------------------------------------------------------------------------
-- Properties related to Any
------------------------------------------------------------------------

{-# OPTIONS --universe-polymorphism #-}

-- The other modules under Data.List.Any also contain properties
-- related to Any.

module Data.List.Any.Properties where

open import Algebra
import Algebra.FunctionProperties as FP
open import Category.Monad
open import Data.Bool
open import Data.Bool.Properties
open import Data.Empty
open import Data.List as List
open import Data.List.Any as Any using (Any; here; there)
open import Data.Product as Prod hiding (swap)
open import Data.Sum as Sum using (_⊎_; inj₁; inj₂; [_,_]′)
open import Function
open import Function.Equality using (_⟨$⟩_)
open import Function.Equivalence
  using (_⇔_; equivalent; module Equivalent)
open import Function.Inverse as Inv
  using (Isomorphism; _⇿_; module Inverse)
open import Function.Inverse.TypeIsomorphisms
open import Level
open import Relation.Binary
import Relation.Binary.HeterogeneousEquality as H
open import Relation.Binary.PropositionalEquality as P
  using (_≡_; refl; inspect; _with-≡_)
open import Relation.Unary using (_⟨×⟩_; _⟨→⟩_) renaming (_⊆_ to _⋐_)
import Relation.Binary.Sigma.Pointwise as Σ

open Any.Membership-≡
open Inv.EquationalReasoning
private
  module ×⊎ {k } = CommutativeSemiring (×⊎-CommutativeSemiring k )
  open module ListMonad {} = RawMonad (List.monad {= })

------------------------------------------------------------------------
-- Some lemmas related to map, find and lose

-- Any.map is functorial.

map-id :  {a p} {A : Set a} {P : A  Set p} (f : P  P) {xs} 
         (∀ {x} (p : P x)  f p  p) 
         (p : Any P xs)  Any.map f p  p
map-id f hyp (here  p) = P.cong here (hyp p)
map-id f hyp (there p) = P.cong there $ map-id f hyp p

map-∘ :  {a p q r}
          {A : Set a} {P : A  Set p} {Q : A  Set q} {R : A  Set r}
        (f : Q  R) (g : P  Q)
        {xs} (p : Any P xs) 
        Any.map (f  g) p  Any.map f (Any.map g p)
map-∘ f g (here  p) = refl
map-∘ f g (there p) = P.cong there $ map-∘ f g p

-- Lemmas relating map and find.

map∘find :  {a p} {A : Set a} {P : A  Set p} {xs}
           (p : Any P xs)  let p′ = find p in
           {f : _≡_ (proj₁ p′)  P} 
           f refl  proj₂ (proj₂ p′) 
           Any.map f (proj₁ (proj₂ p′))  p
map∘find (here  p) hyp = P.cong here  hyp
map∘find (there p) hyp = P.cong there (map∘find p hyp)

find∘map :  {a p q} {A : Set a} {P : A  Set p} {Q : A  Set q}
           {xs : List A} (p : Any P xs) (f : P  Q) 
           find (Any.map f p)  Prod.map id (Prod.map id f) (find p)
find∘map (here  p) f = refl
find∘map (there p) f rewrite find∘map p f = refl

-- find satisfies a simple equality when the predicate is a
-- propositional equality.

find-∈ :  {a} {A : Set a} {x : A} {xs : List A} (x∈xs : x  xs) 
         find x∈xs  (x , x∈xs , refl)
find-∈ (here refl)  = refl
find-∈ (there x∈xs) rewrite find-∈ x∈xs = refl

private

  -- find and lose are inverses (more or less).

  lose∘find :  {a p} {A : Set a} {P : A  Set p} {xs : List A}
              (p : Any P xs) 
              uncurry′ lose (proj₂ (find p))  p
  lose∘find p = map∘find p P.refl

  find∘lose :  {a p} {A : Set a} (P : A  Set p) {x xs}
              (x∈xs : x  xs) (pp : P x) 
              find {P = P} (lose x∈xs pp)  (x , x∈xs , pp)
  find∘lose P x∈xs p
    rewrite find∘map x∈xs (flip (P.subst P) p)
          | find-∈ x∈xs
          = refl

-- Any can be expressed using _∈_.

Any⇿ :  {a p} {A : Set a} {P : A  Set p} {xs} 
       ( λ x  x  xs × P x)  Any P xs
Any⇿ {P = P} {xs} = record
  { to         = P.→-to-⟶ to
  ; from       = P.→-to-⟶ (find {P = P})
  ; inverse-of = record
      { left-inverse-of  = λ p 
          find∘lose P (proj₁ (proj₂ p)) (proj₂ (proj₂ p))
      ; right-inverse-of = lose∘find
      }
  }
  where
  to : ( λ x  x  xs × P x)  Any P xs
  to = uncurry′ lose  proj₂

------------------------------------------------------------------------
-- Any is a congruence

Any-cong :  {k } {A : Set } {P₁ P₂ : A  Set } {xs₁ xs₂ : List A} 
           (∀ x  Isomorphism k (P₁ x) (P₂ x))  xs₁ ≈[ k ] xs₂ 
           Isomorphism k (Any P₁ xs₁) (Any P₂ xs₂)
Any-cong {P₁ = P₁} {P₂} {xs₁} {xs₂} P₁⇿P₂ xs₁≈xs₂ =
  Any P₁ xs₁                ⇿⟨ sym $ Any⇿ {P = P₁} 
  ( λ x  x  xs₁ × P₁ x)  ≈⟨ Σ.cong Inv.id (xs₁≈xs₂  ×⊎.*-cong  P₁⇿P₂ _) 
  ( λ x  x  xs₂ × P₂ x)  ⇿⟨ Any⇿ {P = P₂} 
  Any P₂ xs₂                

------------------------------------------------------------------------
-- Swapping

-- Nested occurrences of Any can sometimes be swapped. See also ×⇿.

swap :  {} {A B : Set } {P : A  B  Set } {xs ys} 
       Any  x  Any (P x) ys) xs  Any  y  Any (flip P y) xs) ys
swap {} {P = P} {xs} {ys} =
  Any  x  Any (P x) ys) xs                ⇿⟨ sym $ Any⇿ {a = } {p = } 
  ( λ x  x  xs × Any (P x) ys)            ⇿⟨ sym $ Σ.cong Inv.id  {x}  (x  xs )  ×⊎.*-cong {= }  Any⇿ {a = } {p = }) 
  ( λ x  x  xs ×  λ y  y  ys × P x y)  ⇿⟨ Σ.cong {a₁ = } Inv.id (∃∃⇿∃∃ {a = } {b = } {p = } _) 
  (∃₂ λ x y  x  xs × y  ys × P x y)       ⇿⟨ ∃∃⇿∃∃ {a = } {b = } {p = } _ 
  (∃₂ λ y x  x  xs × y  ys × P x y)       ⇿⟨ Σ.cong Inv.id  {y}  Σ.cong Inv.id  {x} 
    (x  xs × y  ys × P x y)                     ⇿⟨ sym $ ×⊎.*-assoc _ _ _ 
    ((x  xs × y  ys) × P x y)                   ⇿⟨ ×⊎.*-comm (x  xs) (y  ys)  ×⊎.*-cong  (P x y ) 
    ((y  ys × x  xs) × P x y)                   ⇿⟨ ×⊎.*-assoc _ _ _ 
    (y  ys × x  xs × P x y)                     )) 
  (∃₂ λ y x  y  ys × x  xs × P x y)       ⇿⟨ Σ.cong {a₁ = } Inv.id (∃∃⇿∃∃ {a = } {b = } {p = } _) 
  ( λ y  y  ys ×  λ x  x  xs × P x y)  ⇿⟨ Σ.cong Inv.id  {y}  (y  ys )  ×⊎.*-cong {= }  Any⇿ {a = } {p = }) 
  ( λ y  y  ys × Any (flip P y) xs)       ⇿⟨ Any⇿ {a = } {p = } 
  Any  y  Any (flip P y) xs) ys           

------------------------------------------------------------------------
-- Lemmas relating Any to ⊥

⊥⇿Any⊥ :  {a} {A : Set a} {xs : List A}    Any (const ) xs
⊥⇿Any⊥ {A = A} = record
  { to         = P.→-to-⟶  ())
  ; from       = P.→-to-⟶  p  from p)
  ; inverse-of = record
    { left-inverse-of  = λ ()
    ; right-inverse-of = λ p  from p
    }
  }
  where
  from : {xs : List A}  Any (const ) xs   {b} {B : Set b}  B
  from (here ())
  from (there p) = from p

⊥⇿Any[] :  {a} {A : Set a} {P : A  Set}    Any P []
⊥⇿Any[] = record
  { to         = P.→-to-⟶  ())
  ; from       = P.→-to-⟶  ())
  ; inverse-of = record
    { left-inverse-of  = λ ()
    ; right-inverse-of = λ ()
    }
  }

------------------------------------------------------------------------
-- Lemmas relating Any to sums and products

-- Sums commute with Any (for a fixed list).

⊎⇿ :  {a p q} {A : Set a} {P : A  Set p} {Q : A  Set q} {xs} 
     (Any P xs  Any Q xs)  Any  x  P x  Q x) xs
⊎⇿ {P = P} {Q} = record
  { to         = P.→-to-⟶ to
  ; from       = P.→-to-⟶ from
  ; inverse-of = record
    { left-inverse-of  = from∘to
    ; right-inverse-of = to∘from
    }
  }
  where
  to :  {xs}  Any P xs  Any Q xs  Any  x  P x  Q x) xs
  to = [ Any.map inj₁ , Any.map inj₂ ]′

  from :  {xs}  Any  x  P x  Q x) xs  Any P xs  Any Q xs
  from (here (inj₁ p)) = inj₁ (here p)
  from (here (inj₂ q)) = inj₂ (here q)
  from (there p)       = Sum.map there there (from p)

  from∘to :  {xs} (p : Any P xs  Any Q xs)  from (to p)  p
  from∘to (inj₁ (here  p)) = P.refl
  from∘to (inj₁ (there p)) rewrite from∘to (inj₁ p) = P.refl
  from∘to (inj₂ (here  q)) = P.refl
  from∘to (inj₂ (there q)) rewrite from∘to (inj₂ q) = P.refl

  to∘from :  {xs} (p : Any  x  P x  Q x) xs) 
            to (from p)  p
  to∘from (here (inj₁ p)) = P.refl
  to∘from (here (inj₂ q)) = P.refl
  to∘from (there p) with from p | to∘from p
  to∘from (there .(Any.map inj₁ p)) | inj₁ p | P.refl = P.refl
  to∘from (there .(Any.map inj₂ q)) | inj₂ q | P.refl = P.refl

-- Products "commute" with Any.

×⇿ : {A B : Set} {P : A  Set} {Q : B  Set}
     {xs : List A} {ys : List B} 
     (Any P xs × Any Q ys)  Any  x  Any  y  P x × Q y) ys) xs
×⇿ {P = P} {Q} {xs} {ys} = record
  { to         = P.→-to-⟶ to
  ; from       = P.→-to-⟶ from
  ; inverse-of = record
    { left-inverse-of  = from∘to
    ; right-inverse-of = to∘from
    }
  }
  where
  to : Any P xs × Any Q ys  Any  x  Any  y  P x × Q y) ys) xs
  to (p , q) = Any.map  p  Any.map  q  (p , q)) q) p

  from : Any  x  Any  y  P x × Q y) ys) xs  Any P xs × Any Q ys
  from pq with Prod.map id (Prod.map id find) (find pq)
  ... | (x , x∈xs , y , y∈ys , p , q) = (lose x∈xs p , lose y∈ys q)

  from∘to :  pq  from (to pq)  pq
  from∘to (p , q)
    rewrite find∘map {Q = λ x  Any  y  P x × Q y) ys}
                     p  p  Any.map  q  (p , q)) q)
          | find∘map {Q = λ y  P (proj₁ (find p)) × Q y}
                     q  q  proj₂ (proj₂ (find p)) , q)
          | lose∘find p
          | lose∘find q
      = refl

  to∘from :  pq  to (from pq)  pq
  to∘from pq
    with find pq
       |  (f : _≡_ (proj₁ (find pq))  _)  map∘find pq {f})
  ... | (x , x∈xs , pq′) | lem₁
    with find pq′
       |  (f : _≡_ (proj₁ (find pq′))  _)  map∘find pq′ {f})
  ... | (y , y∈ys , p , q) | lem₂
    rewrite P.sym $ map-∘ {R = λ x  Any  y  P x × Q y) ys}
                           p  Any.map  q  p , q) (lose y∈ys q))
                           y  P.subst P y p)
                          x∈xs
      = lem₁ _ helper
    where
    helper : Any.map  q  p , q) (lose y∈ys q)  pq′
    helper rewrite P.sym $ map-∘ {R = λ y  P x × Q y}
                                  q  p , q)
                                  y  P.subst Q y q)
                                 y∈ys
      = lem₂ _ refl

------------------------------------------------------------------------
-- Invertible introduction (⁺) and elimination (⁻) rules for various
-- list functions

-- map.

private

  map⁺ :  {a b p} {A : Set a} {B : Set b} {P : B  Set p}
           {f : A  B} {xs} 
         Any (P  f) xs  Any P (List.map f xs)
  map⁺ (here p)  = here p
  map⁺ (there p) = there $ map⁺ p

  map⁻ :  {a b p} {A : Set a} {B : Set b} {P : B  Set p}
           {f : A  B} {xs} 
         Any P (List.map f xs)  Any (P  f) xs
  map⁻ {xs = []}     ()
  map⁻ {xs = x  xs} (here p)  = here p
  map⁻ {xs = x  xs} (there p) = there $ map⁻ p

  map⁺∘map⁻ :  {a b p} {A : Set a} {B : Set b} {P : B  Set p}
                {f : A  B} {xs} 
              (p : Any P (List.map f xs)) 
              map⁺ (map⁻ p)  p
  map⁺∘map⁻ {xs = []}     ()
  map⁺∘map⁻ {xs = x  xs} (here  p) = refl
  map⁺∘map⁻ {xs = x  xs} (there p) = P.cong there (map⁺∘map⁻ p)

  map⁻∘map⁺ :  {a b p} {A : Set a} {B : Set b} (P : B  Set p)
                {f : A  B} {xs} 
              (p : Any (P  f) xs) 
              map⁻ {P = P} (map⁺ p)  p
  map⁻∘map⁺ P (here  p) = refl
  map⁻∘map⁺ P (there p) = P.cong there (map⁻∘map⁺ P p)

map⇿ :  {a b p} {A : Set a} {B : Set b} {P : B  Set p}
         {f : A  B} {xs} 
       Any (P  f) xs  Any P (List.map f xs)
map⇿ {P = P} {f = f} = record
  { to         = P.→-to-⟶ $ map⁺ {P = P} {f = f}
  ; from       = P.→-to-⟶ $ map⁻ {P = P} {f = f}
  ; inverse-of = record
    { left-inverse-of  = map⁻∘map⁺ P
    ; right-inverse-of = map⁺∘map⁻
    }
  }

-- _++_.

private

  ++⁺ˡ :  {a p} {A : Set a} {P : A  Set p} {xs ys} 
         Any P xs  Any P (xs ++ ys)
  ++⁺ˡ (here p)  = here p
  ++⁺ˡ (there p) = there (++⁺ˡ p)

  ++⁺ʳ :  {a p} {A : Set a} {P : A  Set p} xs {ys} 
         Any P ys  Any P (xs ++ ys)
  ++⁺ʳ []       p = p
  ++⁺ʳ (x  xs) p = there (++⁺ʳ xs p)

  ++⁻ :  {a p} {A : Set a} {P : A  Set p} xs {ys} 
        Any P (xs ++ ys)  Any P xs  Any P ys
  ++⁻ []       p         = inj₂ p
  ++⁻ (x  xs) (here p)  = inj₁ (here p)
  ++⁻ (x  xs) (there p) = Sum.map there id (++⁻ xs p)

  ++⁺∘++⁻ :  {a p} {A : Set a} {P : A  Set p} xs {ys}
            (p : Any P (xs ++ ys)) 
            [ ++⁺ˡ , ++⁺ʳ xs ]′ (++⁻ xs p)  p
  ++⁺∘++⁻ []       p         = refl
  ++⁺∘++⁻ (x  xs) (here  p) = refl
  ++⁺∘++⁻ (x  xs) (there p) with ++⁻ xs p | ++⁺∘++⁻ xs p
  ++⁺∘++⁻ (x  xs) (there p) | inj₁ p′ | ih = P.cong there ih
  ++⁺∘++⁻ (x  xs) (there p) | inj₂ p′ | ih = P.cong there ih

  ++⁻∘++⁺ :  {a p} {A : Set a} {P : A  Set p} xs {ys}
            (p : Any P xs  Any P ys) 
            ++⁻ xs ([ ++⁺ˡ , ++⁺ʳ xs ]′ p)  p
  ++⁻∘++⁺ []            (inj₁ ())
  ++⁻∘++⁺ []            (inj₂ p)         = refl
  ++⁻∘++⁺ (x  xs)      (inj₁ (here  p)) = refl
  ++⁻∘++⁺ (x  xs) {ys} (inj₁ (there p)) rewrite ++⁻∘++⁺ xs {ys} (inj₁ p) = refl
  ++⁻∘++⁺ (x  xs)      (inj₂ p)         rewrite ++⁻∘++⁺ xs      (inj₂ p) = refl

++⇿ :  {a p} {A : Set a} {P : A  Set p} {xs ys} 
      (Any P xs  Any P ys)  Any P (xs ++ ys)
++⇿ {P = P} {xs = xs} = record
  { to         = P.→-to-⟶ [ ++⁺ˡ {P = P}, ++⁺ʳ {P = P} xs ]′
  ; from       = P.→-to-⟶ $ ++⁻ {P = P} xs
  ; inverse-of = record
    { left-inverse-of  = ++⁻∘++⁺ xs
    ; right-inverse-of = ++⁺∘++⁻ xs
    }
  }

-- return.

private

  return⁺ :  {a p} {A : Set a} {P : A  Set p} {x} 
            P x  Any P (return x)
  return⁺ = here

  return⁻ :  {a p} {A : Set a} {P : A  Set p} {x} 
            Any P (return x)  P x
  return⁻ (here p)   = p
  return⁻ (there ())

  return⁺∘return⁻ :  {a p} {A : Set a} {P : A  Set p} {x}
                    (p : Any P (return x)) 
                    return⁺ (return⁻ p)  p
  return⁺∘return⁻ (here p)   = refl
  return⁺∘return⁻ (there ())

  return⁻∘return⁺ :  {a p} {A : Set a} (P : A  Set p) {x} (p : P x) 
                    return⁻ {P = P} (return⁺ p)  p
  return⁻∘return⁺ P p = refl

return⇿ :  {a p} {A : Set a} {P : A  Set p} {x} 
          P x  Any P (return x)
return⇿ {P = P} = record
  { to         = P.→-to-⟶ $ return⁺ {P = P}
  ; from       = P.→-to-⟶ $ return⁻ {P = P}
  ; inverse-of = record
    { left-inverse-of  = return⁻∘return⁺ P
    ; right-inverse-of = return⁺∘return⁻
    }
  }

-- concat.

private

  concat⁺ :  {a p} {A : Set a} {P : A  Set p} {xss} 
            Any (Any P) xss  Any P (concat xss)
  concat⁺ (here p)           = ++⁺ˡ p
  concat⁺ (there {x = xs} p) = ++⁺ʳ xs (concat⁺ p)

  concat⁻ :  {a p} {A : Set a} {P : A  Set p} xss 
            Any P (concat xss)  Any (Any P) xss
  concat⁻ []               ()
  concat⁻ ([]        xss) p         = there $ concat⁻ xss p
  concat⁻ ((x  xs)  xss) (here  p) = here (here p)
  concat⁻ ((x  xs)  xss) (there p)
    with concat⁻ (xs  xss) p
  ... | here  p′ = here (there p′)
  ... | there p′ = there p′

  concat⁻∘++⁺ˡ :  {a p} {A : Set a} {P : A  Set p} {xs} xss (p : Any P xs) 
                 concat⁻ (xs  xss) (++⁺ˡ p)  here p
  concat⁻∘++⁺ˡ xss (here  p) = refl
  concat⁻∘++⁺ˡ xss (there p) rewrite concat⁻∘++⁺ˡ xss p = refl

  concat⁻∘++⁺ʳ :  {a p} {A : Set a} {P : A  Set p} xs xss (p : Any P (concat xss)) 
                 concat⁻ (xs  xss) (++⁺ʳ xs p)  there (concat⁻ xss p)
  concat⁻∘++⁺ʳ []       xss p = refl
  concat⁻∘++⁺ʳ (x  xs) xss p rewrite concat⁻∘++⁺ʳ xs xss p = refl

  concat⁺∘concat⁻ :  {a p} {A : Set a} {P : A  Set p} xss (p : Any P (concat xss)) 
                    concat⁺ (concat⁻ xss p)  p
  concat⁺∘concat⁻ []               ()
  concat⁺∘concat⁻ ([]        xss) p         = concat⁺∘concat⁻ xss p
  concat⁺∘concat⁻ ((x  xs)  xss) (here p)  = refl
  concat⁺∘concat⁻ ((x  xs)  xss) (there p)
    with concat⁻ (xs  xss) p | concat⁺∘concat⁻ (xs  xss) p
  concat⁺∘concat⁻ ((x  xs)  xss) (there .(++⁺ˡ p′))              | here  p′ | refl = refl
  concat⁺∘concat⁻ ((x  xs)  xss) (there .(++⁺ʳ xs (concat⁺ p′))) | there p′ | refl = refl

  concat⁻∘concat⁺ :  {a p} {A : Set a} {P : A  Set p} {xss} (p : Any (Any P) xss) 
                    concat⁻ xss (concat⁺ p)  p
  concat⁻∘concat⁺ (here                      p) = concat⁻∘++⁺ˡ _ p
  concat⁻∘concat⁺ (there {x = xs} {xs = xss} p)
    rewrite concat⁻∘++⁺ʳ xs xss (concat⁺ p) =
      P.cong there $ concat⁻∘concat⁺ p

concat⇿ :  {a p} {A : Set a} {P : A  Set p} {xss} 
          Any (Any P) xss  Any P (concat xss)
concat⇿ {P = P} {xss = xss} = record
  { to         = P.→-to-⟶ $ concat⁺ {P = P}
  ; from       = P.→-to-⟶ $ concat⁻ {P = P} xss
  ; inverse-of = record
    { left-inverse-of  = concat⁻∘concat⁺
    ; right-inverse-of = concat⁺∘concat⁻ xss
    }
  }

-- _>>=_.

>>=⇿ :  { p} {A B : Set } {P : B  Set p} {xs} {f : A  List B} 
       Any (Any P  f) xs  Any P (xs >>= f)
>>=⇿ {P = P} {xs} {f} =
  Any (Any P  f) xs           ⇿⟨ map⇿ {P = Any P} {f = f} 
  Any (Any P) (List.map f xs)  ⇿⟨ concat⇿ {P = P} 
  Any P (xs >>= f)             

-- _⊛_.

⊛⇿ :  {} {A B : Set } {P : B  Set }
       {fs : List (A  B)} {xs : List A} 
     Any  f  Any (P  f) xs) fs  Any P (fs  xs)
⊛⇿ {} {P = P} {fs} {xs} =
  Any  f  Any (P  f) xs) fs               ⇿⟨ Any-cong  _  Any-cong  _  return⇿ {a = } {p = }) (_ )) (_ ) 
  Any  f  Any (Any P  return  f) xs) fs  ⇿⟨ Any-cong  _  >>=⇿ {= } {p = }) (_ ) 
  Any  f  Any P (xs >>= return  f)) fs    ⇿⟨ >>=⇿ {= } {p = } 
  Any P (fs  xs)                             

-- An alternative introduction rule for _⊛_.

⊛⁺′ :  {} {A B : Set } {P : A  Set } {Q : B  Set }
      {fs : List (A  B)} {xs} 
      Any (P ⟨→⟩ Q) fs  Any P xs  Any Q (fs  xs)
⊛⁺′ {} pq p =
  Inverse.to (⊛⇿ {= }) ⟨$⟩
    Any.map  pq  Any.map  {x}  pq {x}) p) pq

-- _⊗_.

⊗⇿ :  {} {A B : Set } {P : A × B  Set }
       {xs : List A} {ys : List B} 
     Any  x  Any  y  P (x , y)) ys) xs  Any P (xs  ys)
⊗⇿ {} {P = P} {xs} {ys} =
  Any  x  Any  y  P (x , y)) ys) xs                             ⇿⟨ return⇿ {a = } {p = } 
  Any  _,_  Any  x  Any  y  P (x , y)) ys) xs) (return _,_)  ⇿⟨ ⊛⇿ 
  Any  x,  Any (P  x,) ys) (_,_ <$> xs)                           ⇿⟨ ⊛⇿ 
  Any P (xs  ys)                                                     

⊗⇿′ : {A B : Set} {P : A  Set} {Q : B  Set}
      {xs : List A} {ys : List B} 
      (Any P xs × Any Q ys)  Any (P ⟨×⟩ Q) (xs  ys)
⊗⇿′ {P = P} {Q} {xs} {ys} =
  (Any P xs × Any Q ys)                    ⇿⟨ ×⇿ 
  Any  x  Any  y  P x × Q y) ys) xs  ⇿⟨ ⊗⇿ 
  Any (P ⟨×⟩ Q) (xs  ys)                  

-- map-with-∈.

map-with-∈⇿ :
   {a b p} {A : Set a} {B : Set b} {P : B  Set p} {xs : List A}
    {f :  {x}  x  xs  B} 
  (∃₂ λ x (x∈xs : x  xs)  P (f x∈xs))  Any P (map-with-∈ xs f)
map-with-∈⇿ {A = A} {B} {P} = record
  { to         = P.→-to-⟶ (map-with-∈⁺ _)
  ; from       = P.→-to-⟶ (map-with-∈⁻ _ _)
  ; inverse-of = record
    { left-inverse-of  = from∘to _
    ; right-inverse-of = to∘from _ _
    }
  }
  where
  map-with-∈⁺ :  {xs : List A}
                (f :  {x}  x  xs  B) 
                (∃₂ λ x (x∈xs : x  xs)  P (f x∈xs)) 
                Any P (map-with-∈ xs f)
  map-with-∈⁺ f (_ , here refl  , p) = here p
  map-with-∈⁺ f (_ , there x∈xs , p) =
    there $ map-with-∈⁺ (f  there) (_ , x∈xs , p)

  map-with-∈⁻ :  (xs : List A)
                (f :  {x}  x  xs  B) 
                Any P (map-with-∈ xs f) 
                ∃₂ λ x (x∈xs : x  xs)  P (f x∈xs)
  map-with-∈⁻ []       f ()
  map-with-∈⁻ (y  xs) f (here  p) = (y , here refl , p)
  map-with-∈⁻ (y  xs) f (there p) =
    Prod.map id (Prod.map there id) $ map-with-∈⁻ xs (f  there) p

  from∘to :  {xs : List A} (f :  {x}  x  xs  B)
            (p : ∃₂ λ x (x∈xs : x  xs)  P (f x∈xs)) 
            map-with-∈⁻ xs f (map-with-∈⁺ f p)  p
  from∘to f (_ , here refl  , p) = refl
  from∘to f (_ , there x∈xs , p)
    rewrite from∘to (f  there) (_ , x∈xs , p) = refl

  to∘from :  (xs : List A) (f :  {x}  x  xs  B)
            (p : Any P (map-with-∈ xs f)) 
            map-with-∈⁺ f (map-with-∈⁻ xs f p)  p
  to∘from []       f ()
  to∘from (y  xs) f (here  p) = refl
  to∘from (y  xs) f (there p) =
    P.cong there $ to∘from xs (f  there) p

------------------------------------------------------------------------
-- Any and any are related via T

-- These introduction and elimination rules are not inverses, though.

private

  any⁺ :  {a} {A : Set a} (p : A  Bool) {xs} 
         Any (T  p) xs  T (any p xs)
  any⁺ p (here  px)          = Equivalent.from T-∨ ⟨$⟩ inj₁ px
  any⁺ p (there {x = x} pxs) with p x
  ... | true  = _
  ... | false = any⁺ p pxs

  any⁻ :  {a} {A : Set a} (p : A  Bool) xs 
         T (any p xs)  Any (T  p) xs
  any⁻ p []       ()
  any⁻ p (x  xs) px∷xs with inspect (p x)
  any⁻ p (x  xs) px∷xs | true  with-≡ eq = here (Equivalent.from T-≡ ⟨$⟩ eq)
  any⁻ p (x  xs) px∷xs | false with-≡ eq with p x
  any⁻ p (x  xs) pxs   | false with-≡ refl | .false =
    there (any⁻ p xs pxs)

any⇔ :  {a} {A : Set a} {p : A  Bool} {xs} 
       Any (T  p) xs  T (any p xs)
any⇔ = equivalent (any⁺ _) (any⁻ _ _)

------------------------------------------------------------------------
-- _++_ is commutative

private

  ++-comm :  {a p} {A : Set a} {P : A  Set p} xs ys 
            Any P (xs ++ ys)  Any P (ys ++ xs)
  ++-comm xs ys = [ ++⁺ʳ ys , ++⁺ˡ ]′  ++⁻ xs

  ++-comm∘++-comm :  {a p} {A : Set a} {P : A  Set p}
                    xs {ys} (p : Any P (xs ++ ys)) 
                    ++-comm ys xs (++-comm xs ys p)  p
  ++-comm∘++-comm [] {ys} p
    rewrite ++⁻∘++⁺ ys {ys = []} (inj₁ p) = P.refl
  ++-comm∘++-comm {P = P} (x  xs) {ys} (here p)
    rewrite ++⁻∘++⁺ {P = P} ys {ys = x  xs} (inj₂ (here p)) = P.refl
  ++-comm∘++-comm (x  xs)      (there p) with ++⁻ xs p | ++-comm∘++-comm xs p
  ++-comm∘++-comm (x  xs) {ys} (there .([ ++⁺ʳ xs , ++⁺ˡ ]′ (++⁻ ys (++⁺ʳ ys p))))
    | inj₁ p | P.refl
    rewrite ++⁻∘++⁺ ys (inj₂                 p)
          | ++⁻∘++⁺ ys (inj₂ $ there {x = x} p) = P.refl
  ++-comm∘++-comm (x  xs) {ys} (there .([ ++⁺ʳ xs , ++⁺ˡ ]′ (++⁻ ys (++⁺ˡ    p))))
    | inj₂ p | P.refl
    rewrite ++⁻∘++⁺ ys {ys =     xs} (inj₁ p)
          | ++⁻∘++⁺ ys {ys = x  xs} (inj₁ p) = P.refl

++⇿++ :  {a p} {A : Set a} {P : A  Set p} xs ys 
        Any P (xs ++ ys)  Any P (ys ++ xs)
++⇿++ {P = P} xs ys = record
  { to         = P.→-to-⟶ $ ++-comm {P = P} xs ys
  ; from       = P.→-to-⟶ $ ++-comm {P = P} ys xs
  ; inverse-of = record
    { left-inverse-of  = ++-comm∘++-comm xs
    ; right-inverse-of = ++-comm∘++-comm ys
    }
  }