------------------------------------------------------------------------
-- Pointwise lifting of relations to lists
------------------------------------------------------------------------

module Relation.Binary.List.Pointwise where

open import Function
open import Data.Product
open import Data.List
open import Level
open import Relation.Nullary
open import Relation.Binary renaming (Rel to Rel₂)
open import Relation.Binary.PropositionalEquality as PropEq using (_≡_)

private
 module Dummy {A : Set} where

  infixr 5 _∷_

  data Rel (_∼_ : Rel₂ A zero) : List A  List A  Set where
    []  : Rel _∼_ [] []
    _∷_ :  {x xs y ys} (x∼y : x  y) (xs∼ys : Rel _∼_ xs ys) 
          Rel _∼_ (x  xs) (y  ys)

  head :  {_∼_ x y xs ys}  Rel _∼_ (x  xs) (y  ys)  x  y
  head (x∼y  xs∼ys) = x∼y

  tail :  {_∼_ x y xs ys}  Rel _∼_ (x  xs) (y  ys)  Rel _∼_ xs ys
  tail (x∼y  xs∼ys) = xs∼ys

  reflexive :  { }      (Rel )  (Rel )
  reflexive ≈⇒∼ []            = []
  reflexive ≈⇒∼ (x≈y  xs≈ys) = ≈⇒∼ x≈y  reflexive ≈⇒∼ xs≈ys

  refl :  {}  Reflexive   Reflexive (Rel )
  refl rfl {[]}     = []
  refl rfl {x  xs} = rfl  refl rfl

  symmetric :  {}  Symmetric   Symmetric (Rel )
  symmetric sym []            = []
  symmetric sym (x∼y  xs∼ys) = sym x∼y  symmetric sym xs∼ys

  transitive :  {}  Transitive   Transitive (Rel )
  transitive trans []            []            = []
  transitive trans (x∼y  xs∼ys) (y∼z  ys∼zs) =
    trans x∼y y∼z  transitive trans xs∼ys ys∼zs

  antisymmetric :  { }  Antisymmetric   
                  Antisymmetric (Rel ) (Rel )
  antisymmetric antisym []            []            = []
  antisymmetric antisym (x∼y  xs∼ys) (y∼x  ys∼xs) =
    antisym x∼y y∼x  antisymmetric antisym xs∼ys ys∼xs

  respects₂ :  { }   Respects₂   (Rel ) Respects₂ (Rel )
  respects₂ {} {} resp =
     {xs} {ys} {zs}  resp¹ {xs} {ys} {zs}) ,
     {xs} {ys} {zs}  resp² {xs} {ys} {zs})
    where
    resp¹ :  {xs}  (Rel  xs) Respects (Rel )
    resp¹ []            []            = []
    resp¹ (x≈y  xs≈ys) (z∼x  zs∼xs) =
      proj₁ resp x≈y z∼x  resp¹ xs≈ys zs∼xs

    resp² :  {ys}  (flip (Rel ) ys) Respects (Rel )
    resp² []            []            = []
    resp² (x≈y  xs≈ys) (x∼z  xs∼zs) =
      proj₂ resp x≈y x∼z  resp² xs≈ys xs∼zs

  decidable :  {}  Decidable   Decidable (Rel )
  decidable dec []       []       = yes []
  decidable dec []       (y  ys) = no  ())
  decidable dec (x  xs) []       = no  ())
  decidable dec (x  xs) (y  ys) with dec x y
  ... | no ¬x∼y = no (¬x∼y  head)
  ... | yes x∼y with decidable dec xs ys
  ...           | no ¬xs∼ys = no (¬xs∼ys  tail)
  ...           | yes xs∼ys = yes (x∼y  xs∼ys)

  isEquivalence :  {}  IsEquivalence   IsEquivalence (Rel )
  isEquivalence eq = record
    { refl  = refl       Eq.refl
    ; sym   = symmetric  Eq.sym
    ; trans = transitive Eq.trans
    } where module Eq = IsEquivalence eq

  isPreorder :  { }  IsPreorder    IsPreorder (Rel ) (Rel )
  isPreorder pre = record
    { isEquivalence = isEquivalence Pre.isEquivalence
    ; reflexive     = reflexive     Pre.reflexive
    ; trans         = transitive    Pre.trans
    } where module Pre = IsPreorder pre

  isDecEquivalence :  {}  IsDecEquivalence  
                     IsDecEquivalence (Rel )
  isDecEquivalence eq = record
    { isEquivalence = isEquivalence Dec.isEquivalence
    ; _≟_           = decidable     Dec._≟_
    } where module Dec = IsDecEquivalence eq

  isPartialOrder :  { }  IsPartialOrder   
                   IsPartialOrder (Rel ) (Rel )
  isPartialOrder po = record
    { isPreorder = isPreorder    PO.isPreorder
    ; antisym    = antisymmetric PO.antisym
    } where module PO = IsPartialOrder po

  -- Rel _≡_ coincides with _≡_.

  Rel≡⇒≡ : Rel _≡_  _≡_
  Rel≡⇒≡ []                    = PropEq.refl
  Rel≡⇒≡ (PropEq.refl  xs∼ys) with Rel≡⇒≡ xs∼ys
  Rel≡⇒≡ (PropEq.refl  xs∼ys) | PropEq.refl = PropEq.refl

  ≡⇒Rel≡ : _≡_  Rel _≡_
  ≡⇒Rel≡ PropEq.refl = refl PropEq.refl

open Dummy public

preorder : Preorder _ _ _  Preorder _ _ _
preorder p = record
  { isPreorder = isPreorder (Preorder.isPreorder p)
  }

setoid : Setoid _ _  Setoid _ _
setoid s = record
  { isEquivalence = isEquivalence (Setoid.isEquivalence s)
  }

decSetoid : DecSetoid _ _  DecSetoid _ _
decSetoid d = record
  { isDecEquivalence = isDecEquivalence (DecSetoid.isDecEquivalence d)
  }

poset : Poset _ _ _  Poset _ _ _
poset p = record
  { isPartialOrder = isPartialOrder (Poset.isPartialOrder p)
  }