------------------------------------------------------------------------
-- The Agda standard library
--
-- List-related properties
------------------------------------------------------------------------

-- Note that the lemmas below could be generalised to work with other
-- equalities than _≡_.

module Data.List.Properties where

open import Algebra
import Algebra.Monoid-solver
open import Category.Monad
open import Data.Bool
open import Data.List as List
open import Data.List.All using (All; []; _∷_)
open import Data.Maybe using (Maybe; just; nothing)
open import Data.Nat
open import Data.Nat.Properties
open import Data.Product as Prod hiding (map)
open import Function
import Algebra.FunctionProperties
import Relation.Binary.EqReasoning as EqR
open import Relation.Binary.PropositionalEquality as P
  using (_≡_; _≢_; _≗_; refl)
open import Relation.Nullary using (yes; no)
open import Relation.Nullary.Decidable using (⌊_⌋)
open import Relation.Unary using (Decidable)

private
  open module FP {a} {A : Set a} =
    Algebra.FunctionProperties (_≡_ {A = A})
  open module LMP {} = RawMonadPlus (List.monadPlus {= })
  module LM {a} {A : Set a} = Monoid (List.monoid A)

module List-solver {a} {A : Set a} =
  Algebra.Monoid-solver (monoid A) renaming (id to nil)

∷-injective :  {a} {A : Set a} {x y : A} {xs ys} 
              x  xs  y List.∷ ys  x  y × xs  ys
∷-injective refl = (refl , refl)

∷ʳ-injective :  {a} {A : Set a} {x y : A} xs ys 
               xs ∷ʳ x  ys ∷ʳ y  xs  ys × x  y
∷ʳ-injective []          []          refl = (refl , refl)
∷ʳ-injective (x  xs)    (y   ys)   eq   with ∷-injective eq
∷ʳ-injective (x  xs)    (.x  ys)   eq   | (refl , eq′) =
  Prod.map (P.cong (_∷_ x)) id $ ∷ʳ-injective xs ys eq′

∷ʳ-injective []          (_  [])    ()
∷ʳ-injective []          (_  _  _) ()
∷ʳ-injective (_  [])    []          ()
∷ʳ-injective (_  _  _) []          ()

right-identity-unique :  {a} {A : Set a} (xs : List A) {ys} 
                        xs  xs ++ ys  ys  []
right-identity-unique []       refl = refl
right-identity-unique (x  xs) eq   =
  right-identity-unique xs (proj₂ (∷-injective eq))

left-identity-unique :  {a} {A : Set a} {xs} (ys : List A) 
                       xs  ys ++ xs  ys  []
left-identity-unique               []       _  = refl
left-identity-unique {xs = []}     (y  ys) ()
left-identity-unique {xs = x  xs} (y  ys) eq
  with left-identity-unique (ys ++ [ x ]) (begin
         xs                  ≡⟨ proj₂ (∷-injective eq) 
         ys ++ x  xs        ≡⟨ P.sym (LM.assoc ys [ x ] xs) 
         (ys ++ [ x ]) ++ xs )
  where open P.≡-Reasoning
left-identity-unique {xs = x  xs} (y  []   ) eq | ()
left-identity-unique {xs = x  xs} (y  _  _) eq | ()

-- Map, sum, and append.

map-++-commute :  {a b} {A : Set a} {B : Set b} (f : A  B) xs ys 
                 map f (xs ++ ys)  map f xs ++ map f ys
map-++-commute f []       ys = refl
map-++-commute f (x  xs) ys =
  P.cong (_∷_ (f x)) (map-++-commute f xs ys)

sum-++-commute :  xs ys  sum (xs ++ ys)  sum xs + sum ys
sum-++-commute []       ys = refl
sum-++-commute (x  xs) ys = begin
  x + sum (xs ++ ys)
                         ≡⟨ P.cong (_+_ x) (sum-++-commute xs ys) 
  x + (sum xs + sum ys)
                         ≡⟨ P.sym $ +-assoc x _ _ 
  (x + sum xs) + sum ys
                         
  where
  open CommutativeSemiring commutativeSemiring hiding (_+_)
  open P.≡-Reasoning

-- Various properties about folds.

foldr-universal :  {a b} {A : Set a} {B : Set b}
                  (h : List A  B) f e 
                  (h []  e) 
                  (∀ x xs  h (x  xs)  f x (h xs)) 
                  h  foldr f e
foldr-universal h f e base step []       = base
foldr-universal h f e base step (x  xs) = begin
  h (x  xs)
    ≡⟨ step x xs 
  f x (h xs)
    ≡⟨ P.cong (f x) (foldr-universal h f e base step xs) 
  f x (foldr f e xs)
    
  where open P.≡-Reasoning

foldr-fusion :  {a b c} {A : Set a} {B : Set b} {C : Set c}
               (h : B  C) {f : A  B  B} {g : A  C  C} (e : B) 
               (∀ x y  h (f x y)  g x (h y)) 
               h  foldr f e  foldr g (h e)
foldr-fusion h {f} {g} e fuse =
  foldr-universal (h  foldr f e) g (h e) refl
                   x xs  fuse x (foldr f e xs))

idIsFold :  {a} {A : Set a}  id {A = List A}  foldr _∷_ []
idIsFold = foldr-universal id _∷_ [] refl  _ _  refl)

++IsFold :  {a} {A : Set a} (xs ys : List A) 
           xs ++ ys  foldr _∷_ ys xs
++IsFold xs ys =
  begin
    xs ++ ys
  ≡⟨ P.cong  xs  xs ++ ys) (idIsFold xs) 
    foldr _∷_ [] xs ++ ys
  ≡⟨ foldr-fusion  xs  xs ++ ys) []  _ _  refl) xs 
    foldr _∷_ ([] ++ ys) xs
  ≡⟨ refl 
    foldr _∷_ ys xs
  
  where open P.≡-Reasoning

mapIsFold :  {a b} {A : Set a} {B : Set b} {f : A  B} 
            map f  foldr  x ys  f x  ys) []
mapIsFold {f = f} =
  begin
    map f
  ≈⟨ P.cong (map f)  idIsFold 
    map f  foldr _∷_ []
  ≈⟨ foldr-fusion (map f) []  _ _  refl) 
    foldr  x ys  f x  ys) []
  
  where open EqR (P._→-setoid_ _ _)

concat-map :  {a b} {A : Set a} {B : Set b} {f : A  B} 
             concat  map (map f)  map f  concat
concat-map {b = b} {f = f} =
  begin
    concat  map (map f)
  ≈⟨ P.cong concat  mapIsFold {b = b} 
    concat  foldr  xs ys  map f xs  ys) []
  ≈⟨ foldr-fusion {b = b} concat []  _ _  refl) 
    foldr  ys zs  map f ys ++ zs) []
  ≈⟨ P.sym 
     foldr-fusion (map f) []  ys zs  map-++-commute f ys zs) 
    map f  concat
  
  where open EqR (P._→-setoid_ _ _)

map-id :  {a} {A : Set a}  map id  id {A = List A}
map-id {A = A} = begin
  map id        ≈⟨ mapIsFold 
  foldr _∷_ []  ≈⟨ P.sym  idIsFold {A = A} 
  id            
  where open EqR (P._→-setoid_ _ _)

map-compose :  {a b c} {A : Set a} {B : Set b} {C : Set c}
                {g : B  C} {f : A  B} 
              map (g  f)  map g  map f
map-compose {A = A} {B} {g = g} {f} =
  begin
    map (g  f)
  ≈⟨ P.cong (map (g  f))  idIsFold 
    map (g  f)  foldr _∷_ []
  ≈⟨ foldr-fusion (map (g  f)) []  _ _  refl) 
    foldr  a y  g (f a)  y) []
  ≈⟨ P.sym  foldr-fusion (map g) []  _ _  refl) 
    map g  foldr  a y  f a  y) []
  ≈⟨ P.cong (map g)  P.sym  mapIsFold {A = A} {B = B} 
    map g  map f
  
  where open EqR (P._→-setoid_ _ _)

foldr-cong :  {a b} {A : Set a} {B : Set b}
               {f₁ f₂ : A  B  B} {e₁ e₂ : B} 
             (∀ x y  f₁ x y  f₂ x y)  e₁  e₂ 
             foldr f₁ e₁  foldr f₂ e₂
foldr-cong {f₁ = f₁} {f₂} {e} f₁≗₂f₂ refl =
  begin
    foldr f₁ e
  ≈⟨ P.cong (foldr f₁ e)  idIsFold 
    foldr f₁ e  foldr _∷_ []
  ≈⟨ foldr-fusion (foldr f₁ e) []  x xs  f₁≗₂f₂ x (foldr f₁ e xs)) 
    foldr f₂ e
  
  where open EqR (P._→-setoid_ _ _)

map-cong :  {a b} {A : Set a} {B : Set b} {f g : A  B} 
           f  g  map f  map g
map-cong {A = A} {B} {f} {g} f≗g =
  begin
    map f
  ≈⟨ mapIsFold 
    foldr  x ys  f x  ys) []
  ≈⟨ foldr-cong  x ys  P.cong₂ _∷_ (f≗g x) refl) refl 
    foldr  x ys  g x  ys) []
  ≈⟨ P.sym  mapIsFold {A = A} {B = B} 
    map g
  
  where open EqR (P._→-setoid_ _ _)

-- Take, drop, and splitAt.

take++drop :  {a} {A : Set a}
             n (xs : List A)  take n xs ++ drop n xs  xs
take++drop zero    xs       = refl
take++drop (suc n) []       = refl
take++drop (suc n) (x  xs) =
  P.cong  xs  x  xs) (take++drop n xs)

splitAt-defn :  {a} {A : Set a} n 
               splitAt {A = A} n  < take n , drop n >
splitAt-defn zero    xs       = refl
splitAt-defn (suc n) []       = refl
splitAt-defn (suc n) (x  xs) with splitAt n xs | splitAt-defn n xs
... | (ys , zs) | ih = P.cong (Prod.map (_∷_ x) id) ih

-- TakeWhile, dropWhile, and span.

takeWhile++dropWhile :  {a} {A : Set a} (p : A  Bool) (xs : List A) 
                       takeWhile p xs ++ dropWhile p xs  xs
takeWhile++dropWhile p []       = refl
takeWhile++dropWhile p (x  xs) with p x
... | true  = P.cong (_∷_ x) (takeWhile++dropWhile p xs)
... | false = refl

span-defn :  {a} {A : Set a} (p : A  Bool) 
            span p  < takeWhile p , dropWhile p >
span-defn p []       = refl
span-defn p (x  xs) with p x
... | true  = P.cong (Prod.map (_∷_ x) id) (span-defn p xs)
... | false = refl

-- Partition, filter.

partition-defn :  {a} {A : Set a} (p : A  Bool) 
                 partition p  < filter p , filter (not  p) >
partition-defn p []       = refl
partition-defn p (x  xs)
 with p x | partition p xs | partition-defn p xs
...  | true  | (ys , zs) | eq = P.cong (Prod.map (_∷_ x) id) eq
...  | false | (ys , zs) | eq = P.cong (Prod.map id (_∷_ x)) eq

filter-filters :  {a p} {A : Set a} 
                 (P : A  Set p) (dec : Decidable P) (xs : List A) 
                 All P (filter (⌊_⌋  dec) xs)
filter-filters P dec []       = []
filter-filters P dec (x  xs) with dec x
filter-filters P dec (x  xs) | yes px = px  filter-filters P dec xs
filter-filters P dec (x  xs) | no ¬px = filter-filters P dec xs

-- Inits, tails, and scanr.

scanr-defn :  {a b} {A : Set a} {B : Set b}
             (f : A  B  B) (e : B) 
             scanr f e  map (foldr f e)  tails
scanr-defn f e []             = refl
scanr-defn f e (x  [])       = refl
scanr-defn f e (x₁  x₂  xs)
  with scanr f e (x₂  xs) | scanr-defn f e (x₂  xs)
...  | [] | ()
...  | y  ys | eq with ∷-injective eq
...        | y≡fx₂⦇f⦈xs , _ = P.cong₂  z zs  f x₁ z  zs) y≡fx₂⦇f⦈xs eq

scanl-defn :  {a b} {A : Set a} {B : Set b}
             (f : A  B  A) (e : A) 
             scanl f e  map (foldl f e)  inits
scanl-defn f e []       = refl
scanl-defn f e (x  xs) = P.cong (_∷_ e) (begin
     scanl f (f e x) xs
  ≡⟨ scanl-defn f (f e x) xs 
     map (foldl f (f e x)) (inits xs)
  ≡⟨ refl 
     map (foldl f e  (_∷_ x)) (inits xs)
  ≡⟨ map-compose (inits xs) 
     map (foldl f e) (map (_∷_ x) (inits xs))
  )
  where open P.≡-Reasoning

-- Length.

length-map :  {a b} {A : Set a} {B : Set b} (f : A  B) xs 
             length (map f xs)  length xs
length-map f []       = refl
length-map f (x  xs) = P.cong suc (length-map f xs)

length-++ :  {a} {A : Set a} (xs : List A) {ys} 
            length (xs ++ ys)  length xs + length ys
length-++ []       = refl
length-++ (x  xs) = P.cong suc (length-++ xs)

length-replicate :  {a} {A : Set a} n {x : A} 
                   length (replicate n x)  n
length-replicate zero    = refl
length-replicate (suc n) = P.cong suc (length-replicate n)

length-gfilter :  {a b} {A : Set a} {B : Set b} (p : A  Maybe B) xs 
                 length (gfilter p xs)  length xs
length-gfilter p []       = z≤n
length-gfilter p (x  xs) with p x
length-gfilter p (x  xs) | just y  = s≤s (length-gfilter p xs)
length-gfilter p (x  xs) | nothing = ≤-step (length-gfilter p xs)

-- Reverse.

unfold-reverse :  {a} {A : Set a} (x : A) (xs : List A) 
                 reverse (x  xs)  reverse xs ∷ʳ x
unfold-reverse x xs = begin
  foldl (flip _∷_) [ x ] xs  ≡⟨ helper [ x ] xs 
  reverse xs ∷ʳ x            
  where
  open P.≡-Reasoning

  helper :  {a} {A : Set a} (xs ys : List A) 
           foldl (flip _∷_) xs ys  reverse ys ++ xs
  helper xs []       = P.refl
  helper xs (y  ys) = begin
    foldl (flip _∷_) (y  xs) ys  ≡⟨ helper (y  xs) ys 
    reverse ys ++ y  xs          ≡⟨ P.sym $ LM.assoc (reverse ys) _ _ 
    (reverse ys ∷ʳ y) ++ xs       ≡⟨ P.sym $ P.cong  zs  zs ++ xs) (unfold-reverse y ys) 
    reverse (y  ys) ++ xs        

reverse-++-commute :
   {a} {A : Set a} (xs ys : List A) 
  reverse (xs ++ ys)  reverse ys ++ reverse xs
reverse-++-commute {a} [] ys = begin
  reverse ys                ≡⟨ P.sym $ proj₂ {a = a} {b = a} LM.identity _ 
  reverse ys ++ []          ≡⟨ P.refl 
  reverse ys ++ reverse []  
  where open P.≡-Reasoning
reverse-++-commute (x  xs) ys = begin
  reverse (x  xs ++ ys)               ≡⟨ unfold-reverse x (xs ++ ys) 
  reverse (xs ++ ys) ++ [ x ]          ≡⟨ P.cong  zs  zs ++ [ x ]) (reverse-++-commute xs ys) 
  (reverse ys ++ reverse xs) ++ [ x ]  ≡⟨ LM.assoc (reverse ys) _ _ 
  reverse ys ++ (reverse xs ++ [ x ])  ≡⟨ P.sym $ P.cong  zs  reverse ys ++ zs) (unfold-reverse x xs) 
  reverse ys ++ reverse (x  xs)       
  where open P.≡-Reasoning

reverse-map-commute :
   {a b} {A : Set a} {B : Set b} (f : A  B)  (xs : List A) 
  map f (reverse xs)  reverse (map f xs)
reverse-map-commute f []       = refl
reverse-map-commute f (x  xs) = begin
  map f (reverse (x  xs))   ≡⟨ P.cong (map f) $ unfold-reverse x xs 
  map f (reverse xs ∷ʳ x)    ≡⟨ map-++-commute f (reverse xs) ([ x ]) 
  map f (reverse xs) ∷ʳ f x  ≡⟨ P.cong  y  y ∷ʳ f x) $ reverse-map-commute f xs 
  reverse (map f xs) ∷ʳ f x  ≡⟨ P.sym $ unfold-reverse (f x) (map f xs) 
  reverse (map f (x  xs))   
  where open P.≡-Reasoning

reverse-involutive :  {a} {A : Set a}  Involutive (reverse {A = A})
reverse-involutive [] = refl
reverse-involutive (x  xs) = begin
  reverse (reverse (x  xs))   ≡⟨ P.cong reverse $ unfold-reverse x xs 
  reverse (reverse xs ∷ʳ x)    ≡⟨ reverse-++-commute (reverse xs) ([ x ]) 
  x  reverse (reverse (xs))   ≡⟨ P.cong  y  x  y) $ reverse-involutive xs 
  x  xs                       
  where open P.≡-Reasoning

-- The list monad.

module Monad where

  left-zero :  {} {A B : Set } (f : A  List B)  ( >>= f)  
  left-zero f = refl

  right-zero :  {} {A B : Set } (xs : List A) 
               (xs >>= const )   {A = B}
  right-zero []       = refl
  right-zero (x  xs) = right-zero xs

  private

    not-left-distributive :
      let xs = true  false  []; f = return; g = return in
      (xs >>= λ x  f x  g x)  ((xs >>= f)  (xs >>= g))
    not-left-distributive ()

  right-distributive :  {} {A B : Set }
                       (xs ys : List A) (f : A  List B) 
                       (xs  ys >>= f)  ((xs >>= f)  (ys >>= f))
  right-distributive []       ys f = refl
  right-distributive (x  xs) ys f = begin
    f x  (xs  ys >>= f)            ≡⟨ P.cong (_∣_ (f x)) $ right-distributive xs ys f 
    f x  ((xs >>= f)  (ys >>= f))  ≡⟨ P.sym $ LM.assoc (f x) _ _ 
    (f x  (xs >>= f))  (ys >>= f)  
    where open P.≡-Reasoning

  left-identity :  {} {A B : Set } (x : A) (f : A  List B) 
                  (return x >>= f)  f x
  left-identity {} x f = proj₂ (LM.identity {a = }) (f x)

  right-identity :  {a} {A : Set a} (xs : List A) 
                   (xs >>= return)  xs
  right-identity []       = refl
  right-identity (x  xs) = P.cong (_∷_ x) (right-identity xs)

  associative :  {} {A B C : Set }
                (xs : List A) (f : A  List B) (g : B  List C) 
                (xs >>= λ x  f x >>= g)  (xs >>= f >>= g)
  associative []       f g = refl
  associative (x  xs) f g = begin
    (f x >>= g)  (xs >>= λ x  f x >>= g)  ≡⟨ P.cong (_∣_ (f x >>= g)) $ associative xs f g 
    (f x >>= g)  (xs >>= f >>= g)          ≡⟨ P.sym $ right-distributive (f x) (xs >>= f) g 
    (f x  (xs >>= f) >>= g)                
    where open P.≡-Reasoning

  cong :  {} {A B : Set } {xs₁ xs₂} {f₁ f₂ : A  List B} 
         xs₁  xs₂  f₁  f₂  (xs₁ >>= f₁)  (xs₂ >>= f₂)
  cong {xs₁ = xs} refl f₁≗f₂ = P.cong concat (map-cong f₁≗f₂ xs)

-- The applicative functor derived from the list monad.

-- Note that these proofs (almost) show that RawIMonad.rawIApplicative
-- is correctly defined. The proofs can be reused if proof components
-- are ever added to RawIMonad and RawIApplicative.

module Applicative where

  open P.≡-Reasoning

  private

    -- A variant of flip map.

    pam :  {} {A B : Set }  List A  (A  B)  List B
    pam xs f = xs >>= return  f

  -- ∅ is a left zero for _⊛_.

  left-zero :  {} {A B : Set } (xs : List A)    xs   {A = B}
  left-zero xs = begin
      xs          ≡⟨ refl 
    ( >>= pam xs)  ≡⟨ Monad.left-zero (pam xs) 
                   

  -- ∅ is a right zero for _⊛_.

  right-zero :  {} {A B : Set } (fs : List (A  B))  fs    
  right-zero {} fs = begin
    fs              ≡⟨ refl 
    (fs >>= pam )    ≡⟨ (Monad.cong (refl {x = fs}) λ f 
                          Monad.left-zero (return {= }  f)) 
    (fs >>= λ _  )  ≡⟨ Monad.right-zero fs 
                     

  -- _⊛_ distributes over _∣_ from the right.

  right-distributive :
     {} {A B : Set } (fs₁ fs₂ : List (A  B)) xs 
    (fs₁  fs₂)  xs  (fs₁  xs  fs₂  xs)
  right-distributive fs₁ fs₂ xs = begin
    (fs₁  fs₂)  xs                     ≡⟨ refl 
    (fs₁  fs₂ >>= pam xs)               ≡⟨ Monad.right-distributive fs₁ fs₂ (pam xs) 
    (fs₁ >>= pam xs)  (fs₂ >>= pam xs)  ≡⟨ refl 
    fs₁  xs  fs₂  xs                  

  -- _⊛_ does not distribute over _∣_ from the left.

  private

    not-left-distributive :
      let fs = id  id  []; xs₁ = true  []; xs₂ = true  false  [] in
      fs  (xs₁  xs₂)  (fs  xs₁  fs  xs₂)
    not-left-distributive ()

  -- Applicative functor laws.

  identity :  {a} {A : Set a} (xs : List A)  return id  xs  xs
  identity xs = begin
    return id  xs          ≡⟨ refl 
    (return id >>= pam xs)  ≡⟨ Monad.left-identity id (pam xs) 
    (xs >>= return)         ≡⟨ Monad.right-identity xs 
    xs                      

  private

    pam-lemma :  {} {A B C : Set }
                (xs : List A) (f : A  B) (fs : B  List C) 
                (pam xs f >>= fs)  (xs >>= λ x  fs (f x))
    pam-lemma xs f fs = begin
      (pam xs f >>= fs)                   ≡⟨ P.sym $ Monad.associative xs (return  f) fs 
      (xs >>= λ x  return (f x) >>= fs)  ≡⟨ Monad.cong (refl {x = xs})  x  Monad.left-identity (f x) fs) 
      (xs >>= λ x  fs (f x))             

  composition :
     {} {A B C : Set }
    (fs : List (B  C)) (gs : List (A  B)) xs 
    return _∘′_  fs  gs  xs  fs  (gs  xs)
  composition {} fs gs xs = begin
    return _∘′_  fs  gs  xs                      ≡⟨ refl 
    (return _∘′_ >>= pam fs >>= pam gs >>= pam xs)  ≡⟨ Monad.cong (Monad.cong (Monad.left-identity _∘′_ (pam fs))
                                                                               f  refl {x = pam gs f}))
                                                                   fg  refl {x = pam xs fg}) 
    (pam fs _∘′_ >>= pam gs >>= pam xs)             ≡⟨ Monad.cong (pam-lemma fs _∘′_ (pam gs))  _  refl) 
    ((fs >>= λ f  pam gs (_∘′_ f)) >>= pam xs)     ≡⟨ P.sym $ Monad.associative fs  f  pam gs (_∘′_ f)) (pam xs) 
    (fs >>= λ f  pam gs (_∘′_ f) >>= pam xs)       ≡⟨ (Monad.cong (refl {x = fs}) λ f 
                                                        pam-lemma gs (_∘′_ f) (pam xs)) 
    (fs >>= λ f  gs >>= λ g  pam xs (f ∘′ g))     ≡⟨ (Monad.cong (refl {x = fs}) λ f 
                                                        Monad.cong (refl {x = gs}) λ g 
                                                        P.sym $ pam-lemma xs g (return  f)) 
    (fs >>= λ f  gs >>= λ g  pam (pam xs g) f)    ≡⟨ (Monad.cong (refl {x = fs}) λ f 
                                                        Monad.associative gs (pam xs) (return  f)) 
    (fs >>= pam (gs >>= pam xs))                    ≡⟨ refl 
    fs  (gs  xs)                                  

  homomorphism :  {} {A B : Set } (f : A  B) x 
                 return f  return x  return (f x)
  homomorphism f x = begin
    return f  return x            ≡⟨ refl 
    (return f >>= pam (return x))  ≡⟨ Monad.left-identity f (pam (return x)) 
    pam (return x) f               ≡⟨ Monad.left-identity x (return  f) 
    return (f x)                   

  interchange :  {} {A B : Set } (fs : List (A  B)) {x} 
                fs  return x  return  f  f x)  fs
  interchange fs {x} = begin
    fs  return x                    ≡⟨ refl 
    (fs >>= pam (return x))          ≡⟨ (Monad.cong (refl {x = fs}) λ f 
                                         Monad.left-identity x (return  f)) 
    (fs >>= λ f  return (f x))      ≡⟨ refl 
    (pam fs  f  f x))             ≡⟨ P.sym $ Monad.left-identity  f  f x) (pam fs) 
    (return  f  f x) >>= pam fs)  ≡⟨ refl 
    return  f  f x)  fs