------------------------------------------------------------------------
-- An abstraction: term-like things
------------------------------------------------------------------------

open import Data.Universe.Indexed

module deBruijn.Context.Term-like
  {i u e} (Uni : IndexedUniverse i u e) where

import Axiom.Extensionality.Propositional as E
open import Data.Product
import deBruijn.Context.Basics          as Basics
import deBruijn.Context.Extension.Right as Right
open import Function.Base hiding (_∋_)
open import Level using (_⊔_)
open import Relation.Binary using (Setoid)
open import Relation.Binary.PropositionalEquality as P using (_≡_)

open Basics Uni
open Right  Uni
open P.≡-Reasoning

------------------------------------------------------------------------
-- Term-like things

record Term-like  : Set (i  u  e  Level.suc ) where
  infix 3 _⊢_
  field
    _⊢_ : (Γ : Ctxt)  Type Γ  Set 
    ⟦_⟧ :  {Γ σ}  Γ  σ  Value Γ σ

  -- Equality of term-like things.

  record [⊢] : Set (i  u  e  ) where
    constructor [_]
    field
      {Γ} : Ctxt
      {σ} : Type Γ
      t   : Γ  σ

  infix 4 _≅-⊢_

  _≅-⊢_ :  {Γ₁ σ₁} (t₁ : Γ₁  σ₁)
            {Γ₂ σ₂} (t₂ : Γ₂  σ₂)  Set _
  t₁ ≅-⊢ t₂ = _≡_ {A = [⊢]} [ t₁ ] [ t₂ ]

  ≅-⊢-⇒-≡ :  {Γ σ} {t₁ t₂ : Γ  σ} 
            t₁ ≅-⊢ t₂  t₁  t₂
  ≅-⊢-⇒-≡ P.refl = P.refl

  -- Certain uses of substitutivity can be removed.

  drop-subst-⊢ :
     {a} {A : Set a} {x₁ x₂ : A} {Γ}
    (f : A  Type Γ) {t} (eq : x₁  x₂) 
    P.subst  x  Γ  f x) eq t ≅-⊢ t
  drop-subst-⊢ f P.refl = P.refl

  -- A congruence lemma.

  ⟦⟧-cong :  {Γ₁ σ₁} {t₁ : Γ₁  σ₁}
              {Γ₂ σ₂} {t₂ : Γ₂  σ₂} 
            t₁ ≅-⊢ t₂   t₁  ≅-Value  t₂ 
  ⟦⟧-cong P.refl = P.refl

-- Values are term-like.

Val : Term-like _
Val = record { _⊢_ = Value; ⟦_⟧ = id }

-- Variables are term-like.

Var : Term-like _
Var = record { _⊢_ = _∋_; ⟦_⟧ = lookup }

------------------------------------------------------------------------
-- Families of functions which, on the semantic side, correspond to
-- the application of a given context morphism

record [_⟶_] {t₁ t₂} (T₁ : Term-like t₁) (T₂ : Term-like t₂)
             {Γ Δ : Ctxt} (ρ̂ : Γ ⇨̂ Δ) : Set (i  u  e  t₁  t₂) where
  constructor _,_

  open Term-like T₁ renaming (_⊢_ to _⊢₁_; ⟦_⟧ to ⟦_⟧₁)
  open Term-like T₂ renaming (_⊢_ to _⊢₂_; ⟦_⟧ to ⟦_⟧₂)

  field
    function    :  σ  Γ ⊢₁ σ  Δ ⊢₂ σ  ρ̂
    corresponds :
       σ (t : Γ ⊢₁ σ)   t ⟧₁ /̂Val ρ̂ ≅-Value  function σ t ⟧₂

-- Functions which do not change the context or type.

[_⟶⁼_] :  {t₁ t₂}  Term-like t₁  Term-like t₂  Set _
[ T₁ ⟶⁼ T₂ ] =  {Γ}  [ T₁  T₂ ] îd[ Γ ]

-- Projections. (The fields above have explicit σ's to avoid some
-- problems; the projections below have implicit σ's.)

infixl 9 _·_

_·_ :  {t₁ t₂} {T₁ : Term-like t₁} {T₂ : Term-like t₂} 
      let open Term-like T₁ renaming (_⊢_ to _⊢₁_)
          open Term-like T₂ renaming (_⊢_ to _⊢₂_) in
       {Γ Δ σ} {ρ̂ : Γ ⇨̂ Δ} 
      [ T₁  T₂ ] ρ̂  Γ ⊢₁ σ  Δ ⊢₂ σ  ρ̂
_·_ f = [_⟶_].function f _

corresponds :
   {t₁ t₂} {T₁ : Term-like t₁} {T₂ : Term-like t₂} 
  let open Term-like T₁ renaming (_⊢_ to _⊢₁_; ⟦_⟧ to ⟦_⟧₁)
      open Term-like T₂ renaming (⟦_⟧ to ⟦_⟧₂) in
   {Γ Δ : Ctxt} {ρ̂ : Γ ⇨̂ Δ} {σ}
  (f : [ T₁  T₂ ] ρ̂) (t : Γ ⊢₁ σ) 
   t ⟧₁ /̂Val ρ̂ ≅-Value  f · t ⟧₂
corresponds f = [_⟶_].corresponds f _

-- Weakening of variables (the successor function).

weaken∋ :  {Γ} {σ : Type Γ}  [ Var  Var ] ŵk[ σ ]
weaken∋ = record
  { function    = λ _  suc
  ; corresponds = λ _ _  P.refl
  }

weaken∋[_] :  {Γ} (σ : Type Γ)  [ Var  Var ] ŵk[ σ ]
weaken∋[ _ ] = weaken∋

-- Lifts a function on variables, f, to a function which leaves a
-- prefix of the context unchanged and otherwise behaves as f.

lift :  {Γ Δ} {ρ̂ : Γ ⇨̂ Δ} 
       [ Var  Var ] ρ̂   Γ⁺  [ Var  Var ] (ρ̂ ↑̂⁺ Γ⁺)
lift             f ε        = f
lift {Γ} {Δ} {ρ̂} f (Γ⁺  σ) = record
  { function    = function
  ; corresponds = corr
  }
  where
  function :  τ  Γ ++⁺ Γ⁺  σ  τ 
             Δ ++⁺ (Γ⁺  σ) /̂⁺ ρ̂  τ  ρ̂ ↑̂⁺ (Γ⁺  σ)
  function ._ zero    = zero
  function ._ (suc x) = suc (lift f Γ⁺ · x)

  abstract
    corr :  τ (x : Γ ++⁺ Γ⁺  σ  τ) 
           lookup x /̂Val ρ̂ ↑̂⁺ (Γ⁺  σ) ≅-Value lookup (function _ x)
    corr ._ zero    = P.refl
    corr ._ (suc x) = begin
      [ lookup x /̂Val ρ̂ ↑̂⁺ Γ⁺ /̂Val ŵk  ]  ≡⟨ /̂Val-cong (corresponds (lift f Γ⁺) x) P.refl 
      [ lookup (lift f Γ⁺ · x) /̂Val ŵk ]  ≡⟨ P.refl 
      [ lookup (suc (lift f Γ⁺ · x))   ]  

------------------------------------------------------------------------
-- Equality for the functions introduced above

-- Note that the definition of equality does not take the
-- "corresponds" proof into account.

record [⟶] {t₁ t₂} (T₁ : Term-like t₁) (T₂ : Term-like t₂)
           : Set (i  u  e  t₁  t₂) where
  constructor [_]
  open Term-like T₁ renaming (_⊢_ to _⊢₁_)
  open Term-like T₂ renaming (_⊢_ to _⊢₂_)
  field
    {Γ Δ} : Ctxt
    {ρ̂}   : Γ ⇨̂ Δ
    f     :  σ  Γ ⊢₁ σ  Δ ⊢₂ σ  ρ̂

[_]⟶ :  {t₁ t₂} {T₁ : Term-like t₁} {T₂ : Term-like t₂}
         {Γ Δ} {ρ̂ : Γ ⇨̂ Δ} 
       [ T₁  T₂ ] ρ̂  [⟶] T₁ T₂
[ f ]⟶ = [ [_⟶_].function f ]

-- Equality is defined as a record type to make it possible to infer
-- ρ₁ and ρ₂ from a value of type ρ₁ ≅-⟶ ρ₂.

infix 4 _≅-⟶_

record _≅-⟶_
  {t₁ t₂} {T₁ : Term-like t₁} {T₂ : Term-like t₂}
  {Γ₁ Δ₁ : Ctxt} {ρ̂₁ : Γ₁ ⇨̂ Δ₁} (f₁ : [ T₁  T₂ ] ρ̂₁)
  {Γ₂ Δ₂ : Ctxt} {ρ̂₂ : Γ₂ ⇨̂ Δ₂} (f₂ : [ T₁  T₂ ] ρ̂₂)
  : Set (i  u  e  t₁  t₂) where
  constructor [_]
  field
    [f₁]⟶≡[f₂]⟶ : [ f₁ ]⟶  [ f₂ ]⟶

-- Some equational reasoning combinators.

module ≅-⟶-Reasoning
  {t₁ t₂} {T₁ : Term-like t₁} {T₂ : Term-like t₂}
  where

  infix  3 _∎-⟶
  infixr 2 _≅-⟶⟨_⟩_

  _≅-⟶⟨_⟩_ :  {Γ₁ Δ₁} {ρ̂₁ : Γ₁ ⇨̂ Δ₁}
               {Γ₂ Δ₂} {ρ̂₂ : Γ₂ ⇨̂ Δ₂}
               {Γ₃ Δ₃} {ρ̂₃ : Γ₃ ⇨̂ Δ₃}
             (f₁ : [ T₁  T₂ ] ρ̂₁) {f₂ : [ T₁  T₂ ] ρ̂₂}
                                   {f₃ : [ T₁  T₂ ] ρ̂₃} 
             f₁ ≅-⟶ f₂  f₂ ≅-⟶ f₃  f₁ ≅-⟶ f₃
  _ ≅-⟶⟨ [ f₁≅f₂ ]  [ f₂≅f₃ ] = [ P.trans f₁≅f₂ f₂≅f₃ ]

  _∎-⟶ :  {Γ Δ} {ρ̂ : Γ ⇨̂ Δ} (f : [ T₁  T₂ ] ρ̂)  f ≅-⟶ f
  _ ∎-⟶ = [ P.refl ]

  sym-⟶ :  {Γ₁ Δ₁} {ρ̂₁ : Γ₁ ⇨̂ Δ₁} {f₁ : [ T₁  T₂ ] ρ̂₁}
            {Γ₂ Δ₂} {ρ̂₂ : Γ₂ ⇨̂ Δ₂} {f₂ : [ T₁  T₂ ] ρ̂₂} 
          f₁ ≅-⟶ f₂  f₂ ≅-⟶ f₁
  sym-⟶ [ f₁≅f₂ ] = [ P.sym f₁≅f₂ ]

open ≅-⟶-Reasoning public

-- A setoid for [_⟶_].

[_⟶_]-setoid :  {t₁ t₂} (T₁ : Term-like t₁) (T₂ : Term-like t₂) 
              {Γ Δ}  Γ ⇨̂ Δ  Setoid _ _
[ T₁  T₂ ]-setoid ρ̂ = record
  { Carrier       = [ T₁  T₂ ] ρ̂
  ; _≈_           = λ f₁ f₂  f₁ ≅-⟶ f₂
  ; isEquivalence = record
    { refl  = _ ∎-⟶
    ; sym   = sym-⟶
    ; trans = λ p q  _ ≅-⟶⟨ p  q
    }
  }

-- A congruence lemma.

·-cong :
   {t₁ t₂} {T₁ : Term-like t₁} {T₂ : Term-like t₂} 
  let open Term-like T₁ renaming (_⊢_ to _⊢₁_; _≅-⊢_ to _≅-⊢₁_)
      open Term-like T₂ renaming (_⊢_ to _⊢₂_; _≅-⊢_ to _≅-⊢₂_) in
   {Γ₁ Δ₁ σ₁} {ρ̂₁ : Γ₁ ⇨̂ Δ₁} {f₁ : [ T₁  T₂ ] ρ̂₁} {t₁ : Γ₁ ⊢₁ σ₁}
    {Γ₂ Δ₂ σ₂} {ρ̂₂ : Γ₂ ⇨̂ Δ₂} {f₂ : [ T₁  T₂ ] ρ̂₂} {t₂ : Γ₂ ⊢₁ σ₂} 
  f₁ ≅-⟶ f₂  t₁ ≅-⊢₁ t₂  f₁ · t₁ ≅-⊢₂ f₂ · t₂
·-cong {f₁ = _ , _} {f₂ = ._ , _} [ P.refl ] P.refl = P.refl

abstract

  -- Two variants of extensional equality (assuming ordinary
  -- extensional equality).

  extensional-equality₁ :
     {t₁ t₂} {T₁ : Term-like t₁} {T₂ : Term-like t₂} 
    let open Term-like T₁ renaming (_⊢_ to _⊢₁_)
        open Term-like T₂ renaming (_≅-⊢_ to _≅-⊢₂_)
    in
    E.Extensionality (i  u  e  t₁) (t₁  t₂) 
     {Γ Δ₁} {ρ̂₁ : Γ ⇨̂ Δ₁} {f₁ : [ T₁  T₂ ] ρ̂₁}
        {Δ₂} {ρ̂₂ : Γ ⇨̂ Δ₂} {f₂ : [ T₁  T₂ ] ρ̂₂} 
    ρ̂₁ ≅-⇨̂ ρ̂₂  (∀ {σ} (t : Γ ⊢₁ σ)  f₁ · t ≅-⊢₂ f₂ · t) 
    f₁ ≅-⟶ f₂
  extensional-equality₁ {t₁} {t₂} {T₂ = T₂} ext P.refl f₁≅f₂ =
    [ P.cong [_] (ext₁ λ σ  ext₂ λ t  ≅-⊢₂-⇒-≡ (f₁≅f₂ t)) ]
    where
    open Term-like T₂ using () renaming (≅-⊢-⇒-≡ to ≅-⊢₂-⇒-≡)

    ext₁ : E.Extensionality (i  u  e) (t₁  t₂)
    ext₁ = E.lower-extensionality t₁ Level.zero ext

    ext₂ : E.Extensionality t₁ t₂
    ext₂ = E.lower-extensionality (i  u  e) t₁ ext

  extensional-equality₂ :
     {t₁ t₂} {T₁ : Term-like t₁} {T₂ : Term-like t₂} 
    let open Term-like T₁ renaming (_≅-⊢_ to _≅-⊢₁_; _⊢_ to _⊢₁_)
        open Term-like T₂ renaming (_≅-⊢_ to _≅-⊢₂_)
    in
    E.Extensionality (i  u  e  t₁) (t₁  t₂) 
     {Γ₁ Δ₁} {ρ̂₁ : Γ₁ ⇨̂ Δ₁} {f₁ : [ T₁  T₂ ] ρ̂₁}
      {Γ₂ Δ₂} {ρ̂₂ : Γ₂ ⇨̂ Δ₂} {f₂ : [ T₁  T₂ ] ρ̂₂} 
    ρ̂₁ ≅-⇨̂ ρ̂₂ 
    (∀ {σ₁} {t₁ : Γ₁ ⊢₁ σ₁} {σ₂} {t₂ : Γ₂ ⊢₁ σ₂} 
       t₁ ≅-⊢₁ t₂  f₁ · t₁ ≅-⊢₂ f₂ · t₂) 
    f₁ ≅-⟶ f₂
  extensional-equality₂ {T₁ = T₁} ext P.refl f₁≅f₂ =
    extensional-equality₁ ext P.refl  t  f₁≅f₂ (P.refl {x = [ t ]}))
    where open Term-like T₁ using ([_])

  -- lift ∘ weaken∋ sort of commutes with a lifted version of itself.

  lift-weaken∋-lift-lift-weaken∋ :
     {Γ} σ Γ⁺ τ Γ⁺⁺ {υ} (x : Γ ++⁺ Γ⁺ ++⁺ Γ⁺⁺  υ) 
    lift weaken∋[ τ  ŵk ↑̂⁺ Γ⁺ ] (Γ⁺⁺ /̂⁺ ŵk ↑̂⁺ Γ⁺) ·
         (lift (lift weaken∋[ σ ] Γ⁺) Γ⁺⁺ · x) ≅-∋
    lift (lift weaken∋[ σ ] (Γ⁺  τ)) (Γ⁺⁺ /̂⁺ ŵk) ·
         (lift weaken∋[ τ ] Γ⁺⁺ · x)
  lift-weaken∋-lift-lift-weaken∋ σ Γ⁺ τ ε         x       = P.refl
  lift-weaken∋-lift-lift-weaken∋ σ Γ⁺ τ (Γ⁺⁺  υ) zero    =
    zero-cong (/̂-↑̂⁺-/̂-ŵk-↑̂⁺ τ (ŵk ↑̂⁺ Γ⁺) Γ⁺⁺ υ)
  lift-weaken∋-lift-lift-weaken∋ σ Γ⁺ τ (Γ⁺⁺  υ) (suc x) =
    suc-cong (/̂-↑̂⁺-/̂-ŵk-↑̂⁺ τ (ŵk ↑̂⁺ Γ⁺) Γ⁺⁺ υ)
             (lift-weaken∋-lift-lift-weaken∋ σ Γ⁺ τ Γ⁺⁺ x)

------------------------------------------------------------------------
-- Term-like t and [_⟶_] form a category

-- At least if we ignore the context morphism index.

-- Identity.

[id] :  {t} {T : Term-like t} {Γ}  [ T  T ] îd[ Γ ]
[id] = record { function = λ _  id; corresponds = λ _ _  P.refl }

-- Composition.

infixl 9 _[∘]_

_[∘]_ :  {t₁ t₂ t₃}
          {T₁ : Term-like t₁} {T₂ : Term-like t₂} {T₃ : Term-like t₃}
          {Γ Δ Ε} {ρ̂₁ : Γ ⇨̂ Δ} {ρ̂₂ : Δ ⇨̂ Ε} 
        [ T₂  T₃ ] ρ̂₂  [ T₁  T₂ ] ρ̂₁  [ T₁  T₃ ] (ρ̂₁ ∘̂ ρ̂₂)
_[∘]_ {T₁ = T₁} {T₂} {T₃} {ρ̂₁ = ρ̂₁} {ρ̂₂} f g = record
  { function    = λ _  _·_ f  _·_ g
  ; corresponds = corr
  }
  where
  open P.≡-Reasoning
  open Term-like T₁ renaming (⟦_⟧ to ⟦_⟧₁; _⊢_ to _⊢₁_)
  open Term-like T₂ renaming (⟦_⟧ to ⟦_⟧₂)
  open Term-like T₃ renaming (⟦_⟧ to ⟦_⟧₃)

  abstract
    corr :  σ (t : _ ⊢₁ σ) 
            t ⟧₁ /̂Val ρ̂₁ ∘̂ ρ̂₂ ≅-Value  f · (g · t) ⟧₃
    corr = λ σ t  begin
      [  t ⟧₁ /̂Val ρ̂₁ ∘̂ ρ̂₂ ]  ≡⟨ /̂Val-cong (corresponds g t) P.refl 
      [  g · t ⟧₂ /̂Val ρ̂₂  ]  ≡⟨ corresponds f (g · t) 
      [  f · (g · t) ⟧₃    ]  

-- [id] and _[∘]_ preserve equality.

[id]-cong :
   {t} {T : Term-like t} {Γ₁ Γ₂} 
  Γ₁ ≅-Ctxt Γ₂  [id] {T = T} {Γ = Γ₁} ≅-⟶ [id] {T = T} {Γ = Γ₂}
[id]-cong P.refl = [ P.refl ]

private
 module Dummy {t₁ t₂} {T₁ : Term-like t₁} {T₂ : Term-like t₂} where

  [∘]-cong :  {t₃} {T₃ : Term-like t₃}
               {Γ₁ Δ₁ Ε₁} {ρ̂₁₁ : Γ₁ ⇨̂ Δ₁} {ρ̂₂₁ : Δ₁ ⇨̂ Ε₁}
               {f₁₁ : [ T₁  T₂ ] ρ̂₁₁} {f₂₁ : [ T₂  T₃ ] ρ̂₂₁}
               {Γ₂ Δ₂ Ε₂} {ρ̂₁₂ : Γ₂ ⇨̂ Δ₂} {ρ̂₂₂ : Δ₂ ⇨̂ Ε₂}
               {f₁₂ : [ T₁  T₂ ] ρ̂₁₂} {f₂₂ : [ T₂  T₃ ] ρ̂₂₂} 
             f₁₁ ≅-⟶ f₁₂  f₂₁ ≅-⟶ f₂₂  f₂₁ [∘] f₁₁ ≅-⟶ f₂₂ [∘] f₁₂
  [∘]-cong {f₁₁ = _ , _} {f₂₁ = _ , _} {f₁₂ = ._ , _} {f₂₂ = ._ , _}
           [ P.refl ] [ P.refl ] = [ P.refl ]

  -- [id] is a left and right identity of _[∘]_, which is associative.

  [id]-[∘] :  {Γ Δ} {ρ̂ : Γ ⇨̂ Δ}
             (f : [ T₁  T₂ ] ρ̂)  [id] [∘] f ≅-⟶ f
  [id]-[∘] f = [ P.refl ]

  [∘]-[id] :  {Γ Δ} {ρ̂ : Γ ⇨̂ Δ}
             (f : [ T₁  T₂ ] ρ̂)  f [∘] [id] ≅-⟶ f
  [∘]-[id] f = [ P.refl ]

  [∘]-[∘] :
     {t₃ t₄} {T₃ : Term-like t₃} {T₄ : Term-like t₄}
      {Γ Δ Ε Ζ} {ρ̂₁ : Γ ⇨̂ Δ} {ρ̂₂ : Δ ⇨̂ Ε} {ρ̂₃ : Ε ⇨̂ Ζ}
    (f₃ : [ T₃  T₄ ] ρ̂₃) (f₂ : [ T₂  T₃ ] ρ̂₂)
    (f₁ : [ T₁  T₂ ] ρ̂₁) 
    f₃ [∘] (f₂ [∘] f₁) ≅-⟶ (f₃ [∘] f₂) [∘] f₁
  [∘]-[∘] f₃ f₂ f₁ = [ P.refl ]

open Dummy public