝 Path𝐴 𝑡 [0/𝑖] 𝑡 [1/𝑖]
PathE

Γ ⊢ 𝐴 Γ ⊢ 𝑡 :𝑝 Path𝐴𝑎0 𝑎1 Γ ⊢ 𝑟 : I
Γ ⊢ 𝑡 𝑟 :𝑝 𝐴

PathB
Γ ⊢ 𝐴 Γ ⊢ 𝑡 :0 Path𝐴𝑎0 𝑎1

Γ ⊢ 𝑡 𝑏 = 𝑎𝑏 : 𝐴
𝑏 ∈ {0, 1} Pathβ

Γ, 𝑖 : I ⊢ 𝑡 :0 𝐴 Γ ⊢ 𝑟 : I
Γ ⊢ (𝜆𝑖.𝑡)𝑟 = 𝑡 [𝑟/𝑖] : 𝐴

Pathη
Γ ⊢ 𝑡,𝑢 :0 Path𝐴𝑎0 𝑎1 Γ, 𝑖 : I ⊢ 𝑡 𝑖 = 𝑢 𝑖 : 𝐴

Γ ⊢ 𝑡 = 𝑢 : Path𝐴𝑎0 𝑎1

Transp
Γ, 𝑖 : I ⊢ 𝐴 :𝑝 U𝑛 Γ ⊢ 𝜑 : F Γ, 𝑖 : I, 𝜑 ⊢ 𝐴[0/𝑖] = 𝐴 : U𝑛 Γ ⊢ 𝑢 :𝑝 𝐴[0/𝑖]

Γ ⊢ transp𝑖 𝐴𝜑 𝑢 :𝑝 𝐴[1/𝑖] [𝜑 ↦→ 𝑢]

HCompF
Γ ⊢ 𝐴 :𝑝 U𝑛 Γ ⊢ 𝜑 : F Γ, 𝑖 : I, 𝜑 ⊢ 𝑢 :𝑝 𝐴 Γ ⊢ 𝑢0 :𝑝 𝐴[𝜑 ↦→ 𝑢 [0/𝑖]]

Γ ⊢ hcomp𝑖𝐴 [𝜑 ↦→ 𝑢] 𝑢0 :𝑝 𝐴[𝜑 ↦→ 𝑢 [1/𝑖]]

HCompI

Γ, 𝑖 : I, 𝜑 ⊢ 𝐵 :𝑝 U𝑛 Γ, 𝜑 ⊢ 𝐵 [0/𝑖] = 𝐴 : U𝑛

Γ, 𝜑 ⊢ 𝑡 :𝑝 𝐵 [1/𝑖] Γ ⊢ 𝑎 :𝑝 𝐴 Γ, 𝜑 ⊢ transp𝑗 𝐵 [1 − 𝑗/𝑖] 0 𝑡 = 𝑎 : 𝐴
Γ ⊢ hcomp-intro𝑖 .𝐵 [𝜑 ↦→ 𝑡] 𝑎 :𝑝 (hcomp𝑖U𝑛

[𝜑 ↦→ 𝐵]𝐴) [𝜑 ↦→ 𝑡]

HCompE
Γ, 𝑖 : I, 𝜑 ⊢ 𝐵 :𝑝 U𝑛 Γ ⊢ 𝐵 [0/𝑖] = 𝐴 : U𝑛 Γ ⊢ 𝑢 :𝑝 hcomp𝑖U𝑛

[𝜑 ↦→ 𝐵]𝐴
Γ ⊢ hcomp-elim [𝜑 ↦→ 𝑖 .𝐵] 𝑢 :𝑝 𝐴[𝜑 ↦→ transp𝑗 𝐵 [1 − 𝑗/𝑖] 0𝑢]

HCompβ

Γ, 𝑖 : I, 𝜑 ⊢ 𝐵 :0 U𝑛 Γ ⊢ 𝐵 [0/𝑖] = 𝐴 : U𝑛

Γ, 𝜑 ⊢ 𝑡 :0 𝐵 [1/𝑖] Γ ⊢ 𝑎 :0 𝐴 Γ, 𝜑 ⊢ transp𝑗 𝐵 [1 − 𝑗/𝑖] 0 𝑡 = 𝑎 : 𝐴
Γ ⊢ hcomp-elim [𝜑 ↦→ 𝑖 .𝐵] (hcomp-intro𝑖 .𝐵 [𝜑 ↦→ 𝑡] 𝑎) = 𝑎 : 𝐴

HCompη
Γ, 𝑖 : I, 𝜑 ⊢ 𝐵 :0 U𝑛 Γ ⊢ 𝐵 [0/𝑖] = 𝐴 : U𝑛 Γ ⊢ 𝑢 :0 hcomp𝑖U𝑛

[𝜑 ↦→ 𝐵]𝐴
Γ ⊢ hcomp-intro𝑖 .𝐵 [𝜑 ↦→ 𝑢] (hcomp-elim [𝜑 ↦→ 𝑖 .𝐵] 𝑢) = 𝑢 : hcomp𝑖U𝑛

[𝜑 ↦→ 𝐵]𝐴

Fig. 4. Paths and homogeneous composition.

Writing 𝑓 for ∥∥E-elim (𝑥 .𝐶) (𝑥 .𝑡) (𝑥 .𝑦.𝑖 .𝑢) we have the following 𝛽-rules:

𝑓 (tr𝑎) = 𝑡 [𝑎/𝑥]
𝑓 (trunc 𝑡0 𝑡1 𝑟) = 𝑢 [𝑡0/𝑥, 𝑡1/𝑦, 𝑟/𝑖]

𝑓 (hcomp𝑖∥𝐴 ∥E [𝜑 ↦→ 𝑢] 𝑢0) = comp𝑖 𝐶 [hfill𝑖∥𝐴 ∥E [𝜑 ↦→ 𝑢] 𝑢0] [𝜑 ↦→ 𝑓 𝑢] (𝑓 𝑢0)

Compiling Programs with Erased Univalence 15

GlueF
Γ ⊢ 𝐴 :0 U𝑛 Γ ⊢ 𝜑 : F Γ, 𝜑 ⊢ 𝑇 :0 U𝑛 Γ, 𝜑 ⊢ 𝑒 :0 Equiv𝑇 𝐴

Γ ⊢ Glue [𝜑 ↦→ (𝑇, 𝑒)]𝐴 :0 U𝑛 [𝜑 ↦→ U𝑛]

GlueI

Γ ⊢ 𝜑 : F
Γ, 𝜑 ⊢ 𝑒 :0 Equiv𝑇 𝐴 Γ, 𝜑 ⊢ 𝑡 :0 𝑇 Γ ⊢ 𝑎 :0 𝐴 Γ, 𝜑 ⊢ (𝜋1 𝑒) 𝜔𝑡 = 𝑎 : 𝐴

Γ ⊢ glue [𝜑 ↦→ 𝑡] 𝑎 :0 (Glue [𝜑 ↦→ (𝑇, 𝑒)]𝐴) [𝜑 ↦→ 𝑡]

GlueE
Γ, 𝜑 ⊢ 𝑇 Γ ⊢ 𝐴 Γ, 𝜑 ⊢ 𝑒 :0 Equiv𝑇 𝐴 Γ ⊢ 𝑢 :0 Glue [𝜑 ↦→ (𝑇, 𝑒)]𝐴

Γ ⊢ unglue [𝜑 ↦→ 𝑒] 𝑢 :0 𝐴[𝜑 ↦→ (𝜋1 𝑒) 𝜔𝑢

Glueβ

Γ ⊢ 𝜑 : F
Γ, 𝜑 ⊢ 𝑒 :0 Equiv𝑇 𝐴 Γ, 𝜑 ⊢ 𝑡 :0 𝑇 Γ ⊢ 𝑎 :0 𝐴 Γ, 𝜑 ⊢ (𝜋1 𝑒) 𝜔𝑡 = 𝑎 : 𝐴

Γ ⊢ unglue [𝜑 ↦→ 𝑒] (glue [𝜑 ↦→ 𝑡] 𝑎) = 𝑎 : 𝐴

Glueη
Γ, 𝜑 ⊢ 𝑇 Γ ⊢ 𝐴 Γ, 𝜑 ⊢ 𝑒 :0 Equiv𝑇 𝐴 Γ ⊢ 𝑢 :0 Glue [𝜑 ↦→ (𝑇, 𝑒)]𝐴

Γ ⊢ glue [𝜑 ↦→ 𝑢] (unglue [𝜑 ↦→ 𝑒] 𝑢) = 𝑢 : Glue [𝜑 ↦→ (𝑇, 𝑒)]𝐴

Fig. 5. Glue.

4.2 Reduction
The operational semantics of CTT0𝜔 is given by a weak head call-by-name typed reduction relation.
While judgemental equality is only needed in the erased world for type conversion, we are interested
to reduce in the non-erased world for the sake of computation. Thus, the relation takes the form
Γ ⊢ 𝑡 ⇒ 𝑢 :𝑝 𝐴 .We have designed this relation so that if it holds, then Γ ⊢ 𝑡,𝑢 :𝑝 𝐴 and Γ ⊢ 𝑡 = 𝑢 : 𝐴
also hold (but again we have not proved this in detail). Ignoring modalities, reduction follows
Huber [2019, 2017], except for composition in the universe, which does not reduce to Glue, as
explained before. It may seem odd that we define reduction for terms typed at 0, however our proof
of correctness for erasure uses the fact that types reduce to canonical forms at quantity 0.

Reduction includes all 𝛽-equalities and the congruence rules for evaluation contexts, as usual in
weak head reduction. Rule Sysβ is non-deterministic, so in the reduction we make it deterministic
by picking the first branch of the system whose constraint evaluates to 1. For terms such as
transp𝑖 𝐴𝜑 𝑢, hcomp𝑖 𝐴𝜑 𝑢, or applications of glue/unglue, hcomp-intro/hcomp-elim, which have
overlapping equality rules when𝜑 is 1F, wemake reduction deterministic by requiring Γ ⊢ 𝜑 ≠ 1F : F
for the more general rule. Below we present only non-obvious rules or rules that we did not cover
in the case of equality.

4.2.1 Conversion.

Γ ⊢ 𝑢 ⇒ 𝑣 :𝑝 𝐴 Γ ⊢ 𝐴 = 𝐵

Γ ⊢ 𝑢 ⇒ 𝑣 :𝑝 𝐵

4.2.2 Partial Terms.

Γ ⊢ ∨𝑖 𝜑𝑖 = 1 : F Γ ⊢ 𝐴 Γ, 𝜑𝑖 ⊢ 𝑡𝑖 :𝑝 𝐴 (∀𝑖 ∈ {1 . . . 𝑛})
Γ, 𝜑𝑖 ∧ 𝜑 𝑗 ⊢ 𝑡𝑖 = 𝑡 𝑗 : 𝐴 (∀𝑖, 𝑗 ∈ {1 . . . 𝑛}) 𝑘 minimal with Γ ⊢ 𝜑𝑘 = 1 : F

Γ ⊢ [𝜑1 ↩→ 𝑡1, . . . , 𝜑𝑛 ↩→ 𝑡𝑛] ⇒ 𝑡𝑘 :𝑝 𝐴

16 Andreas Abel, Nils Anders Danielsson, and Andrea Vezzosi

4.2.3 Universe.

Γ ⊢ 𝐴 :0 U𝑛 Γ, 𝜑 ⊢ 𝑇 :0 U𝑛 Γ, 𝜑 ⊢ 𝑒 :0 Equiv𝑇 𝐴 Γ ⊢ 𝜑 = 1 : F
Γ ⊢ Glue [𝜑 ↦→ (𝑇, 𝑒)]𝐴 ⇒ 𝑇 :0 U𝑛

Note: hcompU𝑛
is covered by the general rule for hcomp.

4.2.4 Path.

Γ ⊢ 𝐴 Γ, 𝑖 : I ⊢ 𝑡 :𝑝 𝐴 Γ ⊢ 𝑟 : I
Γ ⊢ (𝜆𝑖.𝑡) 𝑟 ⇒ 𝑡 [𝑟/𝑖] :𝑝 𝐴

Γ ⊢ 𝑡 ⇒ 𝑡 ′ :𝑝 Path𝐴𝑢 𝑣 Γ ⊢ 𝑟 : I
Γ ⊢ 𝑡 𝑟 ⇒ 𝑡 ′ 𝑟 :𝑝 𝐴

4.2.5 Glue. The reduction rules are taken fromHuber [2019], placing both conclusion and premises
in the 0 fragment.

Γ, 𝜑 ⊢ 𝑒 :0 Equiv𝐴𝑇 Γ, 𝜑 ⊢ 𝑡 :0 𝑇 Γ ⊢ 𝑎 :0 𝐴[𝜑 ↦→ fst 𝑒 ·𝜔 𝑡] Γ ⊢ 𝜑 = 1 : F
Γ ⊢ glue [𝜑 ↦→ 𝑡] 𝑎 ⇒ 𝑡 :0 𝑇

Γ, 𝜑 ⊢ 𝑒 :0 Equiv𝐴𝑇 Γ, 𝜑 ⊢ 𝑡 :0 𝑇 Γ ⊢ 𝑎 :0 𝐴[𝜑 ↦→ fst 𝑒 ·𝜔 𝑡] Γ ⊢ 𝜑 ≠ 1 : F
Γ ⊢ unglue [𝜑 ↦→ 𝑒] (glue [𝜑 ↦→ 𝑡] 𝑎) ⇒ 𝑎 :0 𝐴

Γ, 𝜑 ⊢ 𝑒 :0 Equiv𝐴𝑇 Γ ⊢ 𝑢 :0 Glue [𝜑 ↦→ (𝑇, 𝑒)]𝐴 Γ ⊢ 𝜑 = 1 : F
Γ ⊢ unglue [𝜑 ↦→ 𝑒] 𝑢 ⇒ fst 𝑒 ·𝜔 𝑢 :0 𝐴

Γ ⊢ 𝑢 ⇒ 𝑢 ′ :0 Glue [𝜑 ↦→ (𝑇, 𝑒)]𝐴 Γ ⊢ 𝜑 ≠ 1 : F
Γ ⊢ unglue [𝜑 ↦→ 𝑒] 𝑢 ⇒ unglue [𝜑 ↦→ 𝑒] 𝑢 ′ :0 𝐴

4.2.6 Homogeneous Composition in the Universe.

Γ, 𝑖 : I, 𝜑 ⊢ 𝐵 :𝑝 U𝑛 Γ ⊢ 𝐴[𝜑 ↦→ 𝐵 [0/𝑖]]
Γ, 𝜑 ⊢ 𝑡 :𝑝 𝐵 [1/𝑖] Γ ⊢ 𝑎 :𝑝 𝐴[𝜑 ↦→ transp𝑗 𝐵 [1 − 𝑗/𝑖] 0 𝑡] Γ ⊢ 𝜑 = 1 : F

Γ ⊢ hcomp-intro𝑖 .𝐵 [𝜑 ↦→ 𝑡] 𝑎 ⇒ 𝑡 :𝑝 𝐵 [1/𝑖]

Γ, 𝜑, 𝑖 : I ⊢ 𝐵 :𝑝 U𝑛 Γ ⊢ 𝑢 :𝑝 hcomp𝑖U𝑛
[𝜑 ↦→ 𝐵]𝐴 Γ ⊢ 𝜑 = 1 : F

Γ ⊢ hcomp-elim [𝜑 ↦→ 𝑖 .𝐵] 𝑢 ⇒ transp𝑗 𝐵 [1 − 𝑗/𝑖] 0𝑢 :0 𝐴

Γ, 𝑖 : I, 𝜑 ⊢ 𝐵, 𝐵′ :𝑝 U𝑛 Γ, 𝑖 : I, 𝜑 ⊢ 𝐵 = 𝐵′ : U𝑛 Γ ⊢ 𝐴[𝜑 ↦→ 𝐵 [0/𝑖]]
Γ, 𝜑 ⊢ 𝑡 :𝑝 𝐵 [1/𝑖] Γ ⊢ 𝑎 :𝑝 𝐴[𝜑 ↦→ transp𝑗 𝐵 [1 − 𝑗/𝑖] 0 𝑡] Γ ⊢ 𝜑 ≠ 1 : F

Γ ⊢ hcomp-elim [𝜑 ↦→ 𝑖 .𝐵′] (hcomp-intro𝑖 .𝐵 [𝜑 ↦→ 𝑡] 𝑎) ⇒ 𝑎 :𝑝 𝐴

Γ, 𝜑, 𝑖 : I ⊢ 𝐵 :𝑝 U𝑛 Γ ⊢ 𝑢 ⇒ 𝑢 ′ :𝑝 hcomp𝑖U𝑛
[𝜑 ↦→ 𝐵]𝐴 Γ ⊢ 𝜑 ≠ 1 : F

Γ ⊢ hcomp-elim [𝜑 ↦→ 𝑖 .𝐵] 𝑢 ⇒ hcomp-elim [𝜑 ↦→ 𝑖 .𝐵] 𝑢 ′ :0 𝐴

Compiling Programs with Erased Univalence 17

4.2.7 transp and hcomp.

Γ ⊢ 𝐴 :𝑝 U𝑛 Γ ⊢ 𝜑 : F Γ, 𝑖 : I, 𝜑 ⊢ 𝑢 :𝑝 𝐴 Γ ⊢ 𝑢0 :𝑝 𝐴[𝜑 ↦→ 𝑢 [0/𝑖]] Γ ⊢ 𝜑 = 1 : F
Γ ⊢ hcomp𝑖𝐴 [𝜑 ↦→ 𝑢] 𝑢0 ⇒ 𝑢 [1/𝑖] :𝑝 𝐴

Γ ⊢ 𝐴 ⇒ 𝐴′ :𝑝 U𝑛

Γ ⊢ 𝜑 : F Γ, 𝑖 : I, 𝜑 ⊢ 𝑢 :𝑝 𝐴 Γ ⊢ 𝑢0 :𝑝 𝐴[𝜑 ↦→ 𝑢 [0/𝑖]] Γ ⊢ 𝜑 ≠ 1 : F
Γ ⊢ hcomp𝑖𝐴 [𝜑 ↦→ 𝑢] 𝑢0 ⇒ hcomp𝑖𝐴′ [𝜑 ↦→ 𝑢] 𝑢0 :𝑝 𝐴′

Γ, 𝑖 : I ⊢ 𝐴 :𝑝 U𝑛

Γ ⊢ 𝜑 : F Γ, 𝑖 : I, 𝜑 ⊢ 𝐴[0/𝑖] = 𝐴 : U𝑛 Γ ⊢ 𝑢 :𝑝 𝐴[0/𝑖] Γ ⊢ 𝜑 = 1 : F
Γ ⊢ transp𝑖 𝐴𝜑 𝑢 ⇒ 𝑢 :𝑝 𝐴[1/𝑖]

Γ, 𝑖 : I ⊢ 𝐴 ⇒ 𝐴′ :𝑝 U𝑛

Γ ⊢ 𝜑 : F Γ, 𝑖 : I, 𝜑 ⊢ 𝐴[0/𝑖] = 𝐴 : U𝑛 Γ ⊢ 𝑢 :𝑝 𝐴[0/𝑖] Γ ⊢ 𝜑 ≠ 1 : F
Γ ⊢ transp𝑖 𝐴𝜑 𝑢 ⇒ transp𝑖 𝐴′𝜑 𝑢 :𝑝 𝐴′[1/𝑖]

The congruence rule for transp𝑖 𝐴𝜑 𝑢 above shows why, even for an initially empty Γ, we need
to consider reduction in a context with interval variables. When 𝜑 is not 1F we want to reduce
𝐴 to a canonical form because for each type former we have reduction rules for transp (and
hcomp), obtained by orienting the corresponding judgmental equalities, and requiring the necessary
premises for well-typedness. We present the reduction rules for transp and hcomp for homogeneous
composition in the universe, as even their plain CTT version does not appear in the literature. We
also provide the rule for transp for function types as it further motivates our choice of erasure
annotations for this type former.

Function Types. Let 𝐶 := (𝑥 :𝑞 𝐴) → 𝐵.

Γ, 𝑖 : I ⊢ 𝐴 :𝑞𝑝 U𝑛 Γ, 𝑖 : I, 𝑥 :𝑞 𝐴 ⊢ 𝐵 :𝑝 U𝑚

Γ ⊢ 𝜑 : F Γ, 𝑖 : I, 𝜑 ⊢ 𝐶 [0/𝑖] = 𝐶 : Umax(𝑛,𝑚) Γ ⊢ 𝑢 :𝑝 𝐶 [0/𝑖] Γ ⊢ 𝜑 ≠ 1 : F
Γ ⊢ transp𝑖 𝐶 𝜑 𝑢 ⇒ 𝜆𝑞𝑦. transp𝑖 𝐵 [𝑣 [1 − 𝑖/𝑖]/𝑥] 𝜑 (𝑢 ·𝑞 𝑣 [1/𝑖]) :𝑝 𝐶 [1/𝑖]

where 𝑣 := transpFill𝑖 𝐴[1 − 𝑖/𝑖] 𝜑 𝑦, being a path connecting 𝑦 to transp𝑖 𝐴[1 − 𝑖/𝑖] 𝜑 𝑦, see Huber
[2017] for the definition of transpFill, the typing of the arguments is the same as transp.

Note that, when 𝑝 = 𝜔 , the term 𝐵 [𝑣 [1 − 𝑖/𝑖]/𝑥] is well-typed only if 𝑦 :𝑞 𝐴[1/𝑖] is usable in an
argument to 𝐵. So in particular when 𝑞 = 0 we need Γ, 𝑖 : I, 𝑥 :0 𝐴 ⊢ 𝐵 :𝑝 U𝑛 . When 𝑞 = 𝜔 we have
a choice, but the most permissive is to let Γ, 𝑖 : I, 𝑥 :𝜔 𝐴 ⊢ 𝐵 :𝑝 U𝑛 . The domain type 𝐴 is required
to be available at 𝜔 only when both 𝑝 and 𝑞 are 𝜔 , as otherwise it is only used in an erased context.
Overall this matches the premises for formation of function types.

Homogeneous Composition in the Universe. The following two are some of the most complex
reduction rules, only matched by the corresponding ones for Glue which they are based on. We
give them as a reference, and to substantiate our claim that such reductions preserve the modality
𝑝 . For both of them all the premises are typed at 𝑝 , and the right hand side uses term formers
and operations available at any modality. In particular we make use of hfill𝑖 𝐴 [𝜑 ↦→ 𝑢] 𝑢0, which
creates a path between 𝑢0 and an hcomp with the same arguments, and heterogenous composition,
comp, which is a combination of transp and hcomp. They are defined as in Huber [2017]. In the
following, let 𝐶 := hcomp𝑗

U𝑛
[𝜓 ↦→ 𝐵]𝐴.

18 Andreas Abel, Nils Anders Danielsson, and Andrea Vezzosi

Rule for hcomp.
Γ ⊢ 𝜓 : F Γ,𝜓, 𝑗 : I ⊢ 𝐵 :𝑝 U𝑛 Γ ⊢ 𝐴 :𝑝 U𝑛 [𝜓 ↦→ 𝐵 [1/𝑖]]

Γ ⊢ 𝜑 : F Γ, 𝑖 : I, 𝜑 ⊢ 𝑢 :𝑝 𝐶 Γ ⊢ 𝑢0 :𝑝 𝐶 [𝜑 ↦→ 𝑢 [0/𝑖]] Γ ⊢ 𝜑 ≠ 1 : F
Γ ⊢ hcomp𝑖𝐶 [𝜑 ↦→ 𝑢] 𝑢0 ⇒ hcomp-intro𝑗 .𝐵 [𝜓 ↦→ 𝑡 [1/𝑖]] 𝑎1 :𝑝 𝐶

where
Γ,𝜓, 𝑖 : I ⊢ 𝑡 := hfill𝑖

𝐵 [1/𝑗] 𝜑 𝑢 𝑢0 :
𝑝 𝐵 [1/ 𝑗] [𝜑 ↦→ 𝑢, 𝑖 = 0 ↦→ 𝑢0]

𝑎1 := hcomp𝑖𝐴 [𝜑 ↦→ hcomp-elim [𝜓 ↦→ 𝑗 .𝐵] 𝑢,𝜓 ↦→ transp𝑗 𝐵 [1 − 𝑗] 0 𝑡] (hcomp-elim [𝜓 ↦→ 𝑗 .𝐵] 𝑢0).
Rule for transp.

Γ, 𝑖 : I ⊢ 𝜓 : F Γ, 𝑖 : I,𝜓, 𝑗 : I ⊢ 𝐵 :𝑝 U𝑛

Γ, 𝑖 : I ⊢ 𝐴 :𝑝 U𝑛 [𝜓 ↦→ 𝐵 [1/𝑖]] Γ ⊢ 𝜑 : F Γ ⊢ 𝑢 :𝑝 𝐶 [0/𝑖] Γ ⊢ 𝜑 ≠ 1 : F
Γ ⊢ transp𝑖 𝐶 𝜑 𝑢 ⇒ hcomp-intro𝑗 .𝐵 [1/𝑖] [𝜓 [1/𝑖] ↦→ 𝑡 ′1] 𝑎′1 :𝑝 𝐶 [1/𝑖]

where
𝑎0 := hcomp-elim [𝜓 [0/𝑖] ↦→ 𝑗 .𝐵 [0/𝑖]] 𝑢
𝑖 ⊢ 𝑡 := transpFill𝑖 𝐵 [1/ 𝑗] 𝜑 𝑢
𝑎1 := comp𝑖 𝐴 [𝜑 ↦→ 𝑎0,∀𝑖 .𝜓 ↦→ transp𝑗 𝐵 [1 − 𝑗/ 𝑗] 𝑡] 𝑎0
𝜓 [1/𝑖] ⊢ (𝑡 ′1, 𝛼) := prf𝑖 (𝐵 [1/𝑖, 1 − 𝑖, 𝑗]) [𝜑 ↦→ 𝑢0,∀𝑖 .𝜓 ↦→ 𝑡 [1/𝑖]] 𝑎1
𝑎′1 := hcomp𝑗

𝐴 [1/𝑖] [𝜑 ↦→ 𝑎1,𝜓 [1/𝑖] ↦→ 𝛼 𝑗] 𝑎1
and prf𝑖 𝐸 [𝜑 ↦→ 𝑎] 𝑏 can be derived to fit the following typing:

Γ, 𝑖 : I ⊢ 𝐸 :𝑝 U𝑛 Γ ⊢ 𝜑 : F Γ ⊢ 𝑎 :𝑝 𝐸 [0/𝑖] Γ ⊢ 𝑏 :𝑝 (𝐸 [1/𝑖]) [𝜑 ↦→ transp𝑖 𝐸 0𝑎]
Γ ⊢ prf𝑖 𝐸 [𝜑 ↦→ 𝑎] 𝑏 :𝑝 fiber (transp𝑖 𝐸 0) 𝑏

4.3 Logical Relation
To prove our main result we will define a realizability relation 𝑡 ®𝑤 : 𝐴 between closed terms and
programs at a particular type 𝐴. As usual for dependent types, we cannot simply induct on the
type expression 𝐴. Instead, we induct on a derivation 𝐷 of ⊩ 𝐴 : U𝑚 , witnessing that 𝐴 is forced.
In this section, we need typed parallel substitutions Γ ⊢ 𝜎 :𝑝 Δ which are defined by axiom

Γ ⊢ 𝜀 :𝑝 𝜀 and the following rules:
Γ ⊢ 𝜎 :𝑝 Δ Γ ⊢ 𝑡 :𝑝𝑞 𝐴𝜎
Γ ⊢ (𝜎, 𝑡/𝑥) :𝑝 (Δ, 𝑥 :𝑞 𝐴)

Γ ⊢ 𝜎 :𝑝 Δ Γ ⊢ 𝑟 : I
Γ ⊢ (𝜎, 𝑟/𝑖) :𝑝 (Δ, 𝑖 : I)

Γ ⊢ 𝜎 :𝑝 Δ Γ ⊢ 𝜑𝜎 = 1 : F
Γ ⊢ 𝜎 :𝑝 (Δ, 𝜑)

4.3.1 Forcing. Let𝐻, 𝐼, 𝐽 , 𝐾 range over pure interval contexts, i.e., contexts of the form 𝑖0 : I, . . . , 𝑖𝑛 :
I. We define predicates 𝐼 ⊩ 𝐴 :𝑝 𝑚 (for universe 𝑚) and 𝐼 ⊩ 𝑡 :𝑝 𝐴/𝐷 where 𝐷 is a witness of
𝐼 ⊩ 𝐴 :𝑝 𝑚. We will often omit the subscript /𝐷 as the particular witness does not affect the relation.
The forcing predicates are defined akin to Huber’s computability predicates [2019], adapted to
account for erasure annotations and homogeneous composition in the universe as a canonical form.
Moreover our forcing relation is quite simplified compared to the one in loc. cit., as we retain only
the information necessary for the definition of realizability.

The predicates are defined by an outer well-founded induction on𝑚. Figure 6 gives the inductive
definition of forced types 𝐼 ⊩ 𝐴 :𝑝 𝑚 . We then define term forcing 𝐼 ⊩ 𝑡 :𝑝 𝐴/𝐷 by cases on the
derivation 𝐷 of 𝐼 ⊩ 𝐴 :𝑝 𝑚.

Univ: 𝐼 ⊩ 𝑡 :𝑝 𝑛
Glue: 𝐼 , 𝜑 ⊩ 𝑡 :𝑝 𝑇 𝐼 ⊩ unglue [𝜑 ↦→ 𝑒] 𝑡 :𝑝 𝑇0
HComp: 𝐼 , 𝜑 ⊩ 𝑡 :𝑝 𝐵 [1/𝑖] 𝐼 , 𝑖 : I, 𝜑 ⊢ 𝐵 :𝑝 U𝑛 𝐼 ⊩ hcomp-elim [𝜑 ↦→ 𝑖 .𝐵] 𝑡 :𝑝 𝐵0
Pi: ∀𝜎 𝑠. 𝐽 ⊢ 𝜎 :𝑝 𝐼 =⇒ 𝐽 ⊢ 𝑠 :𝑝𝑞 𝑆𝜎 =⇒ 𝐽 ⊩ 𝑡𝜎 𝑞𝑠 :𝑝 𝑇 [𝜎, 𝑠/𝑥]

Compiling Programs with Erased Univalence 19

Univ
𝐼 ⊢ 𝐴 ⇒∗ U𝑛 :𝑝 U𝑚 𝑛 < 𝑚

𝐼 ⊩ 𝐴 :𝑝 𝑚

Glue

𝐼 ⊢ 𝐴 ⇒∗ Glue [𝜑 ↦→ (𝑇, 𝑒)]𝑇0 :𝑝 U𝑚 𝐼 ⊢ 𝜑 ≠ 1 : F
𝐼 ⊩ 𝑇0 :𝑝 𝑚 𝐼, 𝜑 ⊩ 𝑇 :𝑝 𝑚 𝐼, 𝜑 ⊩ 𝑒 :𝑝 Equiv𝑇 𝑇0

𝐼 ⊩ 𝐴 :𝑝 𝑚

HComp

𝐼 ⊢ 𝐴 ⇒∗ hcomp𝑖U𝑛
[𝜑 ↦→ 𝐵] 𝐵0 :𝑝 U𝑚 𝑛 < 𝑚 𝐼 ⊢ 𝜑 ≠ 1 : F

𝐼 , 𝑖 : I, 𝜑 ⊩ 𝐵 :𝑝 𝑛 𝐼 ⊩ 𝐵0 :𝑝 𝑛 𝐼, 𝜑 ⊢ 𝐵 [0/𝑖] = 𝐵0 : U𝑛

𝐼 ⊩ 𝐴 :𝑝 𝑚

Pi
𝐼 ⊢ 𝐴 ⇒∗ (𝑥 :𝑞 𝑆) → 𝑇 :𝑝 U𝑚 𝐼 ⊩ 𝑆 :𝑝 𝑚 ∀𝜎. 𝐽 ⊢ 𝜎 :𝑝 (𝐼 , 𝑥 :𝑞 𝑆) =⇒ 𝐽 ⊩ 𝑇𝜎 :𝑝 𝑚

𝐼 ⊩ 𝐴 :𝑝 𝑚

Sigma
𝐼 ⊢ 𝐴 ⇒∗ (𝑥 :𝑞 𝑆) ×𝑇 :𝑝 U𝑚 𝐼 ⊩ 𝑆 :𝑝 𝑚 ∀𝜎. 𝐽 ⊢ 𝜎 :𝑝 (𝐼 , 𝑥 :𝑞 𝑆) =⇒ 𝐽 ⊩ 𝑇𝜎 :𝑝 𝑚

𝐼 ⊩ 𝐴 :𝑝 𝑚

Nat
𝐼 ⊢ 𝐴 ⇒∗ N :𝑝 U𝑚

𝐼 ⊩ 𝐴 :𝑝 𝑚
Trunc

𝐼 ⊢ 𝐴 ⇒∗ ∥𝐵∥E :𝑝 U𝑚 𝐼 ⊩ 𝐵 :𝑝 𝑚
𝐼 ⊩ 𝐴 :𝑝 𝑚

Path
𝐼 ⊢ 𝐴 ⇒∗ Path𝐵 𝑎0 𝑎1 :𝑝 U𝑚 𝐼 ⊩ 𝐵 :𝑝 𝑚 𝐼 ⊢ 𝑎0 :𝑝 𝐵 𝐼 ⊢ 𝑎1 :𝑝 𝐵

𝐼 ⊩ 𝐴 :𝑝 𝑚

Unit
𝐼 ⊢ 𝐴 ⇒∗ ⊤ :𝑝 U𝑚

𝐼 ⊩ 𝐴 :𝑝 𝑚
Empty

𝐼 ⊢ 𝐴 ⇒∗ ⊥ :𝑝 U𝑚

𝐼 ⊩ 𝐴 :𝑝 𝑚

Herein, we write 𝐼 , 𝜑 ⊩ 𝐴 :𝑝 𝑚 to mean ∀𝐽 ⊢ 𝜎 :𝑝 𝐼 . 𝐽 ⊢ 𝜑𝜎 = 1F : F =⇒ 𝐽 ⊩ 𝐴𝜎 :𝑝 𝑚.

Fig. 6. Forcing types.

Sigma: 𝐼 ⊩ 𝜋1 𝑡 :𝑝𝑞 𝑆 𝐼 ⊩ 𝜋2 𝑡 :𝑝 𝑇 [𝜋1 𝑡/𝑥]
Nat: Inductively generated by

Zero
⊢ 𝑡 ⇒∗ 0 :𝑝 N
𝐼 ⊩ 𝑡 :𝑝 N

Suc
⊢ 𝑡 ⇒∗ suc 𝑡 ′ :𝑝 N

𝐼 ⊩ 𝑡 :𝑝 N

20 Andreas Abel, Nils Anders Danielsson, and Andrea Vezzosi

Trunc: Inductively generated by

tr
𝐼 ⊢ 𝑡 ⇒∗ tr 𝑡 ′ :𝑝 ∥𝐵∥E 𝐼 ⊩ 𝑡 ′ :𝑝 𝐵

𝐼 ⊩ 𝑡 :𝑝 ∥𝐵∥E

Trunc-hcomp

𝐼 ⊢ 𝑡 ⇒∗ hcomp𝑖∥𝐵′ ∥E [𝜑 ↦→ 𝑢] 𝑢0 :𝑝 ∥𝐵∥E

𝐼 ⊢ 𝜑 ≠ 0 : F 𝐼 , 𝑗 : I, 𝜑 ⊩ 𝑢 :𝑝 ∥𝐵∥E 𝐼 ⊩ 𝑢0 :𝑝 ∥𝐵∥E

𝐼 ⊩ 𝑡 :𝑝 ∥𝐵∥E

prop

𝐼 ⊢ 𝑡 ⇒∗ trunc𝑢0 𝑢1 𝑟 :0 ∥𝐵∥E
𝐼 ⊢ 𝑟 ≠ 0 : I 𝐼 ⊢ 𝑟 ≠ 1 : I 𝐼 ⊩ 𝑢0 :0 ∥𝐵∥E 𝐼 ⊩ 𝑢1 :0 ∥𝐵∥E

𝐼 ⊩ 𝑡 :0 ∥𝐵∥E

Path: • ∀𝜎 𝑠. 𝐽 ⊢ 𝜎 :𝑝 𝐼 =⇒ 𝐽 ⊢ 𝑟 : I =⇒ 𝐽 ⊩ 𝑡 𝑟 :𝑝 𝐵
• 𝐼 ⊢ 𝑡 0 = 𝑎0 : 𝐵
• 𝐼 ⊢ 𝑡 1 = 𝑎1 : 𝐵

Unit: Unconditionally true.
Empty: False.

where we write 𝐼 , 𝜑 ⊩ 𝑡 :𝑝 𝐴 to mean ∀𝐽 ⊢ 𝜎 :𝑝 𝐼 . 𝐽 ⊢ 𝜑𝜎 = 1F : F =⇒ 𝐽 ⊩ 𝑡𝜎 :𝑝 𝐴𝜎 .
A type 𝐴 is valid in context Γ, Γ ⊩v 𝐴 , iff there is a universe level𝑚 such that 𝐼 ⊩ 𝐴𝜎 :0 𝑚 for

all 𝐼 ⊢ 𝜎 :0 Γ. We extend the forcing relation to contexts ⊩ Γ in the standard way.

⊩ 𝜀

⊩ Γ Γ ⊩v 𝐴

⊩ Γ, 𝑥 :𝑝 𝐴
⊩ Γ

⊩ Γ, 𝑖 : I
⊩ Γ

⊩ Γ, 𝜑

We make some unproved assumptions that we conjecture can be proved by extending Huber’s
canonicity proof for CTT:

Conjecture 4.1. We assume the following:

(1) Whenever 𝐼 ⊢ 𝐴 :0 U𝑛 we have 𝐼 ⊩ 𝐴 :0 𝑛.
(2) Whenever 𝐼 ⊢ 𝑡 :𝑝 𝐴 we have 𝐼 ⊩ 𝑡 :𝑝 𝐴
(3) In contexts 𝐼 , canonical forms are injective and disjoint with regard to judgmental equality.

4.3.2 Realizability. The forcing relation gives us an inductive structure on types that we exploit
to define the logical relation we are interested in. In Figure 7, we define a “realizability” relation
𝑡 ® 𝑣 : 𝐴/𝐷 between closed non-erased typed terms ⊢ 𝑡 :𝜔 𝐴 of CTT0𝜔 and closed terms 𝑣 of
the target language. Theorem 4.2 will show 𝑡 ® |𝑡 | : 𝐴, i.e., that a term is related to is erasure. The
definition of ® proceeds by recursion on 𝐷 : ⊩ 𝐴 :0 𝑚.
We also define 𝑟 ® 𝑣 : I and 𝜑 ® 𝑣 : F as follows:

• 𝑟 ® 𝑣 : I iff ⊢ 𝑟 = 𝑏 : I and 𝑣 {∗ 𝑏 for some 𝑏 ∈ {0, 1}.
• 𝜑 ® 𝑣 : F iff ⊢ 𝜑 = 𝑏 : F and 𝑣 {∗ 𝑏 ′ for some (𝑏,𝑏 ′) ∈ {(0F, 0), (1F, 1)}.

Compiling Programs with Erased Univalence 21

Univ, Glue, Unit: Relation holds unconditionally.
Empty: Relation never holds.
Pi (𝐴 ⇒∗ (𝑥 :𝑞 𝑆) → 𝑇): Holds when 𝑡 𝑞𝑠 ® 𝑣 𝑤 : 𝑇 [𝑠/𝑥] for all 𝑤 and ⊢ 𝑠 :𝑞 𝑆 that, if 𝑞 = 𝜔 ,

satisfy 𝑠 ®𝑤 : 𝑆 .
Sigma (𝐴 ⇒∗ (𝑥 :𝑞 𝑆) ×𝑇): Holds when 𝜋2 𝑡 ® 𝜋2 𝑣 : 𝑇 [𝜋1 𝑡/𝑥], and 𝜋1 𝑡 ® 𝜋1 𝑣 : 𝑆 if 𝑞 = 𝜔 .
Nat: Inductively generated by

Zero
⊢ 𝑡 ⇒∗ 0 :𝜔 N 𝑣 {∗ 0

𝑡 ® 𝑣 : N

Suc
⊢ 𝑡 ⇒∗ suc 𝑡 ′ :𝜔 N 𝑣 {∗ suc 𝑣 ′ 𝑡 ′® 𝑣 ′ : N

𝑡 ® 𝑣 : N
Trunc (𝐴 ⇒∗ ∥𝐵∥E): Inductively generated by

tr
⊢ 𝑡 ⇒∗ tr 𝑡 ′ :𝜔 ∥𝐵∥E 𝑣 {∗ tr 𝑣 ′ 𝑡 ′® 𝑣 ′ : 𝐵

𝑡 ® 𝑣 : ∥𝐵∥E

Trunc-hcomp
⊢ 𝑡 ⇒∗ hcomp𝑖∥𝐵′ ∥E [𝜑 ↦→ 𝑢] 𝑢0 :𝜔 ∥𝐵∥E ⊢ 𝜑 = 0 : F 𝑢0® 𝑣 : ∥𝐵∥E

𝑡 ® 𝑣 : ∥𝐵∥E

HComp (𝐴 ⇒∗ hcomp𝑖U𝑛
[𝜑 ↦→ 𝐵] 𝐵0 ∧ 𝜑 = 0F): Holds when hcomp-elim [0 ↦→ 𝑖 .[]] 𝑡 ® 𝑣 : 𝐵0.

Path (𝐴 ⇒∗ Path𝐵 𝑎0 𝑎1): Holds when 𝑡 𝑟 ® 𝑣 𝑤 : 𝐵 for all𝑤 and ⊢ 𝑟 : I with 𝑟 ®𝑤 : I.

Fig. 7. Realizability 𝑡 ® 𝑣 : 𝐴.

We extend realizability to substitutions of terms 𝜎 and programs 𝜌 : Given 𝐷 : ⊩ Γ, relation
𝜎 ® 𝜌 : Γ/𝐷 entails ⊢ 𝜎 :𝜔 Γ and essentially holds if it holds pointwise.

𝜀 ® 𝜀 : 𝜀
𝜎 ® 𝜌 : Γ ⊢ 𝑡 :𝑞 𝐴𝜎 𝑡 ® 𝑣 : 𝐴𝜎 when 𝑞 = 𝜔

(𝜎, 𝑡/𝑥)® (𝜌, 𝑣/𝑥) : (Γ, 𝑥 :𝑞 𝐴)

𝜎 ® 𝜌 : Γ ⊢ 𝑟 : I 𝑟 ® 𝑏 : I
(𝜎, 𝑟/𝑖)® (𝜌, 𝑏/𝑥) : (Γ, 𝑖 : I)

𝜎 ® 𝜌 : Γ ⊢ 𝜑𝜎 = 1 : F |𝜑 |𝜌 {∗ 1
𝜎 ® 𝜌 : (Γ, 𝜑)

(Here, we omitted 𝐷 but it is easy to fill in correctly.)
Given 𝐷Γ : ⊩ Γ and 𝐷𝐴 : Γ ⊩v 𝐴 we define

Γ |= 𝑡 : 𝐴 iff Γ ⊢ 𝑡 :𝜔 𝐴 and ∀𝜎 𝜌. 𝜎 ® 𝜌 : Γ =⇒ 𝑡𝜎 ® |𝑡 |𝜌 : 𝐴𝜎.

We also extend Γ |= 𝑡 : 𝐴 to I or F in place of 𝐴 in the obvious way.
Theorem 4.2 (Fundamental Theorem). Γ ⊢ 𝑡 :𝜔 𝐴 implies Γ |= 𝑡 : 𝐴
Proof. By induction on the typing derivation of Γ ⊢ 𝑡 :𝜔 𝐴, using the lemmas from Section 4.3.4.

The proof makes essential use of path closure (see Section 4.3.3). □

Corollary 4.3 (Soundness of compilation). ⊢ 𝑡 :𝜔 N implies that 𝑡 and |𝑡 | reduce to the same
numeral.

Proof. By induction on the proof of 𝑡 ® |𝑡 | : N obtained by Theorem 4.2. □

Lemma 4.4 (Expansion).
⊢ 𝐴 ⇒∗ 𝐵 :0 U𝑚 𝑡 ® 𝑣 : 𝐵

𝑡 ® 𝑣 : 𝐴
⊢ 𝑡 ⇒∗ 𝑢 :𝜔 𝐴 𝑣 {∗ 𝑤 𝑢®𝑤 : 𝐴

𝑡 ® 𝑣 : 𝐴

22 Andreas Abel, Nils Anders Danielsson, and Andrea Vezzosi

Proof. For the first implication we proceed by case splitting on ⊩ 𝐵 :0 𝑚. All of the possible
cases mention 𝐵 only in a premise of the form ⊢ 𝐵 ⇒∗ 𝑇 :0 U𝑚 , which implies ⊢ 𝐴 ⇒∗ 𝑇 :0 U𝑚 by
transitivity, so we can derive ⊩ 𝐴 :0 𝑚 with the same rule, which means 𝑡 ® 𝑣 : 𝐴 is equivalent to
𝑡 ® 𝑣 : 𝐵.

For the second implication we proceed by induction on ⊩ 𝐴 :0 𝑚. In the cases for N and ∥𝐵∥E,
we conclude directly, as they are clearly closed under expansion. In the cases for Path𝐵 𝑎0 𝑎1,
(𝑥 :𝑞 𝐴) → 𝐵, (𝑥 :𝑞 𝐴) × 𝐵, and hcomp𝑖 [𝜑 ↦→ 𝐵] 𝐵0 with 𝜑 = 0F, we proceed by using the
congruence rules for reduction of the respective elimination forms, and conclude by I.H. The other
cases are trivially true. □

4.3.3 Path Closure. In the proof of Theorem 4.2 we have to handle the fact that both transp𝑖 𝐴𝜑 𝑢0
and hcomp𝑖𝐴 [𝜑 ↦→ 𝑢] 𝑢0 are erased to |𝑢0 |, while the terms themselves might not be judgmentally
equal to 𝑢0. For example when 𝜑 is equal 1F we have that the homogeneous composition reduces
to 𝑢 [1/𝑖], which is only equal to 𝑢0 up to a path. Fortunately paths typed at 𝜔 are relatively simple,
because their use of Glue or path constructors is limited to subterms at 0, so we are able to prove
that realizability is closed under such paths in Lemma 4.8. In the following we say that a term
𝑖 : I ⊢ 𝑡 :𝑝 𝐴 connects 𝑡0 to 𝑡1 if 𝑖 : I ⊢ 𝑡 [𝑏/𝑖] = 𝑡𝑏 : 𝐴[𝑏/𝑖] for 𝑏 ∈ {0, 1}.

We write hcomp(𝑛)
𝐴

for 𝑛 iterations of hcomp𝑖𝐴 [𝜑 ↦→ 𝑢] where 𝜑 = 0F. In particular hcomp0𝐴 is
the identity. The notation overlooks the different possible 𝑢 terms but this is benign as they are all
judgmentally equal to the partial element [] and do not contribute to reduction.

Closed elements of U𝑛 that are path equal at 𝜔 can still differ in the amount of hcomp(𝑛) present.
Indeed paths in U𝑛 , applied to some interval variable 𝑖 , can have hcomp𝑗

U𝑛
[𝜑 ↦→ 𝐵] 𝐵0 as WHNF,

as long as 𝜑 is not 1. These represent the composition of at most 3 paths, 𝐵0 and 𝐵 [1/𝑖] and 𝐵 [0/𝑖].
To ease our proof of the Path Closure lemma we want to simplify out such compositions, and be left
with only paths of the form hcomp𝑗 [𝜑 ↦→ 𝐵0] 𝐵0 where 𝜑 is either 0 or 𝑖 = 𝑏 for some 𝑏 ∈ {0, 1}.

Definition 4.5 (Simple Path). We say a term 𝑖 : I ⊢ 𝑃 :𝜔 𝑋 is a simple path if it is of the form

𝑃,𝑄 ::= 𝐶 | hcomp𝑗

𝑋
[𝜑̃ ↦→ 𝑃] 𝑃 (identical 𝑃s!)

𝐶 ::= tr 𝑡 | (𝑥 :𝑝 𝐴) → 𝐵 | (𝑥 :𝑝 𝐴) × 𝐵 | U𝑛 | N | ∥𝐴∥E | ⊥ | ⊤
𝑋,𝑌 ::= U𝑛 | ∥𝐴∥E
𝜑̃ ::= 0F | (𝑖 = 0) | (𝑖 = 1)

We call paths of the form 𝑖 :𝜔 𝐼 ⊢ 𝑋 :𝜔 U𝑚 very simple. We observe that for any two very simple
paths 𝑋,𝑌 such that ⊢ 𝑋 [1/𝑖] = 𝑌 [0/𝑖] : U𝑚 there is a very simple path 𝑋𝑌 which is path-equal
to the homotopy composition of 𝑋 and 𝑌 . Moreover whenever one of 𝑋 or 𝑌 is constant in 𝑖 we
will choose 𝑋𝑌 to be equal to the other.

Lemma 4.6. Given two simple paths 𝑖 : I ⊢ 𝑃 :𝜔 𝑋 and 𝑖 : I ⊢ 𝑄 :𝜔 𝑌 such that 𝑖 : I ⊢ 𝑃 [1/𝑖] =

𝑄 [0/𝑖] : 𝑋 [1/𝑖] there is a simple path 𝑖 : I ⊢ 𝑃𝑄 :𝜔 𝑋𝑌 which is path-equal to the homotopy
composition of 𝑃 and 𝑄 .

Proof. We proceed by induction on 𝑃 and𝑄 . If 𝑃 is of the form𝐶𝑃 and𝑄 is of the form𝐶𝑄 then
they must be the same term former and we can compose their arguments with hcomp to obtain
the desired 𝑃𝑄 , as we would do for composition in an inductive type.
If 𝑃 = hcomp𝑗

𝑋
[(𝑖 = 1) ↦→ 𝑃0] 𝑃0, we recurse on 𝑃0 and 𝑄 to obtain 𝑃0𝑄 and define 𝑃𝑄 to be

hcomp𝑗

𝑋𝑌
[(𝑖 = 1) ↦→ 𝑃0𝑄] 𝑃0𝑄 . The symmetric case where 𝑄 = hcomp𝑗

𝑌
[(𝑖 = 0) ↦→ 𝑄0]𝑄0 is

analogous.
If 𝑃 = hcomp𝑗

𝑋
[0F ↦→ 𝑃0] 𝑃0 and 𝑄 = hcomp𝑗

𝑌
[0F ↦→ 𝑄0]𝑄0 then we recurse on 𝑃0 and 𝑄0 to

obtain 𝑃𝑄0 and define 𝑃𝑄 as hcomp𝑗

𝑋𝑌
[0F ↦→ 𝑃𝑄0] 𝑃𝑄0.

Compiling Programs with Erased Univalence 23

If 𝑃 = hcomp𝑗

𝑋
[0F ↦→ 𝑃0] 𝑃0 and 𝑄 = hcomp𝑗

𝑌
[(𝑖 = 1) ↦→ 𝑄0]𝑄0 then we recurse on 𝑃0 and 𝑄0

to obtain 𝑃𝑄0 and define 𝑃𝑄 as hcomp𝑗

𝑋𝑌
[(𝑖 = 1) ↦→ 𝑃𝑄0] 𝑃𝑄0.

If 𝑃 = hcomp𝑗

𝑋
[(𝑖 = 0) ↦→ 𝑃0] 𝑃0 and 𝑄 = hcomp𝑗

𝑌
[0F ↦→ 𝑄0]𝑄0 then we recurse on 𝑃0 and 𝑄0

to obtain 𝑃𝑄0 and define 𝑃𝑄 as hcomp𝑗

𝑋𝑌
[(𝑖 = 0) ↦→ 𝑃𝑄0] 𝑃𝑄0.

If 𝑃 = hcomp𝑗

𝑋
[(𝑖 = 0) ↦→ 𝑃0] 𝑃0 and 𝑄 = hcomp𝑗

U𝑛
[(𝑖 = 1) ↦→ 𝑄0]𝑄0 then we recurse on 𝑃0

and 𝑄0 to obtain 𝑃𝑄0 which we use as the definition of 𝑃𝑄 .
The other cases are ruled out by 𝑖 : I ⊢ 𝑃 [1/𝑖] = 𝑄 [0/𝑖].
In each of the above cases it is easily checked that the endpoints are preserved and the resulting

path 𝑃𝑄 is path equal to the composition. □

Lemma 4.7 (Path Simplification). Given 𝑖 : I ⊢ 𝐴 :𝜔 𝑋 there is a simple path 𝐵 which is path
equal to 𝐴 and has the same endpoints.

Proof. We proceed by induction on 𝑖 : I ⊩ 𝐴 :𝜔 𝑋 . If 𝐴 reduces to a term of the form 𝐶 we are
done. If 𝐴 reduces to hcomp𝑗

𝑋
[𝜑 ↦→ 𝐴𝜑]𝐴0 then we have the following cases

(a) 0F
(b) (𝑖 = 0) ∨ (𝑖 = 1)
(c) 𝑖 = 0
(d) 𝑖 = 1

In case (a) we recurse on 𝐴0 to obtain 𝐵0 then define 𝐵 as hcomp𝑗

𝑋
[0F ↦→ 𝐵0] 𝐵0 In the other cases

we will also recurse on the relevant 𝐴𝜑 [𝑏/𝑖] to obtain 𝐵𝑏/𝑖 with ⊢ 𝐵𝑏/𝑖 [0/ 𝑗] = 𝐵0 [𝑏/𝑖] : 𝑋 [𝑏/𝑖],
and use lemma 4.6 as explained below.

In case (c) we have 𝑗 : I ⊢ 𝐵0/𝑖 :𝜔 𝑋 [0/𝑖] and ⊢ 𝐵0/𝑖 [0/ 𝑗] = 𝐵0 [0/𝑖] : 𝑋 [0/𝑖] so we can compose
𝐵0/𝑖 [1 − 𝑗/ 𝑗] with 𝐵0 to obtain a simple path 𝑄 and then define 𝐵 as hcomp𝑗

𝑋
[𝑖 = 0 ↦→ 𝑄]𝑄 . Case

(d) is symmetric.
In case (b) we have both 𝐵0/𝑖 and 𝐵1/𝑖 . We compose 𝐵0/𝑖 [1 − 𝑗/ 𝑗] with 𝐵0 to obtain a simple path

𝑄 as before. We have 𝑄 [1/𝑖] judgmentally equal to 𝐵1/𝑖 [0/ 𝑗] so we can compose the two paths to
obtain the desired simple path 𝐵. □

Lemma 4.8 (Path Closure). Given 𝑖 : I ⊢ 𝐴 :𝜔 U𝑛 connecting𝐴0 to𝐴1 and 𝑖 : I ⊢ 𝑡 :𝜔 𝐴, connecting
𝑡0 to 𝑡1 we have that 𝑡0® 𝑣 : 𝐴0 implies 𝑡1® 𝑣 : 𝐴1.

Proof. We proceed by well-founded induction on the maximum of the height of ⊩ 𝐴0 :𝜔 U𝑛

and ⊩ 𝐴1 :𝜔 U𝑛 . We start by applying lemma 4.7 to 𝐴 obtaining a simple path 𝐵 connecting 𝐴0 to
𝐴1 and path equal to 𝐴. By comp we also obtain 𝑖 : I ⊢ 𝑢 :𝜔 𝐵 connecting 𝑡0 to 𝑡1. We proceed by
cases on 𝐵.
If 𝐵 is of the form hcomp𝑗 [𝜑̃ ↦→ 𝐵0] 𝐵0 we proceed by cases on 𝜑̃ . In case 0F we have that

both 𝐴𝑏 must reduce to types of the form hcomp(1)𝐴′
𝑏
and so 𝑡𝑏 ® 𝑣 : 𝐴𝑏 is equivalent to

(hcomp-elim [0 ↦→ []]) 𝑡𝑏 ® 𝑣 : 𝐴′
𝑏
. By applying (hcomp-elim [0 ↦→ []]) to 𝑢 we obtain a path be-

tween the new endpoints and we conclude by I.H. on𝐴′
𝑏
. In case (𝑖 = 0) we have that𝐴1 must reduce

to a type of the form hcomp(1)𝐴′
1, and so 𝑡1® 𝑣 : 𝐴1 is equivalent to (hcomp-elim [0 ↦→ []]) 𝑡1® 𝑣 :

𝐴′
1. We have that 𝐵0 connects 𝐴0 and 𝐴′

1. Applying (hcomp-elim [(𝑖 = 0) ↦→. 𝐵0]) to 𝑢 we obtain a
term in 𝐵0 that connects transp𝑗 𝐴0 𝑡0 to (hcomp-elim [0 ↦→ []]) 𝑡1. By transFill we obtain a path
with 𝑡0 as left endpoint instead. With this last path and 𝐵0 we can conclude by I.H. on 𝐴0 and 𝐴′

1.
The case (𝑖 = 1) is symmetric.

In the other cases we have that 𝐵 is built with a canonical type former other than hcomp, so that
both 𝐴𝑏 also reduce to this same type former.

24 Andreas Abel, Nils Anders Danielsson, and Andrea Vezzosi

If 𝐵 = (𝑥 :𝑞 𝑆) → 𝑇 then we have 𝐴𝑏 reducing to (𝑥 :𝑞 𝑆𝑏) → 𝑇𝑏 with 𝑆 connecting 𝑆0 to 𝑆1 and
𝑇 connecting 𝑇0 to 𝑇1. We are given𝑤 and ⊢ 𝑠1 :𝑞 𝑆1 and have to show 𝑡0

𝑞𝑠1® 𝑣 𝑤 : 𝑇1 [𝑠1/𝑥]. By
transpFill we have 𝑖 : I ⊢ 𝑠 :𝑞 𝑆 connecting some 𝑠0 to 𝑠1, so we can derive 𝑡0 𝑞𝑠0® 𝑣 𝑤 : 𝑇0 [𝑠0/𝑥]
from the assumption about 𝑡0. If 𝑞 = 𝜔 this last step additionally requires us to show 𝑠0®𝑤 : 𝑆0
which we do by I.H. on 𝑆𝑏 , which is possible because in this case 𝑆 is available at 𝜔 . Using 𝑢 and 𝑠
we build a path between the two 𝑡𝑏 𝑞𝑠𝑏 over 𝑇 [𝑠/𝑥], and conclude by I.H. on the two 𝑇𝑏 [𝑠𝑏/𝑥].

If 𝐵 = (𝑥 :𝑞 𝑆) ×𝑇 then we have 𝐴𝑏 reducing to (𝑥 :𝑞 𝑆𝑏) ×𝑇𝑏 with 𝑆 connecting 𝑆0 to 𝑆1 and
𝑇 connecting 𝑇0 to 𝑇1. If 𝑞 = 𝜔 then we can use 𝜋1 𝑢 and 𝜋2 𝑢 to create paths at 𝜔 connecting the
respective projections of 𝑡0 and 𝑡1, then we conclude by I.H. on 𝑆𝑏 and 𝑇𝑏 [𝜋1 𝑡𝑏/𝑥] respectively. If
𝑞 = 0 then we still have the path 𝜋2 𝑢 at 𝜔 , so again we can conclude by I.H. on 𝑇𝑏 [𝜋1 𝑡𝑏/𝑥].

If 𝐵 = Path 𝑆 𝑠0 𝑠1 then we have 𝐴𝑏 reducing to Path 𝑆𝑏 𝑠0𝑏 𝑠1𝑏 with the subterms connected by
the subterms of 𝐵. We are then given 𝑟 ®𝑤 : I and have to show 𝑡1 𝑟 ® 𝑣 𝑤 : 𝑆1. By the assumption
about 𝑡0 we have 𝑡0 𝑟 ® 𝑣 𝑤 : 𝑆0. We have that 𝑖 : I ⊢ 𝑢 𝑟 :𝜔 𝑆 connects the two 𝑡𝑏 𝑟 , so we can
conclude by I.H. on 𝑆𝑏 .

If 𝐵 = N then 𝑡0 and 𝑡1 reduce to the same numeral, hence they have the same realizers.
If 𝐵 = U𝑚 or 𝐵 = ⊤ or 𝐵 = ⊥ then 𝑡0® 𝑣 : 𝐴0 is equivalent to 𝑡1® 𝑣 : 𝐴1.
If 𝐵 = ∥𝑆 ∥E then we have 𝐴𝑏 reducing to ∥𝑆𝑏 ∥E with 𝑆 connecting 𝑆0 to 𝑆1. By the Path Simplifi-

cation lemma 4.7 applied to 𝑢 we obtain a simple path 𝑃 between 𝑡0 and 𝑡1. We then proceed by a
local recursion on the simple path structure of 𝑃 . If 𝑃 = tr 𝑠 then we have 𝑡𝑏 reducing to tr, 𝑠𝑏 with
𝑠 connecting 𝑠0 to 𝑠1, from 𝑡0® 𝑣 : 𝐴0 we then have 𝑣 {∗ tr 𝑣 ′ and 𝑠0® 𝑣 ′ : 𝑆0 and we conclude by
I.H on 𝑆𝑏 using the paths 𝑠 and 𝑆 . If 𝑃 = hcomp𝑗

∥𝑆 ∥E [𝜑̃ ↦→ 𝑃 ′] 𝑃 ′ then we proceed by cases on ˜𝑝ℎ𝑖 .
If ˜𝑝ℎ𝑖 = 0F then we have 𝑡𝑏 reducing to hcomp(1) 𝑡 ′

𝑏
with 𝑃 ′ connecting the two 𝑡 ′

𝑏
. We then have

𝑡0® 𝑣 : ∥𝑆0∥E equivalent to 𝑡 ′0® 𝑣 : ∥𝑆0∥E by rule hcomp. By the same rule, to show 𝑡1® 𝑣 : ∥𝑆1∥E
then it is sufficient to show 𝑡 ′1® 𝑏 : ∥𝑆1∥E, which we do by our local I.H. on 𝑃 ′. The other cases for
𝜑̃ are analogous, except only one of the two 𝑡𝑏 will reduce to an hcomp whose base is connected to
the other by 𝑃 ′. □

4.3.4 Semantic Typing Lemmas. To prove the fudamental theorem we give lemmas corresponding
to each typing rule with an 𝜔 conclusion.

transp.

Lemma 4.9 (Semantic typing of transp).

Γ, 𝑖 : I |= 𝐴 : U𝑛 Γ |= 𝜑 : F Γ, 𝑖 : I, 𝜑 ⊢ 𝐴[0/𝑖] = 𝐴 : U𝑛 Γ |= 𝑢 : 𝐴[0/𝑖]
Γ |= transp𝑖𝐴 𝜑 𝑢 : 𝐴

Proof. Given 𝜎 ® 𝜌 : Γ we have to show (transp𝑖
𝐴
𝜑 𝑢)𝜎 ® |𝑢 |𝜌 : 𝐴𝜎 . By assumption we have

𝑢𝜎 ® |𝑢 |𝜌 : 𝐴𝜎 , so we can conclude by the Path Closure Lemma 4.8 and transpFill. □

hcomp.

Lemma 4.10 (Semantic typing of hcomp).

Γ |= 𝐴 : U𝑛 Γ |= 𝜑 : F Γ, 𝑖 : I, 𝜑 |= 𝑢 : 𝐴 Γ |= 𝑢0 : 𝐴 Γ ⊢ 𝑢0 = 𝑢 [0/𝑖] : 𝐴
Γ |= hcomp𝑖𝐴 [𝜑 ↦→ 𝑢] 𝑢0 : 𝐴

Proof. Given 𝜎 ® 𝜌 : Γ we have to show (hcomp𝑖𝐴 [𝜑 ↦→ 𝑢] 𝑢0)𝜎 ® |𝑢0 |𝜌 : 𝐴𝜎 . By assumption
we have 𝑢0𝜎 ® |𝑢0 |𝜌 : 𝐴𝜎 , so we can conclude by the Path Closure Lemma 4.8 and hfill. □

Compiling Programs with Erased Univalence 25

Lemma 4.11 (Semantic typing of hcomp-intro).
Γ, 𝜑 |= 𝑡 : 𝐵 [1/𝑖] Γ |= 𝑎 : 𝐴 Γ, 𝜑 ⊢ transp𝑗 𝐵 [1 − 𝑗/𝑖] 0 𝑡 = 𝑎 : 𝐴 Γ, 𝜑, 𝑖 :𝜔 |= 𝐵 : U𝑛

Γ |= hcomp-intro𝑛,𝑖.𝐵 [𝜑 ↦→ 𝑡] 𝑎 : hcomp𝑖 [𝜑 ↦→ 𝐵]𝐴

Proof. Given𝜎 ® 𝜌 : Γwehave to show (hcomp-intro𝑛,𝑖.𝐵 [𝜑 ↦→ 𝑡] 𝑎)𝜎 ® |𝑎 |𝜌 : (hcomp𝑖 [𝜑 ↦→ 𝐵]𝐴)𝜎 .
We proceed by cases on ⊢ 𝜑𝜎 :𝜔 F.

Case 𝜑𝜎 = 0: then hcomp𝑖 [𝜑𝜎 ↦→ 𝐵 [𝜎, 𝑖]]𝐴𝜎 is canonical and we have to show
hcomp-elim [𝜑𝜎 ↦→ 𝑖 .𝐵 [𝜎, 𝑖]] ((hcomp-intro𝑛,𝑖.𝐵 [𝜑 ↦→ 𝑡] 𝑎)𝜎)® |𝑎 |𝜌 : hcomp𝑖 [𝜑𝜎 ↦→ 𝐵 [𝜎, 𝑖]]𝐴𝜎
by the Expansion Lemma 4.4 it is suffienct to show 𝑎𝜎 is related to |𝑎 |𝜌 , which we have by
assumption.
Case 𝜑𝜎 = 1: then hcomp𝑖 [𝜑𝜎 ↦→ 𝐵 [𝜎, 𝑖]]𝐴𝜎 reduces to 𝐵 [𝜎, 1], and hcomp-intro𝑛,𝑖.𝐵 [𝜑 ↦→

𝑡] 𝑎)𝜎 reduces to 𝑡𝜎 , so by the Expansion Lemma 4.4 it is sufficient to show 𝑡𝜎 ® |𝑎 |𝜌 : 𝐵 [𝜎, 1].
What we have is 𝑎𝜎 ® |𝑎 |𝜌 : 𝐴 and Γ ⊢ transp𝑗 𝐵 [1 − 𝑗/𝑖] 0 𝑡 = 𝑎 : 𝐴, so by transpFill we also have
a term 𝑖 : I ⊢ 𝑝 :𝜔 𝐵 [𝜎, 𝑖] such that ⊢ 𝑝 [0/𝑖] = 𝑎 : 𝐴𝜎 and ⊢ 𝑝 [1/𝑖] = 𝑡𝜎 : 𝐵 [𝜎, 1] and we conclude
with the Path Closure Lemma 4.8. □

Lemma 4.12 (Semantic typing of hcomp-elim).
Γ, 𝑖 : I, 𝜑 |= 𝐵 : U𝑛 Γ |= 𝐴 : U𝑛 Γ, 𝜑 ⊢ 𝐵 [0/𝑖] = 𝐴 Γ |= 𝑢 : hcomp𝑖U𝑛

[𝜑 ↦→ 𝐵]𝐴
Γ |= hcomp-elim [𝜑 ↦→ 𝑖 .𝐵] 𝑢 : 𝐴

Proof. Given 𝜎 ® 𝜌 : Γ we have to show (hcomp-elim [𝜑 ↦→ 𝑖 .𝐵] 𝑢)𝜎 ® |𝑢 |𝜌 : 𝐴. We proceed
by cases on 𝜑𝜎 .

Case 𝜑𝜎 = 0, then (hcomp𝑖U𝑛
[𝜑 ↦→ 𝐵]𝐴)𝜎 is canonical and the lemma follows by the assumption

about 𝑢 and the definition of realizability for this type.
Case 𝜑𝜎 = 1, then (hcomp𝑖U𝑛

[𝜑 ↦→ 𝐵]𝐴)𝜎 reduces to 𝐵 [𝜎, 1] and (hcomp-elim [𝜑 ↦→ 𝑖 .𝐵] 𝑢)𝜎
reduces to transp𝑗 𝐵 [𝜎, 1 − 𝑗/𝑖] 0𝑢𝜎 , so by the Expansion Lemma 4.4 it is sufficient to show
transp𝑗 𝐵 [𝜎, 1 − 𝑗/𝑖] 0𝑢𝜎 ® |𝑢 |𝜌 : 𝐵 [𝜎, 1]. We have𝑢𝜎 ® |𝑢 |𝜌 : 𝐵 [𝜎, 0] sowe conclude by transpFill
and the Path Closure Lemma 4.8. □

Propositional Truncation.

Lemma 4.13. Γ |= 𝐴 : U𝑛 implies Γ |= ∥𝐴∥E : U𝑛

Proof. We have to show ∥𝐴∥E𝜎 ® |∥𝐴∥E |𝜌 : U𝑛 , i.e., ∥𝐴∥E𝜎 ® : U𝑛 which holds by definition.
□

Lemma 4.14. Γ |= 𝑡 : 𝐴 implies Γ |= tr 𝑡 : ∥𝐴∥E

Proof. Given 𝜎 ® 𝜌 : Γ we have to show tr 𝑡𝜎 ® tr |𝑡 |𝜌 : ∥𝐴∥E. This follows by rule tr. □

Lemma 4.15.
Γ ⊢ 𝐴 Γ, 𝑥 :𝜔 ∥𝐴∥E |= 𝐶 : U𝑛 Γ, 𝑥 :𝜔 𝐴 |= 𝑡 : 𝐶 [tr𝑥/𝑥]

Γ, 𝑥 𝑦 :0 ∥𝐴∥E, 𝑖 : I ⊢ 𝑢 :0 𝐶 [trunc𝑥 𝑦 𝑖/𝑥] [𝑖 = 0 ↦→ 𝑥, 𝑖 = 1 ↦→ 𝑦] Γ |= 𝑤 : ∥𝐴∥E

Γ |= ∥∥E-elim (𝑥 .𝐶) (𝑥 .𝑡) (𝑥 .𝑦.𝑖 .𝑢)𝑤 : 𝐶 [𝑤/𝑥]

Proof. Let us write 𝑓 for ∥∥E-elim (𝑥 .𝐶 [𝜎, 𝑥]) (𝑥 .𝑡 [𝜎, 𝑥]) (𝑥 .𝑦.𝑖 .𝑢 [𝜎, 𝑥,𝑦, 𝑖]). Given 𝜎 ® 𝜌 : Γ we
have to show 𝑓 𝑤𝜎 ® ∥∥E-elim (𝑥 .|𝑡 | [𝜌, 𝑥]) |𝑤 |𝜌 : 𝐶 [𝜎,𝑤𝜎], let us call the two terms 𝑐 and 𝑣 . We
have𝑤𝜎 ® |𝑤 |𝜌 : ∥𝐴∥E, we proceed by induction on its proof.

Case tr: we derive ⊢ 𝑐 ⇒∗ 𝑡 [𝜎, 𝑡 ′] :𝜔 𝐶 [𝜎, tr 𝑡 ′] and 𝑣 {∗ |𝑡 | [𝜌, |𝑣 ′ |]. By the Expansion
Lemma 4.4, the assumption for 𝑥 .𝑡 and 𝑡 ′® 𝑣 ′ : ∥𝐴∥E we are done.

26 Andreas Abel, Nils Anders Danielsson, and Andrea Vezzosi

Case Trunc-hcomp: we derive ⊢ 𝑐 ⇒∗ 𝑐 ′ :𝜔 𝐶 [𝜎, tr 𝑡 ′] where 𝑐 ′ is a composition with base
𝑓 𝑢0. From 𝑢0® 𝑣 : ∥𝐵∥E we obtain 𝑓 𝑢0® 𝑣 : 𝐶 [𝜎,𝑢0] by IH. Since 𝑐 ′ is path equal to 𝑓 𝑢0
we conclude by applying the Path Closure Lemma 4.8 and then the Expansion Lemma 4.4.

□

Path.

Lemma 4.16 (Semantic typing of Path). Γ |= Path𝐴𝑎0 𝑎1 : U𝑛

Proof. trivial □

Lemma 4.17 (Semantic typing of path abstraction).
Γ ⊢ 𝐴 Γ ⊢ 𝑎0, 𝑎1 :0 𝐴 Γ, 𝑖 : I |= 𝑡 : 𝐴 Γ ⊢ 𝑡 [𝑏/𝑖] = 𝑎𝑏 : 𝐴

Γ |= 𝜆𝑖.𝑡 : Path𝐴𝑎0 𝑎1
Proof. Given 𝜎 ® 𝜌 : Γ and 𝑟 ®𝑤 : I we have to show (𝜆𝑖. 𝑡)𝜎 𝑟 ® |𝜆𝑖. 𝑡 |𝜌 𝑤 : 𝐴. By definition

of |𝜆𝑖. 𝑡 | and the Expansion Lemma 4.4 it is sufficient to show 𝑡 (𝜎, 𝑟)® |𝑡 | (𝜌,𝑤) : 𝐴, which follows
from the premise about 𝑡 . □

Lemma 4.18 (Semantic typing of path application).
Γ ⊢ 𝐴 Γ ⊢ 𝑎0, 𝑎1 :0 𝐴 Γ |= 𝑡 : Path𝐴𝑎0 𝑎1 Γ |= 𝑟 : I

Γ |= 𝑡 𝑟 : 𝐴

Proof. Given 𝜎 ® 𝜌 : Γ we have to show 𝑡𝜎 𝑟𝜎 ® |𝑡 |𝜌 |𝑟 |𝜌 : 𝐴, which follows directly by the
assumptions about 𝑡 and 𝑟 . □

Empty and Unit Types.

Lemma 4.19 (Semantic typing of ⊥ and ⊤). Γ |= ⊥ : U𝑛 and Γ |= ⊤ : U𝑛

Proof. trivial. □

Lemma 4.20 (Semantic typing of ⟨⟩). Γ |= ⟨⟩ : ⊤

Proof. trivial. □

Lemma 4.21 (Semantic typing of ⊥-elim𝐴 𝑡).
Γ |= 𝑡 : ⊥

Γ |= ⊥-elim𝐴 𝑡 : 𝐴

Proof. Given 𝜎 ® 𝜌 : Γ we have to show (⊥-elim𝐴 𝑡)𝜎 ® |⊥-elim𝐴 𝑡 |𝜌 : 𝐴𝜎 . From Γ |= 𝑡 : ⊥ we
obtain 𝑡𝜎 ® |𝑡 |𝜌 : ⊥ which is a contradiction. □

Function Types.

Lemma 4.22.
Γ ⊢ 𝐴 :𝑞 U𝑚 Γ, 𝑥 :𝑞 𝐴 |= 𝐵 : U𝑛

Γ |= (𝑥 :𝑞 𝐴) → 𝐵 : Umax(𝑚,𝑛)

Proof. trivial □

Lemma 4.23.
Γ, 𝑥 :𝑞 𝐴 |= 𝑡 : 𝐵

Γ |= 𝜆𝑥𝑞 . 𝑡 : (𝑥 :𝑞 𝐴) → 𝐵

Compiling Programs with Erased Univalence 27

Proof. Given 𝜎 ® 𝜌 : Γ we have to show (𝜆𝑥𝑞 . 𝑡)𝜎 ® |𝜆𝑥𝑞 . 𝑡 |𝜌 : ((𝑥 :𝑞 𝐴) → 𝐵)𝜎 . We proceed
by cases on 𝑞.

𝑞 = 𝜔 : then given 𝑎®𝑤 : 𝐴𝜎 , by Expansion (Lemma 4.4) we have to show 𝑡 (𝜎, 𝑎)® |𝑡 | (𝜌,𝑤) :
𝐵 [𝜎, 𝑎/𝑥] which follows from the assumption about 𝑡 .

𝑞 = 0: then given ⊢ 𝑎 :0 𝐴𝜎 , by Expansion (Lemma 4.4) we have to show 𝑡 (𝜎, 𝑎)® |𝑡 | (𝜌,) :
𝐵 [𝜎, 𝑎/𝑥] which follows from the assumption about 𝑡 .

□

Lemma 4.24.
Γ |= 𝑡 : (𝑥 :𝜔 𝐴) → 𝐵 Γ |= 𝑢 : 𝐴

Γ |= 𝑡 𝜔𝑢 : 𝐵 [𝑢/𝑥]

Proof. Given 𝜎 ® 𝜌 : Γ we have to show 𝑡𝜎 𝜔𝑢𝜎 ® |𝑡 |𝜌 |𝑢 |𝜌 : 𝐵 [𝑢/𝑥]𝜎 . This follows directly by
the definition of Γ |= 𝑡 : (𝑥 :𝜔 𝐴) → 𝐵. □

Lemma 4.25.
Γ |= 𝑡 : (𝑥 :0 𝐴) → 𝐵 Γ ⊢ 𝑢 :0 𝐴

Γ |= 𝑡 0𝑢 : 𝐵 [𝑢/𝑥]

Proof. Given 𝜎 ® 𝜌 : Γ we have to show 𝑡𝜎 0𝑢𝜎 ® |𝑡 |𝜌 : 𝐵 [𝑢/𝑥]𝜎 . This follows directly by the
definition of Γ |= 𝑡 : (𝑥 :0 𝐴) → 𝐵. □

Product Types.

Lemma 4.26.
Γ ⊢ 𝐴 :𝑝 U𝑚 Γ, 𝑥 :𝑞 𝐴 ⊢ 𝐵 :𝑝 U𝑛

Γ |= (𝑥 :𝑞 𝐴) × 𝐵 : Umax(𝑚,𝑛)

Proof. trivial. □

Lemma 4.27.
Γ |= 𝑡1 : 𝐴 Γ |= 𝑡2 : 𝐵 [𝑡1/𝑥]
Γ |= ⟨𝜔𝑡1, 𝑡2⟩ : (𝑥 :𝜔 𝐴) × 𝐵

Γ ⊢ 𝑡1 :0 𝐴 Γ |= 𝑡2 : 𝐵 [𝑡1/𝑥]
Γ |= ⟨0𝑡1, 𝑡2⟩ : (𝑥 :0 𝐴) × 𝐵

Proof. In either case we are given 𝜎 ® 𝜌 : Γ and have to show ⟨𝑞𝑡1, 𝑡2⟩𝜎 ® |⟨𝑞𝑡1, 𝑡2⟩|𝜌 :
((𝑥 :𝑞 𝐴) × 𝐵)𝜎 . If 𝑞 = 𝜔 we then have to show both
(1) 𝜋1 ⟨𝑞𝑡1, 𝑡2⟩𝜎 ® 𝜋1 |⟨𝑞𝑡1, 𝑡2⟩|𝜌 : 𝐴𝜎
(2) 𝜋2 ⟨𝑞𝑡1, 𝑡2⟩𝜎 ® 𝜋2 |⟨𝑞𝑡1, 𝑡2⟩|𝜌 : 𝐵 [𝜎, 𝜋1 ⟨𝑞𝑡1, 𝑡2⟩𝜎].

By Expansion (Lemma 4.4) it is sufficient to show 𝑡1𝜎 ® |𝑡1 |𝜌 : 𝐴 and 𝑡2𝜎 ® |𝑡2 |𝜌 : 𝐵 [𝜎, 𝜋1 ⟨𝑞𝑡1, 𝑡2⟩𝜎],
which follow from the assumptions. If𝑞 = 0 thenwe have only to show𝜋2 ⟨𝑞𝑡1, 𝑡2⟩𝜎 ® 𝜋2 |⟨𝑞𝑡1, 𝑡2⟩|𝜌 :
𝐵 [𝜎, 𝜋1 ⟨𝑞𝑡1, 𝑡2⟩𝜎], which follows for the same reason as above. □

Lemma 4.28.
Γ |= 𝑡 : (𝑥 :𝜔 𝐴) × 𝐵

Γ |= 𝜋1 𝑡 : 𝐴
Γ |= 𝑡 : (𝑥 :𝑞 𝐴) × 𝐵
Γ |= 𝜋2 𝑡 : 𝐵 [𝜋1 𝑡/𝑥]

Proof. Both implications follow directly from the definition of Γ |= 𝑡 : (𝑥 :𝑞 𝐴) × 𝐵. □

28 Andreas Abel, Nils Anders Danielsson, and Andrea Vezzosi

Variables.

Lemma 4.29.
⊢ Γ (𝑥 :𝑞 𝐴) ∈ Γ 𝑞 ≤ 𝜔

Γ |= 𝑥 : 𝐴

Proof. Given 𝜎 ® 𝜌 : Γ we have to show 𝑥𝜎 ® 𝑥𝜌 : 𝐴𝜎 We have that 𝑞 ≤ 𝜔 implies 𝑞 = 𝜔 , so
we only have to lookup what we need in 𝜎 ® 𝜌 : Γ. □

Interval and Formulas.

Lemma 4.30.
Γ ⊢ 𝑟 : I
Γ |= 𝑟 : I

Γ ⊢ 𝜑 : F
Γ |= 𝜑 : F

Proof. Given 𝜎 ® 𝜌 : Γ we have to show 𝑟𝜎 ® 𝑟𝜌 : I and 𝜑𝜎 ® 𝜑𝜌 : F. For any interval
variable 𝑖 in Γ we have that 𝜎 (𝑖) and 𝜌 (𝑖) agree on whether it is mapped to 0 or 1, and the rest is
about calculating with boolean algebra expressions. □

Systems.

Lemma 4.31.
Γ, 𝜑1 |= 𝑡 : 𝐴 . . . Γ, 𝜑𝑛 |= 𝑡 : 𝐴 Γ ⊢ (𝜑1 ∨ . . . ∨ 𝜑𝑛) = 1F : F

Γ |= 𝑡 : 𝐴

Proof. Given 𝜎 ® 𝜌 : Γ we have to show 𝑡𝜎 ® 𝑡𝜌 : 𝐴𝜎 . We have 𝜀 ⊢ (𝜑1 ∨ . . . ∨ 𝜑𝑛)𝜎 = 1F : F,
which implies there is a 𝜑𝑘 such that 𝜀 ⊢ 𝜑𝑘𝜎 = 1F : F, hace we also have 𝜎 ® 𝜌 : Γ, 𝜑𝑘 so we
conclude with the correponding premise. □

Lemma 4.32.
Γ, 𝜑𝑘 |= 𝑡𝑘 : 𝐴 (∀𝑘) Γ, 𝜑𝑘 ∧ 𝜑𝑙 ⊢ 𝑡𝑘 = 𝑡𝑙 : 𝐴 (∀𝑘 ≠ 𝑙) Γ ⊢ (𝜑1 ∨ . . . ∨ 𝜑𝑛) = 1F : F

Γ |= [𝜑1 ↩→ 𝑡1, . . . , 𝜑𝑛 ↩→ 𝑡𝑛] : 𝐴

Proof. Given 𝜎 ® 𝜌 : Γ we have to show
[𝜑1𝜎 ↩→ 𝑡1𝜎, . . . , 𝜑𝑛𝜎 ↩→ 𝑡𝑛𝜎]® [|𝜑1 |𝜌 ↩→ |𝑡1 |𝜌, . . . , |𝜑𝑛 |𝜌 ↩→ |𝑡𝑛 |𝜌] : 𝐴𝜎

as before we have a 𝜑𝑘 such that 𝜑𝑘𝜎 is equal to 1F, in particular we have a minimal such 𝑘 . Then
also |𝜑𝑘 |𝜌 {∗ 1 while |𝜑 𝑗 |𝜌 {∗ 0 for 𝑗 < 𝑘 . We conclude by the Expansion lemma 4.4 and the
premise for 𝑡𝑘 . □

Naturals.

Lemma 4.33.
⊢ Γ

Γ |= N : U𝑛

⊢ Γ

Γ |= zero : N
Γ |= 𝑡 : N

Γ |= suc 𝑡 : U𝑛

Proof. The first implication is trivial. The other two follow directly by the definition of 𝑡 ® 𝑣 :
N. □

Lemma 4.34.
Γ, 𝑥 :𝜔 N ⊢ 𝐴 Γ |= 𝑧 : 𝐴[zero/𝑥] Γ, 𝑥 :𝑞 N, 𝑦 :𝑟 𝐴 |= 𝑠 : 𝐴[suc𝑥/𝑥] Γ |= 𝑡 : N

Γ |= N-elim𝑥.𝐴 𝑧 (𝑥𝑞𝑦𝑟 .𝑠) 𝑡 : 𝐴[𝑡/𝑥]

Compiling Programs with Erased Univalence 29

Proof. Given 𝜎 ® 𝜌 : Γ we have to show N-elim𝑥.𝐴 𝑧 (𝑥𝑞𝑦𝑟 .𝑠) 𝑡𝜎 ®N-elim |𝑧 | (𝑥𝑦 .|𝑠 |) |𝑡 |𝜌 :
𝐴[𝜎, 𝑡]. We proceed by induction on 𝑡𝜎 ® |𝑡 |𝜌 : N.

Case Zero here both 𝑡𝜎 and |𝑡 |𝜌 reduce to zero so by the Expansion Lemma 4.4 we conclude
with 𝑧𝜎 ® |𝑧 |𝜎 : 𝐴𝜎 which we get by assumption.

Case Suc ⊢ 𝑡𝜎 ⇒∗ suc 𝑡 ′ :𝜔 N and |𝑡 |𝜌 {∗ suc 𝑣 ′ with 𝑡 ′® 𝑣 ′ : N. Then by the Expansion
Lemma 4.4 it is sufficient to show

𝑠 [𝜎, 𝑡 ′,N-elim𝑥.𝐴 [𝜎,𝑥] (𝑧𝜎𝑥𝑞𝑦 .𝑟) 𝑠 [𝜎, 𝑥,𝑦]𝑡 ′]® |𝑠 | [𝜌, 𝑣 ′,N-elim |𝑧 |𝜌 (𝑥𝑞𝑦𝑟 .|𝑠 | [𝜎, 𝑥,𝑦]) 𝑣 ′] : 𝐴[𝜎, suc 𝑡 ′]
which follows from the assumption about 𝑠 and the I.H. on 𝑡 ′® 𝑣 ′ : N.

□

5 THE IMPLEMENTATION
We have implemented a variant of Cubical Agda based on the ideas presented in this text. This
variant is activated through the use of the flag --erased-cubical. We do not present all details of
the implementation here, just some key points.

The implementation uses typing rules similar to those presented in Section 4.1. Agda has several
compiler backends, and we have focused mainly on the one that generates Haskell code. The
implementation of this backend is based on the erasure function presented in Figure 2. For instance,
the interval is compiled as the type of booleans: 0 is turned into False, and 1 to True.

6 A CASE STUDY
Let us now present a case study that shows that one can do something useful with the variant of
Cubical Agda that we have introduced, in which univalence can only be used in erased contexts,
and higher constructors must be erased. First we present equivalences with erased proofs and a
non-recursive variant of ∥_∥E (15), and then we move on to the main focus of the case study: higher
lenses with erased proofs.
For every numbered definition or type signature in this section there is a corresponding piece

of code in the accompanying Agda code. Some, but not all, numbered definitions above are also
included in the accompanying code. (There are small differences between the code and the text.)

6.1 Equivalences with Erased Proofs
Recall that the type of equivalences was defined above (17). The following definition states that a
function is an equivalence with erased proofs:

Is-equivalenceE : {A : Type a} {B : Type b} → (A→ B) → Type (a ⊔ b)
Is-equivalenceE {A = A} {B = B} f =
(f −1 : B → A) ×
Erased ((f -f −1 : ∀ x → f (f −1 x) ≡ x) × (f −1-f : ∀ x → f −1 (f x) ≡ x) ×

∀ x → cong f (f −1-f x) ≡ f -f −1 (f x))

(36)

The definition uses Erased (25). If Erased is removed, then we get the usual definition of what it
means to be a half adjoint equivalence (16). The type A ≃E B states that there is an equivalence
with erased proofs from A to B:

≃E : Type a → Type b → Type (a ⊔ b)
A ≃E B = (f : A → B) × Is-equivalenceE f

(37)

If eq has type A ≃E B, then we use to eq to denote the function (the first component), and from eq
to denote the inverse (the second component). Note that the remaining components are erased.
They can still be used in erased contexts:

30 Andreas Abel, Nils Anders Danielsson, and Andrea Vezzosi

@0 to-from : (eq : A ≃E B) → ∀ x → to eq (from eq x) ≡ x
to-from (_ , _ , [(eq , _)]) = eq

(38)

@0 from-to : (eq : A ≃E B) → ∀ x → from eq (to eq x) ≡ x
from-to (_ , _ , [(_ , eq , _)]) = eq

(39)

In erased contexts Erased A is equivalent to A:

@0 Erased≃ : Erased A ≃ A (40)

Thus A ≃E B and A ≃ B are equivalent in erased contexts. Another thing to note is that, whenever
there is an erased equivalence between A and B, then Erased A and Erased B are equivalent
[Danielsson 2019]:

{@0 A : Type a} {@0 B : Type b} →@0 A ≃ B → Erased A ≃ Erased B (41)

This fact is used in several proofs discussed below.
The proof of the following preservation result makes use of the fact that the argument of Q is

erased:
{Q : @0 B → Type q} (eq1 : A ≃E B) (eq2 : ∀ x → P x ≃E Q (to eq1 x)) →
((x : A) × P x) ≃E ((x : B) × Q x) (42)

The right-to-left direction is defined in the following way:

𝜆 (x , y) → from eq1 x , from (eq2 (from eq1 x)) (substE Q (sym (to-from eq1 x)) y)

Here sym is a proof of symmetry for paths, and substE is defined in the following way, using
[]-cong (35) and a variant of subst (30) for paths:

substE : {@0 A : Type a} {@0 x y : A} (P : @0 A → Type p) → @0 x ≡ y → P x → P y
substE P eq = subst (𝜆 ([x]) → P x) ([]-cong [eq]) (43)

subst : (P : A → Type p) → x ≡ y → P x → P y
subst P eq p = transp (𝜆 i → P (eq i)) 0 p (44)

Note that, while the definition of substE is similar to some problematic definitions from Section 3,
it is fine because P takes an erased argument. In the implementation of the right-to-left direction
above we can use the erased definition to-from because the path argument of substE is erased.

As an example of what Lemma 42 can be used for we have the following lemma:

{P : @0 A → Type p} → (eq : A ≃E ⊤) → ((x : A) × P x) ≃E P (from eq tt) (45)

We can calculate in the following way, using Lemma 42 in the first step:

((x : A) × P x) ≃E ((x : ⊤) × P (from eq x)) ≃ P (from eq tt)

Lemma 42 requires that the argument of Q is erased. If this is not the case, then one can in some
cases use the following lemma instead (the proof is omitted):

(f : A → B) (f −1 : B → A) → (∀ x → f (f −1 x) ≡ x) →@0 (∀ x → f −1 (f x) ≡ x) →
(∀ x → P x ≃E Q (f x)) → ((x : A) × P x) ≃E ((x : B) × Q x) (46)

However, this lemma may be harder to use: note that one of the equality proof arguments is not
erased. The lemma can be used to prove the following variant of Lemma 45:

(eq : A ≃E ⊤) → (∀ x y → P x ≃E P y) → ((x : A) × P x) ≃E P (from eq tt) (47)

Compiling Programs with Erased Univalence 31

Here P is not required to take an erased argument, but in return one has to prove that P is weakly
constant, up to equivalences with erased proofs. (When P is omitted from a type signature its type
is an instance of A → Type p.)

6.2 A Non-recursive Definition of the Propositional Truncation Operator
Van Doorn [2016] presents a definition of the propositional truncation operator that does not use
any recursive higher inductive types (it uses the natural numbers). This definition makes use of
two non-recursive higher inductive types, the one-step truncation and the sequential colimit:

data ∥_∥1 (A : Type a) : Type a where
|_| : A → ∥ A ∥1
||-constant : ∀ x y → | x | ≡ | y |

(48)

data Colimit (P : N→ Type p) (step : ∀ {n} → P n → P (suc n)) : Type p where
|_| : P n → Colimit P step
|step| : (x : P n) → | step x | ≡ | x |

(49)

The sequential colimit has the following universal property:

{step : ∀ {n} → P n → P (suc n)} →
(Colimit P step → B) ≃ ((f : ∀ n → P n → B) × ∀ n x → f (suc n) (step x) ≡ f n x) (50)

The one-step truncation can be iterated (we include “out” in the name, following Capriotti et al.
[2021], because the final application of the one-step truncation is on the outside):

∥_∥1-out : Type a → N→ Type a
∥ A ∥1-out zero = A
∥ A ∥1-out (suc n) = ∥ ∥ A ∥1-out n ∥1

(51)

The non-recursive definition of the propositional truncation operator can now be defined in the
following way:

∥_∥N : Type a → Type a
∥ A ∥N = Colimit ∥ A ∥1-out |_| (52)

This definition is equivalent to the recursive one presented above (10).
Above we defined a variant of the propositional truncation operator with an erased higher

constructor, ∥_∥E (15). Let us now present a non-recursive variant of this operator, following Van
Doorn. We use the following variant of the sequential colimit:

data ColimitE (P0 : Type p0) (@0 P+ : N→ Type p+) (@0 step0 : P0 → P+ zero)
(@0 step+ : ∀ {n} → P+ n → P+ (suc n)) : Type (p0 ⊔ p+) where

|_|0 : P0 → ColimitE P0 P+ step0 step+
@0 |_|+ : P+ n → ColimitE P0 P+ step0 step+
@0 |step0|+ : (x : P0) → | step0 x |+ ≡ | x |0
@0 |step+|+ : (x : P+ n) → | step+ x |+ ≡ | x |+

(53)

Note that both higher constructors are erased, as well as one of the point constructors. This variant
of the sequential colimit has the following universal property:

32 Andreas Abel, Nils Anders Danielsson, and Andrea Vezzosi

{@0 P+ : N→ Type p+}
{@0 step0 : P0 → P+ zero} {@0 step+ : ∀ {n} → P+ n → P+ (suc n)} →
(ColimitE P0 P+ step0 step+ → B) ≃
((f 0 : P0 → B) × Erased ((f + : ∀ n → P+ n → B) ×

(∀ x → f + zero (step0 x) ≡ f 0 x) ×
(∀ n x → f + (suc n) (step+ x) ≡ f + n x)))

(54)

A function from the sequential colimit ColimitE P0 P+ step0 step+ is equivalent to a function from
P0, along with some erased information.
We can now define a non-recursive variant of ∥_∥E in the following way:
∥_∥NE : Type a → Type a
∥ A ∥NE = ColimitE A (∥ A ∥1-out ◦ suc) |_| |_| (55)

Note that it is fine to use the one-step truncation with a non-erased higher constructor in the second
argument of ColimitE, because this argument is erased. This definition is pointwise equivalent to
the other one:

∥ A ∥NE ≃ ∥ A ∥E (56)

6.3 Higher Lenses with Erased Proofs
Capriotti et al. [2021] introduce higher lenses, variants of total, very well-behaved lenses [Foster
et al. 2005] for which proofs that imply the lens laws are included in the data structures. These
data structures are intended to work well in homotopy type theory/univalent foundations.

Capriotti et al. present several definitions of higher lenses. Here is one of them:
record LensE (A : Type a) (B : Type b) : Type (lsuc (a ⊔ b)) where
field R : Type (a ⊔ b); equiv : A ≃ R × B; inhabited : R→ ∥ B ∥ (57)

A higher lens based on equivalences (“E”) from the source type A to the view type B is a remainder
type R, an equivalence between A and the Cartesian product of R and B, and a function from R to
the propositional truncation of B.
This data structure contains data that might not be needed at run-time. Let us assume that all

we need at run-time is to be able to use the associated getter and setter, which can be defined using
the two directions of the equivalence (following Van Laarhoven [2011]):

get : LensE A B → A → B (58)
set : LensE A B → A→ B → A (59)

In that case we can make some parts of the data structure erased (the second “E” stands for “erased”):
record LensEE (A : Type a) (B : Type b) : Type (lsuc (a ⊔ b)) where
field R : Type (a ⊔ b); equiv : A ≃E R × B; @0 inhabited : R→ ∥ B ∥ (60)

All that remains at run-time is the type R and the two directions of the equivalence. One might
have hoped that it would be possible to mark R as erased, but as noted in Section 3 our system does
not allow this (even though the erasure function in Figure 2 does erase types).

Note that the types of higher lenses given above are large (the resulting universe level includes
lsuc). Capriotti et al. also present a small definition. This definition uses the notion of a fibre [The
Univalent Foundations Program 2013], a kind of proof-relevant preimage:

−1 : {A : Type a} {B : Type b} → (A→ B) → B → Type (a ⊔ b)
f −1 y = ∃ x × f x ≡ y

(61)

Compiling Programs with Erased Univalence 33

(We use the notation ∃ x × P x for Σ-types when we do not want to write out the type of the first
component.) A coinductive higher lens consists of a getter and a proof showing that the family of
fibres of the getter is coherently constant:

LensC : Type a → Type b → Type (a ⊔ b)
LensC A B = (get : A → B) × Coherently-constantC (get −1_) (62)

This definition is called coinductive because Coherently-constantC is defined coinductively. We do
not include the definition here, only its type signature:

Coherently-constantC : {A : Type a} → (A → Type p) → Type (a ⊔ p) (63)

Let us now present a variant of the small, coinductive higher lenses which at run-time consists
of nothing but a getter and a setter. We build on the definition of LensC above: we include a getter,
and an erased proof cc showing that the family of fibres of the getter is constant. However, we also
want to include a non-erased setter. We do this, and then we add an erased field ensuring that this
setter is equal to the setter obtained from get and cc (using the function LensC .set):

record LensCE (A : Type a) (B : Type b) : Type (a ⊔ b) where
field get : A → B; set : A → B → A; @0 cc : Coherently-constantC (get −1_)

@0 set≡set : set ≡ LensC .set (get , cc)
(64)

6.4 The Definitions Are Equivalent
How is LensEE related to LensCE? These two types are pointwise equivalent (with erased proofs):

LensEE A B ≃E LensCE A B (65)

We do not include all details of the proof of this equivalence, but only some highlights intended to
illustrate some lemmas and techniques that can be used when proving things in this setting. The
full proof is available in the accompanying code, along with a proof (in an erased context) showing
that the equivalence preserves getters and setters.

We proved the equivalence by going via two other representations of lenses:

LensEE A B ≃E LensE1 A B ≃E LensE2 A B ≃E LensCE A B

Both of these representations are similar to LensC (but large):

LensE1 : Type a → Type b → Type (lsuc (a ⊔ b))
LensE1 A B = (get : A → B) × Coherently-constantE1 (get −1E_) (66)

LensE2 : Type a → Type b → Type (lsuc (a ⊔ b))
LensE2 A B = (get : A → B) × Coherently-constantE2 (get −1E_) (67)

They use a variant of the definition of fibres (61) with an erased equality proof:

−1E : {A : Type a} {@0 B : Type b} →@0 (A → B) →@0 B → Type (a ⊔ b)
f −1E y = ∃ x × Erased (f x ≡ y) (68)

The type family Coherently-constantE1 is defined in the following way:

Coherently-constantE1 : {A : Type a} → (A → Type p) → Type (a ⊔ lsuc p)
Coherently-constantE1 {p = p} {A = A} P =

(Q : ∥ A ∥E → Type p) × (∀ x → P x ≃E Q | x |) × (f : ∀ x y → Q x → Q y) ×
Erased (∀ x y → f x y ≡ subst Q (trunc x y))

(69)

34 Andreas Abel, Nils Anders Danielsson, and Andrea Vezzosi

Note the use of the variant of the propositional truncation operator with an erased higher construc-
tor (15). Compare this definition to the following standard definition of coherent (or conditional)
constancy [Shulman 2015], which does not use erasure:

Coherently-constant : {A : Type a} {B : Type b} → (A → B) → Type (a ⊔ b)
Coherently-constant {A = A} {B = B} f = (g : ∥ A ∥ → B) × f ≡ g ◦ |_| (70)

Coherently-constantE1 is restricted to type-valued functions, for which equalities can be expressed
using equivalences (in the presence of univalence): the definition uses a family of equivalences
with erased proofs. Because the constructor trunc of ∥_∥E is erased the definition also includes a
non-erased part, f , which in erased contexts could be proved using trunc. The final, erased part
ensures that f is pointwise equal to such a proof, which is defined using subst (44).
The type family Coherently-constantE2 is defined in the following way:

Coherently-constantE2 : {A : Type a} → (A → Type p) → Type (a ⊔ lsuc p)
Coherently-constantE2 P =

(f : ∀ x y → P x → P y) ×
Erased ((c : Coherently-constantC2 P) × ∀ x y → f x y ≡ subst id (constant c x y))

(71)

This definition uses yet another (coinductive) definition of coherent constancy, taken from the
work of Capriotti et al. [2021, Definition 77]:

Coherently-constantC2 : {A : Type a} {B : Type b} (f : A → B) → Type (a ⊔ b) (72)

This definition uses a higher inductive type with a non-erased higher constructor (48), and is not
used at run-time. We only include the type signature, but note that coherently constant functions
are weakly constant:

constant : Coherently-constantC2 f →∀ x y → f x ≡ f y (73)

The definition of Coherently-constantE2 includes a non-erased part, f , which in erased contexts could
be proved using the erased proof c. The final, erased part ensures that f is pointwise equal to such
a proof.
The first step of Lemma 65 (LensEE A B ≃E LensE1 A B) is proved by giving functions in both

directions and proving that these functions are inverses of each other. The proof is similar to one
presented by Capriotti et al. [2021, Lemma 67]. It uses erased univalence. The right-to-left direction
makes use of the fact that the “f ” component of Coherently-constantE1 is not erased. It also uses the
following variant of the standard result that singletons are contractible [The Univalent Foundations
Program 2013, Lemma 3.11.8]:

((y : A) × Erased (x ≡ y)) ≃E ⊤ (74)

This lemma says that singletons with erased proofs are equivalent, with erased proofs, to the unit
type. (Note that the value x is not assumed to be erased.)

The second step of the proof (LensE1 A B ≃E LensE2 A B) uses the following lemma:

(∥ A ∥E → B) ≃ ((f : A → B) × Erased (Coherently-constantC2 f)) (75)

Capriotti et al. prove a corresponding result that does not use erasure [2021, Lemma 82]. Our proof
is similar:

(∥ A ∥E → B) ≃
(∥ A ∥NE → B) ≃
((f 0 : A → B) × Erased ((f + : ∀ n → ∥ A ∥1-out (1 + n) → B) ×

Compiling Programs with Erased Univalence 35

(∀ x → f + 0 | x | ≡ f 0 x) × (∀ n x → f + (1 + n) | x | ≡ f + n x))) ≃
((f : A→ B) × Erased (Coherently-constantC2 f))

The first two steps are based on work by Van Doorn [2016]: in the first step Lemma 56 is used
to replace ∥_∥E with the non-recursive variant defined above (55), and the second step uses the
universal property of the sequential colimit (54). The final step makes use of some results proved
by Capriotti et al. Note that this proof makes use of the fact that one can have types with erased
point constructors (in this case ∥_∥NE).

The second step of Lemma 65 also uses Lemmas 42 and 45, as well as the following two lemmas
related to erasure:

((Q : A → Type p) × ∀ x → P x ≃E Q x) ≃E ⊤ (76)

{@0 g : (x : ∥ A ∥E) → P x} →
((f : (x : ∥ A ∥E) → P x) × Erased (f ≡ g)) ≃ ((f : (x : A) → P | x |) × Erased (f ≡ g ◦ |_|)) (77)

The first lemma is a variant of Lemma 74, proved using erased univalence. The second lemma
makes it possible to, in some cases, replace a function from ∥ A ∥E with a function from A. It is
proved using ∥_∥NE (55) and a dependent variant of the universal property of ColimitE (54).

6.5 Compilation of Lenses
Let us define a lens for the second projection of a non-dependent pair. We use the type LensEE,
because this makes it easy to define the lens (for simplicity the types A and B are assumed to be in
the same universe):

sndE : {A B : Type a} → LensEE (A × B) B (78)
We let the R field be A × Erased ∥ B ∥. This makes it easy to implement the inhabited field. It remains
to prove that A × B is equivalent to (A × Erased ∥ B ∥) × B, which follows from the following
lemma:

Erased ∥ A ∥ × A ≃ A (79)
Using Lemma 65 we can convert the lens to the type LensCE that, at run-time, consists of nothing
but a getter and a setter:

sndC : {A B : Type a} → LensCE (A × B) B (80)
If we instruct Agda to normalise every application of the conversion function that we get from
Lemma 65 before the code is compiled, compile the code using Agda’s (non-strict) GHC backend,
and inspect the intermediate code at one point of GHC 9.0.1’s compilation pipeline, then we get
something like the following:

sndC = _ _ _ -> Lens
(\p -> case p of { Pair _ y -> y })
(\p y -> Pair (case p of { Pair x _ -> x }) y)

(Names have been changed, code related to coercions and casts has been removed, and some
definitions have been inlined.) One thing to note is that the code above could lead to a space
leak: when the setter is applied to a pair p and a new second component y the entire pair p might
be retained until the first component of the result is demanded. This could perhaps be fixed by
changing our implementation of sndC, or by switching to a strict backend. However, we choose to
demonstrate another way to address this problem. The following lemma can be used to change the
implementation of the setter, as long as the new implementation is extensionally equal to the old
one:

36 Andreas Abel, Nils Anders Danielsson, and Andrea Vezzosi

(l : LensCE A B) (set : A → B → A) → @0 set ≡ LensCE.set l → LensCE A B (81)

If we change the implementation to 𝜆 { (x , _) y → (x , y) }, then we obtain the following code
(edited as described above):

sndC = _ _ _ -> Lens
(\p -> case p of { Pair _ y -> y })
(\p y -> case p of { Pair x _ -> Pair x y })

7 RELATEDWORK
We are not aware of any previous work on compiling cubical type theory, nor on combining cubical
type theory with an erasure modality. However, as mentioned in the introduction there is plenty of
work on erasure. The work of McBride [2016] and Atkey [2018] has been influential recently. Let
us highlight some differences between the typing rules presented by Atkey and those used here.
Atkey presents a type system that can be instantiated with different semirings (building on the
work by McBride), we focus on the instantiation with a semiring with two elements, corresponding
to the two quantities 0 and 𝜔 .

One difference is that in Atkey’s type system a variable may only be used if all other variables in
the context have quantity zero. This is presumably in order to support linear types, which we do
not support. Our variable typing rule does not have any restrictions on the rest of the context.
Another difference is that, in Atkey’s type system, elements of the universe can only be con-

structed in erased contexts. This is not much of a limitation, because the term constructor El, which
takes elements of the universe to types, takes an erased argument. In contrast, we allow elements
of the universe to be constructed in non-erased contexts. Furthermore one of the premises of the
typing rule for transp is an element of the universe, and this premise uses the same quantity as the
rule’s conclusion. If the quantity of this premise were 0, then we could construct something akin
to the problematic terms subst1 (27) and subst2 (21). (The typing rules for hcomp, hcomp-intro,
hcomp-elim and the propositional truncation’s eliminator also include premises such as the one
discussed above.)
Atkey does not include a dedicated empty type (even though such a type could perhaps be

encoded in his system). We include an empty type ⊥, along with an “escape hatch”, a function
⊥-elim : @0 ⊥ → A that takes an erased argument of the empty type and returns a (possibly)
non-erased result of the arbitrary type A. With this function one can use an erased proof to discard
an impossible branch. For instance, consider the following safe head function:

head : (xs : List A) → @0 (xs . []) → A
head (x :: xs) _ = x
head [] p = ⊥-elim (p refl)

(82)

(Here x . y is equal to x ≡ y →⊥, and refl is a proof of reflexivity.)
A system for which the empty type’s eliminator has type (@0 x : ⊥) (@0 P : ⊥ → Type) →

P x (rephrased using this paper’s notation) supports empty type target erasure [Mishra-Linger
2008]. If the erasure translation removes erased arguments and corresponding applications entirely,
then one can end up with closed terms that get stuck. For instance, consider any closed term of
type @0 ⊥→ ⊥. For this reason Mishra-Linger argues against giving the eliminator this type. We
instead do not remove erased lambda abstractions, and replace corresponding arguments with
dummy values. Letouzey [2003] takes a similar approach, with an extra optimisation intended to
reduce the number of lambda abstractions in the final code.

Mishra-Linger also argues against token type target erasure, where pattern matching is allowed for
erased arguments if there is exactly one constructor with zero non-erased arguments. He constructs

Compiling Programs with Erased Univalence 37

a piece of code for which the corresponding erased term loops forever, by employing token type
target erasure for a type similar to Id (20). Again this example relies on erasure removing erased
arguments entirely. The Agda implementation supports an extension of token type target erasure
where the single constructor is not required to have zero non-erased arguments, but all arguments
are treated as erased on the right-hand side. We did not include this feature in the theoretical
development, instead choosing to focus on other things.

We are not aware of any previous work on erased constructors.

8 CONCLUSION
To the best of our knowledge this piece of work provides the first integration of erasure and cubical
type theory, as well as the first “reasonable” way to compile some variant of cubical type theory.
We restrict certain cubical features: Glue and higher constructors may only be used in code

that will be erased by the compiler. This makes the language more restrictive than full cubical
type theory, but we have shown using a larger case study that the resulting language is useful.
Furthermore it might be the case that one cannot compile full cubical type theory without some
kind of performance overhead, due to the fact that some computation rules involve computation
under binders. With the approach described here one can use standard compilation techniques.

Our theoretical development depends on assumptions that have not been proved. As mentioned
above we believe that these assumptions can be proved by extending Huber’s work on canonicity
[2019] to our theory. We acknowledge that the fact that the meta-theory is not mechanised increases
the risk that some definition or proof is incorrect. If work is undertaken to mechanise the meta-
theory, then it may make sense to build on the formalisations presented by Abel et al. [2018] and
Eriksson [2021].

ACKNOWLEDGEMENTS
Andreas Abel acknowledges support by the Swedish Research Council (Vetenskapsrådet) under
grant 2019-04216 Modal Dependent Type Theory.
Andrea Vezzosi was supported by a research grant (13156) from VILLUM FONDEN.

REFERENCES
Andreas Abel, Joakim Öhman, and Andrea Vezzosi. 2018. Decidability of Conversion for Type Theory in Type Theory.

Proceedings of the ACM on Programming Languages 2, POPL (2018), 23:1–23:29. https://doi.org/10.1145/3158111
Carlo Angiuli, Guillaume Brunerie, Thierry Coquand, Kuen-Bang Hou (Favonia), Robert Harper, and Daniel R. Licata.

2021a. Syntax and Models of Cartesian Cubical Type Theory. (2021). https://github.com/dlicata335/cart-cube/raw/
f80af5cf6638c85ffda2397a8e097b3e9decac1b/cart-cube.pdf Unpublished.

Carlo Angiuli, Evan Cavallo, Anders Mörtberg, and Max Zeuner. 2021b. Internalizing Representation Independence with
Univalence. Proceedings of the ACM on Programming Languages 5, POPL (2021), 12:1–12:30. https://doi.org/10.1145/
3434293

Robert Atkey. 2018. Syntax and Semantics of Quantitative Type Theory. In LICS ’18 Proceedings of the 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science. 56–65. https://doi.org/10.1145/3209108.3209189

Bruno Barras and Bruno Bernardo. 2008. The Implicit Calculus of Constructions as a Programming Language with Dependent
Types. In Foundations of Software Science and Computational Structures, 11th International Conference, FOSSACS 2008.
365–379. https://doi.org/10.1007/978-3-540-78499-9_26

Jean-Philippe Bernardy and Guilhem Moulin. 2013. Type-Theory In Color. In ICFP’13, Proceedings of the 2013 ACM SIGPLAN
International Conference on Functional Programming. 61–71. https://doi.org/10.1145/2500365.2500577

Mathieu Boespflug, Maxime Dénès, and Benjamin Grégoire. 2011. Full Reduction at Full Throttle. In Certified Programs and
Proofs, First International Conference, CPP 2011. 362–377. https://doi.org/10.1007/978-3-642-25379-9_26

Edwin Brady. 2021. Idris 2: Quantitative Type Theory in Practice. In 35th European Conference onObject-Oriented Programming,
ECOOP 2021. 9:1–9:26. https://doi.org/10.4230/LIPIcs.ECOOP.2021.9

Edwin Brady, Conor McBride, and James McKinna. 2004. Inductive Families Need Not Store Their Indices. In TYPES 2003:
Types for Proofs and Programs. 115–129. https://doi.org/10.1007/978-3-540-24849-1_8

https://doi.org/10.1145/3158111
https://github.com/dlicata335/cart-cube/raw/f80af5cf6638c85ffda2397a8e097b3e9decac1b/cart-cube.pdf
https://github.com/dlicata335/cart-cube/raw/f80af5cf6638c85ffda2397a8e097b3e9decac1b/cart-cube.pdf
https://doi.org/10.1145/3434293
https://doi.org/10.1145/3434293
https://doi.org/10.1145/3209108.3209189
https://doi.org/10.1007/978-3-540-78499-9_26
https://doi.org/10.1145/2500365.2500577
https://doi.org/10.1007/978-3-642-25379-9_26
https://doi.org/10.4230/LIPIcs.ECOOP.2021.9
https://doi.org/10.1007/978-3-540-24849-1_8

38 Andreas Abel, Nils Anders Danielsson, and Andrea Vezzosi

Paolo Capriotti, Nils Anders Danielsson, and Andrea Vezzosi. 2021. Higher Lenses. Accepted for publication in LICS 2021,
the 36th Annual Symposium on Logic in Computer Science. https://gup.ub.gu.se/publication/304854

Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. 2015–2018a. Cubicaltt. (2015–2018). https://github.
com/mortberg/cubicaltt.

Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. 2018b. Cubical Type Theory: A Constructive Interpre-
tation of the Univalence Axiom. In 21st International Conference on Types for Proofs and Programs, TYPES 2015. 5:1–5:34.
https://doi.org/10.4230/LIPIcs.TYPES.2015.5

Nils Anders Danielsson. 2019. Logical properties of a modality for erasure. (2019). http://www.cse.chalmers.se/~nad/
publications/danielsson-erased.html

Oskar Eriksson. 2021. An Agda formalization of modalities and erasures in a dependently typed language. Master’s thesis.
Chalmers University of Technology.

Maribel Fernandez, Ian Mackie, Paula Severi, and Nora Szasz. 2003. Reduction Strategies for Program Extraction. CLEI
Electronic Journal 6, 1 (2003). https://doi.org/10.19153/cleiej.6.1.2

J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Benjamin C. Pierce, and Alan Schmitt. 2005. Combinators
for Bi-Directional Tree Transformations: A Linguistic Approach to the View Update Problem. In POPL® 2005: The 32nd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages®. 233–246. https://doi.org/10.1145/1040305.
1040325

Benjamin Grégoire and Xavier Leroy. 2002. A Compiled Implementation of Strong Reduction. In Proceedings of the Seventh
ACM SIGPLAN International Conference on Functional Programming (ICFP ’02). 235–246. https://doi.org/10.1145/581478.
581501

Adam Gundry and Conor McBride. 2013. Phase Your Erasure. (2013). https://personal.cis.strath.ac.uk/conor.mcbride/pub/
phtt.pdf

Adam Michael Gundry. 2013. Type Inference, Haskell and Dependent Types. Ph.D. Dissertation. University of Strathclyde.
http://adam.gundry.co.uk/pub/thesis/

Simon Huber. 2017. A Cubical Type Theory for Higher Inductive Types. (2017). http://www.cse.chalmers.se/~simonhu/
misc/hcomp.pdf

Simon Huber. 2019. Canonicity for Cubical Type Theory. J. Autom. Reason. 63, 2 (2019), 173–210. https://doi.org/10.1007/
s10817-018-9469-1

Pierre Letouzey. 2003. A New Extraction for Coq. In Types for Proofs and Programs, International Workshop, TYPES 2002.
200–219. https://doi.org/10.1007/3-540-39185-1_12

Conor McBride. 2016. I Got Plenty o’ Nuttin’. In A List of Successes That Can Change the World. 207–233. https:
//doi.org/10.1007/978-3-319-30936-1_12

Nathan Mishra-Linger and Tim Sheard. 2008. Erasure and Polymorphism in Pure Type Systems. In Foundations of Software
Science and Computational Structures, 11th International Conference, FOSSACS 2008. 350–364. https://doi.org/10.1007/978-
3-540-78499-9_25

Richard Nathan Mishra-Linger. 2008. Irrelevance, Polymorphism, and Erasure in Type Theory. Ph.D. Dissertation. Portland
State University. https://doi.org/10.15760/etd.2669

Christine Paulin-Mohring. 1989. Extracting 𝐹𝑤 ’s Programs from Proofs in the Calculus of Constructions. In POPL ’89
Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on Principles of programming languages. 89–104. https:
//doi.org/10.1145/75277.75285

Christine Paulin-Mohring and Benjamin Werner. 1993. Synthesis of ML programs in the system Coq. Journal of Symbolic
Computation 15, 5–6 (1993), 607–640. https://doi.org/10.1016/S0747-7171(06)80007-6

Mike Shulman. 2015. Not every weakly constant function is conditionally constant. Blog post. Retrieved 2021-07-07 from
https://homotopytypetheory.org/2015/06/11/not-every-weakly-constant-function-is-conditionally-constant/

Vilhelm Sjöberg. 2015. A dependently typed language with nontermination. Ph.D. Dissertation. University of Pennsylvania.
https://repository.upenn.edu/dissertations/AAI3709556

Jonathan Sterling and Carlo Angiuli. 2021. Normalization for Cubical Type Theory. arXiv:2101.11479v1 [cs.LO] Accepted
for publication in LICS 2021, the 36th Annual Symposium on Logic in Computer Science.

Nicolas Tabareau, Éric Tanter, and Matthieu Sozeau. 2021. The Marriage of Univalence and Parametricity. J. ACM 68, 1
(2021), 5:1–5:44. https://doi.org/10.1145/3429979

Matúš Tejiščák. 2020. A Dependently Typed Calculus with Pattern Matching and Erasure Inference. Proceedings of the ACM
on Programming Languages 4, ICFP (2020), 91:1–91:29. https://doi.org/10.1145/3408973

The Agda Team. 2021. Agda User Manual, Release 2.6.2. https://agda.readthedocs.io/_/downloads/en/v2.6.2/pdf/
The Univalent Foundations Program. 2013. Homotopy Type Theory (1 ed.). https://homotopytypetheory.org/book/
Floris van Doorn. 2016. Constructing the Propositional Truncation using Non-recursive HITs. In CPP’16, Proceedings of the

5th ACM SIGPLAN Conference on Certified Programs and Proofs. 122–129. https://doi.org/10.1145/2854065.2854076

https://gup.ub.gu.se/publication/304854
https://github.com/mortberg/cubicaltt
https://github.com/mortberg/cubicaltt
https://doi.org/10.4230/LIPIcs.TYPES.2015.5
http://www.cse.chalmers.se/~nad/publications/danielsson-erased.html
http://www.cse.chalmers.se/~nad/publications/danielsson-erased.html
https://doi.org/10.19153/cleiej.6.1.2
https://doi.org/10.1145/1040305.1040325
https://doi.org/10.1145/1040305.1040325
https://doi.org/10.1145/581478.581501
https://doi.org/10.1145/581478.581501
https://personal.cis.strath.ac.uk/conor.mcbride/pub/phtt.pdf
https://personal.cis.strath.ac.uk/conor.mcbride/pub/phtt.pdf
http://adam.gundry.co.uk/pub/thesis/
http://www.cse.chalmers.se/~simonhu/misc/hcomp.pdf
http://www.cse.chalmers.se/~simonhu/misc/hcomp.pdf
https://doi.org/10.1007/s10817-018-9469-1
https://doi.org/10.1007/s10817-018-9469-1
https://doi.org/10.1007/3-540-39185-1_12
https://doi.org/10.1007/978-3-319-30936-1_12
https://doi.org/10.1007/978-3-319-30936-1_12
https://doi.org/10.1007/978-3-540-78499-9_25
https://doi.org/10.1007/978-3-540-78499-9_25
https://doi.org/10.15760/etd.2669
https://doi.org/10.1145/75277.75285
https://doi.org/10.1145/75277.75285
https://doi.org/10.1016/S0747-7171(06)80007-6
https://homotopytypetheory.org/2015/06/11/not-every-weakly-constant-function-is-conditionally-constant/
https://repository.upenn.edu/dissertations/AAI3709556
https://arxiv.org/abs/2101.11479v1
https://doi.org/10.1145/3429979
https://doi.org/10.1145/3408973
https://agda.readthedocs.io/_/downloads/en/v2.6.2/pdf/
https://homotopytypetheory.org/book/
https://doi.org/10.1145/2854065.2854076

Compiling Programs with Erased Univalence 39

Twan van Laarhoven. 2011. Isomorphism lenses. Blog post. Retrieved 2021-07-07 from https://www.twanvl.nl/blog/haskell/
isomorphism-lenses

Femke van Raamsdonk and Paula Severi. 2002. Eliminating Proofs from Programs. Electronic Notes in Theoretical Computer
Science 70, 2 (2002), 42–59. https://doi.org/10.1016/S1571-0661(04)80505-X

Andrea Vezzosi, Anders Mörtberg, and Andreas Abel. 2019. Cubical Agda: A Dependently Typed Programming Language
with Univalence and Higher Inductive Types. Proceedings of the ACM on Programming Languages 3, ICFP (2019),
87:1–87:29. https://doi.org/10.1145/3341691

Stephanie Weirich, Antoine Voizard, Pedro Henrique Azevedo de Amorim, and Richard Eisenberg. 2017. A Specification
for Dependent Types in Haskell. Proceedings of the ACM on Programming Languages 1, ICFP (2017), 31:1–31:30. https:
//doi.org/10.1145/3110275

https://www.twanvl.nl/blog/haskell/isomorphism-lenses
https://www.twanvl.nl/blog/haskell/isomorphism-lenses
https://doi.org/10.1016/S1571-0661(04)80505-X
https://doi.org/10.1145/3341691
https://doi.org/10.1145/3110275
https://doi.org/10.1145/3110275

	Abstract
	1 Introduction
	2 Cubical Agda
	3 Postulating Erased Univalence
	4 Cubical Type Theory with Erasure
	4.1 The Type Theory
	4.2 Reduction
	4.3 Logical Relation

	5 The Implementation
	6 A Case Study
	6.1 Equivalences with Erased Proofs
	6.2 A Non-recursive Definition of the Propositional Truncation Operator
	6.3 Higher Lenses with Erased Proofs
	6.4 The Definitions Are Equivalent
	6.5 Compilation of Lenses

	7 Related Work
	8 Conclusion
	Acknowledgements
	References

