------------------------------------------------------------------------
-- Simple recognisers
------------------------------------------------------------------------

open import Relation.Binary
open import Relation.Binary.PropositionalEquality hiding ([_])

-- The recognisers are parametrised on the alphabet.

module TotalRecognisers.Simple
         (Tok : Set)
         (_≟_ : Decidable (_≡_ {A = Tok}))
         -- The tokens must come with decidable equality.
         where

open import Algebra
open import Codata.Musical.Notation
open import Data.Bool hiding (_≟_)
import Data.Bool.Properties as Bool
private
  module BoolCS = CommutativeSemiring Bool.∧-∨-commutativeSemiring
open import Function
open import Data.List
open import Data.Product
open import Relation.Nullary

------------------------------------------------------------------------
-- Recogniser combinators

infixl 10 _·_
infixl  5 _∣_

mutual

  -- The index is true if the corresponding language contains the
  -- empty string (is nullable).

  data P : Bool  Set where
    fail  : P false
    empty : P true
    tok   : Tok  P false
    _∣_   :  {n₁ n₂}  P n₁             P n₂  P (n₁  n₂)
    _·_   :  {n₁ n₂}  P n₁  ∞⟨ not n₁ ⟩P n₂  P (n₁  n₂)

  -- Coinductive if the index is true.

  ∞⟨_⟩P : Bool  Bool  Set
  ∞⟨ true  ⟩P n =  (P n)
  ∞⟨ false ⟩P n =    P n

------------------------------------------------------------------------
-- Conditional coinduction helpers

delayed? :  {b n}  ∞⟨ b ⟩P n  Bool
delayed? {b = b} _ = b

♭? :  {b n}  ∞⟨ b ⟩P n  P n
♭? {true}  x =  x
♭? {false} x =   x

♯? :  {b n}  P n  ∞⟨ b ⟩P n
♯? {true}  x =  x
♯? {false} x =   x

-- A lemma.

♭?♯? :  b {n} {p : P n}  ♭? {b} (♯? p)  p
♭?♯? true  = refl
♭?♯? false = refl

------------------------------------------------------------------------
-- Semantics

-- The semantics is defined inductively: s ∈ p iff the string s is
-- contained in the language defined by p.

infix 4 _∈_

data _∈_ :  {n}  List Tok  P n  Set where
  empty   : []  empty
  tok     :  {t}  [ t ]  tok t
  ∣-left  :  {s n₁ n₂} {p₁ : P n₁} {p₂ : P n₂} 
            s  p₁  s  p₁  p₂
  ∣-right :  {s n₁ n₂} {p₁ : P n₁} {p₂ : P n₂} 
            s  p₂  s  p₁  p₂
  _·_     :  {s₁ s₂ n₁ n₂} {p₁ : P n₁} {p₂ : ∞⟨ not n₁ ⟩P n₂} 
            s₁  p₁  s₂  ♭? p₂  s₁ ++ s₂  p₁ · p₂

-- A lemma.

cast :  {n} {p p′ : P n} {s}  p  p′  s  p  s  p′
cast refl s∈ = s∈

------------------------------------------------------------------------
-- Nullability

-- The nullability index is correct.

 :  {n} {p : P n}  []  p  n  true
 pr = ⇒′ pr refl
  where
  ⇒′ :  {n s} {p : P n}  s  p  s  []  n  true
  ⇒′ empty                   refl = refl
  ⇒′ tok                     ()
  ⇒′ (∣-left            pr₁) refl with  pr₁
  ⇒′ (∣-left            pr₁) refl | refl = refl
  ⇒′ (∣-right           pr₂) refl with  pr₂
  ⇒′ (∣-right {n₁ = n₁} pr₂) refl | refl = proj₂ BoolCS.zero n₁
  ⇒′ (_·_ {[]}    pr₁ pr₂)   refl = cong₂ _∧_ ( pr₁) ( pr₂)
  ⇒′ (_·_ {_  _} pr₁ pr₂)   ()

 :  {n} (p : P n)  n  true  []  p
 fail                         ()
 empty                        refl = empty
 (tok t)                      ()
 (_∣_ {true}           p₁ p₂) refl = ∣-left            ( p₁ refl)
 (_∣_ {false} {true}   p₁ p₂) refl = ∣-right {p₁ = p₁} ( p₂ refl)
 (_∣_ {false} {false}  p₁ p₂) ()
 (_·_ {true}  p₁ p₂)          refl =  p₁ refl ·  p₂ refl
 (_·_ {false} p₁ p₂)          ()

-- We can decide if the empty string belongs to a given language.

nullable? :  {n} (p : P n)  Dec ([]  p)
nullable? {true}  p = yes ( p refl)
nullable? {false} p = no helper
  where
  helper : ¬ []  p
  helper []∈p with  []∈p
  ... | ()

------------------------------------------------------------------------
-- Derivative

-- D-nullable and D are placed in a mutual block to ensure that the
-- underscores in the definition of D-nullable can be solved by
-- constraints introduced in the body of D. The functions are not
-- actually mutually recursive.

mutual

  -- The index of the derivative. The right-hand sides (excluding
  -- t′ ≟ t and delayed? p₂) are inferable, but included here so that
  -- they can easily be inspected.

  D-nullable :  {n}  Tok  P n  Bool
  D-nullable t fail      = false
  D-nullable t empty     = false
  D-nullable t (tok t′)  with t′  t
  D-nullable t (tok t′)  | yes t′≡t = true
  D-nullable t (tok t′)  | no  t′≢t = false
  D-nullable t (p₁  p₂) = D-nullable t p₁  D-nullable t p₂
  D-nullable t (p₁ · p₂) with delayed? p₂
  D-nullable t (p₁ · p₂) | true  = D-nullable t p₁  _
  D-nullable t (p₁ · p₂) | false = D-nullable t p₁  _  D-nullable t p₂

  -- D t p is the "derivative" of p with respect to t. It is specified
  -- by the equivalence s ∈ D t p ⇔ t ∷ s ∈ p (proved below).

  D :  {n} (t : Tok) (p : P n)  P (D-nullable t p)
  D t fail      = fail
  D t empty     = fail
  D t (tok t′)  with t′  t
  D t (tok t′)  | yes t′≡t = empty
  D t (tok t′)  | no  t′≢t = fail
  D t (p₁  p₂) = D t p₁  D t p₂
  D t (p₁ · p₂) with delayed? p₂
  D t (p₁ · p₂) | true  = D t p₁ · ♯? ( p₂)
  D t (p₁ · p₂) | false = D t p₁ · ♯?    p₂  D t p₂

-- D is correct.

D-sound :  {s n} {t} {p : P n}  s  D t p  t  s  p
D-sound s∈ = D-sound′ _ _ s∈
  where
  D-sound′ :  {s n} t (p : P n)  s  D t p  t  s  p
  D-sound′ t fail                ()
  D-sound′ t empty               ()
  D-sound′ t (tok t′)            _                   with t′  t
  D-sound′ t (tok .t)            empty               | yes refl = tok
  D-sound′ t (tok t′)            ()                  | no  t′≢t
  D-sound′ t (p₁  p₂)           (∣-left  ∈₁)        = ∣-left            (D-sound′ t p₁ ∈₁)
  D-sound′ t (p₁  p₂)           (∣-right ∈₂)        = ∣-right {p₁ = p₁} (D-sound′ t p₂ ∈₂)
  D-sound′ t (_·_ {true}  p₁ p₂) (∣-left  (∈₁ · ∈₂)) = D-sound′ t p₁ ∈₁ · cast (♭?♯? (not (D-nullable t p₁))) ∈₂
  D-sound′ t (_·_ {true}  p₁ p₂) (∣-right ∈₂)        =  p₁ refl · D-sound′ t p₂ ∈₂
  D-sound′ t (_·_ {false} p₁ p₂) (∈₁ · ∈₂)           = D-sound′ t p₁ ∈₁ · cast (♭?♯? (not (D-nullable t p₁))) ∈₂

D-complete :  {s n} {t} {p : P n}  t  s  p  s  D t p
D-complete {t = t} t∷s∈ = D-complete′ _ t∷s∈ refl
  where
  D-complete′ :  {s s′ n} (p : P n)  s′  p  s′  t  s  s  D t p
  D-complete′         fail     ()  refl
  D-complete′         empty    ()  refl
  D-complete′         (tok t′) _   refl with t′  t
  D-complete′         (tok .t) tok refl | yes refl = empty
  D-complete′ {[]}    (tok .t) tok refl | no  t′≢t with t′≢t refl
  D-complete′ {[]}    (tok .t) tok refl | no  t′≢t | ()
  D-complete′ (p₁  p₂)           (∣-left  ∈₁)         refl = ∣-left                    (D-complete ∈₁)
  D-complete′ (p₁  p₂)           (∣-right ∈₂)         refl = ∣-right {p₁ = D t p₁}     (D-complete ∈₂)
  D-complete′ (_·_ {true}  p₁ p₂) (_·_ {[]}     ∈₁ ∈₂) refl = ∣-right {p₁ = D t p₁ · _} (D-complete ∈₂)
  D-complete′ (_·_ {true}  p₁ p₂) (_·_ {._  _} ∈₁ ∈₂) refl = ∣-left (D-complete ∈₁ · cast (sym (♭?♯? (not (D-nullable t p₁)))) ∈₂)
  D-complete′ (_·_ {false} p₁ p₂) (_·_ {[]}     ∈₁ ∈₂) refl with  ∈₁
  D-complete′ (_·_ {false} p₁ p₂) (_·_ {[]}     ∈₁ ∈₂) refl | ()
  D-complete′ (_·_ {false} p₁ p₂) (_·_ {._  _} ∈₁ ∈₂) refl = D-complete ∈₁ · cast (sym (♭?♯? (not (D-nullable t p₁)))) ∈₂

------------------------------------------------------------------------
-- _∈_ is decidable

-- _∈?_ runs a recogniser. Note that the result is yes or no plus a
-- /proof/ verifying that the answer is correct.

infix 4 _∈?_

_∈?_ :  {n} (s : List Tok) (p : P n)  Dec (s  p)
[]    ∈? p = nullable? p
t  s ∈? p with s ∈? D t p
t  s ∈? p | yes s∈Dtp = yes (D-sound s∈Dtp)
t  s ∈? p | no  s∉Dtp = no  (s∉Dtp  D-complete)