------------------------------------------------------------------------
-- Some auxiliary operations and lemmas
------------------------------------------------------------------------

module BreadthFirst.Lemmas where

open import Coinduction
open import Function
open import Data.List.NonEmpty as List⁺ using (List⁺; [_]; _∷_; _⁺++⁺_)
import Data.Vec as Vec
open import Data.Colist as Colist using (Colist; []; _∷_; concat; _++_)
open import Data.Product using (_,_)
open import Relation.Binary.PropositionalEquality as PropEq
  using (_≡_) renaming (refl to ≡-refl)

open import BreadthFirst.Universe
open import BreadthFirst.Programs
open import Tree using (leaf; node; map)
open import Stream using (Stream; _≺_) renaming (_++_ to _++∞_)

------------------------------------------------------------------------
-- Some operations

zipWith :  {A B} (f : A  B  B)  Colist A  Stream B  Stream B
zipWith f []       ys       = ys
zipWith f (x  xs) (y  ys) = f x y   zipWith f ( xs) ( ys)

_⁺++∞_ :  {A}  List⁺ A  Stream A  Stream A
xs ⁺++∞ ys = Colist.fromList (Vec.toList $ List⁺.toVec xs) ++∞ ys

_⁺++_ :  {A}  List⁺ A  Colist A  Colist A
xs ⁺++ ys = Colist.fromList (Vec.toList $ List⁺.toVec xs) ++ ys

------------------------------------------------------------------------
-- Eq is an equivalence relation

refl :  {a} x  Eq a x x
refl {a = tree a}   leaf         = leaf
refl {a = tree a}   (node l x r) = node ( refl ( l)) (refl x) ( refl ( r))
refl {a = stream a} (x  xs)     = refl x   refl ( xs)
refl {a = colist a} []           = []
refl {a = colist a} (x  xs)     = refl x   refl ( xs)
refl {a = a  b}    (x , y)      = (refl x , refl y)
refl {a =  A }    x            =  PropEq.refl 

sym :  {a x y}  Eq a x y  Eq a y x
sym {a = tree a}   leaf                  = leaf
sym {a = tree a}   (node l≈l′ x≈x′ r≈r′) = node ( sym ( l≈l′)) (sym x≈x′) ( sym ( r≈r′))
sym {a = stream a} (x≈x′  xs≈xs′)       = sym x≈x′   sym ( xs≈xs′)
sym {a = colist a} []                    = []
sym {a = colist a} (x≈x′  xs≈xs′)       = sym x≈x′   sym ( xs≈xs′)
sym {a = a  b}    (x≈x′ , y≈y′)         = (sym x≈x′ , sym y≈y′)
sym {a =  A }     x≡x′               =  PropEq.sym x≡x′ 

trans :  {a x y z}  Eq a x y  Eq a y z  Eq a x z
trans {a = tree a}   leaf leaf                = leaf
trans {a = tree a}   (node l≈l′ x≈x′ r≈r′)
                     (node l′≈l″ x′≈x″ r′≈r″) = node ( trans ( l≈l′) ( l′≈l″))
                                                     (trans x≈x′ x′≈x″)
                                                     ( trans ( r≈r′) ( r′≈r″))
trans {a = stream a} (x≈x′   xs≈xs′)
                     (x′≈x″  xs′≈xs″)        = trans x≈x′ x′≈x″   trans ( xs≈xs′) ( xs′≈xs″)
trans {a = colist a} [] []                    = []
trans {a = colist a} (x≈x′   xs≈xs′)
                     (x′≈x″  xs′≈xs″)        = trans x≈x′ x′≈x″   trans ( xs≈xs′) ( xs′≈xs″)
trans {a = a  b}    (x≈x′  , y≈y′)
                     (x′≈x″ , y′≈y″)          = (trans x≈x′ x′≈x″ , trans y≈y′ y′≈y″)
trans {a =  A }     x≡x′    x′≡x″       =  PropEq.trans x≡x′ x′≡x″ 

------------------------------------------------------------------------
-- Productivity checker workaround for Eq

infixr 5 _≺_ _∷_
infixr 2 _≈⟨_⟩_ _≊⟨_⟩_
infix  2 _∎

data EqP :  a  El a  El a  Set₁ where
  leaf :  {a}  EqP (tree a) leaf leaf
  node :  {a x x′ l l′ r r′}
         (l≈l′ :  (EqP (tree a) ( l) ( l′)))
         (x≈x′ :    Eq        a     x     x′  )
         (r≈r′ :  (EqP (tree a) ( r) ( r′))) 
         EqP (tree a) (node l x r) (node l′ x′ r′)
  _≺_  :  {a x x′ xs xs′}
         (x≈x′   :    Eq          a     x      x′   )
         (xs≈xs′ :  (EqP (stream a) ( xs) ( xs′))) 
         EqP (stream a) (x  xs) (x′  xs′)
  []   :  {a}  EqP (colist a) [] []
  _∷_  :  {a x x′ xs xs′}
         (x≈x′   :    Eq          a     x      x′   )
         (xs≈xs′ :  (EqP (colist a) ( xs) ( xs′))) 
         EqP (colist a) (x  xs) (x′  xs′)
  _,_  :  {a b x x′ y y′}
         (x≈x′ : Eq a x x′) (y≈y′ : Eq b y y′) 
         EqP (a  b) (x , y) (x′ , y′)
  ⌈_⌉  :  {A x x′} (x≡x′ : x  x′)  EqP  A  x x′

  _≊⟨_⟩_ :  {a} x {y z}
           (x≈y : EqP a x y) (y≈z : EqP a y z)  EqP a x z

  zipWith-cong :
     {a b} {f : El a  El b  El b}
    (cong :  {x x′ y y′} 
            Eq a x x′  Eq b y y′  Eq b (f x y) (f x′ y′))
    {xs xs′ ys ys′}
    (xs≈xs′ : EqP (colist a) xs xs′)
    (ys≈ys′ : EqP (stream b) ys ys′) 
    EqP (stream b) (zipWith f xs ys) (zipWith f xs′ ys′)

data EqW :  a  El a  El a  Set₁ where
  leaf :  {a}  EqW (tree a) leaf leaf
  node :  {a x x′ l l′ r r′}
         (l≈l′ : EqP (tree a) ( l) ( l′))
         (x≈x′ : Eq        a     x     x′ )
         (r≈r′ : EqP (tree a) ( r) ( r′)) 
         EqW (tree a) (node l x r) (node l′ x′ r′)
  _≺_  :  {a x x′ xs xs′}
         (x≈x′   : Eq          a     x      x′  )
         (xs≈xs′ : EqP (stream a) ( xs) ( xs′)) 
         EqW (stream a) (x  xs) (x′  xs′)
  []   :  {a}  EqW (colist a) [] []
  _∷_  :  {a x x′ xs xs′}
         (x≈x′   : Eq          a     x      x′  )
         (xs≈xs′ : EqP (colist a) ( xs) ( xs′)) 
         EqW (colist a) (x  xs) (x′  xs′)
  _,_  :  {a b x x′ y y′}
         (x≈x′ : Eq a x x′) (y≈y′ : Eq b y y′) 
         EqW (a  b) (x , y) (x′ , y′)
  ⌈_⌉  :  {A x x′} (x≡x′ : x  x′)  EqW  A  x x′

⟦_⟧≈⁻¹ :  {a} {x y : El a}  Eq a x y  EqP a x y
 leaf                ⟧≈⁻¹ = leaf
 node l≈l′ x≈x′ r≈r′ ⟧≈⁻¹ = node (   l≈l′ ⟧≈⁻¹) x≈x′ (   r≈r′ ⟧≈⁻¹)
 x≈x′  xs≈xs′       ⟧≈⁻¹ = x≈x′     xs≈xs′ ⟧≈⁻¹
 []                  ⟧≈⁻¹ = []
 x≈x′  xs≈xs′       ⟧≈⁻¹ = x≈x′     xs≈xs′ ⟧≈⁻¹
 (x≈x′ , y≈y′)       ⟧≈⁻¹ = (x≈x′ , y≈y′)
  x≡x′             ⟧≈⁻¹ =  x≡x′ 

whnf≈ :  {a xs ys}  EqP a xs ys  EqW a xs ys
whnf≈ leaf                  = leaf
whnf≈ (node l≈l′ x≈x′ r≈r′) = node ( l≈l′) x≈x′ ( r≈r′)
whnf≈ (x≈x′  xs≈xs′)       = x≈x′   xs≈xs′
whnf≈ []                    = []
whnf≈ (x≈x′  xs≈xs′)       = x≈x′   xs≈xs′
whnf≈ (x≈x′ , y≈y′)         = (x≈x′ , y≈y′)
whnf≈  x≡x′               =  x≡x′ 

whnf≈ ( _ ≊⟨ x≈y  y≈z) with whnf≈ x≈y | whnf≈ y≈z
whnf≈ (._ ≊⟨ x≈y  y≈z) | leaf           | leaf            = leaf
whnf≈ (._ ≊⟨ x≈y  y≈z) | node l≈l′  x≈x′  r≈r′
                        | node l′≈l″ x′≈x″ r′≈r″ = node (_ ≊⟨ l≈l′  l′≈l″) (trans x≈x′ x′≈x″) (_ ≊⟨ r≈r′  r′≈r″)
whnf≈ (._ ≊⟨ x≈y  y≈z) | []             | []              = []
whnf≈ (._ ≊⟨ x≈y  y≈z) | x≈y′  xs≈ys′  | y≈z′  ys≈zs′   = trans x≈y′ y≈z′  (_ ≊⟨ xs≈ys′  ys≈zs′)
whnf≈ (._ ≊⟨ x≈y  y≈z) | x≈y′  xs≈ys′  | y≈z′  ys≈zs′   = trans x≈y′ y≈z′  (_ ≊⟨ xs≈ys′  ys≈zs′)
whnf≈ (._ ≊⟨ x≈y  y≈z) | (x≈x′  , y≈y′) | (x′≈x″ , y′≈y″) = (trans x≈x′ x′≈x″ , trans y≈y′ y′≈y″)
whnf≈ ( _ ≊⟨ x≈y  y≈z) |  x≡x′        |  x′≡x″        =  PropEq.trans x≡x′ x′≡x″ 

whnf≈ (zipWith-cong cong xs≈xs′ ys≈ys′) with whnf≈ xs≈xs′ | whnf≈ ys≈ys′
... | []            | ys≈ys″        = ys≈ys″
... | x≈x′  xs≈xs″ | y≈y′  ys≈ys″ =
  cong x≈x′ y≈y′  zipWith-cong cong xs≈xs″ ys≈ys″

mutual

  value≈ :  {a xs ys}  EqW a xs ys  Eq a xs ys
  value≈ leaf                  = leaf
  value≈ (node l≈l′ x≈x′ r≈r′) = node (  l≈l′ ⟧≈) x≈x′ (  r≈r′ ⟧≈)
  value≈ (x≈x′  xs≈xs′)       = x≈x′    xs≈xs′ ⟧≈
  value≈ []                    = []
  value≈ (x≈x′  xs≈xs′)       = x≈x′    xs≈xs′ ⟧≈
  value≈ (x≈x′ , y≈y′)         = (x≈x′ , y≈y′)
  value≈  x≡x′               =  x≡x′ 

  ⟦_⟧≈ :  {a xs ys}  EqP a xs ys  Eq a xs ys
   xs≈ys ⟧≈ = value≈ (whnf≈ xs≈ys)

_≈⟨_⟩_ :  {a} x {y z}
         (x≈y : Eq a x y) (y≈z : EqP a y z)  EqP a x z
x ≈⟨ x≈y  y≈z = x ≊⟨  x≈y ⟧≈⁻¹  y≈z

_∎ :  {a} x  EqP a x x
x  =  refl x ⟧≈⁻¹

------------------------------------------------------------------------
-- Productivity checker workaround for PrefixOf

infixr 2 _≋⟨_⟩_ _⊑⟨_⟩_

data PrefixOfP (a : U) :
       Colist (El a)  Stream (El a)  Set₁ where
  []       :  {ys}  PrefixOfP a [] ys
  ⁺++-mono :  xs {ys ys′} (ys⊑ys′ :  (PrefixOfP a ys ys′)) 
             PrefixOfP a (xs ⁺++ ys) (xs ⁺++∞ ys′)
  _≋⟨_⟩_   :  xs {ys zs} (xs≈ys : Eq (colist a) xs ys)
             (ys⊑zs : PrefixOfP a ys zs)  PrefixOfP a xs zs
  _⊑⟨_⟩_   :  xs {ys zs} (xs⊑ys : PrefixOfP a xs ys)
             (ys≈zs : EqP (stream a) ys zs)  PrefixOfP a xs zs

data PrefixOfW (a : U) :
       Colist (El a)  Stream (El a)  Set₁ where
  []  :  {ys}  PrefixOfW a [] ys
  _∷_ :  {x y xs ys}
        (x≈y : Eq a x y) (p : PrefixOfP a ( xs) ( ys)) 
        PrefixOfW a (x  xs) (y  ys)

whnf⊑ :  {a xs ys} 
        PrefixOfP a xs ys  PrefixOfW a xs ys
whnf⊑ []                         = []

whnf⊑ (⁺++-mono [ x ]    ys⊑ys′) = refl x   ys⊑ys′
whnf⊑ (⁺++-mono (x  xs) ys⊑ys′) = refl x  ⁺++-mono xs ys⊑ys′

whnf⊑ (._ ≋⟨ []           _    ) = []
whnf⊑ (._ ≋⟨ x≈y  xs≈ys  ys⊑zs) with whnf⊑ ys⊑zs
... | y≈z  ys⊑zs′ = trans x≈y y≈z  (_ ≋⟨  xs≈ys  ys⊑zs′)

whnf⊑ (._ ⊑⟨ xs⊑ys  ys≈zs) with whnf⊑ xs⊑ys | whnf≈ ys≈zs
... | []           | _            = []
... | x≈y  xs⊑ys′ | y≈z  ys≈zs′ = trans x≈y y≈z  (_ ⊑⟨ xs⊑ys′  ys≈zs′)

mutual

  value⊑ :  {a xs ys}  PrefixOfW a xs ys  PrefixOf a xs ys
  value⊑ []            = []
  value⊑ (x≈y  xs⊑ys) = x≈y    xs⊑ys ⟧⊑

  ⟦_⟧⊑ :  {a xs ys}  PrefixOfP a xs ys  PrefixOf a xs ys
   xs⊑ys ⟧⊑ = value⊑ (whnf⊑ xs⊑ys)

------------------------------------------------------------------------
-- More lemmas

⁺++∞-cong :  {a xs xs′ ys ys′} 
            Eq  List⁺ (El a)  xs xs′ 
            Eq (stream a) ys ys′ 
            Eq (stream a) (xs ⁺++∞ ys) (xs′ ⁺++∞ ys′)
⁺++∞-cong {xs = [ x ]}   ≡-refl  ys≈ys′ = refl x   ys≈ys′
⁺++∞-cong {xs = x  xs}  ≡-refl  ys≈ys′ =
  refl x   ⁺++∞-cong {xs = xs}  ≡-refl  ys≈ys′

++-assoc :  {a} xs ys zs 
           Eq (stream a) (xs ⁺++∞ (ys ⁺++∞ zs)) ((xs ⁺++⁺ ys) ⁺++∞ zs)
++-assoc [ x ]    ys zs = refl x   refl (ys ⁺++∞ zs)
++-assoc (x  xs) ys zs = refl x   ++-assoc xs ys zs

zip-++-assoc :  {a} xss yss (zss : Stream (Stream (El a))) 
               Eq (stream (stream a))
                  (zipWith _⁺++∞_  xss  (zipWith _⁺++∞_  yss  zss))
                  (zipWith _⁺++∞_  longZipWith _⁺++⁺_ xss yss  zss)
zip-++-assoc xss yss (zs  zss) with whnf xss | whnf yss
... | []            | []            = refl _
... | []            | ys      yss′ = refl _
... | xs      xss′ | []            = refl _
... |  xs   xss′ |  ys   yss′ =
  ++-assoc xs ys zs   zip-++-assoc ( xss′) ( yss′) ( zss)

concat-lemma :  {a} xs xss 
               Eq (colist a) (concat (xs  xss))
                             (xs ⁺++ concat ( xss))
concat-lemma [ x ]    xss = refl x   refl (concat ( xss))
concat-lemma (x  xs) xss = refl x   concat-lemma xs xss