------------------------------------------------------------------------
-- Admissible rules are sometimes not "postulable"
------------------------------------------------------------------------

-- Even though a rule is admissible it may not be sound to postulate
-- it, i.e. add it as an inductive constructor. This was observed by
-- Edsko de Vries in a message to the Coq-club mailing list (Re:
-- [Coq-Club] Adding (inductive) transitivity to weak bisimilarity not
-- sound? (was: Need help with coinductive proof), 2009-08-28).

module AdmissibleButNotPostulable where

open import Coinduction using (; ♯_;)
open import Data.Nat
open import Data.Product as Prod
open import Function
open import Relation.Binary.PropositionalEquality as P
  using (_≡_; _with-≡_)
open import Relation.Nullary using (¬_)

------------------------------------------------------------------------
-- The partiality monad

data _⊥ (A : Set) : Set where
  now   : (v : A)  A 
  later : (x :  (A ))  A 

------------------------------------------------------------------------
-- Weak equality of computations in the partiality monad

module WeakEquality where

  infix 4 _≈_

  data _≈_ {A : Set} : A   A   Set where
    now    :  {v}                          now   v  now   v
    later  :  {x y} (x≈y :  ( x   y))  later x  later y
    laterʳ :  {x y} (x≈y :      x   y )        x  later y
    laterˡ :  {x y} (x≈y :     x    y )  later x        y

  -- Some lemmas.

  laterʳ⁻¹ :  {A : Set} {x : A } {y}  x  later y  x   y
  laterʳ⁻¹ (later  x≈y)  = laterˡ        ( x≈y)
  laterʳ⁻¹ (laterʳ x≈y)  = x≈y
  laterʳ⁻¹ (laterˡ x≈ly) = laterˡ (laterʳ⁻¹ x≈ly)

  laterˡ⁻¹ :  {A : Set} {x} {y : A }  later x  y   x  y
  laterˡ⁻¹ (later  x≈y)  = laterʳ         ( x≈y)
  laterˡ⁻¹ (laterʳ lx≈y) = laterʳ (laterˡ⁻¹ lx≈y)
  laterˡ⁻¹ (laterˡ x≈y)  = x≈y

  -- Weak equality is an equivalence relation.

  refl : {A : Set} (x : A )  x  x
  refl (now v)   = now
  refl (later x) = later ( refl ( x))

  sym : {A : Set} {x y : A }  x  y  y  x
  sym now          = now
  sym (later  x≈y) = later ( sym ( x≈y))
  sym (laterʳ x≈y) = laterˡ (sym x≈y)
  sym (laterˡ x≈y) = laterʳ (sym x≈y)

  trans : {A : Set} {x y z : A }  x  y  y  z  x  z
  trans {x = now v} {z = z} p q = tr p q
    where
    tr :  {y}  now v  y  y  z  now v  z
    tr now          y≈z  = y≈z
    tr (laterʳ v≈y) ly≈z = tr v≈y (laterˡ⁻¹ ly≈z)
  trans {x = later x} lx≈y y≈z = tr lx≈y y≈z
    where
    tr :  {y z}  later x  y  y  z  later x  z
    tr         lx≈ly (later  y≈z) = later  ( trans (laterˡ⁻¹ lx≈ly) (laterˡ ( y≈z)))
    tr         lx≈y  (laterʳ y≈z) = later  ( trans (laterˡ⁻¹ lx≈y)             y≈z  )
    tr         lx≈ly (laterˡ y≈z) =           tr    (laterʳ⁻¹ lx≈ly)            y≈z
    tr (laterˡ  x≈y)         y≈z  = laterˡ (  trans            x≈y              y≈z  )

  -- Non-termination.

  never : {A : Set}  A 
  never = later ( never)

  -- Weak equality is not trivial (assuming that the argument to _⊥ is
  -- non-empty).

  non-trivial : {A : Set} {v : A}  ¬ now v  never
  non-trivial (laterʳ v≈⊥) = non-trivial v≈⊥

------------------------------------------------------------------------
-- Extended weak equality

module ExtendedWeakEquality where

  infix  4 _≈_
  infix  3 _∎
  infixr 2 _≈⟨_⟩_

  -- Let us try to postulate transitivity using an inductive rule.

  data _≈_ {A : Set} : A   A   Set where
    now    :  {v}                          now   v  now   v
    later  :  {x y} (x≈y :  ( x   y))  later x  later y
    laterʳ :  {x y} (x≈y :      x   y )        x  later y
    laterˡ :  {x y} (x≈y :     x    y )  later x        y

    -- Transitivity.
    _≈⟨_⟩_ :  x {y z} (x≈y : x  y) (y≈z : y  z)  x  z

  -- Reflexivity.

  _∎ : {A : Set} (x : A )  x  x
  now   v  = now
  later x  = later ( ( x ))

  -- Extended weak equality is trivial.

  trivial : {A : Set} (x y : A )  x  y
  trivial x y =
    x           ≈⟨ laterʳ (x )           
    later ( x) ≈⟨ later  ( trivial x y) 
    later ( y) ≈⟨ laterˡ (y )           
    y           

  -- The problem is that there is no "contractive" proof of
  -- transitivity; the proof given above consumes the input
  -- certificate "faster" than it produces the output certificate.

------------------------------------------------------------------------
-- Capretta's definition of equality coincides with weak equality

-- This is not really related to the problem discussed above, I just
-- want to ensure that the definition of weak equality is not too
-- strange.

module Capretta'sEquality where

  infix 4 _⇓_ _≈_

  -- x ⇓ v means that x terminates with the value v.

  data _⇓_ {A : Set} : A   A  Set where
    now   :  {v}  now v  v
    later :  {x v} (x⇓v :  x  v)  later x  v

  -- Equality as defined by Capretta in "General Recursion via
  -- Coinductive Types".

  data _≈_ {A : Set} : A   A   Set where
    now   :  {x y v} (x⇓v : x  v) (y⇓v : y  v)  x  y
    later :  {x y} (x≈y :  ( x   y))  later x  later y

  -- Soundness.

  open WeakEquality using () renaming (_≈_ to _≋_)

  sound : {A : Set} {x y : A }  x  y  x  y
  sound (later x≈y)   = WeakEquality.later ( sound ( x≈y))
  sound (now x⇓v y⇓v) = nw x⇓v y⇓v
    where
    nw :  {A : Set} {x y : A } {v}  x  v  y  v  x  y
    nw now         now         = WeakEquality.now
    nw x⇓v         (later y⇓v) = WeakEquality.laterʳ (nw x⇓v y⇓v)
    nw (later x⇓v) y⇓v         = WeakEquality.laterˡ (nw x⇓v y⇓v)

  -- Completeness.

  data _≈P_ {A : Set} : A   A   Set where
    now    :  {x y v} (x⇓v : x  v) (y⇓v : y  v)  x ≈P y
    later  :  {x y} (x≈y :  ( x ≈P  y))  later x ≈P later y
    laterʳ :  {x y} (x≈y :      x ≈P  y )        x ≈P later y
    laterˡ :  {x y} (x≈y :     x ≈P   y )  later x ≈P       y

  data _≈W_ {A : Set} : A   A   Set where
    now   :  {x y v} (x⇓v : x  v) (y⇓v : y  v)  x ≈W y
    later :  {x y} (x≈y :  x ≈P  y)  later x ≈W later y

  laterʳW :  {A : Set} {x : A } {y}  x ≈W  y  x ≈W later y
  laterʳW {y = y} x≈y with P.inspect ( y)
  laterʳW x≈y | y′ with-≡ eq rewrite eq with x≈y
  laterʳW x≈y | y′ with-≡ eq | now {v = v} x⇓v y⇓v =
    now x⇓v (later (P.subst  y  y  v) (P.sym eq) y⇓v))
  laterʳW x≈y | later y′ with-≡ eq | later x′≈y′ =
    later (P.subst (_≈P_ _) (P.sym eq) (laterʳ x′≈y′))

  laterˡW :  {A : Set} {x} {y : A }   x ≈W y  later x ≈W y
  laterˡW {x = x} x≈y with P.inspect ( x)
  laterˡW x≈y | x′ with-≡ eq rewrite eq with x≈y
  laterˡW x≈y | x′ with-≡ eq | now {v = v} x⇓v y⇓v =
    now (later (P.subst  x  x  v) (P.sym eq) x⇓v)) y⇓v
  laterˡW x≈y | later x′ with-≡ eq | later {y = y′} x′≈y′ =
    later (P.subst  x  x ≈P  y′) (P.sym eq) (laterˡ x′≈y′))

  whnf : {A : Set} {x y : A }  x ≈P y  x ≈W y
  whnf (now x⇓v y⇓v) = now x⇓v y⇓v
  whnf (later  x≈y)  = later ( x≈y)
  whnf (laterʳ x≈y)  = laterʳW (whnf x≈y)
  whnf (laterˡ x≈y)  = laterˡW (whnf x≈y)

  mutual

    ⟦_⟧W : {A : Set} {x y : A }  x ≈W y  x  y
     now x⇓v y⇓v ⟧W = now x⇓v y⇓v
     later x≈y   ⟧W = later (  x≈y ⟧P)

    ⟦_⟧P : {A : Set} {x y : A }  x ≈P y  x  y
     x≈y ⟧P =  whnf x≈y ⟧W

  complete : {A : Set} {x y : A }  x  y  x  y
  complete x≋y =  completeP x≋y ⟧P
    where
    completeP : {A : Set} {x y : A }  x  y  x ≈P y
    completeP WeakEquality.now          = now now now
    completeP (WeakEquality.later x≈y)  = later ( completeP ( x≈y))
    completeP (WeakEquality.laterʳ x≈y) = laterʳ (completeP x≈y)
    completeP (WeakEquality.laterˡ x≈y) = laterˡ (completeP x≈y)

------------------------------------------------------------------------
-- The weak equality above coincides with weak bisimilarity

module WeakBisimilarity {A : Set} where

  -- The function drop n drops n later constructors (if possible).

  drop :   A   A 
  drop zero    x         = x
  drop _       (now v)   = now v
  drop (suc n) (later x) = drop n ( x)

  -- Weak simulations and bisimulations. The removal of a later
  -- constructor is treated as a silent transition.

  record IsWeakSimulation (_R_ : A   A   Set) : Set where
    field
      match-later :  {x y}  later x R y   λ n   x   R drop n y
      match-now   :  {v y}  now v   R y   λ n  now v  drop n y

  record IsWeakBisimulation (_R_ : A   A   Set) : Set where
    field
      left  : IsWeakSimulation _R_
      right : IsWeakSimulation (flip _R_)

  -- Weak bisimilarity.

  record _≈_ (x y : A ) : Set₁ where
    field
      _R_   : A   A   Set
      xRy   : x R y
      bisim : IsWeakBisimulation _R_

  open WeakEquality hiding (module _≈_) renaming (_≈_ to _≋_)

  -- Completeness.

  complete :  {x y}  x  y  x  y
  complete x≋y = record
    { _R_   = _≋_
    ; xRy   = x≋y
    ; bisim = record
      { left = record
        { match-later = λ lx≋y  (0 , laterˡ⁻¹ lx≋y)
        ; match-now   = match-now
        }
      ; right = record
        { match-later = λ x≋ly  (0 , laterʳ⁻¹ x≋ly)
        ; match-now   = match-now  sym
        }
      }
    }
    where
    match-now :  {v y}  now v  y   λ n  now v  drop n y
    match-now now          = (0 , P.refl)
    match-now (laterʳ v≋y) = Prod.map suc id (match-now v≋y)

  -- Soundness.

  module Sound {x y} (x≈y : x  y) where

    open _≈_ x≈y
    open IsWeakBisimulation
    open IsWeakSimulation

    helper₁ :  {x} y  ( λ n  now x  drop n y)  now x  y
    helper₁ (now y)   (zero  , P.refl) = now
    helper₁ (now y)   (suc n , P.refl) = now
    helper₁ (later y) (zero  , ())
    helper₁ (later y) (suc n , nx≡y-n) =
      laterʳ (helper₁ ( y) (n , nx≡y-n))

    mutual

      helper₂ :  {x} y  ( λ n  x R drop n y)  x  y
      helper₂ y         (zero  , xRy)   = sound _ _ xRy
      helper₂ (now y)   (suc n , xRny)  = sound _ _ xRny
      helper₂ (later y) (suc n , xRy-n) =
        laterʳ (helper₂ ( y) (n , xRy-n))

      helper₃ :  x {y}  ( λ n  drop (suc n) x R y)  x  y
      helper₃ (now x)   (n     , nxRy)  = sound _ _ nxRy
      helper₃ (later x) (zero  , xRy)   = laterˡ (sound _ _ xRy)
      helper₃ (later x) (suc n , x-nRy) =
        laterˡ (helper₃ ( x) (n , x-nRy))

      sound :  x y  x R y  x  y
      sound (now x) y nxRy = helper₁ y $ match-now (left bisim) nxRy
      sound (later x) (now y) lxRny =
        sym $ helper₁ (later x) $ match-now (right bisim) lxRny
      sound (later x) (later y) lxRly
        with match-later (left bisim) lxRly
      ... | (suc n , xRy-n) = later ( helper₂ ( y) (n , xRy-n))
      ... | (zero  , xRly)  with match-later (right bisim) xRly
      ...   | (zero  , xRy)     = later ( sound _ _ xRy)
      ...   | (suc n , x-1+nRy) =
        later ( helper₃ ( x) (n , x-1+nRy))

  sound :  {x y}  x  y  x  y
  sound x≈y = Sound.sound x≈y _ _ (_≈_.xRy x≈y)

-- Note that the problem illustrated in ExtendedWeakEquality is
-- related to the problem of weak bisimulation up to weak
-- bisimilarity. Let R be a relation which is only inhabited for the
-- pair (later (♯ x), later (♯ y)). R is a weak bisimulation up to
-- weak bisimilarity (_≈_):
--
--   later (♯ x)         R later (♯ y)
--       ↓                     =
--       x ≈ later (♯ x) R later (♯ y)
--
--   later (♯ x) R           later (♯ y)
--       =                       ↓
--   later (♯ x) R later (♯ y) ≈ y
--
-- Weak bisimilarity is transitive, so if every relation which is a
-- weak bisimulation up to weak bisimilarity were contained in weak
-- bisimilarity we would have x ≈ y for all x and y.