------------------------------------------------------------------------
-- Various equality checkers (some complete, all sound)
------------------------------------------------------------------------

import Axiom.Extensionality.Propositional as E
import Level
open import Data.Universe

-- The code makes use of the assumption that propositional equality of
-- functions is extensional.

module README.DependentlyTyped.Equality-checker
  (Uni₀ : Universe Level.zero Level.zero)
  (ext : E.Extensionality Level.zero Level.zero)
  where

open import Data.Maybe
import Data.Maybe.Effectful as Maybe
open import Data.Product
open import Effect.Monad
open import Function hiding (_∋_) renaming (const to k)
import README.DependentlyTyped.NBE as NBE; open NBE Uni₀ ext
import README.DependentlyTyped.NormalForm as NF; open NF Uni₀
import README.DependentlyTyped.Term as Term; open Term Uni₀
open import Relation.Binary.PropositionalEquality as P using (_≡_)
open import Relation.Nullary as Dec using (Dec; yes)
import Relation.Nullary.Decidable as Dec

open P.≡-Reasoning
open RawMonadZero (Maybe.monadZero {f = Level.zero})

-- Decides if two "atomic type proofs" are equal.

infix 4 _≟-atomic-type_

_≟-atomic-type_ :
   {Γ σ} (σ′₁ σ′₂ : Γ  σ atomic-type)  Dec (σ′₁  σ′₂)
  ≟-atomic-type   = yes P.refl
el ≟-atomic-type el = yes P.refl

mutual

  private

    -- A helper lemma.

    helper-lemma :
       {Γ₁ sp₁₁ sp₂₁ σ₁}
        (t₁₁ : Γ₁  π sp₁₁ sp₂₁ , σ₁  ne ) (t₂₁ : Γ₁  fst σ₁  no )
        {Γ₂ sp₁₂ sp₂₂ σ₂}
        (t₁₂ : Γ₂  π sp₁₂ sp₂₂ , σ₂  ne ) (t₂₂ : Γ₂  fst σ₂  no ) 
      t₁₁ · t₂₁ ≅-⊢n t₁₂ · t₂₂  t₁₁ ≅-⊢n t₁₂ × t₂₁ ≅-⊢n t₂₂
    helper-lemma _ _ ._ ._ P.refl = P.refl , P.refl

  -- Decides if two neutral terms are identical. Note that the terms
  -- must have the same context, but they do not need to have the same
  -- type.

  infix 4 _≟-⊢ne_

  _≟-⊢ne_ :  {Γ σ₁} (t₁ : Γ  σ₁  ne )
                {σ₂} (t₂ : Γ  σ₂  ne ) 
            Dec (t₁ ≅-⊢n t₂)
  var x₁ ≟-⊢ne var x₂ = Dec.map′ var-n-cong helper (x₁ ≟-∋ x₂)
    where
    helper :  {Γ₁ σ₁} {x₁ : Γ₁  σ₁}
               {Γ₂ σ₂} {x₂ : Γ₂  σ₂} 
             var x₁ ≅-⊢n var x₂  x₁ ≅-∋ x₂
    helper P.refl = P.refl

  t₁₁ · t₂₁ ≟-⊢ne t₁₂ · t₂₂ with t₁₁ ≟-⊢ne t₁₂
  ... | Dec.no neq = Dec.no (neq  proj₁  helper-lemma _ t₂₁ _ t₂₂)
  ... | yes eq     = Dec.map′
    (·n-cong eq)
    (proj₂  helper-lemma t₁₁ _ t₁₂ _)
    (t₂₁ ≟-⊢no t₂₂ [ fst-cong $ indexed-type-cong $ helper eq ])
    where
    helper :  {Γ₁ σ₁} {t₁ : Γ₁  σ₁  ne }
               {Γ₂ σ₂} {t₂ : Γ₂  σ₂  ne } 
             t₁ ≅-⊢n t₂  σ₁ ≅-Type σ₂
    helper P.refl = P.refl

  var _ ≟-⊢ne _ · _ = Dec.no λ ()
  _ · _ ≟-⊢ne var _ = Dec.no λ ()

  -- Decides if two normal forms are identical. Note that the terms
  -- must have the same type.

  infix 4 _≟-⊢no_[_]

  _≟-⊢no_[_] :  {Γ₁ σ₁} (t₁ : Γ₁  σ₁  no )
                 {Γ₂ σ₂} (t₂ : Γ₂  σ₂  no ) 
              σ₁ ≅-Type σ₂  Dec (t₁ ≅-⊢n t₂)
  ne σ′₁ t₁ ≟-⊢no ne σ′₂ t₂ [ P.refl ] = ne≟ne σ′₁ σ′₂ (t₁ ≟-⊢ne t₂)
    where
    ne≟ne :  {Γ σ} {t₁ t₂ : Γ  σ  ne }
            (σ′₁ : Γ  σ atomic-type) (σ′₂ : Γ  σ atomic-type) 
            Dec (t₁ ≅-⊢n t₂)  Dec (ne σ′₁ t₁ ≅-⊢n ne σ′₂ t₂)
    ne≟ne     (yes P.refl) = yes P.refl
    ne≟ne el el (yes P.refl) = yes P.refl
    ne≟ne _  _  (Dec.no neq) = Dec.no (neq  helper)
      where
      helper :
         {Γ₁ σ₁ σ′₁} {t₁ : Γ₁  σ₁  ne }
          {Γ₂ σ₂ σ′₂} {t₂ : Γ₂  σ₂  ne } 
        ne σ′₁ t₁ ≅-⊢n ne σ′₂ t₂  t₁ ≅-⊢n t₂
      helper P.refl = P.refl

  ƛ t₁ ≟-⊢no ƛ t₂ [ eq ] =
    Dec.map′ ƛn-cong helper
             (t₁ ≟-⊢no t₂ [ snd-cong $ indexed-type-cong eq ])
    where
    helper :
       {Γ₁ σ₁ τ₁} {t₁ : Γ₁  σ₁  τ₁  no }
        {Γ₂ σ₂ τ₂} {t₂ : Γ₂  σ₂  τ₂  no } 
      ƛ t₁ ≅-⊢n ƛ t₂  t₁ ≅-⊢n t₂
    helper P.refl = P.refl

  ne _ _ ≟-⊢no ƛ _    [ _ ] = Dec.no λ ()
  ƛ _    ≟-⊢no ne _ _ [ _ ] = Dec.no λ ()

-- Tries to prove that two terms have the same semantics. The terms
-- must have the same type.

⟦_⟧≟⟦_⟧ :  {Γ σ} (t₁ t₂ : Γ  σ) 
          Maybe ( t₁  ≅-Value  t₂ )
 t₁ ⟧≟⟦ t₂  with normalise t₁ ≟-⊢no normalise t₂ [ P.refl ]
... | Dec.no _ = 
... | yes eq   = pure (begin
  [  t₁             ]  ≡⟨ normalise-lemma t₁ 
  [  normalise t₁ ⟧n ]  ≡⟨ ⟦⟧n-cong eq 
  [  normalise t₂ ⟧n ]  ≡⟨ P.sym $ normalise-lemma t₂ 
  [  t₂             ]  )

-- Tries to prove that two semantic types are equal, given
-- corresponding syntactic types. The types must have the same
-- context.

infix 4 _≟-Type_

_≟-Type_ :  {Γ σ₁} (σ₁′ : Γ  σ₁ type)
               {σ₂} (σ₂′ : Γ  σ₂ type) 
           Maybe (σ₁ ≅-Type σ₂)
 ≟-Type  = pure P.refl

el t₁ ≟-Type el t₂ = helper <$>  t₁ ⟧≟⟦ t₂ 
  where
  helper :  {Γ₁} {v₁ : Value Γ₁ ( , _)}
             {Γ₂} {v₂ : Value Γ₂ ( , _)} 
           v₁ ≅-Value v₂  (el , v₁) ≅-Type (el , v₂)
  helper P.refl = P.refl
π σ′₁ τ′₁ ≟-Type π σ′₂ τ′₂ = helper τ′₁ τ′₂ =<< σ′₁ ≟-Type σ′₂
  where
  helper :
     {Γ₁ σ₁ τ₁} (τ′₁ : Γ₁  σ₁  τ₁ type)
      {Γ₂ σ₂ τ₂} (τ′₂ : Γ₂  σ₂  τ₂ type) 
    σ₁ ≅-Type σ₂  Maybe (Type-π σ₁ τ₁ ≅-Type Type-π σ₂ τ₂)
  helper τ′₁ τ′₂ P.refl = Type-π-cong <$> (τ′₁ ≟-Type τ′₂)

_ ≟-Type _ =