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Functional Program Correctness Through Types
Nils Anders Danielsson
Department of Computer Science and Engineering
Chalmers University of Technology and Göteborg University

Abstract

This thesis addresses the problem of avoiding errors in functional programs.
The thesis has three parts, discussing different aspects of program correct-
ness, with the unifying theme that types are an integral part of the methods
used to establish correctness.

The first part validates a common, but not obviously correct, method for
reasoning about functional programs. In this method, dubbed “fast and loose
reasoning”, programs written in a language with non-terminating functions
are treated as if they were written in a total language. It is shown that fast
and loose reasoning is sound when the programs are written in a given total
subset of the language, and the resulting properties are translated back to
the partial setting using certain partial equivalence relations which capture
the concept of totality.

The second part discusses a method for ensuring that functions meet
specified time bounds. The method is aimed at implementations of purely
functional data structures, which often make essential use of lazy evaluation
to ensure good time complexity in the presence of persistence. The associ-
ated complexity analyses are often complicated and hence error-prone, but
by annotating the type of every function with its time complexity, using
an annotated monad to combine time complexities of subexpressions, it is
ensured that no details are forgotten.

The last part of the thesis is a case study in programming with strong
invariants enforced by the type system. A dependently typed object language
is represented in the meta language, which is also dependently typed, in such
a way that it is impossible to form ill-typed terms. An interpreter is then
implemented for the object language by using normalisation by evaluation.
By virtue of the strong types used this implementation is a proof that every
term has a normal form, and hence normalisation is proved. This also seems
to be the first formal account of normalisation by evaluation for a dependently
typed language.

Keywords: Program correctness, total languages, partial languages,
time complexity, lazy evaluation, dependent types, strong invariants, well-
typed syntax, normalisation by evaluation.
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Chapter 1

Introduction

Computer programs should not contain errors (“bugs”). Exactly what is
meant by a bug may vary, and depending on the circumstances a certain
amount of bugs may be acceptable to avoid overly high costs, but there are
usually some properties which a given program must satisfy in order to be
useful. For instance, the software running the financial transactions for a
bank must not lose the customers’ money; an aircraft running on autopilot
must not crash; and an operating system must not crash either, at least not
too often.

One part of the process of constructing a program is to ensure that these
important properties are satisfied. There are a number of different ways of
doing this, with various levels of associated assurance in the correctness of
the software. These methods range from hoping that the programmers do
everything right the first time, over well-engineered test suites, to various
forms of mathematical proofs. This thesis focuses on the high-assurance end
of this spectrum: proofs.

The thesis also focuses on a certain kind of programs: higher-order typed
pure functional programs. Higher-order means that programs can be passed
as arguments to other programs, and pure functional means that there are
no side effects such as mutable variables or input/output. The reason for
restricting this work to such languages is that I find that the structure given
by types, the expressiveness of higher-order programs, and the absence of
side-effects enable the writing of elegant and succinct programs, which it is
relatively easy to reason about.

The thesis consists of three papers addressing different aspects of the
theme outlined above. The rest of this chapter explains the three papers in
more detail, giving some background information which is not included in
the papers themselves.
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1.1 Paper I

The first paper was published as:

Nils Anders Danielsson, Jeremy Gibbons, John Hughes and Patrik
Jansson. Fast and Loose Reasoning is Morally Correct. In POPL
’06: Conference record of the 33rd ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 206–
217, 2006.

This paper focuses on a method for reasoning about programs. In many
programming languages it is possible to write programs which run forever
(do not terminate). This phenomenon can be seen as a side-effect, and the
possibility of non-termination often complicates reasoning about programs.
The paper shows that a method of reasoning in which the possibility of non-
termination is ignored is sometimes sound.

The following simple example will illustrate the kind of problems which
can occur when non-termination is present. Let us define the data type of
pairs, with first and second projection functions, as follows:

data × (a b : Set) : Set where
〈 , 〉 : a → b → a × b

fst : ∀{a b}. a × b → a
fst 〈x , y〉 = x

snd : ∀{a b}. a × b → b
snd 〈x , y〉 = y

(This example, and the examples in Section 1.3, are defined in Agda (The
Agda Team 2007; Norell 2007), with minor syntactic modifications to aid
readability.) In a total language, i.e. a language in which all functions are
guaranteed to terminate, the above definitions give rise to the following laws,
assuming a suitably standard semantics:

∀x . 〈fst x , snd x 〉 = x
∀x y . fst 〈x , y〉 = x
∀x y . snd 〈x , y〉 = y

Typical partial languages, i.e. languages allowing non-termination, only sat-
isfy some of these laws; which laws depends on which evaluation strategy is
used. If the pair constructor 〈 , 〉 is strict (evaluates its arguments before
returning a pair) the last two equations fail, since x or y could be non-
terminating computations (typically written ⊥):1

1This presentation assumes that fst ⊥ = ⊥ = snd ⊥, which is usually the case.
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Chapter 1: Introduction

∀x 6= ⊥. fst 〈x ,⊥〉 = fst ⊥ = ⊥ 6= x
∀y 6= ⊥. snd 〈⊥, y〉 = snd ⊥ = ⊥ 6= y

On the other hand, if the pair constructor is non-strict (returns a pair without
evaluating the arguments) the first law fails, since 〈fst ⊥, snd ⊥〉 = 〈⊥,⊥〉 6=
⊥.

Keeping track of bottoms is no fun, so in practice people often ignore the
possibility of non-termination, hoping that the results so obtained are still
valid. The paper dubs this proof method “fast and loose reasoning”, and this
form of reasoning is then justified (under certain conditions): it is explained
how the results obtained using fast and loose reasoning can be reinterpreted,
in a natural way, in a setting with possible non-termination. The basic idea
is that, if the programs under consideration are total, the results will be valid
as long as the inputs are also total.

This idea is very natural, so it did not come as a surprise that similar
ideas had been published before. We brought these ideas to the attention
of the functional programming community, though. A detailed discussion of
related work is included in the paper.

Based on the description above it may seem that this work has little to do
with the title of the thesis, Functional Program Correctness Through Types.
However, types are used both to state and to prove the main results. More
details are available in the paper itself.

The results are supported by a detailed set of proofs (Danielsson 2007).
These proofs were developed in the traditional way: using pen and paper (or
text editor and text file). This means that there are no guarantees whatsoever
that the proofs are correct, unless you trust my theorem proving skills. The
paper has been subject to peer review, but due to space considerations the
paper only contains proof sketches.

If the proof had been mechanically checked, using a computer, it would
have been easier to trust. The other papers in this thesis come with machine-
checked proofs. Writing such proofs can require quite a lot of extra work, but
I find that in many cases the higher level of trust, along with the assistance
provided by the machine (you do not need to check all details manually), more
than make up for this. Machine-checked proofs also have another advantage:
you can come back to a proof at a later time and tinker with it, without
worrying that there may be some hidden invariant which you have forgotten.
If there is, and you break it, the computer will spot it for you.
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1.2 Paper II

The second paper is:

Nils Anders Danielsson. Lightweight Semiformal Time Complex-
ity Analysis for Purely Functional Data Structures. Accepted
for publication in POPL ’08: Conference record of the 35th
ACM SIGPLAN-SIGACT symposium on Principles of program-
ming languages, 2008.

This paper is also concerned with improving the reliability of certain proofs,
but this time the proofs do not concern the values obtained by evaluating a
program (as in the previous paper), but rather the time required to evaluate
a program to completion. One might believe that the execution time of a
program can be established simply by measuring the time needed by a couple
of test runs. While this method has its advantages, it also has some notable
drawbacks:

• It is hard to draw qualitative conclusions about how the program will
behave when other inputs (possibly much larger) are used.

• A program using the lazy evaluation strategy2 (explained below) has
the property that its execution time depends on how the results of parts
of the program are used by other parts, making it even harder to draw
qualitative conclusions about the running time of a certain part based
only on measurements (Moss and Runciman 1998).

Note, however, that the notion of time can be hard to capture precisely in a
formal setting, so instead an abstraction based on a notion of computation
steps is often used; so also in this work.

The paper describes a simple library for establishing semiformal, me-
chanically checked time bounds for purely functional programs using lazy
evaluation, in such a way that the bounds are valid no matter how the pro-
grams are used. (Semi formal since some annotations need to be inserted
manually.) The focus is on a class of persistent data structures which often
make essential use of lazy evaluation.

In general it can be quite expensive to mechanically prove the correctness
of a program. However, a data structure is often optimised for speed, and
accompanied by proofs (usually of the pen-and-paper kind) establishing the
time bounds of its operations, so the step to a mechanically checked proof

2“Lazy evaluation” is an ambiguous expression. In this work it is taken as a synonym
for call-by-need.
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Chapter 1: Introduction

may not be very large. Furthermore, for data structures making essential
use of lazy evaluation these proofs can be subtle, with lots of details to keep
track of, so that mechanically checking the proofs is extra important.

1.2.1 Persistence

A data structure is persistent if previous versions of it can always be used,
even if it is updated. (Note that an update of a persistent data structure
typically yields a new data structure, possibly sharing some parts with the
old one.) This property ensures that users of the data structure do not need
to worry about aliasing: even if a data structure is passed to two unrelated
parts of a program, and both parts modify the data structure, one part will
not see the changes made by the other.

Since pure functional languages do not have mutable state all data struc-
tures are automatically persistent. Hence, from a correctness perspective,
users of these languages have less to worry about. From an efficiency perspec-
tive the picture is less nice, though: partly because the absence of mutability
can make it harder to construct efficient data structures, but also because
different usage patterns can lead to different time complexities (execution
times), making it harder to predict the running time of a program. For in-
stance, as explained by Okasaki (1998), a common implementation of FIFO
queues has the property that if it is used single-threadedly (i.e. if the output
of one operation is always the input to the next), then every operation takes
constant amortised time, whereas this can degenerate to linear time (for the
tail function) for certain usage patterns.

Despite this a number of purely functional data structures exhibiting
good performance no matter how they are used have been developed (see for
instance Okasaki 1998; Kaplan and Tarjan 1999; Kaplan et al. 2000; Hinze
and Paterson 2006). These data structures are often accompanied by rather
subtle time complexity proofs. It is this kind of proof which the library
described in the paper focuses on.

1.2.2 Laziness

One reason for the complexity of these complexity proofs is that many of
the data structures make essential use of laziness in order to ensure good
performance. Laziness is non-strictness with memoisation:

• Non-strictness means that an expression is only evaluated if its value
is needed by another expression.
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• Memoisation ensures that in an expression like let x = e in 〈x , x 〉
the expression e is evaluated at most once, because when one use of
x is demanded the value of e is memoised, and this value is returned
immediately if the other use of x is demanded.3

Memoisation provides a limited form of mutability, which implementa-
tions of data structures can take advantage of to improve the efficiency of
operations. Laziness is a conservative optimisation of the more naive call-
by-name evaluation strategy, so reasoning about functional properties (i.e.
properties about the values of expressions) is unaffected. However, from the
standpoint of time complexity proofs, the memoisation inherent in laziness
introduces a side effect: the time it takes to evaluate an expression depends
on other parts of the program (as mentioned above). Hence it is not surpris-
ing that time complexity proofs for lazy programs can be quite subtle.

1.2.3 Analysing lazy time complexity

A number of approaches to analysing lazy time complexity have been devel-
oped (Wadler 1988; Bjerner 1989; Bjerner and Holmström 1989; Sands 1995;
Okasaki 1998; Moran and Sands 1999). Many of them are general, but have
been described as complicated to use in practice (Okasaki 1998). The main
technique in use, at least for analysing purely functional data structures, is
probably Okasaki’s banker’s method.

This method is used to derive amortised time bounds. An amortised
bound is not a real time bound, but something assigned by an analysis.
If the operations being analysed have been assigned amortised upper time
bounds n1, n2, etc., then this means that, if the (not necessarily distinct)
operations o1, o2, . . ., ok are executed, the total number of steps actually
taken by these operations is guaranteed to be at most

∑k
i=1 noi

. Note that
this allows operation i to take more than ni steps, as long as other operations
take fewer steps than their time bounds allow. Amortisation can provide a
more flexible setting for analysing time complexity, if the number of steps
taken by any particular operation is not important, but only the total number
of steps for a collection of operations.

Now, the basic idea of the banker’s method is that when an operation
creates an expression which is not immediately evaluated (a suspension), then
a number of debits corresponding to the cost of evaluating this suspension is
associated with it (in the analysis, not in the code). If a suspension contains
further suspensions, then the corresponding debits can be associated with

3This is a simplified description, which assumes that all of e is demanded at once; the
same idea is still valid in the general case, though.
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these suspensions instead of the outer one. Operations can then discharge
(or pay off) debits, also in the analysis, and this has to be done in such a
way that all debits associated with a suspension have been discharged before
the suspension is forced (evaluated).

To simplify things a restriction is added: a debit only counts as discharged
if it was paid off by the current operation or a logical predecessor of it (i.e. an
operation which provided input, directly or indirectly, to the current opera-
tion). If two unrelated operations discharge the same debit, then the analysis
overestimates the cost of them. This ensures that there is no need to reason
about unrelated (and possibly unknown) parts of the program.

The amortised cost of an operation is then defined as the number of debits
discharged, plus the work performed immediately (that which is not due to
forcing suspensions created by other operations). The time needed to force
a suspension which has already been paid off is not included in this cost, but
this is OK, for two reasons:

1. The suspension has been paid off, and this cost covers the time needed
to force the suspension once.

2. The first time the suspension is forced the resulting value will be memoi-
sed, so that any other operations which attempt to force the suspension
only need to look up this value in order to make use of it.

Based on these observations the banker’s method can be proved correct.
The trick to analysing essential uses of laziness (where the side effect of
memoisation is important) is then to set things up so that a suspension
which will be used by several unrelated operations is paid off by common
predecessors of these operations.

1.2.4 The library

A simplified but less general (although still useful, as demonstrated by some
case studies) version of the banker’s method underlies the library described
in the paper. The library is introduced through a series of illustrative exam-
ples, which I refrain from repeating here. Suffice it to say that the library is
based on annotating all functions with ticks, representing evaluation steps,
and using an “annotated monad” to combine time complexities of subcom-
putations. As a result the types of functions become annotated with their
time complexities, for instance as follows:

minimum : ∀a n. Seq a (1 + n) → Thunk (8 + 5 ∗ n) a
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(This says that finding the minimum element in a sequence of length 1 + n
takes at most 8+5n steps, using a certain implementation of minimum.) Fi-
nally a pay function, corresponding to the paying off of debits in the banker’s
method, makes it possible to improve the time bounds by taking advantage
of memoisation. To keep the library simple only certain uses of memoisation
are handled, though.

1.3 Paper III

The third paper was published as:

Nils Anders Danielsson. A Formalisation of a Dependently Typed
Language as an Inductive-Recursive Family. In Types for Proofs
and Programs, International Workshop, TYPES 2006, Revised
Selected Papers, volume 4502 of LNCS, pages 93–109, 2007.

This paper also explores a proof method: it describes a case study in pro-
gramming with very strong invariants enforced by the type system, i.e. “proof
by construction”.

There are (at least) two distinct ways to define the type system of a
programming language. The traditional one is to first define “raw terms”
through a context-free syntax, and then restrict attention to well-typed terms
through a system of inference rules. Another approach is to define the well-
typed terms directly. I find the second approach more elegant, since it avoids
the need to introduce uninteresting things (ill-typed raw terms), also known
as junk.

There are many different type systems, with various properties. One class
of type systems are those with dependent types (Nordström et al. 1990), in
which types can depend on values. This means that types can “talk about”
values in a natural way. One example of dependent types was provided in the
previous section, where the result type of minimum depends on the value of
one of its inputs (n). A related concept is that of inductive families (Dybjer
1994), which are data types which can depend on values in a certain way.

For simply typed languages the second approach above, the one without
junk, is quite easy to implement in a dependently typed host language with
inductive families. In fact, this approach was used to mechanise the correct-
ness proof for the second paper. If the type system to be implemented has
dependent types it is considerably harder, though. The third paper shows
that it can be done.

The two methods for defining type systems mentioned above will now be
illustrated through a small example. A simple expression language with two
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types (integers and booleans) and three expression forms (literals, addition
of integers, and conjunction of booleans) is defined, along with a simple
denotational semantics.

1.3.1 Raw terms

Let us first define the set of raw terms:

data Value : Set where
intVal : Int → Value
boolVal : Bool → Value

data RawTerm : Set where
lit : Value → RawTerm
plus : RawTerm → RawTerm → RawTerm
and : RawTerm → RawTerm → RawTerm

(RawTerm is a data type; plus is a constructor taking two RawTerms as
arguments, and yielding a RawTerm as result; and so on.) Using this defi-
nition nonsensical terms like plus (boolVal true) (intVal 5), i.e. true + 5, can
be formed. A partial denotational semantics for the language can still be
defined. The Maybe type is used to signal failure:

data Maybe (a : Set) : Set where
nothing : Maybe a
just : a → Maybe a

The semantics is then defined by recursion over the structure of terms, using
pattern matching to decompose the input:

J K : RawTerm → Maybe Value
Jlit vK = just v
Jplus e1 e2K with Je1K | Je2K
. . . | just (intVal i1) | just (intVal i2) = just (intVal (i1 + i2))
. . . | | = nothing
Jand e1 e2K with Je1K | Je2K
. . . | just (boolVal b1) | just (boolVal b2) = just (boolVal (b1 ∧ b2))
. . . | | = nothing

Under this semantics the evaluation of an ill-typed term does not result in a
value; the result is nothing. (The with syntax is used to pattern match on
the result of an intermediate computation.)

Let us now define a type system on top of the raw terms. First the types,
integers and booleans, are defined:

19



data Ty : Set where
int : Ty
bool : Ty

The inference rules of the type system can then be encoded as follows, where
e :: σ means that e has type σ:

data :: : RawTerm → Ty → Set where
tyLitInt : (i : Int) → lit (intVal i) :: int
tyLitBool : (b : Bool) → lit (boolVal b) :: bool
tyPlus : ∀e1 e2. e1 :: int → e2 :: int → plus e1 e2 :: int
tyAnd : ∀e1 e2. e1 :: bool → e2 :: bool → and e1 e2 :: bool

Here :: is an inductive family; the types in the family (for instance
lit (intVal i) :: int) depend on values (lit (intVal i) and int). The definition
corresponds to the relation inductively generated by the following inference
rules:

i : Int

lit (intVal i) :: int

b : Bool

lit (boolVal b) :: bool

e1, e2 : RawTerm e1 :: int e2 :: int

plus e1 e2 :: int

e1, e2 : RawTerm e1 :: bool e2 :: bool

and e1 e2 :: bool

Is the semantics well-formed? The next step is to prove that evaluation
of well-typed terms does not get stuck (“progress”), and that the resulting
value has the same type as the term (“preservation”). First the type IsOK
is defined; IsOK σ m means that m = just v for some value v of type σ:

data IsOK : Ty → Maybe Value → Set where
isOK : ∀{σ v}. lit v :: σ → IsOK σ (just v)

(Here {. . .} declares that one or more arguments are hidden, which means
that they do not need to be given explicitly if Agda can infer them automat-
ically.) The proof of progress and preservation then proceeds by induction
over the structure of typing derivations:
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evalOK : ∀{e σ}. e :: σ → IsOK σ JeK
evalOK (tyLitInt i) = isOK (tyLitInt i)
evalOK (tyLitBool b) = isOK (tyLitBool b)
evalOK (tyPlus e1 e2 t1 t2) with Je1K | Je2K | evalOK t1 | evalOK t2
. . . | . | . | isOK (tyLitInt i1) | isOK (tyLitInt i2) =

isOK (tyLitInt (i1 + i2))
evalOK (tyAnd e1 e2 t1 t2) with Je1K | Je2K | evalOK t1 | evalOK t2
. . . | . | . | isOK (tyLitBool b1) | isOK (tyLitBool b2) =

isOK (tyLitBool (b1 ∧ b2))

(The recursive invocations of JeiK above ensure that occurrences of JeiK are
abstracted from the goals; this is the key to enabling pattern matching on
the result of evalOK ti (Norell 2007; McBride and McKinna 2004). Feel free
to ignore this technical detail, though.)

The development above is starting to look complicated. An alternative is
to define the denotational semantics by recursion on typing predicates instead
of raw terms, obviating the need for evalOK :

Sem : Ty → Set
Sem int = Int
Sem bool = Bool

J K : ∀{e σ}. e :: σ → Sem σ
JtyLitInt iK = i
JtyLitBool bK = b
JtyPlus t1 t2K = Jt1K + Jt2K
JtyAnd t1 t2K = Jt1K ∧ Jt2K

Note that the type of J K is a statement of progress and preservation. Note
also that the presence of type information makes it unnecessary to tag the
resulting values; the function Sem interprets the Ty types in terms of meta-
level types.

1.3.2 Well-typed terms

The second variant of J K does not make explicit use of the raw terms, which
are only mentioned in the type signature, not in the body of the code. In
the well-typed approach to representing type systems the raw terms are not
included at all. Terms are identified with typing derivations, and the Term
type depends on a Ty type (to aid a fair comparison the Ty and Sem defini-
tions from above are repeated here):
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data Ty : Set where
int : Ty
bool : Ty

Sem : Ty → Set
Sem int = Int
Sem bool = Bool

data Term : Ty → Set where
lit : ∀{σ}. Sem σ → Term σ
plus : Term int → Term int → Term int
and : Term bool → Term bool → Term bool

J K : ∀{σ}. Term σ → Sem σ
Jlit vK = v
Jplus t1 t2K = Jt1K + Jt2K
Jand t1 t2K = Jt1K ∧ Jt2K

In the well-typed approach it is impossible to form ill-typed terms like
plus (boolVal true) (intVal 5); the type checker does not allow it.

1.3.3 Contributions

The simplicity of the well-typed approach has led to a number of publica-
tions formalising various aspects of different essentially simply typed pro-
gramming languages (Coquand and Dybjer 1997; Altenkirch and Reus 1999;
Coquand 2002; Xi et al. 2003; Pašalić and Linger 2004; McBride and McK-
inna 2004; Altenkirch and Chapman 2006; McKinna and Wright; Chlipala
2007). However, the type systems of the programming languages in which
these formalisations have been done are often of a stronger kind than the
simply typed languages being formalised. Almost no one has formalised a
dependently typed language using this approach. Before my paper the only
exception (known to me) was Dybjer’s work (1996) on formalising so-called
categories with families, which can be seen as the basic framework of depen-
dent types. Furthermore Dybjer reported (personal communication) that his
formalisation was quite hard to work with, stating that it led to a “dependent
types nightmare”. This provided a clear incentive to work on this problem.

The contributions of the paper is to provide a well-typed formalisation of
a dependently typed language, and to show that it can be used by proving
normalisation for the language (i.e. that there is an evaluation strategy under
which the evaluation of every term terminates). In addition, this normalisa-
tion proof turned out to be the first formalised account of normalisation by
evaluation (a specific proof technique for normalisation proofs) for a depen-
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dently typed language. The development is also a substantial case study in
programming with very strong invariants enforced by the type system.

The formalisation uses explicit substitutions, i.e. substitutions are part
of the term language being formalised. A more common approach is to use
implicit substitutions, where substitution is a defined operation on the meta-
level. This was my initial goal, but it turned out to be quite difficult to
achieve (an explanation is provided in the paper). Hence the question of
whether a dependently typed language with implicit substitutions can be
formalised in a well-typed and usable way is still open.

1.4 Conclusion

This concludes the introduction. The rest of the thesis consists of the papers
introduced above. More material, such as source code for machine-checked
proofs, is available from my web page, currently http://www.cs.chalmers.

se/~nad/.
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Bror Bjerner and Sören Holmström. A compositional approach to time anal-
ysis of first order lazy functional programs. In FPCA ’89: Proceedings of
the fourth international conference on Functional programming languages
and computer architecture, pages 157–165, 1989.

Adam Chlipala. A certified type-preserving compiler from lambda calculus to
assembly language. In PLDI ’07: Proceedings of the 2007 ACM SIGPLAN
conference on Programming language design and implementation, pages
54–65, 2007.

Catarina Coquand. A formalised proof of the soundness and completeness of
a simply typed lambda-calculus with explicit substitutions. Higher-Order
and Symbolic Computation, 15:57–90, 2002.

Thierry Coquand and Peter Dybjer. Intuitionistic model constructions and
normalization proofs. Mathematical Structures in Computer Science, 7(1):
75–94, 1997.

Nils Anders Danielsson. Proofs accompanying “Fast and loose reasoning
is morally correct”. Technical Report 2007:15, Department of Computer
Science and Engineering, Chalmers University of Technology, 2007.

Peter Dybjer. Inductive families. Formal Aspects of Computing, 6(4):440–
465, 1994.

25



Peter Dybjer. Internal type theory. In Types for Proofs and Programs,
International Workshop, TYPES ’95, volume 1158 of LNCS, pages 120–
134, 1996.

Ralf Hinze and Ross Paterson. Finger trees: A simple general-purpose data
structure. Journal of Functional Programming, 16(2):197–217, 2006.

Haim Kaplan, Chris Okasaki, and Robert E. Tarjan. Simple confluently
persistent catenable lists. SIAM Journal on Computing, 30(3):965–977,
2000.

Haim Kaplan and Robert E. Tarjan. Purely functional, real-time deques with
catenation. Journal of the ACM, 46(5):577–603, 1999.

Conor McBride and James McKinna. The view from the left. Journal of
Functional Programming, 14(1):69–111, 2004.

James McKinna and Joel Wright. A type-correct, stack-safe, provably correct
expression compiler in Epigram. Accepted for publication in the Journal
of Functional Programming.

Andrew Moran and David Sands. Improvement in a lazy context: an opera-
tional theory for call-by-need. In POPL ’99: Proceedings of the 26th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 43–56, 1999.

Graeme E. Moss and Colin Runciman. Automated benchmarking of func-
tional data structures. In Practical Aspects of Declarative Languages: First
International Workshop, PADL’99, volume 1551 of LNCS, pages 1–15,
1998.

Bengt Nordström, Kent Petersson, and Jan M. Smith. Programming in
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Fast and Loose Reasoning is Morally Correct∗

Nils Anders Danielsson John Hughes
Patrik Jansson
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Abstract
Functional programmers often reason about programs as if they

were written in a total language, expecting the results to carry over
to non-total (partial) languages. We justify such reasoning.

Two languages are defined, one total and one partial, with identical
syntax. The semantics of the partial language includes partial and
infinite values, and all types are lifted, including the function spaces. A
partial equivalence relation (PER) is then defined, the domain of which
is the total subset of the partial language. For types not containing
function spaces the PER relates equal values, and functions are related
if they map related values to related values.

It is proved that if two closed terms have the same semantics in
the total language, then they have related semantics in the partial lan-
guage. It is also shown that the PER gives rise to a bicartesian closed
category which can be used to reason about values in the domain of
the relation.

1 Introduction

It is often claimed that functional programs are much easier to reason about
than their imperative counterparts. Functional languages satisfy many pleas-
ing equational laws, such as

curry ◦ uncurry = id , (1)

∗This work is partially funded by the Swedish Foundation for Strategic Research as
part of the research programme “Cover — Combining Verification Methods in Software
Development,” and by the Royal Swedish Academy of Sciences’ funds.
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(fst x, snd x) = x, and (2)

fst (x, y) = x, (3)

and many others inspired by category theory. Such laws can be used to per-
form very pleasant proofs of program equality, and are indeed the foundation
of an entire school of program transformation and derivation, the Squiggolers
[BdM96, Jeu90, BdBH+91, MFP91]. There is just one problem. In current
real programming languages such as Haskell [PJ03] and ML [MTHM97], they
are not generally valid.

The reason these laws fail is the presence of the undefined value ⊥, and
the fact that, in Haskell, ⊥, λx.⊥ and (⊥,⊥) are all different (violating the
first two laws above), while in ML, ⊥, (x,⊥) and (⊥, y) are always the same
(violating the third).

The fact that these laws are invalid does not prevent functional program-
mers from using them when developing programs, whether formally or infor-
mally. Squiggolers happily derive programs from specifications using them,
and then transcribe the programs into Haskell in order to run them, confi-
dent that the programs will correctly implement the specification. Countless
functional programmers happily curry or uncurry functions, confident that
at worst they are changing definedness a little in obscure cases. Yet is this
confidence justified? Reckless use of invalid laws can lead to patently ab-
surd conclusions: for example, in ML, since (x,⊥) = (y,⊥) for any x and
y, we can use the third law above to conclude that x = y, for any x and y.
How do we know that, when transforming programs using laws of this sort,
we do not, for example, transform a correctly terminating program into an
infinitely looping one?

This is the question we address in this paper. We call the unjustified rea-
soning with laws of this sort “fast and loose”, and we show, under some mild
and unsurprising conditions, that its conclusions are “morally correct”. In
particular, it is impossible to transform a terminating program into a looping
one. Our results justify the hand reasoning that functional programmers al-
ready perform, and can be applied in proof checkers and automated provers
to justify ignoring ⊥-cases much of the time.

In the next section we give an example showing how it can be burdensome
to keep track of all preconditions when one is only interested in finite and
total values, but is reasoning about a program written in a partial language.
Section 3 is devoted to defining the language that we focus on, its syntax
and two different semantics: one set-theoretic and one domain-theoretic.
Section 4 briefly discusses partial equivalence relations (PERs), and Section 5
introduces a PER on the domain-theoretic semantics. This PER is used to
model totality. In Section 6 a partial surjective homomorphism from the set-
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theoretic semantics to the quotient of the domain-theoretic semantics given
by the PER is exhibited, and in Section 7 we use this homomorphism to
prove our main result: fast and loose reasoning is morally correct. Section 8
provides a more abstract result, showing how the PER gives rise to a category
with many nice properties which can be used to reason about programs. We
go back to our earlier example and show how it fits in with the theory in
Section 9. We also exhibit another example where reasoning directly about
the domain-theoretic semantics of a program may be preferable (Section 10).
Section 11 recasts the theory for a strict language, Section 12 discusses related
work, and Section 13 concludes with a discussion of the results and possible
future extensions of the theory.

Most proofs needed for the development below are only sketched; full
proofs are available as a technical report [Dan07].

2 Propagating preconditions

Let us begin with an example. Say that we need to prove that the func-
tion map (λx.y + x) ◦ reverse :: [Nat ] → [Nat ] has a left inverse reverse ◦
map (λx.x−y). (All code in this section uses Haskell-like syntax.) In a total
language we would do it more or less like this:

(reverse ◦map (λx.x− y)) ◦ (map (λx.y + x) ◦ reverse)

= {map f ◦map g = map (f ◦ g), ◦ associative}
reverse ◦map ((λx.x− y) ◦ (λx.y + x)) ◦ reverse

= {(λx.x− y) ◦ (λx.y + x) = id}
reverse ◦map id ◦ reverse

= {map id = id}
reverse ◦ id ◦ reverse

= {id ◦ f = f , ◦ associative}
reverse ◦ reverse

= {reverse ◦ reverse = id}
id .

Note the lemmas used for the proof, especially

(λx.x− y) ◦ (λx.y + x) = id , and (4)

reverse ◦ reverse = id . (5)

Consider now the task of repeating this proof in the context of some
language based on partial functions, such as Haskell. To be concrete, let us
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assume that the natural number data type Nat is defined in the usual way,

data Nat = Zero | Succ Nat . (6)

Note that this type contains many properly partial values that do not corre-
spond to any natural number, and also a total but infinite value. Let us also
assume that (+) and (−) are defined by

(+) = fold Succ, and (7)

(−) = fold pred , (8)

where fold :: (a → a) → a → Nat → a is the fold over natural numbers
(fold s z n replaces all occurrences of Succ in n with s, and Zero with z),
and pred :: Nat → Nat is the predecessor function with pred Zero = Zero.
The other functions and types are all standard [PJ03]; this implies that the
list type also contains properly partial and infinite values.

Given these definitions the property proved above is no longer true. The
proof breaks down in various places. More to the point, both lemmas (4)
and (5) fail, and they fail due to both properly partial values, since

(Succ Zero + Succ ⊥)− Succ Zero = ⊥ 6= Succ ⊥ and (9)

reverse (reverse (Zero : ⊥)) = ⊥ 6= Zero : ⊥, (10)

and infinite values, since

(fix Succ + Zero)− fix Succ = ⊥ 6= Zero and (11)

reverse (reverse (repeat Zero)) = ⊥ 6= repeat Zero. (12)

(Here fix is the fixpoint combinator, i.e. fix Succ is the “infinite” lazy natural
number. The application repeat x yields an infinite list containing only x.)
Note that id ◦ f = f also fails, since we have lifted function spaces and
id ◦⊥ = λx.⊥ 6= ⊥, but that does not affect this example since reverse 6= ⊥.

These problems are not surprising; they are the price you pay for partial-
ity. Values that are properly partial and/or infinite have different properties
than their total, finite counterparts. A reasonable solution is to stay in the
partial language but restrict our inputs to total, finite values.

Let us see what the proof looks like then. We have to η-expand our
property, and assume that xs :: [Nat ] is a total, finite list and that y :: Nat
is a total, finite natural number. (Note the terminology used here: if a list
is said to be total, then all elements in the list are assumed to be total as
well, and similarly for finite values. The concepts of totality and finiteness
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are discussed in more detail in Sections 5 and 9, respectively.) We get

((reverse ◦map (λx.x− y))

◦ (map (λx.y + x) ◦ reverse)) xs

= {map f ◦map g = map (f ◦ g), definition of ◦}
reverse (map ((λx.x− y) ◦ (λx.y + x)) (reverse xs))

=


• map f xs = map g xs if xs is total and f x = g x for all total x,
• reverse xs is total, finite if xs is,
• ((λx.x− y) ◦ (λx.y + x)) x = id x for total x and total, finite y


reverse (map id (reverse xs))

= {map id = id}
reverse (id (reverse xs))

= {definition of id}
reverse (reverse xs)

= {reverse (reverse xs) = xs for total, finite xs}
xs .

Comparing to the previous proof we see that all steps are more or less
identical, using similar lemmas, except for the second step, where two new
lemmas are required. How did that step become so unwieldy? The problem
is that, although we know that (λx.x−y)◦ (λx.y +x) = id given total input,
and also that xs only contains total natural numbers, we have to manually
propagate this precondition through reverse and map.

One view of the problem is that the type system used is too weak. If
there were a type for total, finite natural numbers, and similarly for lists,
then the propagation would be handled by the types of reverse and map.
The imaginary total language used for the first proof effectively has such a
type system.

On the other hand, note that the two versions of the program are written
using identical syntax, and the semantic rules for the total language and the
partial language are probably more or less identical when only total, finite
(or even total, infinite) values are considered. Does not this imply that we
can get the second result above, with all preconditions, by using the first
proof? The answer is yes, with a little extra effort, and proving this is what
many of the sections below will be devoted to. In Section 9 we come back
to this example and spell out in full detail what “a little extra effort” boils
down to in this case.

Chapter 2: Fast and Loose Reasoning is Morally Correct
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3 Language

This section defines the main language discussed in the text. It is a strongly
typed, monomorphic functional language with recursive (polynomial) types
and their corresponding fold and unfold operators. Having only folds and
unfolds is not a serious limitation; it is e.g. easy to implement primitive
recursion over lists or natural numbers inside the language.

Since we want our results to be applicable to reasoning about Haskell
programs we include the explicit strictness operator seq, which forces us to
have lifted function spaces in the domain-theoretic semantics given below
(since seq can be used to distinguish between ⊥ and λx.⊥; see Figure 6). We
discuss the most important differences between Haskell and this language in
Section 13.

3.1 Static semantics

The term syntax of the language, L1, is inductively defined by

t ::= x | t1 t2 |λx.t

| seq | ?
| (,) | fst | snd

| inl | inr | case
| inµF | outµF | inνF | outνF | foldF | unfoldF .

(13)

The pairing function (,) can be used in a distfix style, as in (t1, t2). The type
syntax is defined by

σ, τ, γ ::= σ → τ |σ × τ |σ + τ | 1 |µF | νF (14)

and

F, G ::= Id |Kσ |F ×G |F + G. (15)

The letters F and G range over functors; Id is the identity functor and Kσ

is the constant functor with Kσ τ = σ (informally). The types µF and νF
are inductive and coinductive types, respectively. As an example, in the
set-theoretic semantics introduced below µ(K1 + Id) represents finite natural
numbers, and ν(K1 + Id) represents natural numbers extended with infin-
ity. The type constructor → is sometimes used right associatively, without
explicit parentheses.
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In order to discuss general recursion we define the language L2 to be L1

extended with

t ::= . . . | fix. (16)

However, whenever fix is not explicitly mentioned, the language discussed is
L1 (or the restriction L′1 of L1 introduced below).

We only consider well-typed terms according to the typing rules in Fig-
ure 1. To ease the presentation we also introduce some syntactic sugar for
terms and types, see Figures 2 and 3.

3.2 Dynamic semantics

Before we define the semantics of the languages we need to introduce some no-
tation. We will use both sets and pointed ω-complete partial orders (CPOs).
For CPOs ·⊥ is the lifting operator, and 〈· → ·〉 is the continuous function
space constructor. Furthermore, for both sets and CPOs, × is cartesian prod-
uct, and + is separated sum; A+B contains elements of the form inl(a) with
a ∈ A and inr(b) with b ∈ B. The one-point set/CPO is denoted by 1, with
? as the only element. The constructor for the (set- or domain-theoretic)
semantic domain of the recursive type T , where T is µF or νF , is denoted
by inT , and the corresponding destructor is denoted by outT (often with
omitted indices). For more details about in and out , see below. Since we use
lifted function spaces, we use special notation for lifted function application,

f@x =

{
⊥, f = ⊥,

f x, otherwise.
(17)

(This operator is left associative with the same precedence as ordinary func-
tion application.) Many functions used on the meta-level are not lifted,
though, so @ is not used very much below. Finally note that we are a little
sloppy, in that we do not write out liftings explicitly; we write (x, y) for a
non-bottom element of (A×B)⊥, for instance.

Now, two different denotational semantics are defined for the languages
introduced above, one domain-theoretic (J·K) and one set-theoretic (〈〈·〉〉).
(Note that when t is closed we sometimes use JtK as a shorthand for JtK ρ, and
similarly for 〈〈·〉〉.) The domain-theoretic semantics is modelled on languages
like Haskell and can handle general recursion. The set-theoretic semantics is
modelled on total languages and is only defined for terms in L1. In Section 7
we will show how results obtained using the set-theoretic semantics can be
transformed into results on the domain-theoretic side.
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Γ(x) = σ

Γ ` x : σ

Γ[x 7→ σ] ` t : τ

Γ ` λx.t : σ → τ

Γ ` t1 : σ → τ Γ ` t2 : σ
Γ ` t1 t2 : τ

Γ ` seq : σ → τ → τ Γ ` fix : (σ → σ) → σ

Γ ` ? : 1 Γ ` (,) : σ → τ → (σ × τ)

Γ ` fst : (σ × τ) → σ Γ ` snd : (σ × τ) → τ

Γ ` inl : σ → (σ + τ) Γ ` inr : τ → (σ + τ)

Γ ` case : (σ + τ) → (σ → γ) → (τ → γ) → γ

Γ ` inµF : F µF → µF Γ ` outµF : µF → F µF

Γ ` inνF : F νF → νF Γ ` outνF : νF → F νF

Γ ` foldF : (F σ → σ) → µF → σ

Γ ` unfoldF : (σ → F σ) → σ → νF

Figure 1: Typing rules for L1 and L2.

◦ 7→ λf g x.f (g x)

Id 7→ λf x.f x

Kσ 7→ λf x.x

F ×G 7→ λf x.seq x (F f (fst x), G f (snd x))

F + G 7→ λf x.case x (inl ◦ F f) (inr ◦G f)

Figure 2: Syntactic sugar for terms.

Id σ 7→ σ

Kτ σ 7→ τ

(F ×G) σ 7→ F σ ×G σ

(F + G) σ 7→ F σ + G σ

Figure 3: Syntactic sugar for types.
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The semantic domains for all types are defined in Figure 4. We de-
fine the semantics of recursive types by appealing to category-theoretic work
[BdM96, FM91]. For instance, the set-theoretic semantic domain of µF is
the codomain of the initial object in F -Alg(SET). Here SET is the category
of sets and total functions, and F -Alg(SET) is the category of F -algebras (in
SET) and homomorphisms between them. The initial object, which is known
to exist given our limitations on F , is a function inµF ∈ 〈〈F µF → µF 〉〉. The
inverse of inµF exists and, as noted above, is denoted by outµF . Initiality of
inµF implies that for any function f ∈ 〈〈F σ → σ〉〉 there is a unique function
foldF f ∈ 〈〈µF → σ〉〉 satisfying the universal property

∀h ∈ 〈〈µF → σ〉〉 . h = foldF f ⇔ h ◦ inµF = f ◦ F h. (18)

This is how 〈〈foldF 〉〉 is defined. To define 〈〈unfoldF 〉〉 we go via the final
object outνF in F -Coalg(SET) (the category of F -coalgebras) instead. The
semantics of all terms are given in Figure 6.

The domain-theoretic semantics lives in the category CPO of CPOs and
continuous functions. To define JµF K, the category CPO⊥ of CPOs and strict
continuous functions is also used. We want all types in the domain-theoretic
semantics to be lifted (like in Haskell). To model this we lift all functors
using L, which is defined in Figure 5.

If we were to define JfoldF K using the same method as for 〈〈foldF 〉〉, then
that would restrict its arguments to be strict functions. An explicit fixpoint is
used instead. The construction still satisfies the universal property associated
with folds if all functions involved are strict [FM91]. For symmetry we also
define JunfoldF K using an explicit fixpoint; that does not affect its universality
property.

The semantics of fix is, as usual, given by a least fixpoint construction.
We have been a little sloppy above, in that we have not defined the action

of the functor Kσ on objects. When working in SET we let Kσ A = 〈〈σ〉〉, and
in CPO and CPO⊥ we let Kσ A = JσK. Otherwise the functors have their
usual meanings.

4 Partial equivalence relations

In what follows we will use partial equivalence relations, or PERs for short.
A PER on a set S is a symmetric and transitive binary relation on S. For

a PER R on S, and some x ∈ S with xRx, define the equivalence class of x
as

[x]R = { y y ∈ S, xRy } . (19)
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Jσ → τK = 〈JσK → JτK〉⊥ 〈〈σ → τ〉〉 = 〈〈σ〉〉 → 〈〈τ〉〉
Jσ × τK = (JσK× JτK)⊥ 〈〈σ × τ〉〉 = 〈〈σ〉〉 × 〈〈τ〉〉
Jσ + τK = (JσK + JτK)⊥ 〈〈σ + τ〉〉 = 〈〈σ〉〉+ 〈〈τ〉〉

J1K = 1⊥ 〈〈1〉〉 = 1

JµF K = The codomain of the initial object in L(F )-Alg(CPO⊥).

〈〈µF 〉〉 = The codomain of the initial object in F -Alg(SET).

JνF K = The domain of the final object in L(F )-Coalg(CPO).

〈〈νF 〉〉 = The domain of the final object in F -Coalg(SET).

Figure 4: Semantic domains for types.

L(Id) = Id

L(Kσ) = Kσ

L(F ×G) = (L(F )× L(G))⊥
L(F + G) = (L(F ) + L(G))⊥

Figure 5: Lifting of functors.

(The index R is omitted below.) Note that the equivalence classes partition
dom(R) = { x ∈ S xRx }, the domain of R. Let [R] denote the set of
equivalence classes of R.

For convenience we will use the notation {c} for an arbitrary (but fix)
element x ∈ c, where c is an equivalence class of some PER R ⊆ S2. Note
that the choice of element x is irrelevant in many contexts. For example,
given the PER defined in Section 5, we have that [inl({c})] denotes the same
equivalence class no matter which element in c is chosen.

5 Moral equality

We will now inductively define a family of PERs ∼σ on the domain-theoretic
semantic domains; with Rel(σ) = ℘

(
JσK2) we will have ∼σ ∈ Rel(σ). (Here

℘(X) is the power set of X. The index σ will sometimes be omitted.)

If two values are related by ∼, then we say that they are morally equal.
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JxK ρ = ρ(x) 〈〈x〉〉 ρ = ρ(x)

Jt1t2K ρ = (Jt1K ρ) @ (Jt2K ρ) 〈〈t1t2〉〉 ρ = (〈〈t1〉〉 ρ) (〈〈t2〉〉 ρ)

Jλx.tK ρ = λv. JtK ρ[x 7→ v] 〈〈λx.t〉〉 ρ = λv. 〈〈t〉〉 ρ[x 7→ v]

JseqK = λv1 v2.

{
⊥, v1 = ⊥
v2, otherwise

〈〈seq〉〉 = λv1 v2.v2

JfixK = λf.
⊔∞

i=0 f i
@⊥ 〈〈fix〉〉 is not defined.

J?K = ? 〈〈?〉〉 = ?

J(,)K = λv1 v2.(v1, v2) 〈〈(,)〉〉 = λv1 v2.(v1, v2)

JfstK = λv.

{
⊥, v = ⊥
v1, v = (v1, v2)

〈〈fst〉〉 = λ(v1, v2).v1

JsndK = λv.

{
⊥, v = ⊥
v2, v = (v1, v2)

〈〈snd〉〉 = λ(v1, v2).v2

JinlK = λv.inl(v) 〈〈inl〉〉 = λv.inl(v)

JinrK = λv.inr(v) 〈〈inr〉〉 = λv.inr(v)

JcaseK = λv f1 f2.


⊥, v=⊥
f1@v1, v= inl(v1)
f2@v2, v= inr(v2)

〈〈case〉〉 = λv f1 f2.

{
f1 v1, v= inl(v1)
f2 v2, v= inr(v2)

JinµF K =

{
The initial object in L(F )-Alg(CPO⊥), viewed as a
morphism in CPO.

〈〈inµF 〉〉 =
{

The initial object in F -Alg(SET), viewed as a morphism
in SET.

JoutνF K =

{
The final object in L(F )-Coalg(CPO), viewed as a
morphism in CPO.

〈〈outνF 〉〉 =

{
The final object in F -Coalg(SET), viewed as a
morphism in SET.

JfoldF K = λf. JfixK@(λg.f ◦ JF K@g ◦ JoutµF K)

〈〈foldF 〉〉 = λf.

{
The unique morphism in F -Alg(SET) from 〈〈inµF 〉〉
to f , viewed as a morphism in SET.

JunfoldF K = λf. JfixK@(λg. JinνF K ◦ JF K@g ◦ f)

〈〈unfoldF 〉〉 = λf.

{
The unique morphism in F -Coalg(SET) from f to
〈〈outνF 〉〉, viewed as a morphism in SET.

Figure 6: Semantics of well-typed terms, for some context ρ mapping vari-
ables to semantic values. The semantics of inνF and outµF are the
inverses of the semantics of outνF and inµF , respectively.
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We use moral equality to formalise totality: a value x ∈ JσK is said to be
total iff x ∈ dom(∼σ). The intention is that if σ does not contain function
spaces, then we should have x ∼σ y iff x and y are equal, total values. For
functions we will have f ∼ g iff f and g map (total) related values to related
values.

The definition of totality given here should correspond to basic intuition.
Sometimes another definition is used instead, where f ∈ Jσ → τK is total iff
f@x = ⊥ implies that x = ⊥. That definition is not suitable for non-strict
languages where most semantic domains are not flat. As a simple example,
consider JfstK; we will have JfstK ∈ dom(∼), so JfstK is total according to our
definition, but JfstK@(⊥,⊥) = ⊥ and (⊥,⊥) 6= ⊥.

Given the family of PERs ∼ we can relate the set-theoretic semantic
values with the total values of the domain-theoretic semantics; see Sections 6
and 7.

5.1 Non-recursive types

The PER ∼σ→τ is a logical relation, i.e. we have the following definition for
function spaces:

f ∼σ→τ g ⇔
f 6= ⊥ ∧ g 6= ⊥ ∧
∀x, y ∈ JσK . x ∼σ y ⇒ f@x ∼τ g@y.

(20)

We need to ensure explicitly that f and g are non-bottom because some of
the PERs will turn out to have ⊥ ∈ dom(∼) or dom(∼) = ∅.

Pairs are related if corresponding components are related:

x ∼σ×τ y ⇔ ∃x1, y1 ∈ JσK , x2, y2 ∈ JτK .

x = (x1, x2) ∧ y = (y1, y2) ∧
x1 ∼σ y1 ∧ x2 ∼τ y2.

(21)

Similarly, sums are related if they are of the same kind with related compo-
nents:

x ∼σ+τ y ⇔
(∃x1, y1 ∈ JσK . x = inl(x1) ∧ y = inl(y1) ∧ x1 ∼σ y1) ∨
(∃x2, y2 ∈ JτK . x = inr(x2) ∧ y = inr(y2) ∧ x2 ∼τ y2) .

(22)

The value ? of the unit type is related to itself and ⊥ is not related to
anything:

x ∼1 y ⇔ x = y = ?. (23)

It is easy to check that what we have so far yields a family of PERs.
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5.2 Recursive types

The definition for recursive types is trickier. Consider lists. When should one
list be related to another? Given the intentions above it seems reasonable
for xs to be related to ys whenever they have the same, total list structure
(spine), and elements at corresponding positions are recursively related. In
other words, something like

xs ∼µ(K1+(Kσ×Id)) ys ⇔
(xs = in (inl(?)) ∧ ys = in (inl(?)))

∨
(
∃x,y ∈ JσK , xs ′, ys ′ ∈ Jµ(K1 + (Kσ × Id))K .

xs = in (inr((x, xs ′))) ∧ ys = in (inr((y, ys ′)))

∧ x ∼σ y ∧ xs ′ ∼µ(K1+(Kσ×Id)) ys ′
)
.

(24)

We formalise the intuition embodied in (24) by defining a relation trans-
former RT (F ) for each functor F ,

RT (F ) ∈ Rel(µF ) → Rel(µF )

RT (F )(X) =
{

(in x, in y) (x, y) ∈ RT ′
µF (F )(X)

}
.

(25)

The helper RT ′
σ(F ) is defined by

RT ′
σ(F ) ∈ Rel(σ) → Rel(F σ)

RT ′
σ(Id)(X) = X

RT ′
σ(Kτ )(X) = ∼τ

RT ′
σ(F1 × F2)(X) =

{
((x1, x2), (y1, y2))

(x1, y1) ∈ RT ′
σ(F1)(X),

(x2, y2) ∈ RT ′
σ(F2)(X)

}
RT ′

σ(F1 + F2)(X) = { (inl(x1) , inl(y1)) (x1, y1) ∈ RT ′
σ(F1)(X) }

∪
{ (inr(x2) , inr(y2)) (x2, y2) ∈ RT ′

σ(F2)(X) } .

(26)

The relation transformer RT (F ) is defined for inductive types. However,
replacing µF with νF in the definition is enough to yield a transformer
suitable for coinductive types.

Now, note that RT (F ) is a monotone operator on the complete lattice
(Rel(µF ) ,⊆). This implies that it has both least and greatest fixpoints
[Pri02], which leads to the following definitions:

x ∼µF y ⇔ (x, y) ∈ µRT (F ) and (27)

x ∼νF y ⇔ (x, y) ∈ νRT (F ) . (28)
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These definitions may not be entirely transparent. If we go back to the list
example and expand the definition of RT (K1 + (Kσ × Id)) we get

RT (K1 + (Kσ × Id))(X) =

{ (in (inl(?)), in (inl(?))) } ∪{
(in (inr((x, xs))),
in (inr((y, ys))))

x, y ∈ JσK , x ∼ y, (xs , ys) ∈ X

}
.

(29)

The least and greatest fixpoints of this operator correspond to our original
aims for ∼µ(K1+(Kσ×Id)) and ∼ν(K1+(Kσ×Id)). (Note that we never consider an
infinite inductive list as being total.)

After adding recursive types it is still possible to show that what we have
defined actually constitutes a family of PERs, but it takes a little more work.
First note the two proof principles given by the definitions above: induction,

∀X ⊆ JµF K2 . RT (F )(X) ⊆ X ⇒ µRT (F ) ⊆ X, (30)

and coinduction,

∀X ⊆ JνF K2 . X ⊆ RT (F )(X) ⇒ X ⊆ νRT (F ) . (31)

Many proofs needed for this paper proceed according to a scheme similar
to the following one, named IIICI below (Induction-Induction-Induction-
Coinduction-Induction):

• First induction over the type structure.

• For inductive types, induction according to (30) and then induction
over the functor structure.

• For coinductive types, coinduction according to (31) and then induction
over the functor structure.

Using this scheme it is proved that ∼ is a family of PERs [Dan07].

5.3 Properties

We can prove that ∼ satisfies a number of other properties as well. Before
leaving the subject of recursive types, we note that

x ∼F µF y ⇔ in x ∼µF in y (32)
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and

x ∼νF y ⇔ out x ∼F νF out y (33)

hold, as well as the symmetric statements where µF is replaced by νF and
vice versa. This is proved using a method similar to IIICI, but not quite
identical. Another method similar to IIICI is used to verify that ∼ satisfies
one of our initial goals: if σ does not contain function spaces, then x ∼σ y iff
x, y ∈ dom(∼σ) and x = y.

Continuing with order related properties, it is proved using induction over
the type structure that ∼σ is monotone when seen as a function ∼σ∈ JσK2 →
1⊥. This implies that all equivalence classes are upwards closed. We also
have (by induction over the type structure) that ⊥ /∈ dom(∼σ) for almost all
types σ. The only exceptions are given by the grammar

χ ::= νId |µKχ | νKχ. (34)

Note that JχK = { ⊥ } for all these types.
The (near-complete) absence of bottoms in dom(∼) gives us an easy way

to show that related values are not always equal: at most types JseqK ∼
Jλx.λy.yK but JseqK 6= Jλx.λy.yK. This example breaks down when seq is
used at type χ → σ → σ (unless dom(∼σ) = ∅). To be able to prove
the fundamental theorem below, let L′1 denote the language consisting of all
terms from L1 which contain no uses of seq at type χ → σ → σ.

Now, by using induction over the term structure instead of the type struc-
ture, and then following the rest of IIICI, it is shown that the fundamental
theorem of logical relations holds for any term t in L′1: if ρ(x) ∼ ρ′(x) for all
free variables x in a term t, then

JtK ρ ∼ JtK ρ′. (35)

The fundamental theorem is important because it implies that JtK ∈ dom(∼σ)
for all closed terms t : σ in L′1. In other words, all closed terms in L′1 denote
total values. Note, however, that JfixK /∈ dom(∼) (at most types) since
Jλx.xK ∈ dom(∼) and JfixK @ Jλx.xK = ⊥.

5.4 Examples

With moral equality defined we can prove a number of laws for ∼ which
are not true for =. As an example, consider η-equality (combined with
extensionality):

∀f, g ∈ Jσ → τK .

(∀x ∈ JσK . f@x = g@x) ⇔ f = g.
(36)
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This law is not valid, since the left hand side is satisfied by the distinct
values f = ⊥ and g = λv.⊥. On the other hand, the following variant
follows immediately from the definition of ∼:

∀f, g ∈ dom(∼σ→τ ) .

(∀x ∈ dom(∼σ) . f@x ∼ g@x) ⇔ f ∼ g.
(37)

As another example, consider currying (1). The corresponding state-
ment, Jcurry ◦ uncurryK ∼ JidK, is easily proved using the fundamental the-
orem (35) and the η-law (37) above. We can also prove surjective pairing.
Since p ∈ dom(∼σ×τ ) implies that p = (x, y) for some x ∈ dom(∼σ) and
y ∈ dom(∼τ ) we get J(fst t, snd t)K ρ = JtK ρ, given that JtK ρ ∈ dom(∼).

6 Partial surjective homomorphism

For the main theorem (Section 7) we need to relate values in 〈〈σ〉〉 to values
in [∼σ], the set of equivalence classes of ∼σ. Due to cardinality issues there
is in general no total bijection between these sets; consider σ = (Nat →
Nat) → Nat with Nat = µ(K1 + Id), for instance. We can define a partial
surjective homomorphism [Fri75] from 〈〈σ〉〉 to [∼σ], though. This means that
for each type σ there is a partial, surjective function jσ ∈ 〈〈σ〉〉 →̃ [∼σ], which
for function types satisfies

(jτ1→τ2 f) (jτ1 x) = jτ2 (f x) (38)

whenever f ∈ dom(jτ1→τ2) and x ∈ dom(jτ1). (Here →̃ is the partial function
space constructor and dom(f) denotes the domain of the partial function f .
Furthermore we define [f ] [x] = [f@x], which is well-defined.)

The functions jσ ∈ 〈〈σ〉〉 →̃ [∼σ] are simultaneously proved to be well-
defined (except where explicitly partial) and surjective by induction over
the type structure plus some other techniques for the recursive cases. The
following basic cases are easy:

jσ×τ ∈ 〈〈σ × τ〉〉 →̃ [∼σ×τ ]

jσ×τ (x, y) = [({jσ x} , {jτ y})] ,
(39)

jσ+τ ∈ 〈〈σ + τ〉〉 →̃ [∼σ+τ ]

jσ+τ inl(x) = [inl({jσ x})]
jσ+τ inr(y) = [inr({jτ y})] ,

(40)

and

j1 ∈ 〈〈1〉〉 →̃ [∼1]

j1 ? = [?] .
(41)

46



Note the use of {·} to ease the description of these functions.
It turns out to be impossible in general to come up with a total definition

of j for function spaces. Consider the function isInfinite ∈ 〈〈CoNat → Bool〉〉
(with CoNat = ν(K1 + Id) and Bool = 1 + 1) given by

isInfinite n =

{
True, j n = [ω] ,

False, otherwise.
(42)

(Here ω = JunfoldK1+Id inr ?K is the infinite “natural number”, True = inl(?)
and False = inr(?).) Any surjective homomorphism j must be undefined for
isInfinite.

Instead we settle for a partial definition. We employ a technique, origi-
nating from Friedman [Fri75], which makes it easy to prove that j is homo-
morphic: if possible, let jτ1→τ2 f be the element g ∈ [∼τ1→τ2 ] satisfying

∀x ∈ dom(jτ1) . g (jτ1 x) = jτ2 (f x). (43)

If a g exists, then it can be shown to be unique (using surjectivity of jτ1).
If no such g exists, then let jτ1→τ2 f be undefined. To show that jτ1→τ2 is
surjective we use a lemma stating that 〈〈σ〉〉 is empty iff [∼σ] is.

The definition of j for inductive and coinductive types follows the idea
outlined for the basic cases above, but is more involved. For inductive types
we use the following definition of j:

jµF ∈ 〈〈µF 〉〉 →̃ [∼µF ]

jµF x = [in {JF,F (out x)}] ,
(44)

where

JF,G ∈ 〈〈G µF 〉〉 →̃ [∼G µF ]

JF,Id x = jµF x

JF,Kσ x = jσ x

JF,G1×G2 (x, y) = [({JF,G1 x} , {JF,G2 y})]
JF,G1+G2 inl(x) = [inl({JF,G1 x})]
JF,G1+G2 inr(y) = [inr({JF,G2 y})] .

(45)

Note the recursive invocation of jµF above. For this to be well-defined we
extend the induction used to prove that j is well-defined and surjective to
lexicographic induction on first the type and then the size of values of induc-
tive type. This size can be defined using the fold operator in the category
SET.
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Finally we define j for coinductive types. Since some coinductive values
are infinite we cannot use simple recursion like for inductive types. Instead
we define a total helper function using unfold from the category CPO directly,

j′νF ∈ 〈〈〈νF 〉〉⊥ → JνF K〉
j′νF = unfoldF

(
J ′νF,F ◦ lift out

) (46)

(where lift ∈ 〈A → B〉 → 〈A⊥ → B⊥〉 lifts functions by making them strict),
and then wrap up the result whenever possible:

jνF ∈ 〈〈νF 〉〉 →̃ [∼νF ]

jνF x =

{
[j′νF x] , j′νF x ∈ dom(∼νF ) ,

undefined, otherwise.

(47)

Above we use J ′σ,G, defined by

J ′σ,G ∈ 〈〈〈G σ〉〉⊥ → L(G) 〈〈σ〉〉⊥〉
J ′σ,G ⊥ = ⊥
J ′σ,Id x = x

J ′σ,Kτ
x =

{
{jτ x} , x ∈ dom(jτ ) ,

⊥, otherwise

J ′σ,G1×G2
(x, y) = (J ′σ,G1

x, J ′σ,G2
y)

J ′σ,G1+G2
inl(x) = inl

(
J ′σ,G1

x
)

J ′σ,G1+G2
inr(y) = inr

(
J ′σ,G2

y
)
.

(48)

Note that the recursive invocation of jτ in J ′σ,Kτ
is OK since τ is structurally

smaller than the type νF above.

7 Main theorem

Now we get to our main theorem. Assume that t is a term in L′1 with contexts
ρ and ρ′ satisfying

ρ(x) ∈ dom(∼) ∧ j ρ′(x) = [ρ(x)] (49)

for all variables x free in t. Then we have that j (〈〈t〉〉 ρ′) is well-defined and

j (〈〈t〉〉 ρ′) = [JtK ρ] . (50)
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This result can be proved by induction over the structure of t, induction over
the size of values of inductive type and coinduction for coinductive types. The
case where t is an application relies heavily on j being homomorphic. Note
that the proof depends on the particular definition of j given in Section 6; if
we wanted to use a different partial surjective homomorphism then the proof
would need to be modified.

As a corollary to the main theorem we get, for any two terms t1, t2 : σ in
L′1 with two pairs of contexts ρ1, ρ′1 and ρ2, ρ′2 both satisfying the conditions
of (49) (for t1 and t2, respectively), that

〈〈t1〉〉 ρ′1 = 〈〈t2〉〉 ρ′2 ⇒ Jt1K ρ1 ∼ Jt2K ρ2. (51)

In other words, if we can prove that two terms are equal in the world of sets,
then they are morally equal in the world of domains. When formalised like
this the reasoning performed using set-theoretic methods, “fast and loose”
reasoning, is no longer loose.

If j had been injective, then (51) would have been an equivalence. That
would mean that we could handle unequalities (6=). The particular j defined
here is not injective, which can be shown using the function isIsInfinite ∈
〈〈(CoNat → Bool) → Bool〉〉 given by

isIsInfinite f =

{
True, f = isInfinite,

False, otherwise.
(52)

(CoNat , isInfinite etc. are defined in Section 6.) We get j isIsInfinite =
j (λf.False) (both defined), so j is not injective. In fact, no j which satisfies
the main theorem (50) and uses the definition above for function spaces (43)
can be injective.

8 Category-theoretic approach

Equation (51) above is useful partly because SET is a well-understood cate-
gory. For those who prefer to work abstractly instead of working in SET, the
following result may be a useful substitute. We define the category PER∼ as
follows:

Objects The objects are types σ (without any restrictions).

Morphisms The morphisms of type σ → τ are the elements of [∼σ→τ ], i.e.
equivalence classes of total functions.

Composition [f ] ◦ [g] = [λv.f@(g@v)].
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This category is bicartesian closed, with initial algebras and final coalgebras
for (at least) polynomial functors. All the laws that follow from this state-
ment can be used to reason about programs. For instance, it should not be
hard to repeat the total proofs from this paper using such laws.

For this method to be immediately useful, the various constructions in-
volved should correspond closely to those in the underlying language. And
they do:

Initial object The initial object is µId , with the unique morphism of type
µId → σ given by [λv.⊥].

Final object The final object is 1, with the unique morphism of type σ → 1
given by [λv.?]. Note that νId is isomorphic to 1.

Products The product of σ and τ is σ × τ . The projections are [JfstK] and
[JsndK], and given [f ] : γ → σ and [g] : γ → τ the unique morphism
which “makes the diagram commute” is [λv.(f@v, g@v)].

Coproducts The coproduct of σ and τ is σ + τ . The injections are [JinlK]
and [JinrK], and given [f ] : σ → γ and [g] : τ → γ the unique morphism
which “makes the diagram commute” is [λv. JcaseK@v@f@g].

Exponentials The exponential of τ and σ is σ → τ . The apply morphism is
[λ(f, x).f@x], and currying is given by the morphism [λf x y.f@(x, y)].

Initial algebras For a polynomial functor F the corresponding initial F -
algebra is (µF, [JinµF K]). Given the F -algebra [f ] : F σ → σ, the unique
homomorphism from [JinµF K] is [JfoldF K@f ].

Final coalgebras For a polynomial functor F the corresponding final F -
coalgebra is (νF, [JoutνF K]). Given the F -coalgebra [f ] : σ → F σ, the
unique homomorphism to [JoutνF K] is [JunfoldF K@f ].

The proofs of these properties are rather easy, and do not require construc-
tions like j.

The partial surjective homomorphism j fits into the category-theoretic
picture anyway: it can be extended to a partial functor to PER∼ from the
category which has types σ as objects, total functions between the corre-
sponding set-theoretic domains 〈〈σ〉〉 as morphisms, and ordinary function
composition as composition of morphisms. The object part of this functor is
the identity, and the morphism part is given by the function space case of j.

50



9 Review of example

After having introduced the main theoretic body, let us now revisit the ex-
ample from Section 2.

We verified that revMap = reverse ◦ map (λx.x − y) is the left inverse
of mapRev = map (λx.y + x) ◦ reverse in a total setting. Let us express
this result using the language introduced in Section 3. The type of the
functions becomes ListNat → ListNat , where ListNat is the inductive type
µ(K1 + (KNat × Id)) of lists of natural numbers, and Nat is the inductive
type µ(K1 + Id). Note also that the functions reverse, map, (+) and (−) can
be expressed using folds, so the terms belong to L1. Finally note that seq is
not used at a type χ → σ → σ with ⊥ ∈ dom(∼χ), so the terms belong to
L′1, and we can make full use of the theory.

Our earlier proof in effect showed that

〈〈revMap ◦mapRev〉〉 [y 7→ n] = 〈〈id〉〉 (53)

for an arbitrary n ∈ 〈〈Nat〉〉, which by (51) implies that

JrevMap ◦mapRevK [y 7→ n′] ∼ListNat→ListNat JidK (54)

whenever n′ ∈ dom(∼Nat) and [n′] = j n for some n ∈ 〈〈Nat〉〉. By the fun-
damental theorem (35) and the main theorem (50) we have that JtK satisfies
the conditions for n′ for any closed term t ∈ L′1 of type Nat . This includes
all total, finite natural numbers.

It remains to interpret ∼ListNat→ListNat . Denote the left hand side of (54)
by f . The equation implies that f@xs ∼ ys whenever xs ∼ ys . By using
the fact (mentioned in Section 5.3) that xs ∼ListNat ys iff xs ∈ dom(∼ListNat)
and xs = ys , we can restate the equation as f@xs = xs whenever xs ∈
dom(∼ListNat).

We want xs ∈ dom(∼ListNat) to mean the same as “xs is total and finite”.
We defined totality to mean “related according to ∼” in Section 5, so xs ∈
dom(∼ListNat) iff xs is total. We have not defined finiteness, though. However,
with any reasonable definition we can be certain that x ∈ dom(∼σ) is finite
if σ does not contain function spaces or coinductive types; in the absence of
such types we can define a function sizeσ ∈ dom(∼σ) → N which has the
property that size x′ < size x whenever x′ is a structurally smaller part of
x, such as with x = inl(x′) or x = in (x′, x′′).

Hence we have arrived at the statement proved by the more elaborate
proof in Section 2: for all total and finite lists xs and all total and finite
natural numbers n,

J(revMap ◦mapRev) xsK [y 7→ n] = JxsK . (55)
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This means that we have proved a result about the partial language without
having to manually propagate preconditions. At first glance it may seem as if
the auxiliary arguments spelled out in this section make using total methods
more expensive than we first indicated. However, note that the various parts
of these arguments only need to be carried out at most once for each type.
They do not need to be repeated for every new proof.

10 Partial reasoning is sometimes preferable

This section discusses an example of a different kind from the one given
in Section 2; an example where partial reasoning (i.e. reasoning using the
domain-theoretic semantics directly) seems to be more efficient than total
reasoning.

We define two functions sums and diffs , both of type ListNat → ListNat ,
with the inductive types ListNat and Nat defined just like in Section 9. The
function sums takes a list of numbers and calculates their running sum, and
diffs performs the left inverse operation, along the lines of

sums [3, 1, 4, 1, 5] = [3, 4, 8, 9, 14], and (56)

diffs [3, 4, 8, 9, 14] = [3, 1, 4, 1, 5] (57)

(using standard syntactic sugar for lists and natural numbers). The aim is
to prove that

〈〈diffs ◦ sums〉〉 = 〈〈id〉〉 . (58)

We do that in Section 10.1. Alternatively, we can implement the functions
in L2 and prove that

Jdiffs ◦ sumsK@xs = xs (59)

for all total, finite lists xs ∈ JListNatK containing total, finite natural num-
bers. That is done in Section 10.2. We then compare the experiences in
Section 10.3.

10.1 Using total reasoning

First let us implement the functions in L′1. To make the development easier to
follow, we use some syntax borrowed from Haskell. We also use the function
foldr , modelled on its Haskell namesake:

foldr : (σ → (τ → τ)) → τ → µ(K1 + (Kσ × Id)) → τ

foldr f x = foldK1+(Kσ×Id) (λy.case y (λ .x) (λp.f (fst p) (snd p))) .
(60)
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The following is a simple, albeit inefficient, recursive implementation of
sums :

sums : ListNat → ListNat

sums = foldr add [ ],
(61)

where

add : Nat → ListNat → ListNat

add x ys = x : map (λy.x + y) ys .
(62)

Here (+) and (−) (used below) are implemented as folds, in a manner anal-
ogous to (7) and (8) in Section 2. The function map can be implemented
using foldr :

map : (σ → τ) → µ(K1 + (Kσ × Id)) → µ(K1 + (Kτ × Id))

map f = foldr (λx ys .f x : ys) [ ].
(63)

The definition of diffs uses similar techniques:

diffs : ListNat → ListNat

diffs = foldr sub [ ],
(64)

where

sub : Nat → ListNat → ListNat

sub x ys = x : toHead (λy.y − x) ys .
(65)

The helper function toHead applies a function to the first element of a non-
empty list, and leaves empty lists unchanged:

toHead : (Nat → Nat) → ListNat → ListNat

toHead f (y : ys) = f y : ys

toHead f [ ] = [ ].

(66)

Now let us prove (58). We can use fold fusion [BdM96],

g ◦ foldr f e = foldr f ′ e′

⇐ g e = e′ ∧ ∀x, y. g (f x y) = f ′ x (g y).
(67)
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(For simplicity we do not write out the semantic brackets 〈〈·〉〉, or any con-
texts.) We have

diffs ◦ sums = id

⇔ {definition of sums , id = foldr (:) [ ]}
diffs ◦ foldr add [ ] = foldr (:) [ ]

⇐ {fold fusion}
diffs [ ] = [ ] ∧
∀x, ys . diffs (add x ys) = x : diffs ys .

The first conjunct is trivial, and the second one can be proved by using the
lemmas

(λy.y − x) ◦ (λy.x + y) = id (68)

and

diffs ◦map (λy.x + y) = toHead (λy.x + y) ◦ diffs . (69)

To prove the second lemma we use fold-map fusion [BdM96],

foldr f e ◦map g = foldr (f ◦ g) e. (70)

We have

diffs ◦map (λy.x + y)

= {definition of diffs}
foldr sub [ ] ◦map (λy.x + y)

= {fold-map fusion}
foldr (sub ◦ (λy.x + y)) [ ]

= {fold fusion, see below}
toHead (λy.x + y) ◦ foldr sub [ ]

= {definition of diffs}
toHead (λy.x + y) ◦ diffs .

To finish up we have to verify that the preconditions for fold fusion are
satisfied above,

toHead (λy.x + y) [ ] = [ ], (71)

54



and

∀y, ys . toHead (λy.x + y) (sub y ys) =

(sub ◦ (λy.x + y)) y (toHead (λy.x + y) ys).
(72)

The first one is yet again trivial, and the second one can be proved by using
the lemma

λz.z − y = (λz.z − (x + y)) ◦ (λy.x + y). (73)

10.2 Using partial reasoning

Let us now see what we can accomplish when we are not restricted to a total
language. Yet again we borrow some syntax from Haskell; most notably we
do not use fix directly, but define functions using recursive equations instead.

The definitions above used structural recursion. The programs below
instead use structural corecursion, as captured by the function unfoldr , which
is based on the standard unfold for lists as given by the Haskell Report [PJ03]:

unfoldr : (τ → (1 + (σ × τ))) → τ → µ(K1 + (Kσ × Id))

unfoldr f b = case (f b) (λ .[ ]) (λp.fst p : unfoldr f (snd p)).
(74)

Note that we cannot use unfold here, since it has the wrong type. We can
write unfoldr with the aid of fix, though. In total languages inductive and
coinductive types cannot easily be mixed; we do not have the same problem
in partial languages.

The corecursive definition of sums ,

sums : ListNat → ListNat

sums xs = unfoldr next (0, xs),
(75)

with helper next ,

next : (Nat × ListNat) → (1 + (Nat × (Nat × ListNat)))

next (e, [ ]) = inl ?

next (e, x : xs) = inr (e + x, (e + x, xs)),

(76)

should be just as easy to follow as the recursive one, if not easier. Here we
have used the same definitions of (+) and (−) as above, and 0 is shorthand
for inNat (inl ?). The definition of diffs ,

diffs : ListNat → ListNat

diffs xs = unfoldr step (0, xs),
(77)
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with step,

step : (Nat × ListNat) → (1 + (Nat × (Nat × ListNat)))

step (e, [ ]) = inl ?

step (e, x : xs) = inr (x− e, (x, xs)),

(78)

is arguably more natural than the previous one.
Now we can prove (59) for all total lists containing total, finite natural

numbers; we do not need to restrict ourselves to finite lists. To do that we
use the approximation lemma [HG01],

xs = ys ⇔ ∀n ∈ N. approx n xs = approx n ys , (79)

where the function approx is defined by

approx ∈ N → Jµ(K1 + (Kσ × Id))K → Jµ(K1 + (Kσ × Id))K
approx 0 = ⊥
approx (n + 1) ⊥ = ⊥
approx (n + 1) [ ] = [ ]

approx (n + 1) (x : xs) = x : approx n xs .

(80)

Note that this definition takes place on the meta-level, since the natural
numbers N do not correspond to any type in our language.

We have the following (yet again ignoring semantic brackets and contexts
and also all uses of @):

∀ total xs containing total, finite numbers.

(diffs ◦ sums) xs = xs

⇔ {approximation lemma}
∀ total xs containing total, finite numbers.

∀n ∈ N. approx n ((diffs ◦ sums) xs) = approx n xs

⇔ {predicate logic, definition of diffs , sums and ◦}
∀n ∈ N. ∀ total xs containing total, finite numbers.

approx n (unfoldr step (0, unfoldr next (0, xs))) =

approx n xs

⇐ {generalise, 0 is total and finite}
∀n ∈ N. ∀ total xs containing total, finite numbers.

∀ total and finite y.

approx n (unfoldr step (y, unfoldr next (y, xs))) =

approx n xs .
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We proceed by induction on the natural number n. The n = 0 case is trivial.
For n = k + 1 we have two cases, xs = [ ] and xs = z : zs (with z being a
total, finite natural number, etc.). The first case is easy, whereas the second
one requires a little more work:

approx (k + 1)

(unfoldr step (y, unfoldr next (y, z : zs)))

= {definition of unfoldr , next and step}
approx (k + 1)

((y + z)− y :

unfoldr step (y + z, unfoldr next (y + z, zs)))

= {(y + z)− y = z for y, z total and finite}
approx (k + 1)

(z : unfoldr step (y + z, unfoldr next (y + z, zs)))

= {definition of approx}
z : approx k

(unfoldr step (y + z, unfoldr next (y + z, zs)))

= {inductive hypothesis, y + z is total and finite}
z : approx k zs

= {definition of approx}
approx (k + 1) (z : zs).

Note that we need a lemma stating that y + z is total and finite whenever y
and z are.

10.3 Comparison

The last proof above, based on reasoning using domain-theoretic methods,
is arguably more concise than the previous one, especially considering that
it is more detailed. It also proves a stronger result, since it is not limited to
finite lists.

In the short example in Section 2 we had to explicitly propagate precon-
ditions through both map and reverse. In comparison, in this longer example
we only had to propagate preconditions through (+) (in the penultimate step
of the last proof). Notice especially the second step of the last case above.
The variables y and z were assumed to be finite and total, and hence the
lemma (y + z)− y = z could immediately be applied.

There is of course the possibility that the set-theoretic implementation
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and proof are unnecessarily complex.1 Note for instance that the domain-
theoretic variants work equally well in the set-theoretic world, if we go for
coinductive instead of inductive lists, and replace the approximation lemma
with the take lemma [HG01]. Using such techniques in a sense leads to more
robust results, since they never require preconditions of the kind above to be
propagated manually.

However, since inductive and coinductive types are not easily mixed we
cannot always go this way. If, for example, we want to process the result
of sums using a fold, then we cannot use coinductive lists. In general we
cannot use hylomorphisms [MFP91], unfolds followed by folds, in a total
setting. If we want or need to use a hylomorphism, then we have to use a
partial language.

11 Strict languages

We can treat strict languages (at least the somewhat odd language introduced
below) using the framework developed so far by modelling strictness using
seq, just like strict data type fields are handled in the Haskell Report [PJ03].
For simplicity we reuse the previously given set-theoretic semantics, and
also all of the domain-theoretic semantics, except for one rule, the one for
application.

More explicitly, we define the domain-theoretic, strict semantics J·K⊥ by
JσK⊥ = JσK for all types. For terms we let application be strict,

Jt1t2K⊥ ρ =

{
(Jt1K⊥ ρ) @ (Jt2K⊥ ρ) , Jt2K⊥ ρ 6= ⊥,

⊥, otherwise.
(81)

Abstractions are treated just as before,

Jλx.tK⊥ ρ = λv. JtK⊥ ρ[x 7→ v] , (82)

and whenever t is not an application or abstraction we let JtK⊥ ρ = JtK ρ.

We then define a type-preserving syntactic translation ∗ on L1, with the

1Indeed, as pointed out to us after publication by Anton Setzer. If the definitions are
changed so that sums xs = foldr next (λ .[ ]) xs 0, where next x h = λe.e + x : h (e + x),
and diffs xs = foldr step (λ .[ ]) xs 0, where step x h = λe.x − e : h x, then the domain-
theoretic proof carries over to a total setting with inductive lists (by using the take lemma).
However, the domain-theoretic proof is only marginally more complicated, and still has
the advantage that it applies to both inductive and coinductive lists.
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intention of proving that JtK⊥ ρ = Jt∗K ρ. The translation is as follows:

t∗ =


seq t2

∗ (t1
∗ t2

∗), t = t1 t2,

λx.t1
∗, t = λx.t1,

t, otherwise.

(83)

The desired property follows easily by induction over the structure of terms.
It is also easy to prove that 〈〈t〉〉 ρ = 〈〈t∗〉〉 ρ.

Given these properties we can easily prove the variants of the main theo-
rem (50) and its corollary (51) that result from replacing J·K with J·K⊥. The
category-theoretic results from Section 8 immediately transfer to this new
setting since the category is the same and JtK⊥ = JtK for all closed terms t
not containing applications.

12 Related work

The notion of totality used above is very similar to that used by Scott [Sco76].
Aczel’s interpretation of Martin-Löf type theory [Acz77] is also based on sim-
ilar ideas, but types are modelled as predicates instead of PERs. That work
has been extended by Smith [Smi84], who interprets a polymorphic variant
of Martin-Löf type theory in an untyped language which shares many prop-
erties with our partial language L2; he does not consider coinductive types
or seq, though. Beeson considers a variant of Martin-Löf type theory with
W -types [Bee82]. W -types can be used to model strictly positive inductive
and coinductive types [Dyb97, AAG05]. Modelling coinductive types can also
be done in other ways [Hal87], and the standard trick of coding non-strict
evaluation using function spaces (force and delay) may also be applicable.
Furthermore it seems as if Per Martin-Löf, in unpublished work, considered
lifted function spaces in a setting similar to [Smi84].

The method we use to relate the various semantic models is basically that
of Friedman [Fri75]; his method is more abstract, but defined for a language
with only base types, natural numbers and functions.

Scott mentions that a category similar to PER∼ is bicartesian closed
[Sco76].

There is a vast body of literature written on the subject of Aczel interpre-
tations, PER models of types, and so on, and some results may be known as
folklore without having been published. This text can be seen as a summary
of some results, most of them previously known in one form or another, that
we consider important for reasoning about functional programs. By writ-
ing down the results we make the details clear. Furthermore we apply the
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ideas to the problem of reasoning about programs, instead of using them
only to interpret one theory in another. This is quite a natural idea, so it
is not unreasonable to expect that others have made similar attempts. We
know about [Dyb85], in which Dybjer explains how one can reason about
an untyped partial language using total methods for expressions that are
typeable (corresponding to our total values). We have not found any work
that discusses fast and loose reasoning for strict languages.

Another angle on the work presented here is that we want to get around
the fact that many category-theoretic isomorphisms are missing in categories
like CPO. For instance, one cannot have a cartesian closed category with
coproducts and fixpoints for all morphisms [HP90]. In this work we disallow
all fixpoints except well-behaved ones that can be expressed as folds and
unfolds. Another approach is to disallow recursion explicitly for sum types
[BB91]. The MetaSoft project (see e.g. [BT83, Bli87]) advocated using “naive
denotational semantics”, a denotational semantics framework that does not
incorporate reflexive domains. This means that some fixpoints (both on the
type and the value level) are disallowed, with the aim that the less complex
denotational structures may instead simplify understanding.

A case can be made for sometimes reasoning using a conservative ap-
proximate semantics, obtaining answers that are not always exactly correct
[DJ04, discussion]. Programmers using languages like Haskell often ignore
issues related to partiality anyway, so the spirit of many programs can be
captured without treating all corner cases correctly. The methods described
in this paper in a sense amount to using an approximate semantics, but with
the ability to get exactly correct results by translating results involving ∼ to
equalities with preconditions.

There is some correspondence between our approach and that of total
and partial correctness reasoning for imperative programs, for example with
Dijkstra’s wp and wlp predicate transformers [Dij76]. In both cases, simpler
approximate methods can be used to prove slightly weaker results than “what
one really wants”. However, in the w(l)p case, conjoining partial correctness
with termination yields total correctness. In contrast, in our case, there is
in general no (known) simple adjustment of a fast and loose proof to make
a true proof of the same property. Nevertheless, the fast and loose proof
already yields a true proof of a related property.

Sometimes it is argued that total functional programming should be used
to avoid the problems with partial languages. Turner does that in the context
of a language similar to the total one described here [Tur96], and discusses
methods for circumventing the limitations associated with mandatory total-
ity.
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13 Discussion and future work

We have justified reasoning about functional languages containing partial
and infinite values and lifted types, including lifted functions, using total
methods. Two total methods were described, one based on a set-theoretic
semantics and one based on a bicartesian closed category, both using a partial
equivalence relation to interpret results in the context of a domain-theoretic
semantics.

We have focused on equational reasoning. However, note that, by adding
and verifying some extra axioms, the category-theoretic approach can be used
to reason about unequalities (6=). Given this ability it should be possible
to handle more complex logical formulas as well; we have not examined this
possibility in detail, though. Since the method of Section 7 (without injective
j) cannot handle unequalities, it is in some sense weaker.

The examples in Sections 2 and 10 indicate that total methods are some-
times cheaper than partial ones, and sometimes more expensive. We have not
performed any quantitative measurements, so we cannot judge the relative
frequency of these two outcomes. One reasonable conclusion is that it would
be good if total and partial methods could be mixed without large overheads.
We have not experimented with this, but can still make some remarks.

First it should be noted that ∼ is not a congruence: we can have x ∼ y
but still have f@x 6∼ f@y (if f /∈ dom(∼)). We can still use an established
fact like x ∼ y by translating the statement into a form using preconditions
and equality, like we did in Section 9. This translation is easy, but may result
in many nontrivial preconditions, perhaps more preconditions than partial
reasoning would lead to. When this is not the case it seems as if using
total reasoning in some leaves of a proof, and then partial reasoning on the
top-level, should work out nicely.

Another observation is that, even if some term t is written in a partial
style (using fix), we may still have JtK ∈ dom(∼). This would for example be
the case if we implemented foldr (see Section 10.1) using fix instead of fold.
Hence, if we explicitly prove that JtK ∈ dom(∼) then we can use t in a total
setting. This proof may be expensive, but enables us to use total reasoning
on the top-level, with partial reasoning in some of the leaves.

Now on to other issues. An obvious question is whether one can extend the
results to more advanced languages incorporating stronger forms of recursive
types, polymorphism, or type constructors. Adding polymorphism would
give us an easy way to transform free theorems [Rey83, Wad89] from the
set-theoretic side (well, perhaps not set-theoretic [Rey84]) to the domain-
theoretic one. It should be interesting to compare those results to other
work involving free theorems and seq [JV04].
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However, the main motivation for treating a more advanced type system
is that we want the results to be applicable to languages like Haskell, and
matching more features of Haskell’s type system is important for that goal.
Still, the current results should be sufficient to reason about monomorphic
Haskell programs using only polynomial recursive types, with one impor-
tant caveat: Haskell uses the sums-of-products style of data type definitions.
When simulating such definitions using binary type constructors, extra bot-
toms are introduced. As an example, Jµ(K1 + Id)K contains the different
values in (inl(⊥)) and in (inl(?)), but since the constructor Zero is nullary
the Haskell data type Nat from Section 2 does not contain an analogue of
in (inl(⊥)). One simple but unsatisfactory solution to this problem is to
restrict the types used on the Haskell side to analogues of those discussed in
this paper. Another approach is of course to rework the theory using sums-
of-products style data types. We foresee no major problems with this, but
some details may require special attention.
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Lightweight Semiformal
Time Complexity Analysis for

Purely Functional Data Structures

Nils Anders Danielsson
Chalmers University of Technology

Abstract

Okasaki and others have demonstrated how purely functional data
structures that are efficient even in the presence of persistence can
be constructed. To achieve good time bounds essential use is often
made of laziness. The associated complexity analysis is frequently
subtle, requiring careful attention to detail, and hence formalising it
is valuable.

This paper describes a simple library which can be used to make
the analysis of a class of purely functional data structures and algo-
rithms almost fully formal. The basic idea is to use the type system to
annotate every function with the time required to compute its result.
An annotated monad is used to combine time complexity annotations.

The library has been used to analyse some existing data structures,
for instance the deque operations of Hinze and Paterson’s finger trees.

1 Introduction

Data structures implemented in a purely functional language automatically
become persistent; even if a data structure is updated, the previous version
can still be used. This property means that, from a correctness perspective,
users of the data structure have less to worry about, since there are no
problems with aliasing. From an efficiency perspective the picture is less
nice, though: different usage patterns can lead to different time complexities.
For instance, a common implementation of FIFO queues has the property
that every operation takes constant amortised time if the queues are used
single-threadedly (i.e. if the output of one operation is always the input to
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the next), whereas for some usage patterns the complexity of the tail function
becomes linear (Okasaki 1998).

Despite this a number of purely functional data structures exhibiting
good performance no matter how they are used have been developed (see for
instance Okasaki 1998; Kaplan and Tarjan 1999; Kaplan et al. 2000; Hinze
and Paterson 2006). Many of these data structures make essential use of
laziness (non-strictness with memoisation, also known as call-by-need) in
order to ensure good performance; see Section 8.1 for a detailed example.
However, the resulting complexity analysis is often subtle, with many details
to keep track of.

To address this problem the paper describes a simple library, Thunk,
for semiformal verification of the time complexity of purely functional data
structures. The basic idea is to annotate the code (the actual code later
to be executed, not a copy used for verification) with ticks, representing
computation steps:

X : Thunk n a → Thunk (1 + n) a

Time complexity is then tracked using the type system. Basically, if a value
has type Thunk n a, then a weak head normal form (WHNF) of type a
can be obtained in n steps amortised time, no matter how the value is used.
Thunk is a monad, and the monadic combinators are used to combine time
complexities of subexpressions.

Note that the Thunk type constructor takes a value (n) as argument; it
is a dependent type. The Thunk library is implemented in the dependently
typed functional language Agda (Norell 2007; The Agda Team 2007), which is
described in Section 2. The approach described in the paper is not limited to
Agda—it does not even need to be implemented in the form of a library—but
for concreteness Agda is used when presenting the approach.

In order to analyse essential uses of laziness Thunk makes use of a sim-
plified version of Okasaki’s banker’s method (1998). This version is arguably
easier to explain (see Section 8), but it is less general, so fewer programs can
be properly analysed. A generalisation of the method, also implemented, is
discussed in Section 11, and remaining limitations are discussed in Section 12.

Despite any limitations the methods are still useful in practice. The
following algorithms and data structures have been analysed:

• Linear-time minimum using insertion sort, the standard example for
time complexity analysis of call-by-name programs (see Section 7).

• Implicit queues (Okasaki 1998), which make essential use of laziness
(see Section 8).
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• The deque operations of Hinze and Paterson’s finger trees (2006).1

• Banker’s queues (Okasaki 1998), by using the generalised method de-
scribed in Section 11.1

The time bounds obtained using the library are verified with respect to an
operational semantics for a small, lazy language; see Section 9. To increase
trust in the verification it has been checked mechanically (also using Agda,
which doubles as a proof assistant).

The source code for the library, the examples mentioned above, and the
mechanisation of the correctness proof are available from the author’s web
page (currently http://www.cs.chalmers.se/~nad/). A technical report
also describes the mechanisation in more detail (Danielsson 2007).

To summarise, the contributions of this work are as follows:

• A simple, lightweight library for semiformal verification of the time
complexity of a useful class of purely functional data structures.

• The library has been applied to real-world examples.

• The library has a well-defined semantics, and the stated time bounds
have been verified with respect to this semantics.

• The correctness proofs have been checked using a proof assistant.

The rest of the paper is structured as follows: Section 2 describes Agda
and Section 3 describes the basics of Thunk. The implementation of the
library is discussed in Section 4, some rules for how the library must be used
are laid down in Section 5, and Sections 6–8 contain further examples on the
use of Thunk. The correctness proof is outlined in Sections 9–10, Section 11
motivates and discusses a generalisation of the library, and Section 12 de-
scribes some limitations. Finally related work is discussed in Section 13 and
Section 14 concludes.

2 Host language

This section discusses some aspects of Agda (Norell 2007; The Agda Team
2007), the language used for the examples in the paper, in order to make it
easier to follow the text. Agda is a dependently typed functional language,
and for the purposes of this paper it may be useful to think of it as a total

1Using an earlier, but very similar, version of the library.
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variant of Haskell (Peyton Jones 2003) with dependent types and generalised
algebraic data types, but no infinite values or coinduction.

Thunk is not tied to Agda, but can be implemented in any language
which supports the type system and evaluation orders used, see Sections 4
and 9.

Hidden arguments Agda lacks (implicit) polymorphism, but has hidden
arguments, which in combination with dependent types compensate for this
loss. For instance, the ordinary list function map could be given the following
type signature:

map : {a, b : ?} → (a → b) → List a → List b

Here ? is the type of (small) types. Arguments within { . . .} are hidden, and
need not be given explicitly, if the type checker can infer their values from
the context in some way. If the hidden arguments cannot be inferred, then
they can be given explicitly by enclosing them within { . . .}:

map {Int } {Bool } : (Int → Bool) → List Int → List Bool

The same syntax can be used to pattern match on hidden arguments:

map {a } {b} f (x :: xs) = . . .

Inductive families Agda has inductive families (Dybjer 1994), also known
as generalised algebraic data types or GADTs. Data types are introduced
by listing the constructors and giving their types. Natural numbers, for
instance, can be defined as follows:

data N : ? where
zero : N
suc : N → N

As an example of a family of types consider the type Seq a n of sequences
(sometimes called vectors) of length n containing elements of type a:

data Seq (a : ?) : N → ? where
nil : Seq a zero
(::) : {n : N} → a → Seq a n → Seq a (suc n)

Note how the index (the natural number introduced after the last : in the
first line) is allowed to vary between the constructors. Seq a is a family of
types, with one type for every index n.
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To illustrate the kind of pattern matching Agda allows for an inductive
family, let us define the tail function:

tail : {a : ?} → {n : N} → Seq a (suc n) → Seq a n
tail (x :: xs) = xs

We can and need only pattern match on (::), since the type of nil does not
match the type Seq a (suc n) given in the type signature for tail . As another
example, consider the definition of the append function:

(++) : Seq a n1 → Seq a n2 → Seq a (n1 + n2)
nil ++ ys = ys
(x :: xs) ++ ys = x :: (xs ++ ys)

In the nil case the variable n1 in the type signature is unified with zero,
transforming the result type into Seq a n2, allowing us to give ys as the
right-hand side. (This assumes that zero + n2 evaluates to n2.) The (::) case
can be explained in a similar way.

Note that the hidden arguments of (++) were not declared in its type
signature. This is not allowed by Agda, but often done in the paper to
reduce notational noise. Some other minor syntactic changes have also been
made in order to aid readability.

Run-time and compile-time code Agda evaluates code during type
checking; two types match if they reduce to the same normal form. Hence it
is useful to distinguish between compile-time code (code which is only eval-
uated at type-checking time) and run-time code (code which is executed at
run-time). The principal purpose of the Thunk library is to annotate run-
time code; the compile-time code will not be executed at run-time anyway,
so there is not much point in annotating it.

Unfortunately Agda has no facilities for identifying compile-time or run-
time code. As a crude first approximation types are not run-time, though.

3 Library basics

An example will introduce the core concepts of Thunk. By using the library
combinators the append function can be proved to be linear in the length of
the first sequence:

Chapter 3: Lightweight Semiformal Time Complexity Analysis. . .

73



(++) : Seq a m → Seq a n → Thunk (1 + 2 ∗m) (Seq a (m + n))
nil ++ ys = Xreturn ys
(x :: xs) ++ ys = X

xs ++ ys >>= λxsys → X

return (x :: xsys)

The rest of this section explains this example and the library in more detail.

Ticks As mentioned above the user has to insert ticks manually:

X : Thunk n a → Thunk (1 + n) a

The basic unit of cost is the rewriting of the left-hand side of a definition
to the right-hand side. Hence, for every function clause, lambda abstraction
etc. the user has to insert a tick. (The X function is a prefix operator of low
precedence, reducing the need for parentheses.)

By design the library is lightweight: no special language support for rea-
soning about time complexity is needed. It would be easy to turn the library
from being semiformal into being formal by modifying the type-checker of
an existing language to ensure that ticks were always inserted where nec-
essary (and a few other requirements listed in Section 5). However, the
primary intended use of Thunk is the analysis of complicated data struc-
tures; it should not interfere with “ordinary” code. Furthermore the freedom
to choose where to insert ticks gives the user the ability to experiment with
different cost models.

Thunk monad The type Thunk is an “annotated” monad, with the fol-
lowing types for the unit (return) and the bind operator (>>=):

return : a → Thunk 0 a
(>>=) : Thunk m a → (a → Thunk n b) → Thunk (m + n) b

The monad combinators are used to combine the time complexities of subex-
pressions. It makes sense to call this a monad since the monoid laws for 0
and + make sure that the monad laws are still “type correct”.

Time bounds Let us now discuss the time complexity guarantees estab-
lished by the library. Assume that t has type

a ≡ Thunk n1 (Thunk n2 . . . (Thunk nk b) . . .),
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where b is not itself equal to Thunk something. The library then guarantees
that, if t evaluates to WHNF, then it does so in at most n ≡ n1+n2+ . . .+nk

steps. Denote the number n by time a.
The precondition that t must evaluate to WHNF is not a problem in

Agda, since Agda is a total language. In partial languages one has to be
more careful, though. Consider the following code, written in some partial
language:

ω : N
ω = 1 + ω

ticks : Thunk ω a
ticks = Xticks

The value ticks does not have a WHNF. Since Agda is total the precondition
above will implicitly be assumed to be satisfied when the examples in the
rest of the paper are discussed.

One can often extract more information than is at first obvious from
the given time bounds. For instance, take two sequences xs : Seq a 7 and
ys :Seq a 3 (for some a). When evaluating xs ++ys a WHNF will be obtained
in time (Thunk 15 (Seq a 10)) = 15 steps. This WHNF has to be z :: zs
for some z : a, zs : Seq a 9. Since time (Seq a 9) = 0 this means that zs
evaluates to WHNF in zero steps. Continuing like this we see that xs ++ ys
really evaluates to spine-normal form in 15 steps; even normal form if a
does not contain embedded Thunks. This example shows that types without
embedded Thunks are treated as if they were strict. Section 7 shows how
non-strict types can be handled.

Run function There is a need to interface annotated code with “ordinary”
code, which does not run in the Thunk monad. This is done by the force
function:

force : Thunk n a → a

This function must of course not be used in code which is analysed.

Equality proofs The Agda type checker does not automatically prove
arithmetical equalities. As a result, the definition of (++) above does not
type check: Agda cannot see that the tick count of the right-hand side of the
last equation, 1 + ((1 + 2 ∗ m) + (1 + 0)) (for some variable m : N), is the
same as 1 + 2 ∗ (1 + m). This problem can be solved by inserting a proof
demonstrating the equality of these expressions into the code. The problem
is an artifact of Agda, though; simple arithmetical equalities such as the one
above could easily be proved automatically, and to aid readability no such
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proofs are written out in the paper, with the exception of a discussion of
equality proofs in Section 10.

Summary The basic version of the library consists of just the Thunk
monad, X, force, and the function pay , which is introduced in Section 8;
pay is the key to taking advantage of lazy evaluation. The following list
summarises the primitives introduced so far:

Thunk : N → ? → ?
X : Thunk n a → Thunk (1 + n) a
return : a → Thunk 0 a
(>>=) : Thunk m a → (a → Thunk n b) → Thunk (m + n) b
force : Thunk n a → a

4 Implementation

In the implementation of Thunk the type Thunk n a is just a synonym
for the type a; n is a “phantom type variable” (Leijen and Meijer 1999).
However, this equality must not be exposed to the library user. Hence the
type is made abstract :

abstract
Thunk : N → ? → ?
Thunk n a = a

Making a type or function abstract means that its defining equations are
only visible to other abstract definitions in the same module. Hence, when
type checking, if x : Thunk n a, then this reduces to x : a in the right-hand
sides of the library primitives below, but in other modules the two types a
and Thunk n a are different.

The primitive operations of the library are basically identity functions;
return and (>>=) form an annotated identity monad:

abstract
X : Thunk n a → Thunk (1 + n) a
Xx = x

return : a → Thunk 0 a
return x = x

(>>=) : Thunk m a → (a → Thunk n b) → Thunk (m + n) b
x >>= f = f x
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force : Thunk n a → a
force x = x

This ensures minimal run-time overhead, and also that the implementation
of Thunk corresponds directly to the erasure function used to prove the
library correct (see Section 9.1).

It may be possible to implement a variant of the library in a strict lan-
guage with explicit support for laziness (with memoisation). The correctness
statement and proof would probably need to be modified a bit, and some
type signatures may need to be changed to make it possible to ensure that
code is not evaluated prematurely.

5 Conventions

There are some conventions about how the library must be used which are
not captured by the type system:

• Every run-time function clause (including those of anonymous lambdas)
has to start with X.

• The function force may not be used in run-time terms.

• Library functions may not be used partially applied.

The correctness of the library has only been properly verified for a simple
language which enforces all these rules through syntactic restrictions (see
Section 9.1); Agda does not, hence these conventions are necessary. Further
differences between Agda and the simple language are discussed in Section 10.

The rest of this section discusses and motivates the conventions.

Run-time vs. compile-time It would be very awkward to have to deal
with thunks in the types of functions, so the rules for X only apply to terms
that will actually be executed at run-time. The function force may obviously
not be used in run-time terms, since it can be used to discard annotations.

Ticks everywhere One might think that it is possible to omit X in non-
recursive definitions, and still obtain asymptotically correct results. This is
not true in general, though. Consider the following function, noting that the
last anonymous lambda is not ticked:
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build : (n : N) → Thunk (1 + 2 ∗ n) (N → Thunk 1 N)
build zero = Xreturn (λn → Xreturn n)
build (suc n) = X

build n >>= λf → X

return (λn → f (suc n))

The function build n, when forced, returns a function f : N → Thunk 1 N
which adds n to its input. However, f is not a constant-time function, so
this is clearly wrong. The problem here is the lambda which we have not
paid for.

Partial applications The guarantees given by Thunk are verified by
defining a function p·q which erases all the library primitives, and then show-
ing that, for every term t whose time is n, the erased term ptq takes at most
n steps amortised time to evaluate to WHNF (see Section 9).

Now, preturn tq = ptq, so if partial applications of library functions
were allowed we would have preturnq = λx → x . However, an application
of the identity function takes one step to evaluate, whereas return has zero
overhead. Hence partial applications of library functions are not allowed. (It
may be useful to see them as annotations, as opposed to first-class entities.)

6 Some utility functions

Before moving on to some larger examples a couple of utility functions will
be introduced.

When defining functions which have several cases the types of the different
case branches have to match. For this purpose the following functions, which
increase the tick counts of their arguments, are often useful:

wait : (n : N) → Thunk m a → Thunk (1 + n + m) a
wait zero x = Xx
wait (suc n) x = Xwait n x

returnw : (n : N) → a → Thunk (1 + n) a
returnw zero x = Xreturn x
returnw (suc n) x = Xreturnw n x

Note that returnw cannot be defined in terms of wait ; the extra tick would
give rise to a different type:

returnw : (n : N) → a → Thunk (2 + n) a
returnw n x = Xwait n (return x )
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Note also that, to improve performance (as opposed to time bounds), it is a
good idea to add these functions to the trusted code base:

abstract
wait : (n : N) → Thunk m a → Thunk (1 + n + m) a
wait x = x

returnw : (n : N) → a → Thunk (1 + n) a
returnw x = x

This does not increase the complexity of the main correctness proof, since
we know that the functions could be implemented in the less efficient way
above.

The function (=<<), bind with the arguments flipped, is also included in
the trusted core:

(=<<) : (a → Thunk m b) → Thunk n a → Thunk (n + m) b
f =<< c = c >>= f

This function does not add any overhead to the correctness proof since it is
identical to bind (except for a different argument order). Furthermore it is
useful; it is used several times in the next section.

The following thunkified variant of if-then-else will also be used:

if then else : Bool → a → a → Thunk 1 a
if true then x else y = Xreturn x
if false then x else y = Xreturn y

7 Non-strict data types

Data types defined in an ordinary way are treated as strict. In order to
get non-strict behaviour Thunk has to be used in the definition of the data
type. To illustrate this a linear-time function which calculates the minimum
element in a non-empty list will be defined by using insertion sort.

First lazy sequences are defined:

data SeqL (a : ?) (c : N) : N → ? where
nilL : SeqL a c 0
(::L) : a → Thunk c (SeqL a c n) → SeqL a c (1 + n)

SeqL a c n stands for a lazy sequence of length n, containing elements of
type a, where every tail takes c steps to force; note the use of Thunk in the
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definition of (::L). A variant where different tails take different numbers of
steps to force is also possible (see Section 11), but not needed here.

The function insert inserts an element into a lazy sequence in such a
way that if the input is sorted the output will also be sorted. To compare
elements insert uses the function (≤) :a → a → Thunk 1 Bool ; for simplicity
it is assumed that comparisons take exactly one step.2

insert : {c : N} → a → SeqL a c n
→ Thunk 4 (SeqL a (4 + c) (1 + n))

insert {c} x nilL = Xreturnw 2 (x ::L returnw (3 + c) nilL)
insert {c} x (y ::L ys) = X

x ≤ y >>= λb → X

if b then x ::L wait (2 + c) (waitL 2 (y ::L ys))
else y ::L (insert x =<< ys)

When x ≤ y the function waitL is used to ensure that the resulting sequence
has the right type:

waitL : (c : N) → SeqL a c′ n → Thunk 1 (SeqL a (2 + c + c ′) n)
waitL c nilL = Xreturn nilL
waitL c (x ::L xs) = Xreturn (x ::L wait c (waitL c =<< xs))

By using waitL all elements in the tail get assigned higher tick counts than
necessary. It would be possible to give insert a more precise type which did
not overestimate any tick counts, but this type would be rather complicated.
The type used here is a compromise which is simple to use and still precise
enough.

Note that the library does not give any help with solving recurrence equa-
tions; it just checks the solution encoded by the user through type signatures
and library primitives. (The arguments to functions like wait can often be
inferred automatically in Agda, obviating the need for the user to write them.
For clarity they are included here, though.)

Insertion sort, which takes an ordinary sequence as input but gives a lazy
sequence as output, can now be defined as follows:

sort : Seq a n → Thunk (1 + 5 ∗ n) (SeqL a (4 ∗ n) n)
sort nil = Xreturn nilL
sort (x :: xs) = Xinsert x =<< sort xs

Note that the time needed to access the first element of the result is linear in
the length of the input, whereas the time needed to force the entire result is

2Agda has parameterised modules, so (≤) does not need to be an explicit argument
to insert .
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quadratic. Using sort and head the minimum function can easily be defined
for non-empty sequences:

head : SeqL a c (1 + n) → Thunk 1 a
head (x ::L xs) = Xreturn x

minimum : Seq a (1 + n) → Thunk (8 + 5 ∗ n) a
minimum xs = Xhead =<< sort xs

As a comparison it can be instructive to see that implementing maximum
using insertion sort and last can lead to quadratic behaviour:

last : SeqL a c (1 + n) → Thunk (1 + (1 + n) ∗ (1 + c)) a
last (x ::L xs) = Xlast ′ x =<< xs

where
last ′ : a → SeqL a c n → Thunk (1 + n ∗ (1 + c)) a
last ′ x nilL = Xreturn x
last ′ x (y ::L ys) = Xlast ′ y =<< ys

maximum : Seq a (1 + n) → Thunk (13 + 14 ∗ n + 4 ∗ nˆ2) a
maximum xs = Xlast =<< sort xs

Fortunately there are better ways to implement this function.

8 Essential laziness

The time bound of the minimum function only requires non-strictness, not
memoisation. To make use of laziness to obtain better time bounds pay can
be used:

abstract
pay : (m : N) → Thunk n a → Thunk m (Thunk (n −m) a)
pay x = x

(Here n −m = 0 whenever n < m.)
The correctness of pay is obvious, since

time (Thunk n a) ≤ time (Thunk m (Thunk (n −m) a)).

However, more intuition may be provided by the following interpretations of
pay :

1. When pay m t is executed (as part of a sequence of binds) the thunk t
is executed for m steps and then suspended again.
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2. When pay m t is executed the thunk t is returned immediately, but
with a new type. If t is never forced, then we have paid m steps too
much. If t is forced exactly once, then we have paid the right amount.
And finally, if t is forced several times, then it is memoised the first
time and later the memoised value is used, so the amount paid is still
a correct upper bound.

The first way of thinking about pay may be more intuitive. Furthermore, if
it could be implemented, it would lead to worst-case, instead of amortised,
time bounds (assuming a suitably strict semantics). However, the extra
bookkeeping needed by the first approach seems to make it hard to implement
without non-constant overheads; consider nested occurrences of pay .

8.1 Implicit queues

The interpretations above do not explain why pay is useful. To do this I will
implement implicit queues (Okasaki 1998), FIFO queues with constant-time
head, snoc and tail.3 In this example using pay corresponds to paying off
so-called debits in Okasaki’s banker’s method (1998), hence the name.

When using the Thunk library debits are represented explicitly using
thunked arguments in data type definitions. Implicit queues are represented
by the following nested data type:

data Queue (a : ?) : ? where
empty : Queue a
single : a → Queue a
twoZero : a → a → Thunk 5 (Queue (a × a)) → Queue a
twoOne : a → a → Thunk 3 (Queue (a × a)) → a → Queue a
oneZero : a → Thunk 2 (Queue (a × a)) → Queue a
oneOne : a → Queue (a × a) → a → Queue a

The recursive constructors take queues of pairs of elements, placed after the
first one or two elements, and before the last zero or one elements. Okasaki’s
analysis puts a certain number of debits on the various subqueues. These
invariants are reflected in the thunks above (modulo some details in the
analysis).

The snoc function adds one element to the end of a queue. Okasaki’s anal-
ysis tells us that this function performs O(1) unshared work and discharges
a certain number of debits. We do not need to keep these two concepts
separate (even though we could), hence the following type for snoc:

3The presentation used here is due to Ross Paterson (personal communication), with
minor changes.
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snoc : Queue a → a → Thunk 5 (Queue a)
snoc empty x1 = Xreturnw 3 (single x1)
snoc (single x1) x2 = X

returnw 3 (twoZero x1 x2 (returnw 4 empty))
snoc (twoZero x1 x2 xs3) x4 = X

pay 2 xs3 >>= λxs ′3 → X

returnw 0 (twoOne x1 x2 xs ′3 x4)
snoc (twoOne x1 x2 xs3 x4) x5 = X

xs3 >>= λxs ′3 → X

return (twoZero x1 x2 (snoc xs ′3 (x4, x5)))
snoc (oneZero x1 xs2) x3 = X

xs2 >>= λxs ′2 → X

returnw 0 (oneOne x1 xs ′2 x3)
snoc (oneOne x1 xs2 x3) x4 = X

pay 3 (snoc xs2 (x3, x4)) >>= λxs234 → X

return (oneZero x1 xs234)

Note how the invariants encoded in the data structure, together with the use
of pay , ensure that we can show that the function takes constant amortised
time even though it is recursive.

Note also that using call-by-value or call-by-name to evaluate snoc leads
to worse time bounds. Consider a “saturated” queue q , built up by repeated
application of snoc to empty:

q = twoOne x x (twoOne (x , x ) (x , x ) (. . . empty . . .) (x , x )) x

In a strict setting it takes O(d) steps to evaluate snoc q x , where d is the
depth of the queue. If snoc q x is evaluated k times, this will take O(kd)
steps, and by choosing k high enough it can be ensured that the average num-
ber of steps needed by snoc is not constant. If call-by-name is used instead,
then the lack of memoisation means that q = snoc (snoc (. . . empty . . .) x ) x
will be evaluated to WHNF each time snoc q x is forced, leading to a similar
situation.

It remains to define the view� function (view left), which gives the first
element and the rest of the queue. Forcing the tail takes longer than just
viewing the head, so the following data type is defined to wrap up the result
of view�:

data View� (a : ?) : ? where
nil� : View� a
cons� : a → Thunk 4 (Queue a) → View� a

The function itself is defined as follows:
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view� : {a : ?} → Queue a → Thunk 1 (View� a)
view� empty = Xreturn nil�
view� (single x1) = Xreturn (cons� x1 (returnw 3 empty))
view� (twoZero x1 x2 xs3) = Xreturn (cons� x1

(pay 3 xs3 >>= λxs ′3 → X

return (oneZero x2 xs ′3)))
view� (twoOne x1 x2 xs3 x4) = Xreturn (cons� x1

(xs3 >>= λxs ′3 → X

return (oneOne x2 xs ′3 x4)))
view� {a } (oneZero x1 xs2) = X

return (cons� x1 (expand =<< view� =<< xs2))
where
expand : View� (a × a) → Thunk 1 (Queue a)
expand nil� = Xreturn empty
expand (cons� (y1, y2) ys3) = X

return (twoZero y1 y2 (wait 0 ys3))
view� {a } (oneOne x1 xs2 x3) = X

return (cons� x1 (expand =<< view� xs2))
where
expand : View� (a × a) → Thunk 3 (Queue a)
expand nil� = Xreturnw 1 (single x3)
expand (cons� (y1, y2) ys3) = X

pay 1 ys3 >>= λys ′3 → X

return (twoOne y1 y2 ys ′3 x3)

8.2 Calculating invariants

It should be noted that the library does not help much with the design of
efficient data structures, except perhaps by providing a clear model of certain
aspects of lazy evaluation. It may still be instructive to see how the invariants
used above can be obtained. Assuming that the general structure of the code
has been decided, that the code is expected to be constant-time, and that
the number of debits on all the subqueues is also expected to be constant,
this is how it can be done:

1. Make all the subqueues thunked, also the one in the oneOne construc-
tor.

2. Denote the time bounds and the number of debits on the various sub-
queues by variables. For instance:
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oneZero : a → Thunk d10 (Queue (a × a)) → Queue a
oneOne : a → Thunk d11 (Queue (a × a)) → a → Queue a

3. Assume a worst case scenario for how many pay annotations etc. are
necessary. Calculate the amounts to pay using the variables introduced
in the previous step. For instance, the oneOne case of snoc takes the
following form, if s is the time bound for snoc:

snoc (oneOne x1 xs2 x3) x4 = X

xs2 >>= λxs ′2 → X

pay (s − d10) (snoc xs ′2 (x3, x4)) >>= λxs234 → X

return? (oneZero x1 xs234)

(The function return? could be either return or returnw n, for some n,
depending on the outcome of the analysis.)

4. The basic structure of the code now gives rise to a number of in-
equalities which have to be satisfied in order for the code to be well-
typed. For instance, the oneOne case of snoc gives rise to the inequality
3 + d11 + (s − d10) ≤ s . Solve these inequalities. If no solution can be
found, then one of the assumptions above was incorrect.

5. Optionally: If, for instance, a pay annotation was unnecessary, then it
may be possible to tighten the time bounds a little, since a tick can be
removed.

9 Correctness

The correctness of the library is established as follows:

1. Two small languages are defined: the simple one without the Thunk
type, and the thunked one with the library functions as primitives. An
erasure function p·q converts thunked terms to simple ones.

2. A lazy operational semantics is defined for the simple language, and
another operational semantics is defined for the thunked language. It
is shown that, under erasure, the thunked semantics is equivalent to
the simple one.

3. The Thunk library guarantees (see Section 3) are established for the
thunked semantics. Since the two semantics are equivalent this implies
that the guarantees hold for erased terms evaluated using the simple
semantics.
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As shown in Section 4 the library is implemented by ignoring all annota-
tions. Hence what is actually run corresponds directly to the erased terms
mentioned above, so the correctness guarantees extend also to the actual li-
brary (assuming that Agda has an operational semantics corresponding to
the one defined for the simple language; currently Agda does not have an
operational semantics). There are two caveats to this statement. One is the
time needed to evaluate the library functions. However, they all evaluate in
constant time, and I find it reasonable to ignore these times. The other is the
difference between the small languages defined here and a full-scale language
like Agda. These differences are discussed further in Section 10.

All nontrivial results discussed in this section have been proved formally
using Agda.4 There are some differences between the formalisation presented
here and the mechanised one, most notably that de Bruijn indices are used
to represent variables in the mechanisation. The verification of some of the
extensions discussed in Sections 10–11 have also been mechanised. For more
details, see Danielsson (2007).

9.1 Languages

Both of the two small languages are simply typed lambda calculi with natural
numbers and products. Using dependently typed languages for the correct-
ness proof would be possible, but this aspect of the type systems appears to
be largely orthogonal to the correctness result. Furthermore it would have
been considerably harder to mechanise the proofs. Hence I chose to use
simply typed languages.

The syntax of contexts, types and terms for the simple language is defined
as follows (with x , y variables):

Γ ::= ε | Γ, x : τ
τ ::= Nat | τ1 × τ2 | τ1 → τ2

t ::= x | λx .t | t1 · t2
| (t1, t2) | uncurry (λxy .t)
| z | s t | natrec t1 (λxy .t2)

Here natrec is the primitive recursion combinator for natural numbers, and
uncurry is the corresponding combinator for products.

The thunked language extends the syntax with the library primitives as
follows:

4Agda currently does not check that all definitions by pattern matching are exhaustive.
Hence care has been taken to check this manually.
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Common typing rules

Γ(x ) = τ

Γ ` x : τ

Γ, x : τ1 ` t : τ2

Γ ` λx .t : τ1 → τ2

Γ ` t1 : τ1 → τ2 Γ ` t2 : τ1

Γ ` t1 · t2 : τ2

Γ ` t1 : τ1 Γ ` t2 : τ2

Γ ` (t1, t2) : τ1 × τ2

Γ, x : τ1, y : τ2 ` t : τ

Γ ` uncurry (λxy .t) : τ1 × τ2 → τ

Γ ` z : Nat

Γ ` t : Nat

Γ ` s t : Nat

Γ ` t1 : τ Γ, x : Nat, y : τ ` t2 : τ

Γ ` natrec t1 (λxy .t2) : Nat → τ

Extra typing rules for the thunked language

Γ ` t : Thunk n τ

Γ ` Xt : Thunk (1 + n) τ

Γ ` t : τ

Γ ` return t : Thunk 0 τ

Γ ` t1 : Thunk n1 τ1 Γ ` t2 : τ1 → Thunk n2 τ2

Γ ` t1 >>= t2 : Thunk (n1 + n2) τ2

Γ ` t : Thunk n τ

Γ ` force t : τ

Γ ` t : Thunk n τ

Γ ` pay m t : Thunk m (Thunk (n −m) τ)

Figure 1: The type systems. All freshness side conditions have been omit-
ted.

τ ::= . . . | Thunk n τ
t ::= . . . | Xt | return t | t1 >>= t2 | force t | pay n t

Here n stands for a natural number, not a term of type Nat.
The type systems for the two languages are given in Figure 1. In the

remaining text only well-typed terms are considered. No type annotations
are present in the syntax above, but this is just to simplify the presentation.
The mechanised versions of the languages are fully annotated.

As noted above an erasure operation taking types and terms from the
thunked language to the simple one is defined:

pNatq = Nat
pτ1 × τ2q = pτ1q× pτ2q
pτ1 → τ2q = pτ1q → pτ2q
pThunk n τq = pτq
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pxq = x
pλx .tq = λx .ptq
pt1 · t2q = pt1q · pt2q
p(t1, t2)q = (pt1q, pt2q)
puncurry (λxy .t)q = uncurry (λxy .ptq)
pzq = z
ps tq = s ptq
pnatrec t1 (λxy .t2)q = natrec pt1q (λxy .pt2q)
pXtq = ptq
preturn tq = ptq
pt1 >>= t2q = pt2q · pt1q
pforce tq = ptq
ppay n tq = ptq

Erasure extends in a natural way to contexts, and term erasure can easily be
verified to preserve types,

Γ ` t : τ ⇒ pΓq ` ptq : pτq.

Free use of force or failure to insert ticks would invalidate all time complex-
ity guarantees, so a subset of the thunked language is defined, the run-time
terms :

e ::= x | λx .Xe | e1 · e2

| (e1, e2) | uncurry (λxy .Xe)
| z | s e | natrec (Xe1) (λxy .Xe2)
| Xe | return e | e1 >>= e2 | pay n e

Note that all the conventions set up in Section 5 are satisfied by the run-
time terms: every “right-hand side” starts with a tick, force is not used, and
library functions cannot be used partially applied.

9.2 Operational semantics

Let us now define the operational semantics for the two languages. The
semantics, which are inspired by Launchbury’s semantics for lazy evaluation
(1993), define how to evaluate a term to WHNF.

Simple semantics We begin with the semantics for the simple language.
Terms are evaluated in heaps (or environments); lists of bindings of variables
to terms:

Σ ::= ∅ | Σ, x 7→ t
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Heaps have to be well-typed with respect to a context:

ε ` ∅
Γ ` Σ Γ ` t : τ

Γ, x : τ ` Σ, x 7→ t
(x fresh)

Note that these rules ensure that there are no cycles in the heap. This is
OK since there is no recursive let allowing the definition of cyclic structures,
and even if there were a recursive let the Thunk library would not be able
to make use of the extra sharing anyway.

A subset of the terms are identified as being values:

v ::= λx .t
| (x1, x2) | uncurry (λxy .t)
| z | s x | natrec x1 (λxy .t2)

Note that these values are all in WHNF. Several of the constructors take vari-
ables as arguments; this is to increase sharing. Once again, Thunk cannot
take advantage of this sharing, but I have tried to keep the semantics close
to what a real-world lazy language would use. (Furthermore the generalised
version of the library, described in Section 11, can take advantage of some of
this sharing.)

The big-step operational semantics for the simple language is inductively
defined in Figure 2. The notation Σ1 | t ⇓n Σ2 | v means that t , when
evaluated in the heap Σ1, reaches the WHNF v in n steps; the resulting heap
is Σ2. (Here it is assumed that Σ1 and t are well-typed with respect to the
same context.) In order to reduce duplication of antecedents an auxiliary
relation is used to handle application: Σ1 | v1 • x2 ⇓n Σ2 | v means that the
application of the value v1 to the variable x2 evaluates to v in n steps, with
initial heap Σ1 and final heap Σ2.

In the description of the semantics all variables are assumed to be globally
unique (by renaming, if necessary). The mechanised version of the semantics
uses de Bruijn indices, so name clashes are not an issue there.

The semantics is syntax-directed, and hence deterministic. Furthermore
types are preserved,

Γ1 ` Σ1 ∧ Γ1 ` t : τ ∧ Σ1 | t ⇓n Σ2 | v ⇒
∃ Γ2. Γ2 ` Σ2 ∧ Γ2 ` v : τ.

In the mechanisation this is true by construction. It is easy to make small
mistakes when formalising languages, and working with well-typed syntax is
nice since many mistakes are caught early.

The cost model used by the semantics is that of the Thunk library: only
reductions cost something. Nothing is charged for looking up variables (i.e.
following pointers into the heap), for instance.
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Values

Σ | λx .t ⇓0 Σ | λx .t Σ | (t1, t2) ⇓0 Σ, x1 7→ t1, x2 7→ t2 | (x1, x2)

Σ | uncurry (λxy .t) ⇓0 Σ | uncurry (λxy .t) Σ | z ⇓0 Σ | z

Σ | s t ⇓0 Σ, x 7→ t | s x

Σ | natrec t1 (λxy .t2) ⇓0 Σ, x1 7→ t1 | natrec x1 (λxy .t2)

Variables

Σ1 | t ⇓n Σ2 | v
Σ1, x 7→ t , Σ′ | x ⇓n Σ2, x 7→ v , Σ′ | v

Application

Σ1 | t1 ⇓n1 Σ2 | v1 Σ2, x2 7→ t2 | v1 • x2 ⇓n2 Σ3 | v
Σ1 | t1 · t2 ⇓n1+n2 Σ3 | v

Σ1 | t1[x := x2] ⇓n Σ2 | v
Σ1 | (λx .t1) • x2 ⇓1+n Σ2 | v

Σ1 | x2 ⇓n1 Σ2 | (x3, y3) Σ2 | t1[x := x3, y := y3] ⇓n2 Σ3 | v
Σ1 | uncurry (λxy .t1) • x2 ⇓1+n1+n2 Σ3 | v

Σ1 | x3 ⇓n1 Σ2 | z Σ2 | x1 ⇓n2 Σ3 | v
Σ1 | natrec x1 (λxy .t2) • x3 ⇓1+n1+n2 Σ3 | v

Σ1 | x3 ⇓n1 Σ2 | s x ′

Σ2, y 7→ natrec x1 (λxy .t2) · x ′ | t2[x := x ′] ⇓n2 Σ3 | v
Σ1 | natrec x1 (λxy .t2) • x3 ⇓1+n1+n2 Σ3 | v

Figure 2: Operational semantics for the simple language. Note that only
reductions (rules with • in the left-hand side) contribute to the
cost of a computation.
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Thunked semantics Now on to the thunked semantics, which only applies
to run-time terms. In order to be able to prove correctness the thunked
semantics has more structure in the heap:

Σ ::= ∅ | Σ, x 7→ e | Σ, x 7→n e

As before, only well-typed heaps are considered:

ε ` ∅
Γ ` Σ Γ ` e : τ

Γ, x : τ ` Σ, x 7→ e
(x fresh)

Γ ` Σ Γ ` e : Thunk n τ

Γ, x : τ ` Σ, x 7→n e
(x fresh)

The x 7→n e bindings are used to keep track of terms which have already
been paid off, but not yet evaluated. The credit associated with a heap is
the total tick count of such bindings:

credit ∅ = 0
credit (Σ, x 7→ e) = credit Σ
credit (Σ, x 7→n e) = credit Σ + n

The credit will be used to state the correctness result later.
The thunked semantics uses the following values, which are all run-time:

v ::= λx .Xe
| (x1, x2) | uncurry (λxy .Xe)
| z | s x | natrec (Xx1) (λxy .Xe2)
| returnn v

Here returnn v stands for n applications of X to return v .
The thunked semantics, denoted by Σ1 | e �n Σ2 | v , is given in Fig-

ures 3–4 (and presented with the same assumptions as the previous one).
The thunked semantics preserves types, analogously to the simple one. Note
that only binds (>>=) introduce bindings of the form x 7→n e, and that when
a variable x bound like this is evaluated, it is updated with an unannotated
binding; this memoisation is the one tracked by the library.

The following small example illustrates what can be derived using the
thunked semantics:

∅, x 7→1 (λy .Xreturn y) · z | x �1 ∅, y 7→ z, x 7→ z | z.

Note that x : Nat and time Nat = 0, but the evaluation takes one step; the
change in heap credit “pays” for this step (compare with the invariant in
Section 9.3).
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Values

Σ | λx .Xe �0 Σ | λx .Xe Σ | (e1, e2) �0 Σ, x1 7→ e1, x2 7→ e2 | (x1, x2)

Σ | uncurry (λxy .Xe) �0 Σ | uncurry (λxy .Xe) Σ | z �0 Σ | z

Σ | s e �0 Σ, x 7→ e | s x

Σ | natrec (Xe1) (λxy .Xe2) �0 Σ, x1 7→ e1 | natrec (Xx1) (λxy .Xe2)

Variables

Σ1 | e �n Σ2 | v
Σ1, x 7→ e, Σ′ | x �n Σ2, x 7→ v , Σ′ | v

Σ1 | e �n Σ2 | returnm v

Σ1, x 7→m e, Σ′ | x �n Σ2, x 7→ v , Σ′ | v

Library primitives

Σ1 | e �n Σ2 | returnm v

Σ1 | Xe �n Σ2 | return1+m v

Σ1 | e �n Σ2 | v
Σ1 | return e �n Σ2 | return0 v

Σ1 | e2 �n1 Σ2 | v2 Σ2, x1 7→m1 e1 | v2 • x1 �n2 Σ3 | returnm2 v

Σ1 | e1 >>= e2 �n1+n2 Σ3 | returnm1+m2 v

Σ1 | e �n Σ2 | returnm1 v

Σ1 | pay m2 e �n Σ2 | returnm2 (returnm1−m2 v)

Figure 3: Operational semantics for the thunked language. In the rule for
bind (>>=) it is assumed that Γ1 ` e1 : Thunk m1 τ1 for some Γ1

and τ1. Furthermore, if the right-hand side of an antecedent is
returnm v , then the only possible type-correct values are returnm v
(for suitable m and v); this can be seen as a form of pattern
matching.
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Application

Σ1 | e1 �n1 Σ2 | v1 Σ2, x2 7→ e2 | v1 • x2 �n2 Σ3 | v
Σ1 | e1 · e2 �n1+n2 Σ3 | v

Σ1 | e1[x := x2] �n Σ2 | returnm v

Σ1 | (λx .Xe1) • x2 �1+n Σ2 | return1+m v

Σ1 | x2 �n1 Σ2 | (x3, y3)
Σ2 | e1[x := x3, y := y3] �n2 Σ3 | returnm v

Σ1 | uncurry (λxy .Xe1) • x2 �1+n1+n2 Σ3 | return1+m v

Σ1 | x3 �n1 Σ2 | z Σ2 | x1 �n2 Σ3 | returnm v

Σ1 | natrec (Xx1) (λxy .Xe2) • x3 �1+n1+n2 Σ3 | return1+m v

Σ1 | x3 �n1 Σ2 | s x ′

Σ2, y 7→ natrec (Xx1) (λxy .Xe2) · x ′ | e2[x := x ′] �n2 Σ3 | returnm v

Σ1 | natrec (Xx1) (λxy .Xe2) • x3 �1+n1+n2 Σ3 | return1+m v

Figure 4: Operational semantics for the thunked language (continued).
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Equivalence The thunked semantics is both sound,

Σ1 | e �n Σ2 | v ⇒ pΣ1q | peq ⇓n pΣ2q | pvq,

and complete,

pΣ1q | peq ⇓n Σ2 | v ⇒
∃ Σ′

2, v
′. pΣ′

2q = Σ2 ∧ pv ′q = v ∧ Σ1 | e �n Σ′
2 | v ′,

with respect to the simple one. (Here erasure has been extended in the
obvious way to heaps.) These properties are almost trivial, since the rules
for the two semantics are identical up to erasure, and can be proved by
induction over the structure of derivations. Some auxiliary lemmas, such as
pe[x := y ]q = peq[x := y ], need to be proved as well.

9.3 Time complexity guarantees

Now that we know that the two semantics are equivalent the only thing
remaining is to verify the time complexity guarantees for the thunked se-
mantics. It is straightforward to prove by induction over the structure of
derivations that the following invariant holds:

Γ ` e : τ Σ1 | e �n Σ2 | v
credit Σ2 + n ≤ credit Σ1 + time τ

(The time function was introduced in Section 3.) Note that when a compu-
tation is started in an empty heap this invariant implies that n ≤ time τ , i.e.
the time bound given by the type is an upper bound on the actual number of
computation steps. In the general case the inequality says that time τ is an
upper bound on the actual number of steps plus the increase in heap credit
(which may sometimes be negative), i.e. time τ is an upper bound on the
amortised time complexity with respect to the heap credit.

By using completeness the invariant above can be simplified:

Γ ` e : τ pΣ1q | peq ⇓n Σ2 | v
n ≤ credit Σ1 + time τ

This statement does not refer to the thunked semantics, but is not composi-
tional, since Σ2 does not carry any credit.

10 Extensions

This section discusses some possible extensions of the simple languages used
to prove the library correct. These extensions are meant to indicate that the
correctness proof also applies to a full-scale language such as Agda.

94



Partial applications Partial applications of library primitives were disal-
lowed in Section 5. Other partial applications are allowed, though. As an
example, two-argument lambdas can be introduced (with the obvious typing
rules):

t ::= . . . | λxy .t v ::= . . . | λxy .t

e ::= . . . | λxy .Xe v ::= . . . | λxy .Xe

The operational semantics are extended as follows:

Σ | λxy .t ⇓0 Σ | λxy .t Σ | (λxy .t1) • x2 ⇓0 Σ | λy .t1[x := x2]

Σ | λxy .Xe �0 Σ | λxy .Xe Σ | (λxy .Xe1) • x2 �0 Σ | λy .Xe1[x := x2]

The proofs of equivalence and correctness go through easily with these rules.
Note that nothing is charged for the applications above; only when all

arguments have been supplied (and hence evaluation of the right-hand side
can commence) is something charged. If this cost measure is too coarse for a
certain application, then two-argument lambdas should not be used. (Note
that λx .Xλy .Xe still works.)

Partial applications of constructors can be treated similarly; in the mech-
anised correctness proof the successor constructor s is a function of type
Nat → Nat.

Inductive types The examples describing the use of Thunk made use of
various data types. Extending the languages with strictly positive inductive
data types or families (Dybjer 1994) should be straightforward, following the
examples of natural numbers and products.

Equality When Thunk is implemented using a dependently typed lan-
guage such as Agda, one inductive family deserves further scrutiny: the equal-
ity (or identity) type. In practice it is likely that users of the Thunk library
need to prove that various equalities hold. As an example, in the append ex-
ample given in Section 3 the equality 1+((1+2∗m)+(1+0)) = 1+2∗(1+m)
must be established in order for the program to type check. If the host
language type checker is smart enough certain such equalities may well be
handled automatically using various decision procedures, but in the general
case the user cannot expect all equalities to be solved automatically.

One way to supply equality proofs to the type checker is to use the equality
type (≡) together with the subst function, which expresses substitutivity of
(≡):
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data (≡) (x : a) : a → ? where
refl : x ≡ x

subst : (P : a → ?) → x ≡ y → P x → P y
subst P refl p = p

Assuming a proof

lemma : (m : N) → 1 + ((1 + 2 ∗m) + (1 + 0)) ≡ 1 + 2 ∗ (1 + m)

the definition of (++) can be corrected:

(++) : {a : ?} → {m, n : N}
→ Seq a m → Seq a n → Thunk (1 + 2 ∗m) (Seq a (m + n))

(++) nil ys = Xreturn ys
(++) {a } {suc m } {n } (x :: xs) ys =

subst (λx → Thunk x (Seq a (suc m + n))) (lemma m)
(Xxs ++ ys >>= λxsys → X

return (x :: xsys))

However, now subst and lemma interfere with the evaluation of (++), so the
stated time complexity is no longer correct.

One way to address this problem would be to let subst cost one tick, and
also pay for the equality proofs, just as if (≡) was any other inductive family.
However, this is not what we want to do. We just want to use the proofs to
show that the program is type correct, we do not want to evaluate them.

A better solution is to erase all equality proofs and inline the identity
function resulting from subst (and do the same for similar functions derived
from the eliminator of (≡)). This is type safe as long as the underlying logical
theory is consistent and only closed terms are evaluated, since then the only
term of type x ≡ y is refl (and only if x = y). Then subst (fully applied)
can be used freely by the user of the library, without having to worry about
overheads not tracked by the thunk monad.

Implementing proof erasure just for this library goes against the spirit
of the project, though, since modifying a compiler is not lightweight. For-
tunately proof erasure is an important, general problem in the compilation
of dependently typed languages (see for instance Brady et al. 2004; Paulin-
Mohring 1989), so it is not unreasonable to expect a good compiler to guar-
antee that the erasure outlined above will always take place.

Functions like subst have been used in the case studies accompanying this
paper.
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Fixpoints The simple languages introduced above are most likely termi-
nating, since they are very similar to Gödel’s System T. However, nothing
stops us from adding a fixpoint combinator:

t ::= . . . | fix (λx .t) e ::= . . . | fix (λx .Xe)

Γ, x : τ ` t : τ

Γ ` fix t : τ → τ

Σ1, x 7→ fix (λx .t) | t ⇓n Σ2 | v
Σ1 | fix (λx .t) ⇓1+n Σ2 | v

Σ1, x 7→ fix (λx .Xe) | e �n Σ2 | v
Σ1 | fix (λx .Xe) �1+n Σ2 | v

The mechanised correctness proof also includes fixpoint operators, and they
do not complicate the development at all.

There is one problem with unrestricted fixpoint operators, though: they
make logical systems inconsistent. This invalidates the equality proof erasure
optimisation discussed above, and hence including an unrestricted fix may not
be a good idea, at least not in the context of Agda.

11 Paying for deeply embedded thunks

Thunk, as described above, has an important limitation: it is impossible to
pay for thunks embedded deep in a data structure, without a large overhead.
This section describes the problem and outlines a solution.

The problem Let us generalise the lazy sequences from Section 7 by letting
the cost needed to force tails vary throughout the sequence:

CostSeq : N → ?
CostSeq n = Seq N n

data SeqL (a : ?) : (n : N) → CostSeq n → ? where
nilL : SeqL a 0 nil
(::L) : a → Thunk c (SeqL a n cs) → SeqL a (1 + n) (c :: cs)

Here SeqL a n cs stands for a lazy sequence of length n, containing elements
of type a, where the costs needed to force the tails of the sequence is given
by the elements of cs .

Now, assume that xs : SeqL a n cs , where

cs = 0 :: 0 :: . . . :: 0 :: 2 :: 4 :: . . . :: nil.
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Assume further that the analysis of an algorithm requires that the first debit
in xs is paid off, resulting in xs ′ : SeqL a n cs ′ where

cs ′ = 0 :: 0 :: . . . :: 0 :: 1 :: 4 :: . . . :: nil.

In order to accomplish this the type of a tail embedded deep down in xs
needs to be changed. This requires a recursive function, which does not
take constant time to execute, and this is likely to ruin the analysis of the
algorithm.

The solution A way around this problem is to generalise the type of pay :

payg : (C : Ctxt) → (m : N)

→ C [Thunk n a ] → Thunk m (C [Thunk (n −m) a ])

Here C is a context enabling payments deep down in the data structure.
These contexts have to be quite restrictive, to ensure correctness of the anal-
ysis. For instance, they should have at most one hole, to ensure that only
one thunk is paid off. Similarly one should not be allowed to pay off the
codomain of a function, or the element type of a list; the following types are
clearly erroneous:

payFun : (m : N) → (a → Thunk n b)
→ Thunk m (a → Thunk (n −m) b)

payList : (m : N) → List (Thunk n a)
→ Thunk m (List (Thunk (n −m) a))

For instance, if payList were allowed one could take a list with n elements,
all of type Thunk 1 N, and obtain a List (Thunk 0 N) by just paying for one
computation step, instead of n.

To avoid such problems the following type of contexts is defined:

data Ctxt : ?1 where
• : Ctxt
const• : ? → Ctxt
Thunk• : N → Ctxt → Ctxt
(•×) : Ctxt → ? → Ctxt
(×•) : ? → Ctxt → Ctxt

(The type ?1 is a type of large types.) These contexts can be turned into
types by instantiating the holes:
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· [ · ] : Ctxt → ? → ?
• [ b ] = b
(const• a) [ b ] = a
(Thunk• n C ) [ b ] = Thunk n (C [ b ])
(C •× a) [ b ] = C [ b ]× a
(a ×• C ) [ b ] = a × C [ b ]

This definition of contexts may at first seem rather restrictive, since no
recursive type constructors are included. However, when using dependent
types one can define new types by explicit recursion. A variant of SeqL can
for instance be defined as follows:

SeqL : ? → CostSeq n → ?
SeqL a nil = Unit
SeqL a (c :: cs) = a × Thunk c (SeqL a cs)

(Here Unit is the unit type.) By using this type and payg it is now possible
to pay off any of the tails in the sequence with only constant overhead:

payL : {a : ?} → (cs1 : CostSeq n1) → (c ′ : N)
→ SeqL a (cs1 ++ c :: cs2)
→ Thunk (1 + c ′) (SeqL a (cs1 ++ (c − c ′) :: cs2))

payL {a } cs1 c ′ xs = X

cast lemma2 (payg (C a cs1) c ′ (cast lemma1 xs))

where
C : ? → CostSeq n → Ctxt
C a nil = a ×• •
C a (c :: cs) = a ×• Thunk• c (C a cs)

lemma1 : SeqL a (cs1 ++ c :: cs2)
?≡

(C a cs1) [Thunk c (SeqL a cs2) ]

lemma2 : Thunk c ′ ((C a cs1) [Thunk (c − c ′) (SeqL a cs2) ])
?≡

Thunk c ′ (SeqL a (cs1 ++ (c − c ′) :: cs2))

The equality (
?≡) used above is a variant of the one introduced in Section 10,

but this one relates types:

(
?≡) : ? → ? → ? cast : a

?≡ b → a → b

The generalised pay can be used to analyse banker’s queues (Okasaki
1998), which exhibit the problem with deep payments mentioned above. In-
terested readers are referred to the source code of the analysis for details.

Finally note that payg has been proved correct, using the same (mecha-
nised) approach as above; for details see Danielsson (2007).
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12 Limitations

This section discusses some limitations of Thunk.

Dependent bind One thing which may have bothered users familiar with
dependently typed languages is that the second (function) argument to bind
is non-dependent. This could be fixed by replacing (>>=) with a more general
function:

bind : (f : a → N) → (b : a → ?)
→ (x : Thunk m a) → ((y : a) → Thunk (f y) (b y))
→ Thunk (m + f (force x )) (b (force x ))

However, this would not in itself be very useful: force is abstract (see Sec-
tion 4), so force x would not evaluate in the type of bind . One way to work
around this is by providing the library user with a number of axioms specify-
ing how the library primitives evaluate. This can be useful anyway, since it
makes it possible to prove ordinary functional properties of annotated code
inside Agda. This solution is rather complicated, though.

A better approach is perhaps to avoid the dependently typed bind, and
this can often be achieved by using indexed types. Consider the following
two variants of the append function:

(++) : (xs : List a) → List a → Thunk (1 + 2 ∗ length xs) (List a)
(++) : Seq a m → Seq a n → Thunk (1 + 2 ∗m) (Seq a (m + n))

The result type of the first function depends on the value of the first list.
This is not the case for the second function, where the result type instead
depends on the index m. Putting enough information in type indices is often
a good way to avoid the need for a dependent bind.

Aliasing Another limitation is that the library cannot track thunk aliases,
except in the limited way captured by pay and the 7→n bindings of the thun-
ked operational semantics. If x , y : Thunk n a are aliases for each other, and
x is forced, then the library has no way of knowing that y is also forced; the
type of y does not change just because x is forced. Okasaki (1998) uses aliases
in this way to eliminate amortisation, through a technique called scheduling.

Interface stability If thunked types are exposed to external users of a
data structure library then another problem shows up: the types of func-
tions analysed using Thunk are not robust against small changes in the

100



implementation. A function such as maximum, introduced in Section 7, has
a rather precise type:

maximum : Seq a (1 + n) → Thunk (13 + 14 ∗ n + 4 ∗ nˆ2) a

A type based on big O notation would be more stable:

maximum : Seq a (1 + n) → Thunk O(nˆ2) a

However, expressing big O notation in a sound way without a dedicated type
system seems to be hard. It is probably a good idea to use force to avoid
exporting thunked types.

13 Related work

Time complexity for lazy evaluation Several approaches to analysing
lazy time complexity have been developed (Wadler 1988; Bjerner 1989; Bjer-
ner and Holmström 1989; Sands 1995; Okasaki 1998; Moran and Sands 1999).
Many of them are general, but have been described as complicated to use in
practice (Okasaki 1998).

It seems to be rather uncommon to actually use these techniques to anal-
yse non-trivial programs. The main technique in use is probably Okasaki’s
banker’s method (1998), which is mainly used for analysing purely functional
data structures, and which this work is based on. As described in Section 12
the banker’s method is more general than the one described here, but it can
also be seen as more complicated, since it distinguishes between several kinds
of cost (shared and unshared) which are collapsed in this work.

Ross Paterson (personal communication) has independently sketched an
analysis similar to the one developed here, but without dependent types or
the annotated monad.

The ticks used in this work are related to those used by Moran and Sands
(1999), but their theory does not require ticks to be inserted to ensure that
computation steps are counted; ticks are instead used to represent and prove
improvements and cost equivalences, with the help of a tick algebra.

Benzinger (2004) describes a system for automated complexity analysis
of higher-order functional programs. The system is parametrised on an an-
notated operational semantics, so it may be able to handle a call-by-need
evaluation strategy. No such experiments seem to have been performed,
though, so it is unclear how practical it would be.

Chapter 3: Lightweight Semiformal Time Complexity Analysis. . .
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Tracking resource usage using types Several frameworks for tracking
resource usage using types have been developed. Usually these frameworks do
not address lazy evaluation (for instance Crary and Weirich 2000; Constable
and Crary 2002; Rebón Portillo et al. 2003; Brady and Hammond 2006;
Hofmann and Jost 2006). There can still be similarities; for instance, the
system of Hofmann and Jost uses amortised analysis to bound heap space
usage, with potential tracked by types.

Hughes, Pareto, and Sabry (1996) have constructed a type system which
keeps track of bounds on the sizes of values in a lazy language with data and
codata. This information is used to guarantee termination or productivity
of well-typed terms; more precise time bounds are not handled.

The use of an annotated monad to combine time complexities of subex-
pressions appears to be novel. However, there is a close connection to
Capretta’s partiality monad (2005), which is a coinductive type construc-
tor ·ν defined roughly as follows:

codata ·ν (a : ?) : ? where
return : a → aν

step : aν → aν

The following definition of bind turns it into a monad:

(>>=) : aν → (a → bν) → bν

return x >>= f = f x
step x >>= f = step (x >>= f )

Compare the definitions above to the following shallow embedding of the
thunk monad:

data Thunk (a : ?) : N → ? where
return : a → Thunk a 0
X : Thunk a n → Thunk a (1 + n)

(>>=) : Thunk a m → (a → Thunk b n) → Thunk b (m + n)
return x >>= f = f x
(Xx ) >>= f = Xx >>= f

The only difference is that the thunk monad is inductive, and annotated with
the number of ticks. This indicates that it may be interesting to explore the
consequences of making the thunk monad coinductive, annotated with the
coinductive natural numbers (N extended with ω).
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14 Conclusions

A simple, lightweight library for semiformal verification of the time complex-
ity of purely functional data structures has been described. The usefulness
of the library has been demonstrated and its limitations discussed. Fur-
thermore the semantics of the library has been precisely defined, the time
complexity guarantees have been verified with respect to the semantics, and
the correctness proof has been checked using a proof assistant.
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Bror Bjerner and Sören Holmström. A compositional approach to time anal-
ysis of first order lazy functional programs. In FPCA ’89, pages 157–165,
1989.

Bror Bjerner. Time Complexity of Programs in Type Theory. PhD thesis,
Department of Computer Science, University of Göteborg, 1989.
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A Formalisation of a
Dependently Typed Language as an

Inductive-Recursive Family

Nils Anders Danielsson
Chalmers University of Technology

Abstract

It is demonstrated how a dependently typed lambda calculus (a
logical framework) can be formalised inside a language with inductive-
recursive families. The formalisation does not use raw terms; the
well-typed terms are defined directly. It is hence impossible to create
ill-typed terms.

As an example of programming with strong invariants, and to show
that the formalisation is usable, normalisation is proved. Moreover,
this proof seems to be the first formal account of normalisation by
evaluation for a dependently typed language.

1 Introduction

Programs can be verified in many different ways. One difference lies in how
invariants are handled. Consider a type checker, for instance. The typing
rules of the language being type checked are important invariants of the re-
sulting abstract syntax. In the external approach to handling invariants the
type checker works with raw terms. Only later, when verifying the soundness
of the type checker, is it necessary to verify that the resulting, supposedly
well-typed terms satisfy the invariants (typing rules). In the internal ap-
proach the typing rules are instead represented directly in the abstract syn-
tax data types, and soundness thus follows automatically from the type of
the type checking function, possibly at the cost of extra work in the imple-
mentation. For complicated invariants the internal approach requires strong
forms of data types, such as inductive families or generalised algebraic data
types.
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Various aspects of many different essentially simply typed programming
languages have been formalised using the internal approach [CD97, AR99,
Coq02, XCC03, PL04, MM04, AC06, MW06, McBb]. Little work has been
done on formalising dependently typed languages using this approach, though;
Dybjer’s work [Dyb96] on formalising so-called categories with families, which
can be seen as the basic framework of dependent types, seems to be the only
exception. The present work attempts to fill this gap.

This paper describes a formalisation of the type system, and a proof
of normalisation, for a dependently typed lambda calculus (basically the
logical framework of Martin-Löf’s monomorphic type theory [NPS90] with
explicit substitutions). Moreover, the proof of normalisation seems to be
the first formal implementation of normalisation by evaluation [ML75, BS91]
for a dependently typed language. The ultimate goal of this work is to
have a formalised implementation of the core type checker for a full-scale
implementation of type theory.

To summarise, the contributions of this work are as follows:

• A fully typed representation of a dependently typed language (Sect. 3).

• A proof of normalisation (Sect. 5). This proof seems to be the first
account of a formal implementation of normalisation by evaluation for
a dependently typed language.

• Everything is implemented and type checked in the proof checker Ag-
daLight [Nor07]. The code can be downloaded from the author’s web
page [Dan07].

2 Meta Language

Let us begin by introducing the meta language in which the formalisation has
been carried out, AgdaLight [Nor07], a prototype of a dependently typed pro-
gramming language. It is in many respects similar to Haskell, but, naturally,
deviates in some ways.

One difference is that AgdaLight lacks polymorphism, but has hidden
arguments, which in combination with dependent types compensate for this
loss. For instance, the ordinary list function map could be given the following
type signature:

map : {a, b : Set } → (a → b) → List a → List b

Here Set is the type of types from the first universe. Arguments within { . . .}
are hidden, and need not be given explicitly, if the type checker can infer
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their values from the context in some way. If the hidden arguments cannot
be inferred, then they can be given explicitly by enclosing them within { . . .}:

map {Int } {Bool } : (Int → Bool) → List Int → List Bool

AgdaLight also has inductive-recursive families [DS06], illustrated by the
following example (which is not recursive, just inductive). Data types are
introduced by listing the constructors and giving their types; natural numbers
can for instance be defined as follows:

data Nat : Set where
zero : Nat
suc : Nat → Nat

Vectors, lists of a given fixed length, may be more interesting:

data Vec (a : Set) : Nat → Set where
nil : Vec a zero
cons : {n : Nat } → a → Vec a n → Vec a (suc n)

Note how the index (the natural number introduced after the last : in the
definition of Vec) is allowed to vary between the constructors. Vec a is a
family of types, with one type for every index n.

To illustrate the kind of pattern matching AgdaLight allows for an induc-
tive family, let us define the tail function:

tail : {a : Set } → {n : Nat } → Vec a (suc n) → Vec a n
tail (cons x xs) = xs

We can and need only pattern match on cons , since the type of nil does not
match the type Vec a (suc n) given in the type signature for tail . As another
example, consider the definition of the append function:

(++) : Vec a n1 → Vec a n2 → Vec a (n1 + n2)
nil ++ ys = ys
cons x xs ++ ys = cons x (xs ++ ys)

In the nil case the variable n1 in the type signature is unified with zero,
transforming the result type into Vec a n2, allowing us to give ys as the
right-hand side. (This assumes that zero + n2 evaluates to n2.) The cons
case can be explained in a similar way.

Note that the hidden arguments of (++) were not declared in its type
signature. This is not allowed by AgdaLight, but often done in the paper
to reduce notational noise. Some other details of the formalisation are also

Chapter 4: A Formalisation of a Dependently Typed Language. . .
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ignored, to make the paper easier to follow. The actual code can be down-
loaded for inspection [Dan07].

Note also that the inductive-recursive families in this formalisation are
inductive-recursive in the sense that they consist of inductive families and
recursive functions which depend on each other. However, some of them do
not quite meet the requirements of [DS06]; see Sects. 3.2 and 5.2. Further-
more [DS06] only deals with functions defined using elimination rules. The
functions in this paper are defined using pattern matching and structural
recursion.

AgdaLight currently lacks (working) facilities for checking that the code is
terminating and that all pattern matching definitions are exhaustive. How-
ever, for the formalisation presented here this has been verified manually.
Unless some mistake has been made all data types are strictly positive (with
the exception of Val ; see Sect. 5.2), all definitions are exhaustive, and every
function uses structural recursion of the kind accepted by the termination
checker foetus [AA02].

3 Object Language

The object language that is formalised is a simple dependently typed lambda
calculus with explicit substitutions. Its type system is sketched in Fig. 1. The
labels on the rules correspond to constructors introduced in the formalisation.
Note that Γ ⇒ ∆ is the type of substitutions taking terms with variables in Γ
to terms with variables in ∆, and that the symbol =? stands for βη-equality
between types. Some things are worth noting about the language:

• It has explicit substitutions in the sense that the application of a sub-
stitution to a term is an explicit construction in the language. However,
the application of a substitution to a type is an implicit operation.

• There does not seem to be a “standard” choice of basic substitutions.
The set chosen here is the following:

– [x 7→ t ] is the substitution mapping x to t and every other variable
to itself.

– wk x τ extends the context with a new, unused variable.

– id Γ is the identity substitution on Γ.

– ρ ↑x τ is a lifting; variable x is mapped to itself, and the other
variables are mapped by ρ.

– ρ1 ρ2 is composition of substitutions.

112



Contexts

ε context
(ε)

Γ context Γ ` τ type

Γ, x : τ context
(.)

Types

Γ ` ? type
(?)

Γ ` τ1 type Γ, x : τ1 ` τ2 type

Γ ` Π(x : τ1) τ2 type
(Π)

Γ ` t : ?

Γ ` El t type
(El)

Terms

(x , τ) ∈ Γ

Γ ` x : τ
(var)

Γ, x : τ1 ` t : τ2

Γ ` λx : τ1.t : Π(x : τ1) τ2

(λ)

Γ ` t : τ ρ : Γ ⇒ ∆

∆ ` t ρ : τ ρ
(/̀ )

Γ ` t1 : Π(x : τ1) τ2 Γ ` t2 : τ1

Γ ` t1 t2 : τ2 [x 7→ t2 ]
(@)

Γ ` t : τ1 τ1 =? τ2

Γ ` t : τ2

(::≡` )

Substitutions

Γ ` t : τ

[x 7→ t ] : Γ, x : τ ⇒ Γ
(sub)

wk x τ : Γ ⇒ Γ, x : τ
(wk)

id Γ : Γ ⇒ Γ
(id)

ρ : Γ ⇒ ∆

ρ ↑x τ : Γ, x : τ ⇒ ∆, x : τ ρ
(↑)

ρ1 : Γ ⇒ ∆ ρ2 : ∆ ⇒ X

ρ1 ρ2 : Γ ⇒ X
(�)

Figure 1: Sketch of the type system that is formalised. If a rule mentions
Γ ` t : τ , then it is implicitly assumed that Γ context and Γ `
τ type; similar assumptions apply to the other judgements as well.
All freshness side conditions have been omitted.
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• Heterogeneous equality is used. Two types can be equal (τ1 =? τ2) even
though their contexts are not definitionally equal in the meta-theory.
Contexts of equal types are always provably equal in the object-theory,
though (see Sect. 3.6).

The following subsections describe the various parts of the formalisation:
contexts, types, terms, variables, substitutions and equalities. Section 3.7
discusses some of the design choices made. The table below summarises the
types defined; the concept being defined, typical variable names used for
elements of the type, and the type name (fully applied):

Contexts Γ, ∆, X Ctxt
Types τ , σ Ty Γ
Terms t Γ ` τ
Variables v Γ 3 τ
Substitutions ρ Γ ⇒ ∆
Equalities eq Γ1 =Ctxt Γ2, τ1 =? τ2, . . .

Note that all the types in this section are part of the same mutually recursive
definition, together with the function (/) (see Sect. 3.2).

3.1 Contexts

Contexts are represented in a straight-forward way. The empty context is
written ε, and Γ . τ is the context Γ extended with the type τ . Variables are
represented using de Bruijn indices, so there is no need to mention variables
here:

data Ctxt : Set where
ε : Ctxt
(.) : (Γ : Ctxt) → Ty Γ → Ctxt

Ty Γ is the type, introduced below, of object-language types with variables
in Γ.

3.2 Types

The definition of the type family Ty of object-level types follows the type
system sketch in Fig. 1:

data Ty : Ctxt → Set where
? : {Γ : Ctxt } → Ty Γ
Π : (τ : Ty Γ) → Ty (Γ . τ) → Ty Γ
El : Γ ` ? → Ty Γ

The type Γ ` τ stands for terms of type τ with variables in Γ, so terms can
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only be viewed as types if they have type ?.
Note that types are indexed on the context to which their variables belong,

and similarly terms are indexed on both contexts and types (Γ ` τ). The
meta-theory behind indexing a type by a type family defined in the same
mutually recursive definition has not been worked out properly yet. It is,
however, crucial to this formalisation.

Let us now define the function (/), which applies a substitution to a
type (note that postfix application is used). The type Γ ⇒ ∆ stands for
a substitution which, when applied to something in context Γ (a type, for
instance), transforms this into something in context ∆:

(/) : Ty Γ → Γ ⇒ ∆ → Ty ∆
? / ρ = ?
Π τ1 τ2 / ρ = Π (τ1 / ρ) (τ2 / ρ ↑ τ1)
El t / ρ = El (t /̀ ρ)

The constructor (/̀ ) is the analogue of (/) for terms (see Sect. 3.3). The
substitution transformer (↑) is used when going under binders; ρ ↑ τ1 behaves
as ρ, except that the new variable zero in the original context is mapped to
the new variable zero in the resulting context:

(↑) : (ρ : Γ ⇒ ∆) → (σ : Ty Γ) → Γ . σ ⇒ ∆ . (σ / ρ)

Substitutions are defined in Sect. 3.5.

3.3 Terms

The types Γ ` τ and Γ 3 τ stand for terms and variables, respectively, of
type τ in context Γ. Note that what is customarily written Γ ` t : τ , like in
Fig. 1, is now written t :Γ ` τ . There are five kinds of terms: variables (var),
abstractions (λ), applications (@), casts (::≡` ) and substitution applications
(/̀ ):

data (`) : (Γ : Ctxt) → Ty Γ → Set where
var : Γ 3 τ → Γ ` τ
λ : Γ . τ1 ` τ2 → Γ ` Π τ1 τ2

(@) : Γ ` Π τ1 τ2 → (t2 : Γ ` τ1) → Γ ` τ2 / sub t2
(::≡` ) : Γ ` τ1 → τ1 =? τ2 → Γ ` τ2

(/̀ ) : Γ ` τ → (ρ : Γ ⇒ ∆) → ∆ ` τ / ρ

Notice the similarity to the rules in Fig. 1. The substitution sub t2 used in
the definition of (@) replaces vz with t2, and lowers the index of all other
variables by one:

Chapter 4: A Formalisation of a Dependently Typed Language. . .
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sub : Γ ` τ → Γ . τ ⇒ Γ

The conversion rule defined here (::≡` ) requires the two contexts to be
definitionally equal in the meta-theory. A more general version of the rule
would lead to increased complexity when functions that pattern match on
terms are defined. However, we can prove a general version of the conversion
rule, so no generality is lost:

(::`) : Γ1 ` τ1 → τ1 =? τ2 → Γ2 ` τ2

In this formalisation, whenever a cast constructor named (::≡• ) is introduced
(where • can be ` or 3, for instance), a corresponding generalised variant
(::•) is always proved.

Before moving on to variables, note that all typing information is present
in a term, including casts (the conversion rule). Hence this type family
actually represents typing derivations.

3.4 Variables

Variables are represented using de Bruijn indices (the notation (3) is taken
from [McBb]):

data (3) : (Γ : Ctxt) → Ty Γ → Set where
vz : {σ : Ty Γ} → Γ . σ 3 σ/wk σ
vs : Γ 3 τ → {σ : Ty Γ} → Γ . σ 3 τ /wk σ
(::≡3 ) : Γ 3 τ1 → τ1 =? τ2 → Γ 3 τ2

The rightmost variable in the context is denoted by vz (“variable zero”), and
vs v is the variable to the left of v . The substitution wk σ is a weakening,
taking something in context Γ to the context Γ . σ:

wk : (σ : Ty Γ) → Γ ⇒ Γ . σ

The use of weakening is necessary since, for instance, σ is a type in Γ, whereas
vz creates a variable in Γ . σ.

The constructor (::≡3 ) is a variant of the conversion rule for variables. It
might seem strange that the conversion rule is introduced twice, once for
variables and once for terms. However, note that var v ::≡` eq is a term and
not a variable, so if the conversion rule is needed to show that a variable has
a certain type, then (::≡` ) cannot be used.

116



3.5 Substitutions

Substitutions are defined as follows:

data (⇒) : Ctxt → Ctxt → Set where
sub : Γ ` τ → Γ . τ ⇒ Γ
wk : (σ : Ty Γ) → Γ ⇒ Γ . σ
(↑) : (ρ : Γ ⇒ ∆) → (σ : Ty Γ) → Γ . σ ⇒ ∆ . (σ / ρ)
id : Γ ⇒ Γ
(�) : Γ ⇒ ∆ → ∆ ⇒ X → Γ ⇒ X

Single-term substitutions (sub), weakenings (wk) and liftings (↑) have been
introduced above. The remaining constructors denote the identity substitu-
tion (id) and composition of substitutions (�). The reasons for using this
particular definition of (⇒) are outlined in Sect. 3.7.

3.6 Equality

The following equalities are defined:

(=Ctxt) : Ctxt → Ctxt → Set
(=?) : Ty Γ1 → Ty Γ2 → Set
(=`) : Γ1 ` τ1 → Γ2 ` τ2 → Set
(=3) : Γ1 3 τ1 → Γ2 3 τ2 → Set
(=⇒) : Γ1 ⇒ ∆1 → Γ2 ⇒ ∆2 → Set

As mentioned above heterogeneous equality is used. As a sanity check every
equality is associated with one or more lemmas like the following one, which
states that equal terms have equal types:

eq èq? : {t1 : Γ1 ` τ1} → {t2 : Γ2 ` τ2} → t1 =` t2 → τ1 =? τ2

The context and type equalities are the obvious congruences. For in-
stance, type equality is defined as follows:

data (=?) : Ty Γ1 → Ty Γ2 → Set where
?Cong : Γ1 =Ctxt Γ2 → ? {Γ1} =? ? {Γ2}
ΠCong : τ11 =? τ12 → τ21 =? τ22 → Π τ11 τ21 =? Π τ12 τ22

ElCong : t1 =` t2 → El t1 =? El t2

In many presentations of type theory it is also postulated that type equal-
ity is an equivalence relation. This introduces an unnecessary amount of
constructors into the data type; when proving something about a data type
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one typically needs to pattern match on all its constructors. Instead I have
chosen to prove that every equality (except (=`)) is an equivalence relation:

refl? : τ =? τ
sym? : τ1 =? τ2 → τ2 =? τ1

trans? : τ1 =? τ2 → τ2 =? τ3 → τ1 =? τ3

(And so on for the other equalities.)
The semantics of a variable should not change if a cast is added, so the

variable equality is a little different. In order to still be able to prove that
the relation is an equivalence the following definition is used:

data (=3) : Γ1 3 τ1 → Γ2 3 τ2 → Set where
vzCong : σ1 =? σ2 → vz {σ1} =3 vz {σ2}
vsCong : v1 =3 v2 → σ1 =? σ2 → vs v1 {σ1} =3 vs v2 {σ2}
castEq `

3 : v1 =3 v2 → v1 ::≡3 eq =3 v2

castEqr
3 : v1 =3 v2 → v1 =3 v2 ::≡3 eq

For substitutions extensional equality is used:

data (=⇒) (ρ1 : Γ1 ⇒ ∆1) (ρ2 : Γ2 ⇒ ∆2) : Set where
extEq : Γ1 =Ctxt Γ2 → ∆1 =Ctxt ∆2

→ (∀v1 v2. v1 =3 v2 → var v1 /̀ ρ1 =` var v2 /̀ ρ2)
→ ρ1 =⇒ ρ2

Note that this data type contains negative occurrences of Ty , (3) and (=3),
which are defined in the same mutually recursive definition as (=⇒). In order
to keep this definition strictly positive a first-order variant of (=⇒) is used,
which simulates the higher-order version by explicitly enumerating all the
variables. The first-order variant is later proved equivalent to the definition
given here.

Term equality is handled in another way than the other equalities. The
presence of the β and η laws makes it hard to prove that (=`) is an equivalence
relation, and hence this is postulated:

data (=`) : Γ1 ` τ1 → Γ2 ` τ2 → Set where
-- Equivalence.

refl` : (t : Γ ` τ) → t =` t
sym` : t1 =` t2 → t2 =` t1
trans` : t1 =` t2 → t2 =` t3 → t1 =` t3

-- Congruence.
varCong : v1 =3 v2 → var v1 =` var v2

118



λCong : t1 =` t2 → λ t1 =` λ t2
(@Cong) : t11 =` t12 → t21 =` t22 → t11@t21 =` t12@t22
(/̀ Cong) : t1 =` t2 → ρ1 =⇒ ρ2 → t1 /̀ ρ1 =` t2 /̀ ρ2

-- Cast, β and η equality.
castEq` : t ::≡` eq =` t
β : (λ t1)@t2 =` t1 /̀ sub t2
η : {t : Γ ` Π τ1 τ2} → λ ((t /̀ wk τ1)@var vz ) =` t

-- Substitution application axioms.
. . .

The η law basically states that, if x is not free in t , and t is of function
type, then λx.t x = t . The first precondition on t is handled by explicitly
weakening t , though.

The behaviour of (/̀ ) also needs to be postulated. The abstraction and
application cases are structural; the id case returns the term unchanged, and
the (�) case is handled by applying the two substitutions one after the other;
a variable is weakened by applying vs to it; substituting t for variable zero
results in t , and otherwise the variable’s index is lowered by one; and finally
lifted substitutions need to be handled appropriately:

data (=`) : Γ1 ` τ1 → Γ2 ` τ2 → Set where
. . .

-- Substitution application axioms.
substLam : λ t /̀ ρ =` λ (t /̀ ρ ↑ τ1)
substApp : (t1@t2) /̀ ρ =` (t1 /̀ ρ)@(t2 /̀ ρ)
idVanishesTm : t /̀ id =` t
compSplitsTm : t /̀ (ρ1 � ρ2) =` t /̀ ρ1 /̀ ρ2

substWk : var v /̀ wk σ =` var (vs v)
substVzSub : var vz /̀ sub t =` t
substVsSub : var (vs v) /̀ sub t =` var v
substVzLift : var vz /̀ (ρ ↑ σ) =` var vz
substVsLift : var (vs v) /̀ (ρ ↑ σ) =` var v /̀ ρ /̀ wk (σ / ρ)

3.7 Design Choices

Initially I tried to formalise a language with implicit substitutions, i.e. I tried
to implement (/̀ ) as a function instead of as a constructor. This turned out
to be difficult, since when (/̀ ) is defined as a function many substitution lem-
mas need to be proved in the initial mutually recursive definition containing
all the type families above, and when the mutual dependencies become too
complicated it is hard to prove that the code is terminating.
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As an example of why substitution lemmas are needed, take the axiom
substApp above. If substApp is considered as a pattern matching equation in
the definition of (/̀ ), then it needs to be modified in order to type check:

(t1@t2) /̀ ρ = (t1 /̀ ρ)@(t2 /̀ ρ) ::≡` subCommutes?

Here subCommutes? states that, in certain situations, sub commutes with
other substitutions:

subCommutes? : τ / (ρ ↑ σ) / sub (t /̀ ρ) =? τ / sub t / ρ

Avoidance of substitution lemmas is also the reason for making the equali-
ties heterogeneous. It would be possible to enforce directly that, for instance,
two terms are only equal if their respective types are equal. It suffices to add
the type equality as an index to the term equality:

(=`) : {τ1 =? τ2} → Γ1 ` τ1 → Γ2 ` τ2 → Set

However, in this case substApp could not be defined without a lemma like
subCommutes?. Furthermore this definition of (=`) easily leads to a situation
where two equality proofs need to be proved equal. These problems are
avoided by, instead of enforcing equality directly, proving that term equality
implies type equality (eq èq?) and so on. These results also require lemmas
like subCommutes?, but the lemmas can be proved after the first, mutually
recursive definition.

The problems described above could be avoided in another way, by pos-
tulating the substitution lemmas needed, i.e. adding them as type equality
constructors. This approach has not been pursued, as I have tried to min-
imise the amount of “unnecessary” postulates and definitions.

The postulate substApp discussed above also provides motivation for
defining (/) as a function, even though (/̀ ) is a constructor: if (/) were
a constructor then t1 /̀ ρ would not have a Π type as required by (@) (the
type would be Π τ1 τ2 / ρ), and hence a cast would be required in the defini-
tion of substApp. I have not examined this approach in detail, but I suspect
that it would be harder to work with.

Another important design choice is the basic set of substitutions. The
following definition is a natural candidate for this set:

data (⇒̃) : Ctxt → Ctxt → Set where
∅ : ε ⇒̃ ∆
(�) : (ρ : Γ ⇒̃ ∆) → ∆ ` τ / ρ → Γ . τ ⇒̃ ∆

This type family encodes simultaneous (parallel) substitutions; for every vari-
able in the original context a term in the resulting context is given. So far
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so good, but the substitutions used in the type signatures above (sub and
wk , for instance) need to be implemented in terms of ∅ and (�), and these
implementations seem to require various substitution lemmas, again leading
to the problems described above.

Note that, even though (⇒̃) is not used to define what a substitution is,
the substitutions ∅ and (�) can be defined in terms of the other substitutions,
and they are used in Sect. 5.3 when value environments are defined.

4 Removing Explicit Substitutions

In Sect. 5 a normalisation proof for the lambda calculus introduced in Sect. 3
is presented. The normalisation function defined there requires terms without
explicit substitutions (“implicit terms”). This section defines a data type
Tm− representing such terms.

The type Tm− provides a view of the (`) terms (the “explicit terms”).
Other views will be introduced later, for instance normal forms (Sect. 5.1),
and they will all follow the general scheme employed by Tm−, with minor
variations.

Implicit terms are indexed on explicit terms to which they are, in a sense,
βη-equal; the function tm−ToTm converts an implicit term to the correspond-
ing explicit term, and tm−ToTm t− =` t for every implicit term t− : Tm− t :

data Tm− : Γ ` τ → Set where
var− : (v : Γ 3 τ) → Tm− (var v)
λ− : Tm− t → Tm− (λ t)
(@−) : Tm− t1 → Tm− t2 → Tm− (t1@t2)
(::≡−̀ ) : Tm− t1 → t1 =` t2 → Tm− t2

tm−ToTm : {t : Γ ` τ } → Tm− t → Γ ` τ
tm−ToTm (var− v) = var v
tm−ToTm (λ− t−) = λ (tm−ToTm t−)
tm−ToTm (t−1 @− t−2 ) = (tm−ToTm t−1 ) @ (tm−ToTm t−2 ) ::≡` . . .
tm−ToTm (t− ::≡−̀ eq) = tm−ToTm t− ::≡` eq èq? eq

(The ellipsis stands for uninteresting code that has been omitted.)
It would be possible to index implicit terms on types instead. However, by

indexing on explicit terms soundness results are easily expressed in the types
of functions constructing implicit terms. For instance, the function tmToTm−

which converts explicit terms to implicit terms has the type (t : Γ ` τ) →
Tm− t , which guarantees that the result is βη-equal to t . The key to making
this work is the cast constructor (::≡−̀ ), which makes it possible to include
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equality proofs in an implicit term; without (::≡−̀ ) no implicit term could be
indexed on t /̀ ρ, for instance.

Explicit terms are converted to implicit terms using techniques similar to
those in [McBb]. This conversion is not discussed further here.

5 Normalisation Proof

This section proves that every explicit term has a normal form. The proof
uses normalisation by evaluation (NBE). Type-based NBE proceeds as fol-
lows:

• First terms (in this case implicit terms) are evaluated by a function
J·K (Sect. 5.4), resulting in “values” (Sect. 5.2). Termination issues are
avoided by representing function types using the function space of the
meta-language.

• Then these values are converted to normal forms by using two functions,
often called reify and reflect , defined by recursion on the (spines of the)
types of their arguments (Sect. 5.5).

5.1 Normal Forms

Let us begin by defining what a normal form is. Normal forms (actually long
βη-normal forms) and atomic forms are defined simultaneously. Both type
families are indexed on a βη-equivalent term, just like Tm− (see Sect. 4):

data Atom : Γ ` τ → Set where
varAt : (v : Γ 3 τ) → Atom (var v)
(@At) : Atom t1 → NF t2 → Atom (t1@t2)
(::≡At) : Atom t1 → t1 =` t2 → Atom t2

data NF : Γ ` τ → Set where
atom?

NF : {t : Γ ` ?} → Atom t → NF t
atomEl

NF : {t : Γ ` El t ′} → Atom t → NF t
λNF : NF t → NF (λ t)
(::≡NF ) : NF t1 → t1 =` t2 → NF t2

Note how long η-normality is ensured by only allowing atoms to be normal
forms when they are not of function type; the t argument to the two atomNF

constructors has to be of type ? or El t ′ for some t ′.
A consequence of the inclusion of the cast constructors (::≡At) and (::≡NF )

is that normal forms are not unique. However, the equality on normal and
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atomic forms (congruence plus postulates stating that casts can be removed
freely) ensures that equality can be decided by erasing all casts and annota-
tions and then checking syntactic equality.

A normal form can be converted to a term in the obvious way, and the
resulting term is βη-equal to the index (cf. tm−ToTm in Sect. 4):

nfToTm : {t : Γ ` τ } → NF t → Γ ` τ
nfToTmEq : (nf : NF t) → nfToTm nf =` t

Similar functions are defined for atomic forms.

We also need to weaken normal and atomic forms. In fact, multiple weak-
enings will be performed at once. In order to express these multi-weakenings
context extensions are introduced. The type Ctxt+ Γ stands for context
extensions which can be put “to the right of” the context Γ by using (++):

data Ctxt+ (Γ : Ctxt) : Set where
ε+ : Ctxt+ Γ
(.+) : (Γ′ : Ctxt+ Γ) → Ty (Γ ++ Γ′) → Ctxt+ Γ

(++) : (Γ : Ctxt) → Ctxt+ Γ → Ctxt
Γ ++ ε+ = Γ
Γ ++ (Γ′ .+ τ) = (Γ ++ Γ′) . τ

Now the following type signatures can be understood:

wk ∗ : (Γ′ : Ctxt+ Γ) → Γ ⇒ Γ ++ Γ′

wk ∗At : Atom t → (Γ′ : Ctxt+ Γ) → Atom (t /̀ wk ∗ Γ′)

5.2 Values

Values are represented using one constructor for each type constructor, plus
a case for casts (along the lines of previously introduced types indexed on
terms). Values of function type are represented using meta-language func-
tions:

data Val : Γ ` τ → Set where
(::Val) : Val t1 → t1 =` t2 → Val t2
?Val : {t : Γ ` ?} → Atom t → Val t
ElVal : {t : Γ ` El t ′} → Atom t → Val t
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ΠVal : {t1 : Γ ` Π τ1 τ2}
→ (f : (Γ′ : Ctxt+ Γ)

→ {t2 : Γ ++ Γ′ ` τ1 / wk ∗ Γ′}
→ (v : Val t2)
→ Val ((t1 /̀ wk ∗ Γ′)@t2))

→ Val t1

The function f given to ΠVal {t1} essentially takes an argument value and
evaluates t1 applied to this argument. For technical reasons, however, we
need to be able to weaken t1 (see reify in Sect. 5.5). This makes Val look
suspiciously like a Kripke model [MM91] (suitably generalised to a depen-
dently typed setting); this has not been verified in detail, though. The
application operation of this supposed model is defined as follows. Notice
that the function component of ΠVal is applied to an empty Ctxt+ here:

(@Val) : Val t1 → Val t2 → Val (t1@t2)
ΠVal f @Val v2 = f ε+ (v2 ::Val . . .) ::Val . . .
(v1 ::Val eq) @Val v2 = (v1 @Val (v2 ::Val . . .)) ::Val . . .

The transition function of the model weakens values:

wk ?
Val : Val t → (Γ′ : Ctxt+ Γ) → Val (t /̀ wk ∗ Γ′)

Note that Val is not a positive data type, due to the negative occurrence
of Val inside of ΠVal , so this data type is not part of the treatment in [DS06].
In practise this should not be problematic, since the type index of that occur-
rence, τ1 / wk ∗ Γ′, is smaller than the type index of ΠVal f , which is Π τ1 τ2.
Here we count just the spine of the type, ignoring the contents of El , so that
τ and τ / ρ have the same size, and two equal types also have the same size.
In fact, by supplying a spine argument explicitly it should not be difficult to
define Val as a structurally recursive function instead of as a data type.

5.3 Environments

The function J·K, defined in Sect. 5.4, makes use of environments, which are
basically substitutions containing values instead of terms:

data Env : Γ ⇒ ∆ → Set where
∅Env : Env ∅
(�Env) : Env ρ → Val t → Env (ρ � t)
(::≡Env) : Env ρ1 → ρ1 =⇒ ρ2 → Env ρ2
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Note that the substitutions ∅ and (�) from Sect. 3.7 are used as indices here.
It is straight-forward to define functions for looking up a variable in an

environment and weakening an environment:

lookup : (v : Γ 3 τ) → Env ρ → Val (var v /̀ ρ)
wk ?

Env : Env ρ → (∆′ : Ctxt+ ∆) → Env (ρ � wk ∗ ∆′)

5.4 Evaluating Terms

Now we can evaluate an implicit term, i.e. convert it to a value. The most
interesting case is λ− t−1 , where t−1 is evaluated in an extended, weakened
environment:

J·K : Tm− t → Env ρ → Val (t /̀ ρ)
Jvar− vKγ = lookup v γ
Jt−1 @− t−2 Kγ = (Jt−1 Kγ @Val Jt−2 Kγ) ::Val . . .
Jt− ::≡−̀ eqKγ = Jt−Kγ ::Val . . .

Jλ− t−1 Kγ =
ΠVal (\∆′ v2 → Jt−1 K(wk ?

Env γ ∆′ �Env (v2 ::Val . . .)) ::Val . . . β . . .)

(The notation \x → . . . is lambda abstraction in the meta-language.) It
would probably be straightforward to evaluate explicit terms directly, with-
out going through implicit terms (cf. [Coq02]). Here I have chosen to separate
these two steps, though.

5.5 reify and reflect

Let us now define reify and reflect . These functions are implemented by
recursion over spines (see Sect. 5.2), in order to make them structurally
recursive, but to avoid clutter the spine arguments are not written out below.

The interesting cases correspond to function types, for which reify and
reflect use each other recursively. Notice how reify applies the function com-
ponent of ΠVal to a singleton Ctxt+, to enable using the reflection of variable
zero, which has a weakened type; this is the reason for including weakening
in the definition of ΠVal :

reify : (τ : Ty Γ) → {t : Γ ` τ } → Val t → NF t
reify (v ::Val eq) = reify v ::NF eq
reify (?Val at) = atom?

NF at
reify (ElVal at) = atomEl

NF at
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reify (Π τ1 τ2) (ΠVal f ) =
λNF (reify (τ2 / / )

(f (ε+ .+ τ1) (reflect (τ1 / ) (varAt vz ) ::Val . . .)))
::NF . . . η . . .

(Above underscores ( ) have been used instead of giving non-hidden argu-
ments which can be inferred automatically by the AgdaLight type checker.)
The companion function reflect uses weakening and ΠVal in the function type
case:

reflect : (τ : Ty Γ) → {t : Γ ` τ } → Atom t → Val t
reflect ? at = ?Val at
reflect (El t) at = ElVal at
reflect (Π τ1 τ2) at = ΠVal (\Γ′ v →

reflect (τ2 / / ) (wk ∗At at Γ′ @At reify (τ1 / ) v))

5.6 Normalisation

After having defined J·K and reify it is very easy to normalise a term. First
we build an identity environment by applying reflect to all the variables in
the context:

idEnv : (Γ : Ctxt) → Env (id Γ)

Then an explicit term can be normalised by converting it to an implicit term,
evaluating the result in the identity environment, and then reifying:

normalise : (t : Γ ` τ) → NF t
normalise t = reify (JtmToTm− tK(idEnv ) ::Val . . .)

Since a normal form is indexed on an equivalent term it is easy to show that
normalise is sound:

normaliseEq : (t : Γ ` τ) → nfToTm (normalise t) =` t
normaliseEq t = nfToTmEq (normalise t)

If this normalising function is to be really useful (as part of a type checker,
for instance) it should also be proved, for the normal form equality (=NF ),
that t1 =` t2 implies that normalise t1 =NF normalise t2. This is left for
future work, though.
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6 Related Work

As stated in the introduction Dybjer’s formalisation of categories with fam-
ilies [Dyb96] seems to be the only prior example of a formalisation of a
dependently typed language done using the internal approach to handle the
type system invariants. Other formalisations of dependently typed languages,
such as McKinna/Pollack [MP99] and Barras/Werner [BW97], have used the
external approach. There is also an example, due to Adams [Ada04], of a
hybrid approach which handles some invariants internally, but not the type
system.

Normalisation by evaluation (NBE) seems to have been discovered inde-
pendently by Martin-Löf (for a version of his type theory) [ML75] and Berger
and Schwichtenberg (for simply typed lambda calculus) [BS91]. Martin-Löf
has also defined an NBE algorithm for his logical framework [ML04], and
recently Dybjer, Abel and Aehlig have done the same for Martin-Löf type
theory with one universe [AAD07].

NBE has been formalised, using the internal approach, by T. Coquand
and Dybjer, who treated a combinatory version of Gödel’s System T [CD97].
C. Coquand has formalised normalisation for a simply typed lambda calculus
with explicit substitutions, also using the internal approach [Coq02]. Her
normalisation proof uses NBE and Kripke models, and in that respect it
bears much resemblance to this one. McBride has implemented NBE for
the untyped lambda calculus [McBa]. His implementation uses an internal
approach (nested types in Haskell) to ensure that terms are well-scoped, and
that aspect of his code is similar to mine.

My work seems to be the first formalised NBE algorithm for a dependently
typed language.

7 Discussion

I have presented a formalisation of a dependently typed lambda calculus,
including a proof of normalisation, using the internal approach to handle
typing rules. This formalisation demonstrates that, at least in this case, it
is feasible to use the internal approach when programming with invariants
strong enough to encode the typing rules of a dependently typed language.
How this method compares to other approaches is a more difficult question,
which I do not attempt to answer here.
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