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Precise Reasoning About Non-strict
Functional Programs

How to Chase Bottoms, and How to Ignore Them

Nils Anders Danielsson

Department of Computer Science and Engineering
Chalmers University of Technology and Göteborg University

Abstract

This thesis consists of two parts. Both concern reasoning about non-strict
functional programming languages with partial and infinite values and lifted
types, including lifted function spaces.

The first part is a case study in program verification: We have written
a simple parser and a corresponding pretty-printer in Haskell. A natural
aim is to prove that the programs are, in some sense, each other’s inverses.
The presence of partial and infinite values makes this exercise interesting.
We have tackled the problem in different ways, and report on the merits of
those approaches. More specifically, first a method for testing properties of
programs in the presence of partial and infinite values is described. By testing
before proving we avoid wasting time trying to prove statements that are not
valid. Then it is proved that the programs we have written are in fact (more
or less) inverses using first fixpoint induction and then the approximation
lemma.

Using the proof methods described in the first part can be cumbersome.
As an alternative, the second part justifies reasoning about non-total (partial)
functional languages using methods seemingly only valid for total ones. Two
languages are defined, one total and one partial, with identical syntax. A
partial equivalence relation is then defined, the domain of which is the total
subset of the partial language. It is proved that if two closed terms have the
same semantics in the total language, then they have related semantics in
the partial language.

Keywords: Functional programming, equational reasoning, non-strict,
partial, infinite, lifted, inductive, coinductive.
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Introduction

Most people that use computers have come across programs that fail to func-
tion correctly; they crash, or do something else which they are not supposed
to do.

One way of avoiding such problems is to formally verify the correctness of
a program before it is used. First one has to decide what, exactly, it is that
the program should do, and then, by inspecting the source code in some way,
one should come up with a mathematically convincing argument for why the
program behaves as it should.

In general this is not an easy task, neither the specification nor the proof
of correctness. Some programming languages are claimed to make the proofs
easier to perform, though. One example is functional programming lan-
guages, where programs consist of functions that are similar to ordinary
mathematical functions.

An interesting aspect of some functional languages is that they have nat-
ural support for manipulating infinite values. Furthermore they typically
handle values that are only partially defined. Unfortunately, proofs about
functional programs often ignore details related to partial and infinite values.
That is addressed by the first paper contained in this thesis:

Page 9 Chasing Bottoms, A Case Study in Program Verification in the Pres-
ence of Partial and Infinite Values, written together with Patrik Jans-
son. This is an extended version of the paper published in the Proceed-
ings of the 7th International Conference on Mathematics of Program
Construction, MPC 2004, LNCS 3125, Springer-Verlag, 2004.

The value that is totally undefined is called bottom, hence the title. The
paper is a case study where we explore how one can go about testing and
proving even in the presence of partial and infinite values. More concretely,
simple programs for writing and reading so-called binary trees are presented,
and it is shown using several methods what happens when reading something
previously written, and vice versa.

One of the conclusions of the first paper is that explicitly handling infinite
and partial values requires a lot of work. Infinite values are sometimes useful,
but that is seldom true for the partially defined ones, hence having to deal
with them is cumbersome. That is addressed by the second paper:

Page 49 Fast and Loose Reasoning is Morally Correct, written together with
Jeremy Gibbons and John Hughes. Not yet submitted for publication.

The paper explores whether one can reason in a fast and loose way—ignoring
the bottoms, pretending that values are totally defined (and perhaps finite)—
but still get useful results. Theory is presented that shows how this can be
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done. Some examples using the theory are also included, showing cases both
in which the theory leads to easier proofs, and in which other methods are
to be preferred.

Many proofs used for the theory in the second paper are only sketched.
Full proofs can be found at

http://www.cs.chalmers.se/~nad/.

A library which can be used to chase bottoms in Haskell programs can also be
found there. (Haskell is a functional programming language figuring promi-
nently in both papers.)
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Chasing Bottoms
A Case Study in Program Verification

in the Presence of Partial and Infinite Values

Nils Anders Danielsson and Patrik Jansson∗

Computing Science, Chalmers University of Technology,

Gothenburg, Sweden

Abstract

This work is a case study in program verification: We have written
a simple parser and a corresponding pretty-printer in a non-strict func-
tional programming language with lifted pairs and functions (Haskell).
A natural aim is to prove that the programs are, in some sense, each
other’s inverses. The presence of partial and infinite values in the
domains makes this exercise interesting, and having lifted types adds
an extra spice to the task. We have tackled the problem in different
ways, and this is a report on the merits of those approaches. More
specifically, we first describe a method for testing properties of pro-
grams in the presence of partial and infinite values. By testing before
proving we avoid wasting time trying to prove statements that are
not valid. Then we prove that the programs we have written are in
fact (more or less) inverses using first fixpoint induction and then the
approximation lemma.

1 Introduction

Infinite values are commonly used in (non-strict) functional programs, of-
ten to improve modularity [Hug89]. Partial values are seldom used explic-
itly, but they are still present in all non-trivial Haskell programs because
of non-termination, pattern match failures, calls to the error function etc.

∗This work is partially funded by the Swedish Foundation for Strategic Research as
part of the research programme “Cover — Combining Verification Methods in Software
Development.”
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Unfortunately, proofs about functional programs often ignore details related
to partial and infinite values.

This text is a case study where we explore how one can go about testing
and proving properties even in the presence of partial and infinite values.
We use random testing (Sect. 5) and two proof methods, fixpoint induction
(Sect. 7) and the approximation lemma (Sect. 8), both described in Gibbons’
and Hutton’s tutorial [GH05].

The programs that our case study revolves around are a simple pretty-
printer and a corresponding parser. Jansson and Jeuring define several more
complex (polytypic) pretty-printers and parsers and prove them correct for
total, finite input [JJ02]. The case study in this paper uses cut down versions
of those programs (see Sect. 2) but proves a stronger statement. On some
occasions we have been tempted to change the definitions of the programs to
be able to formulate our proofs in a different way. We have not done that,
since one part of our goal is to explore what it is like to prove properties
about programs that have not been written with a proof in mind. We have
transformed our programs into equivalent variants, though; note that this
carries a proof obligation.

Before starting to prove something it is often useful to test the properties.
That way one can avoid spending time trying to prove something which is not
true anyway. However, testing partial and infinite values can be tricky. In
Sect. 5 we describe two techniques for doing that. Infinite values can be tested
with the aid of the approximation lemma, and for partial values we make use
of a Haskell extension, implemented in several Haskell environments. (The
first technique is a generalisation of another one, and the last technique is
previously known.)

As indicated above the programming language used for all programs and
properties is Haskell [PJ03], a non-strict, pure functional language where all
types are lifted. Since we are careful with all details there will necessarily
be some Haskell-specific discussions below, but the main ideas should carry
over to other similar languages. Some knowledge of Haskell is assumed of the
reader, though.

We begin in Sect. 2 by defining the two programs that this case study
focuses on. Section 3 discusses the computational model and in Sect. 4 we
give idealised versions of the main properties that we want to prove. By
implementing and testing the properties (in Sect. 5) we identify a flaw in
one of the them and we give a new, refined version in Sect. 6. The proofs
presented in Sects. 7 and 8 are discussed in the concluding Sect. 9.
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2 Programs

The programs under consideration parse and pretty-print a simple binary
tree data type T without any information in the nodes:

data T = L | B T T

The pretty-printer is really simple. It performs a preorder traversal of the
tree, emitting a ’B’ for each branching point and an ’L’ for each leaf:

pretty ′ :: T → String
pretty ′ L = "L"

pretty ′ (B l r) = "B" ++ pretty ′ l ++ pretty ′ r

The parser reconstructs a tree given a string of the kind produced by pretty ′.
Any remaining input is returned together with the tree:

parse :: String → (T , String)
parse (’L’ : cs) = (L, cs)
parse (’B’ : cs) = (B l r , cs ′′)

where (l , cs ′) = parse cs
(r , cs ′′) = parse cs ′

We wrap up pretty ′ so that the printer and the parser get symmetric types:

pretty :: (T , String) → String
pretty (t , cs) = pretty ′ t ++ cs

These programs are obviously written in a very naive way. A real pretty-
printer would not use a quadratic algorithm for printing trees and a real
parser would use a proper mechanism for reporting parse failures. However,
the programs have the right level of detail for our application; they are very
straightforward without being trivial. The tree structure makes the recursion
“nonlinear,” and that is what makes these programs interesting.

3 Computational Model

Before we begin reasoning about the programs we should specify what our
underlying computational model is. We use Haskell 98 [PJ03], and it is
common to reason about Haskell programs by using equational reasoning,
assuming that a simple denotational semantics for the language exists. This
is risky, though, since this method has not been formally verified to work;
there is not even a standard formal semantics for the language to verify it
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against. However, we think that the existing knowledge of Haskell seman-
tics [HSH02, HK, Fax02] can be combined into a consistent framework for
equational reasoning.

Thus we will follow this approach, taking some caveats into account (see
below). Although our aim is to explore what a proof would look like when
all issues related to partial and infinite values are considered, it may be
that we have missed some subtle aspect of the Haskell semantics. We have
experimented with different levels of detail and believe that the resolution
of such issues most likely will not change the overall structure of the proofs,
though. Even if we would reject the idea of a clean denotational semantics
for Haskell and instead use Sands’ improvement theory [San96] based on an
operational model, we still believe that the proof steps would be essentially
the same.

Now on to the caveats (see also [HSH02]). All types in Haskell are (by
default) pointed and lifted; each type is a complete partial order with a
distinct least element ⊥ (bottom), and data constructors are not strict. For
pairs this means that ⊥ 6= (⊥,⊥), so we do not have surjective pairing. It is
possible to use strictness annotations to construct types that are not lifted,
e.g. the smash product of two types, for which ⊥ = (⊥,⊥) but we still do not
have surjective pairing. There is however no way to construct the ordinary
cartesian product of two types.

One has to be careful when using pattern matching in conjunction with
lifted types. The expression let (a, b) = x in g (a, b) is equivalent to g x iff
x 6= ⊥ or g (⊥,⊥) = g ⊥. The reason is that, if x = ⊥, then in the first case
g will still be applied to (⊥,⊥), whereas in the second case g will be applied
to ⊥. Note here that the pattern matching in a let clause is not performed
until the variables bound in the pattern are actually used. Hence let (a, b) =
⊥ in (a, b) is equivalent to (⊥,⊥), whereas (λ(a, b) → (a, b)) ⊥ = ⊥.

The function type is also lifted; we can actually distinguish between ⊥ ::
a → a and λx → ⊥ :: a → a by using seq , a function with the following
semantics [PJ03]:

seq :: a → b → b
seq ⊥ b = ⊥
seq a b = b

(Here a is any value except for ⊥.) In other words η-conversion is not valid
for Haskell functions, so to verify that two functions are equal it is not enough
to verify that they produce identical output when applied to identical input;
we also have to verify that none (or both) of the functions are ⊥. A conse-
quence of the lack of η-conversion is that one of the monadic identity laws
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fails to hold for some standard Monad instances in Haskell, such as the state
“monad.” The existence of a polymorphic seq also weakens Haskell’s para-
metricity properties [JV04], but that does not directly affect us because our
functions are not polymorphic.

Another caveat, also related to seq , is that f = λTrue x → x is not
identical to f ′ = λTrue → λx → x . By careful inspection of Haskell’s
pattern matching semantics [PJ03] we can see that f False = λx → ⊥ while
f ′ False = ⊥, since the function f is interpreted as

λa → λb → case (a, b) of
(True, x ) → x

whereas the function f ′ is interpreted as

λa → case a of
True → λx → x .

This also applies if f and f ′ are defined by f True x = x and f ′ True =
λx → x . We do not get any problems if the first pattern is a simple variable,
though. In this paper we will avoid problems related to this issue by never
pattern matching on anything but the last variable in a multiple parameter
function definition.

4 Properties: First Try

The programs in Sect. 2 are simple enough. Are they correct? That depends
on what we demand of them. Let us say that we want them to form an
embedding-projection pair, i.e.

parse ◦ pretty = id :: (T , String) → (T , String) (1)

and

pretty ◦ parse v id :: String → String . (2)

The operator v denotes the ordering of the semantical domain, and = is
semantical equality.

More concretely (1) means that for all pairs p :: (T , String) we must have
parse (pretty p) = p. (Note that η-conversion is valid since none of the
functions involved are equal to ⊥; they both expect at least one argument.)
The quantification is over all pairs of the proper type, including infinite and
partial values. If we can prove this equality, then we are free to exchange
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the left and right hand sides in any well-typed context. This means that we
can use the result very easily, but we have to pay a price in the complexity
of the proof. In this section we “cheat” by only quantifying over finite, total
trees so that we can use simple structural induction. We return to the full
quantification in later sections.

Parse after Pretty. Let us prove (1) for finite, total trees and arbitrary
strings, just to illustrate what this kind of proof usually looks like. First
we observe that both sides are distinct from ⊥, and then we continue using
structural induction. The inductive hypothesis used is

∀cs :: String . (parse ◦ pretty) (t , cs) = id (t , cs),

where t :: T is any immediate subtree of the tree treated in the current case.
We have two cases, for the two constructors of T . The first case is easy (for
an arbitrary cs :: String):

(parse ◦ pretty) (L, cs)

= {◦}

parse (pretty (L, cs))

= {pretty}

parse (pretty ′ L ++ cs)

= {pretty ′}

parse ("L" ++ cs)

= {++}

parse (’L’ : cs)

= {parse}

(L, cs)

The second case requires somewhat more work, but is still straightfor-
ward. (The use of where here is not syntactically correct, but is used for
stylistic reasons. Just think of it as a postfix let.)

(parse ◦ pretty) (B l r , cs)

= {◦, pretty}

parse (pretty ′ (B l r) ++ cs)

= {pretty ′, ++ associative, ++}

parse (’B’ : pretty ′ l ++ pretty ′ r ++ cs)

14



= {parse}
(B l ′ r ′, cs ′′)

where (l ′, cs ′) = parse (pretty ′ l ++ pretty ′ r ++ cs)
(r ′, cs ′′) = parse cs ′

= {pretty , ◦}
(B l ′ r ′, cs ′′)

where (l ′, cs ′) = (parse ◦ pretty) (l , pretty ′ r ++ cs)
(r ′, cs ′′) = parse cs ′

= {Inductive hypothesis}
(B l ′ r ′, cs ′′)

where (l ′, cs ′) = id (l , pretty ′ r ++ cs)
(r ′, cs ′′) = parse cs ′

= {id , where}
(B l r ′, cs ′′)

where (r ′, cs ′′) = parse (pretty ′ r ++ cs)

= {pretty , ◦}
(B l r ′, cs ′′)

where (r ′, cs ′′) = (parse ◦ pretty) (r , cs)

= {Inductive hypothesis}
(B l r ′, cs ′′)

where (r ′, cs ′′) = id (r , cs)

= {id , where}
(B l r , cs)

Hence we have proved using structural induction that (parse ◦ pretty) (t , cs)
= (t , cs) for all finite, total t :: T and for all cs :: String . Thus we can draw
the conclusion that (1) is satisfied for that kind of input.

Pretty after Parse. We can show that (2) is satisfied in a similar way,
using the fact that all Haskell functions are continuous and hence monotone
with respect to v. In fact, the proof works for arbitrary partial, finite input.
The proof is by a strong form of induction. When proving the property for a
string cs we can assume that it holds for all tails cs ′ of cs , and also all strings
cs ′′ v cs ′. The first case is for a cs :: String satisfying head cs 6∈ {’L’, ’B’}:

(pretty ◦ parse) cs

= {◦}
pretty (parse cs)
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= {parse, head cs 6∈ {’L’, ’B’}}

pretty ⊥

= {pretty}

⊥ :: String

v {⊥ is the least element}

cs

Second case, cs :: String , head cs = ’L’, i.e. cs = ’L’ : cs1 for some
cs1 :: String :

(pretty ◦ parse) (’L’ : cs1)

= {◦, parse}

pretty (L, cs1)

= {pretty}

pretty ′ L ++ cs1

= {pretty ′, ++}

’L’ : cs1

Last case, cs :: String , head cs = ’B’, i.e. cs = ’B’ : cs1 for some (partial
and finite) cs1 :: String :

(pretty ◦ parse) (’B’ : cs1)

= {◦, parse}

pretty (B l r , cs ′′1)
where (l , cs ′1) = parse cs1

(r , cs ′′1) = parse cs ′1
= {pretty , pretty ′, ++ associative}

"B" ++ pretty ′ l ++ pretty ′ r ++ cs ′′1
where (l , cs ′1) = parse cs1

(r , cs ′′1) = parse cs ′1
= {pretty}

"B" ++ pretty ′ l ++ pretty (r , cs ′′1)
where (l , cs ′1) = parse cs1

(r , cs ′′1) = parse cs ′1
= {where, pretty ⊥ = pretty (⊥,⊥), ◦}

"B" ++ pretty ′ l ++ (pretty ◦ parse) cs ′1
where (l , cs ′1) = parse cs1
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v {Inductive hypothesis (see below), monotonicity}

"B" ++ pretty ′ l ++ id cs ′1
where (l , cs ′1) = parse cs1

= {id , pretty , where, pretty ⊥ = pretty (⊥,⊥), ◦}

"B" ++ (pretty ◦ parse) cs1

v {Inductive hypothesis, monotonicity}

"B" ++ id cs1

= {id , ++}

’B’ : cs1

A lemma is required which shows that we can apply the inductive hypothesis
for snd (parse cs1) whenever we can do it for cs1. We omit the proof of the
lemma, which is by strong induction over cs1.

Parse after Pretty, Revisited. If we try to allow partial input in (1)
instead of only total input, then we run into problems, as this counterexample
shows:

(parse ◦ pretty) (⊥, cs)

= {◦, pretty}

parse (pretty ′ ⊥++ cs)

= {pretty ′, ++}

parse ⊥

= {parse}

⊥ :: (T ,String)

6= {(, ) is not strict}

(⊥, cs) :: (T ,String)

We summarise our results so far in a table; we have proved (2) for finite,
partial input and (1) for finite, total input. We have also disproved (1) in
the case of partial input. The case marked with ? is treated in Sect. 5 below.

Total Partial
Finite (2), (1) (2), ¬ (1)
Infinite ? ¬ (1)
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Hence the programs are not correct if we take (1) and (2) plus the type
signatures of pretty and parse as our specification. Instead of refining the
programs to meet this specification we will try to refine the specification.
This approach is in line with our goal from Sect. 1: To prove properties of
programs, without changing them.

5 Tests

As seen above we have to refine our properties, at least (1). To aid us in
finding properties which are valid for partial and infinite input we will test
the properties before we try to prove them.

How do we test infinite input in finite time? An approach which seems
to work fine is to use the approximation lemma [HG01]. For T the function
approx is defined as follows (Nat is a data type for natural numbers):

data Nat = Zero | Succ Nat

approx :: Nat → T → T
approx (Succ n) = λt → case t of

L → L
B l r → B (approx n l) (approx n r)

Note that approx Zero is undefined, i.e. ⊥. Hence approx n t traverses n
levels down into the tree t and replaces everything there by ⊥.

For the special case of trees the approximation lemma states that, for any
t1, t2 :: T ,

t1 = t2 iff ∀n ∈ Natfin . approx n t1 = approx n t2. (3)

Here Natfin stands for the total and finite values of type Nat , i.e. Natfin

corresponds directly to N. If we want to test that two expressions yielding
possibly infinite trees are equal then we can use the right hand side of this
equivalence. Of course we cannot test the equality for all n, but if it is not
valid, then running the test for small values of n should often be enough to
find a counterexample.

Testing equality between lists using take :: Int → [a ] → [a ] and the
take lemma, an analogue to the approximation lemma, is relatively common.
However, the former does not generalise as easily to other data types as the
latter does. The approximation lemma generalises to any type which can
be defined as the least fixpoint of a locally continuous functor [HG01]. This
includes not only all polynomial types, but also much more, like nested and
exponential types.
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Using the approximation lemma we have now reduced testing of infinite
values to testing of finite but partial values. Thus even if we were dealing with
total values only, we would still need to include ⊥ in our tests. Generating
the value ⊥ is easily accomplished:

⊥ :: a
⊥ = error "_|_"

(Note that the same notation is used for the expression that generates a ⊥
as for the value itself.)

The tricky part is testing for equality. If we do not want to use a sep-
arate tool then we necessarily have to use some impure extension, e.g. ex-
ception handling [PJ01]. Furthermore it would be nice if we could perform
these tests in pure code, such as QuickCheck [CH00] properties (see be-
low). This can only be accomplished by using the decidedly unsafe func-
tion unsafePerformIO :: IO a → a [C+03, PJ01]. The resulting function
isBottom :: a → Bool1 has to be used with care; it only detects a ⊥ that re-
sults in an exception. However, that is enough for our purposes, since pattern
match failures, error "..." and undefined all raise exceptions. If isBottom x
terminates properly, then we can be certain that the answer produced (True
or False) is correct.

Using isBottom we define a function that compares two arbitrary finite
trees for equality:

(=̂) :: T → T → Bool
t1 =̂ t2 = case (isBottom t1, isBottom t2) of

(True,True) → True
(False,False) → case (t1, t2) of

(L,L) → True
(B l r ,B l ′ r ′) → l =̂ l ′ ∧ r =̂ r ′

→ False
→ False

Similarly we can define a function (v̂)::T → T → Bool which implements an
approximation of the semantical domain ordering (v). The functions approx ,
(=̂) and (v̂) are prime candidates for generalisation. We have implemented
them using type classes; instances are generated automatically using the
“Scrap Your Boilerplate” approach to generic programming [LPJ03].

1The function isBottom used here is a slight variation on the version implemented by
Andy Gill in the libraries shipped with the GHC Haskell compiler. We have to take care
not to catch e.g. stack overflow exceptions, as these may or may not correspond to bottoms.
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QuickCheck is a library for defining and testing properties of Haskell
functions [CH00]. By using the framework developed above we can now give
QuickCheck implementations of properties (1) and (2):

prop1 n = forAll pair (λp →
approxPair n ((parse ◦ pretty) p) =̂ approxPair n (id p))

prop2 n = forAll string (λcs →
approx n ((pretty ◦ parse) cs) v̂ approx n (id cs))

approxPair n (t , cs) = (approx n t , approx (2 ˆn) cs)

These properties can be read more or less as ordinary set theoretic predicates,
e.g. for prop1 “for all pairs p the equality . . . holds.” The generators pair
and string (defined in Appendix A) ensure that many different finite and
infinite partial values are used for p and cs in the tests. Some values are
never generated, though; see the end of this section.

If we run these tests then we see that prop1 fails almost immediately,
whereas prop2 succeeds all the time. In other words (1) is not satisfied (which
we already knew, see Sect. 4), but on the other hand we can be relatively
certain that (2) is valid.

You might be interested in knowing whether (1) holds for total infinite
input, a case which we have neglected above. We can easily write a test for
such a case:

infiniteTree = B infiniteTree L

propInfiniteTotal n =
approxPair n ((parse ◦ pretty) p) =̂ approxPair n (id p)

where p = (infiniteTree, "")

(The value infiniteTree is a left-infinite tree.) When executing this test we
run into trouble, though; the test does not terminate for any n ∈ Natfin. The
reason is that the second component of the output pair on the left-hand side
is a ⊥ of the non-terminating kind which we cannot detect. This can be seen
by unfolding the expression a few steps:

approxPair n ((parse ◦ pretty) (infiniteTree, ""))

= {Unfold, rearrange slightly}
(approx n (B l r), approx (2ˆn) cs ′′)

where (l , cs ′) = (parse ◦ pretty) (infiniteTree, "L")
(r , cs ′′) = parse cs ′

One of the subexpressions is (parse ◦ pretty) (infiniteTree, "L"), which is
essentially the same expression as the one that we started out with, and cs ′′
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Figure 1: With the left tree called t , the right tree is t ′ = (fst ◦ parse ◦
pretty ′) t .

will not be generated until that subexpression has produced any output in
its second component. The right-hand side does terminate, though, so (1) is
not valid for total, infinite input.

Since prop1 does not terminate for total, infinite trees we have designed
our QuickCheck generators so that they do not generate such values. This is
of course a slight drawback.

6 Properties: Second Try

As noted above (1) is not valid in general. If we inspect what happens when
fst ◦ parse ◦ pretty ′ is applied to a partial tree, then we see that as soon as
a ⊥ is encountered all nodes encountered later in a preorder traversal of the
tree are replaced by ⊥ (see Fig. 1).

We can easily verify that the example in the figure is correct (assuming
that the part represented by the vertical dots is a left-infinite total tree):

t = B (B (B ⊥ infiniteTree) L ) (B L L)
t ′ = B (B (B ⊥ ⊥ ) ⊥) ⊥
propFigure = t ′ =̂ (fst ◦ parse ◦ pretty ′) t

Evaluating propFigure yields True, as expected.
Given this background it is not hard to see that (snd◦parse◦pretty) (t , cs)

= ⊥ whenever the tree t is not total. Furthermore (parse ◦pretty) (t , cs) = ⊥
iff t = ⊥. Using the preceding results we can write a replacement strictify
for id that makes

parse ◦ pretty = strictify :: (T , String) → (T , String) (1’)

a valid refinement of (1) (as we will see below):
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strictify :: (T , a) → (T , a)
strictify (t , a) = t ‘seq ‘ (t ′, tTotal ‘seq ‘ a)

where (t ′, tTotal) = strictify ′ t

If t = ⊥ then ⊥ should be returned, hence the first seq . The helper function
strictify ′, which does the main trunk of the work, returns the strictified tree
in its first component. The second component, which is threaded bottom-
up through the computation, is () whenever the input tree is total, and ⊥
otherwise; hence the second seq . In effect we use the Haskell type () as a
boolean type with ⊥ as falsity and () as truth. It is the threading of this
“boolean,” in conjunction with the sequential nature of seq , which enforces
the preorder traversal and strictification indicated in the figure above:

strictify ′ :: T → (T , ())
strictify ′ L = (L, ())
strictify ′ (B l r) = (B l ′ (lTotal ‘seq ‘ r ′), lTotal ‘seq ‘ rTotal)

where (l ′, lTotal) = strictify ′ l
(r ′, rTotal) = strictify ′ r

Note that if the left subtree l is not total, then the right subtree r should be
replaced by ⊥; hence the use of lTotal ‘seq ‘ r ′ above. The second component
should be () iff both subtrees are total, so we use seq as logical and between
lTotal and rTotal ; a ‘seq ‘ b = () iff a = () and b = () for a, b :: ().

Before we go on to prove (1’), let us test it:

prop ′1 n = forAll pair (λp →
approxPair n ((parse ◦ pretty) p) =̂ approxPair n (strictify p))

This test seems to succeed all the time — a good indication that we are on
the right track.

7 Proofs Using Fixpoint Induction

Now we will prove (1’) and (2) using two different methods, fixpoint induction
(in this section) and the approximation lemma (in Sect. 8). All details will
not be presented, since that would take up too much space.

In this section let ψ, ψi etc. stand for arbitrary types.
To be able to use fixpoint induction [GH05, Sch88] all recursive functions

have to be defined using fix , which is defined by

fixf =
∞⊔
i=0

f i⊥ (4)
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for any continuous function f :: ψ → ψ. (The notation f i stands for f
composed with itself i times.) It is easy to implement fix in Haskell, but
proving that the two definitions are equivalent would take up too much space,
and is omitted:

fix :: (a → a) → a
fix f = f (fix f )

Let P be a chain-complete predicate, i.e. a predicate which is true for the
least upper bound of a chain whenever it is true for all the elements in the
chain. In other words, if P (f i⊥) is true for all i ∈ N and some f ::ψ → ψ, then
we know that P (fix f) is true (we only consider ω-chains). Generalising we
get the following inference rule from ordinary induction over natural numbers
(and some simple domain theory):

P (⊥,⊥, . . . ,⊥)

∀n ∈ N . (P (fn
1 ⊥, fn

2 ⊥, . . . , fn
m⊥) ⇒

P (fn+1
1 ⊥, fn+1

2 ⊥, . . . , fn+1
m ⊥))

P (fix f1, fix f2, . . . , fix fm) (5)

Here m ∈ N and the fi are continuous functions fi :: ψi → ψi. We also have
the following useful variant which follows immediately from the previous one,
assuming that the ψi are function types, ψi = ψ′i → ψ′′i , and that all fi are
strictness-preserving, i.e. if gi is strict then fi gi should be strict as well.

P (⊥,⊥, . . . ,⊥)
∀ strict g1 :: ψ1, g2 :: ψ2, . . . , gm :: ψm .

P (g1, g2, . . . , gm) ⇒ P (f1 g1, f2 g2, . . . , fm gm)

P (fix f1, fix f2, . . . , fix fm) (6)

That is all the theory that we need for now; on to the proofs. Let us
begin by defining variants of our recursive functions using fix :

pretty ′fix :: T → String

pretty ′fix = fix prettystep

prettystep :: (T → String) → T → String

prettystep p L = "L"

prettystep p (B l r) = "B" ++ p l ++ p r

parsefix :: String → (T , String)

parsefix = fix parsestep

parsestep :: (String → (T , String)) → String → (T , String)

parsestep p ′ (’L’ : cs) = (L, cs)

parsestep p ′ (’B’ : cs) = (B l r , cs ′′)

where (l , cs ′) = p ′ cs
(r , cs ′′) = p ′ cs ′
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strictify ′fix :: T → (T , ())

strictify ′fix = fix strictifystep

strictifystep :: (T → (T , ())) → T → (T , ())

strictifystep s L = (L, ())

strictifystep s (B l r) = (B l ′ (lTotal ‘seq ‘ r ′), lTotal ‘seq ‘ rTotal)

where (l ′, lTotal) = s l
(r ′, rTotal) = s r

Of course using these definitions instead of the original ones implies a proof
obligation; we have to show that the two sets of definitions are equivalent
to each other. In a standard domain theoretic setting this would follow
immediately from the interpretation of a recursively defined function. In the
case of Haskell this requires some work, though. The proofs are certainly
possible to perform, but they would lead us too far astray, so we omit them
here.

The properties have to be unrolled to fit the requirements of the inference
rules. To make the properties more readable we define new versions of some
other functions as well:

prettyfix :: (T → String) → (T , String) → String

prettyfix p (t , cs) = p t ++ cs

strictifyfix :: (T → (T , ())) → (T , a) → (T , a)

strictifyfix s (t , a) = t ‘seq ‘ (t ′, tTotal ‘seq ‘ a)

where (t ′, tTotal) = s t

We end up with

P1(p, p
′, s) = (7)

p ′ ◦ prettyfix p = strictifyfix s

and

P2(p, p
′) = (8)

prettyfix p ◦ p ′ v id .

However, we cannot use P1 as it stands since P1(⊥,⊥,⊥) is not true. To see
this, pick an arbitrary cs :: String and a t :: T satisfying t 6= ⊥:

(⊥ ◦ prettyfix ⊥) (t , cs)

= {◦, ⊥}
⊥ :: (T ,String)
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6= {seq , t 6= ⊥, (, ) is not strict}

t ‘seq ‘ (⊥,⊥) :: (T ,String)

= {seq}

t ‘seq ‘ (⊥,⊥ ‘seq ‘ cs) :: (T ,String)

= {where, pattern matching}

t ‘seq ‘ (t ′, tTotal ‘seq ‘ cs) :: (T ,String)
where (t ′, tTotal) = ⊥

= {⊥}

t ‘seq ‘ (t ′, tTotal ‘seq ‘ cs) :: (T ,String)
where (t ′, tTotal) = ⊥ t

=
{
strictifyfix

}
strictifyfix ⊥ (t , cs)

We can still go on by noticing that we are only interested in the property
in the limit and redefining it as

P ′
1(p, p

′, s) = P1(prettystep p, parsestep p ′, strictifystep s), (7’)

i.e. P ′
1(p, p

′, s) is equivalent to

parsestep p ′ ◦ prettyfix (prettystep p) = strictifyfix (strictifystep s). (9)

With P ′
1 we avoid the troublesome base case since P ′

1(⊥,⊥,⊥) is equivalent
to P1(prettystep ⊥, parsestep ⊥, strictifystep ⊥).

Now it is straightforward to verify that P ′
1(⊥,⊥,⊥) and P2(⊥,⊥) are

valid (P ′
1 requires a tedious but straightforward case analysis). It is also easy

to verify that the predicates are chain-complete using general results from
domain theory [Sch88]. As we have already stated above, verifying formally
that P ′

1(fix prettystep , fix parsestep , fix strictifystep) is equivalent to (1’) and
similarly that P2(fix prettystep , fix parsestep) is equivalent to (2) requires more
work and is omitted.

Pretty after Parse. Having formulated the predicates and verified the
base cases we now move on to the main work; the step cases. Let us begin
with P2. Since we do not need the tighter inductive hypothesis of inference
rule (5) we will use inference rule (6); it is easy to verify that prettystep

and parsestep are strictness-preserving. Assume now that P2(p, p
′) is valid

for strict p :: T → String and p ′ :: String → (T , String). We have to show
that P2(prettystep p, parsestep p ′) is valid. After noting that both sides of the
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inequality are distinct from ⊥, take an arbitrary element cs :: String . The
proof is a case analysis on head cs .

First case, head cs 6∈ {’L’, ’B’}:

(prettyfix (prettystep p) ◦ (parsestep p ′)) cs

=
{
◦, parsestep , head cs 6∈ {’L’, ’B’}

}
prettyfix (prettystep p) ⊥

=
{
prettyfix

}
⊥ :: String

v {⊥ is the least element in the domain}

id cs

Second case, head cs = ’L’, i.e. cs = ’L’ : cs1 for some cs1 :: String :

(prettyfix (prettystep p) ◦ (parsestep p ′)) cs

=
{
◦, parsestep , cs = ’L’ : cs1

}
prettyfix (prettystep p) (L, cs1)

=
{
prettyfix

}
prettystep p L ++ cs1

=
{
prettystep , ++, id

}
id cs

Last case, head cs = ’B’, i.e. cs = ’B’ : cs1 for some cs1 :: String :

(prettyfix (prettystep p) ◦ (parsestep p ′)) cs

=
{
◦, parsestep , cs = ’B’ : cs1

}
prettyfix (prettystep p) (B l r , cs ′′1)

where (l , cs ′1) = p ′ cs1

(r , cs ′′1) = p ′ cs ′1
=

{
prettyfix , prettystep , ++ associative

}
"B" ++ p l ++ (p r ++ cs ′′1)

where (l , cs ′1) = p ′ cs1

(r , cs ′′1) = p ′ cs ′1
=

{
prettyfix

}
"B" ++ p l ++ prettyfix p (r , cs ′′1)

where (l , cs ′1) = p ′ cs1

(r , cs ′′1) = p ′ cs ′1
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=
{
where, p strict implies that prettyfix p ⊥ = prettyfix p (⊥,⊥), ◦

}
"B" ++ p l ++ (prettyfix p ◦ p ′) cs ′1

where (l , cs ′1) = p ′ cs1

v {Inductive hypothesis, monotonicity}

"B" ++ p l ++ id cs ′1
where (l , cs ′1) = p ′ cs1

=
{
id , prettyfix , where, p strict, ◦

}
"B" ++ (prettyfix p ◦ p ′) cs1

v {Inductive hypothesis, monotonicity}

"B" ++ id cs1

= {id , ++, id}

id cs

This concludes the proof for P2.

Parse after Pretty. For P ′
1 we will also use inference rule (6); in addition

to prettystep and parsestep it is easy to verify that strictifystep is strictness-
preserving. To verify the step case we have to prove

P ′
1(p0, p

′
0, s0) =⇒ P ′

1(prettystep p0, parsestep p ′0, strictifystep s0) (10)

for all strict p0, p ′0 and s0. With p = prettystep p0, p ′ = parsestep p ′0 and
s = strictifystep s0 this simplifies to

P1(p, p
′, s) =⇒ P1(prettystep p, parsestep p ′, strictifystep s). (11)

The first step of this proof is to note that both sides of the equality in P1 are
distinct from ⊥. The rest of the proof is performed using case analysis, this
time on pair , an arbitrary element in (T , cs).

First case, pair = ⊥:

(parsestep p ′ ◦ prettyfix (prettystep p)) ⊥

=
{
◦, prettyfix , parsestep

}
⊥ :: (T ,String)

=
{
seq , strictifyfix

}
strictifyfix (strictifystep s) ⊥ :: (T ,String)

Second case, pair = (⊥, cs) for an arbitrary cs :: String :
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(parsestep p ′ ◦ prettyfix (prettystep p)) (⊥, cs)

=
{
◦, prettyfix

}
parsestep p ′ (prettystep p ⊥++ cs)

=
{
prettystep , ++, parsestep

}
⊥ :: (T ,String)

=
{
seq , strictifyfix

}
strictifyfix (strictifystep s) (⊥, cs)

Third case, pair = (L, cs) for an arbitrary cs :: String :

(parsestep p ′ ◦ prettyfix (prettystep p)) (L, cs)

=
{
◦, prettyfix

}
parsestep p ′ (prettystep p L ++ cs)

=
{
prettystep , ++, parsestep

}
(L, cs)

= {seq , where}
L ‘seq ‘ (t ′, tTotal ‘seq ‘ cs)

where (t ′, tTotal) = (L, ())

=
{
strictifystep

}
L ‘seq ‘ (t ′, tTotal ‘seq ‘ cs)

where (t ′, tTotal) = strictifystep s L

=
{
strictifyfix

}
strictifyfix (strictifystep s) (L, cs)

Last case, pair = (B l r , cs) for arbitrary subtrees l , r ::T and an arbitrary
cs :: String :

(parsestep p ′ ◦ prettyfix (prettystep p)) (B l r , cs)

=
{
◦, prettyfix

}
parsestep p ′ (prettystep p (B l r) ++ cs)

=
{
prettystep , ++, ++ associative

}
parsestep p ′ (’B’ : p l ++ (p r ++ cs))

=
{
parsestep

}
(B l ′ r ′, cs ′′)

where (l ′, cs ′) = p ′ (p l ++ (p r ++ cs))
(r ′, cs ′′) = p ′ cs ′
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=
{
prettyfix , ◦

}
(B l ′ r ′, cs ′′)

where (l ′, cs ′) = (p ′ ◦ prettyfix p) (l , p r ++ cs)
(r ′, cs ′′) = p ′ cs ′

= {Inductive hypothesis}
(B l ′ r ′, cs ′′)

where (l ′, cs ′) = strictifyfix s (l , p r ++ cs)
(r ′, cs ′′) = p ′ cs ′

=
{
strictifyfix

}
(B l ′ r ′, cs ′′)

where (l ′, cs ′) = l ‘seq ‘ (t ′, tTotal ‘seq ‘ p r ++ cs)
(t ′, tTotal) = s l
(r ′, cs ′′) = p ′ cs ′

= {Simple case analysis on l (⊥ or not ⊥), pattern matching}
(B l ′ r ′, cs ′′)

where (l ′, cs ′) = (l ‘seq ‘ t ′, l ‘seq ‘ tTotal ‘seq ‘ p r ++ cs)
(t ′, tTotal) = s l
(r ′, cs ′′) = p ′ cs ′

= {seq , if l = ⊥ then t ′ = tTotal = ⊥ since s is strict}
(B l ′ r ′, cs ′′)

where (l ′, cs ′) = (t ′, tTotal ‘seq ‘ p r ++ cs)
(t ′, tTotal) = s l
(r ′, cs ′′) = p ′ cs ′

= {where}
(B t ′ r ′, cs ′′)

where (t ′, tTotal) = s l
(r ′, cs ′′) = p ′ (tTotal ‘seq ‘ p r ++ cs)

= {Rename variables}
(B l ′ r ′, cs ′′)

where (l ′, lTotal) = s l
(r ′, cs ′′) = p ′ (lTotal ‘seq ‘ p r ++ cs)

Before continuing we will prove that

(B l ′ r ′, cs ′′)
where (r ′, cs ′′) = p ′ (lTotal ‘seq ‘ p r ++ cs)

=

(B l ′ (lTotal ‘seq ‘ r ′), lTotal ‘seq ‘ rTotal ‘seq ‘ cs)
where (r ′, rTotal) = s r
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using case analysis on lTotal .
First case, lTotal = ⊥:

(B l ′ r ′, cs ′′)
where (r ′, cs ′′) = p ′ (⊥ ‘seq ‘ p r ++ cs)

= {seq}
(B l ′ r ′, cs ′′)

where (r ′, cs ′′) = p ′ ⊥
= {p ′ is strict}

(B l ′ ⊥,⊥)

= {seq , where}
(B l ′ (⊥ ‘seq ‘ r ′),⊥ ‘seq ‘ rTotal ‘seq ‘ cs)

where (r ′, rTotal) = s r

Second case, lTotal = ():

(B l ′ r ′, cs ′′)
where (r ′, cs ′′) = p ′ (() ‘seq ‘ p r ++ cs)

=
{
seq , prettyfix , ◦

}
(B l ′ r ′, cs ′′)

where (r ′, cs ′′) = (p ′ ◦ prettyfix p) (r , cs)

= {Inductive hypothesis}
(B l ′ r ′, cs ′′)

where (r ′, cs ′′) = strictifyfix s (r , cs)

=
{
strictifyfix

}
(B l ′ r ′, cs ′′)

where (r ′, cs ′′) = r ‘seq ‘ (t ′, tTotal ‘seq ‘ cs)
(t ′, tTotal) = s r

= {We can remove r ‘seq ‘ using the same reasoning as for l ‘seq ‘ above}
(B l ′ r ′, cs ′′)

where (r ′, cs ′′) = (t ′, tTotal ‘seq ‘ cs)
(t ′, tTotal) = s r

= {where}
(B l ′ t ′, tTotal ‘seq ‘ cs)

where (t ′, tTotal) = s r

= {Rename variables, seq}
(B l ′ (lTotal ‘seq ‘ r ′), () ‘seq ‘ rTotal ‘seq ‘ cs)

where (r ′, rTotal) = s r

30



Now let us continue with the original proof:

(B l ′ r ′, cs ′′)
where (l ′, lTotal) = s l

(r ′, cs ′′) = p ′ (lTotal ‘seq ‘ p r ++ cs)

= {As shown above}

(B l ′ (lTotal ‘seq ‘ r ′), lTotal ‘seq ‘ rTotal ‘seq ‘ cs)
where (l ′, lTotal) = s l

(r ′, rTotal) = s r

= {where, seq associative}

(t ′, tTotal ‘seq ‘ cs)
where
(t ′, tTotal) = (B l ′ (lTotal ‘seq ‘ r ′), lTotal ‘seq ‘ rTotal)
(l ′, lTotal) = s l
(r ′, rTotal) = s r

=
{
strictifystep , seq

}
B l r ‘seq ‘ (t ′, tTotal ‘seq ‘ cs)

where (t ′, tTotal) = strictifystep s (B l r)

=
{
strictifyfix

}
strictifyfix (strictifystep s) (B l r , cs)

Hence we have shown P1(prettystep p, parsestep p ′, strictifystep s), which means
that we have finished the proof.

8 Proofs Using the Approximation Lemma

Let us now turn to the approximation lemma. This lemma was presented
above in Sect. 5, but we still have a little work to do before we can go to the
proofs.

Pretty after Parse. Any naive attempt to prove (2) using the obvious in-
ductive hypothesis fails. Using the following less obvious reformulated prop-
erty does the trick, though:

∀m ∈ N . ppm v id :: String → String . (12)

Here we use a family of helper functions ppm (m ∈ N):
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ppm cs = pretty ′ t1 ++ pretty ′ t2 ++ . . .++ pretty ′ tm ++ csm

where (t1, cs1) = parse cs
(t2, cs2) = parse cs1

...
(tm, csm) = parse csm−1

(We interpret pp0 as id .) It is straightforward to verify that this property is
equivalent to (2).

Note that we cannot use the approximation lemma directly as it stands,
since the lemma deals with equalities, not inequalities. However, replacing
each = with v in the proof of the approximation lemma in Gibbons’ and
Hutton’s article [GH05, Sect. 4] is enough to verify this variant. We get that,
for all m ∈ N and cs :: String ,

ppm cs v id cs iff

∀n ∈ Natfin . approx n (ppm cs) v approx n (id cs).
(13)

Hence all that we need to do is to prove the last statement above (after
noticing that both ppm and id are distinct from ⊥, for all m ∈ N). We do
that by induction over n, after observing that we can change the order of the
universal quantifiers so that we get

∀n ∈ Natfin . ∀m ∈ N . ∀cs :: String .

approx n (ppm cs) v approx n (id cs), (14)

which is equivalent to the inequalities above.
For lists we have the following variant of approx :

approx :: Nat → [a ] → [a ]
approx (Succ n) = λ(x : xs) → x : approx n xs

Since approx Zero is undefined the statement (14) is trivially true for n =
Zero. Assume now that ∀m ∈ N . ∀cs ::String . approx n (ppm cs) v approx
n (id cs) is true for some n ∈ Natfin. Take an arbitrary m ∈ N. Note that
the property that we want to prove is trivially true for m = 0, so assume
that m ≥ 1. We proceed by case analysis on head cs .

First case, head cs 6∈ {’L’, ’B’}:
approx (Succ n) (ppm cs)

= {parse, where, pretty ′, ++}
approx (Succ n) ⊥

v {⊥ is the least element, monotonicity}
approx (Succ n) (id cs)
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Second case, head cs = ’L’, i.e. cs = ’L’ : cs ′ for some cs ′ :: String :

approx (Succ n) (ppm (’L’ : cs ′))

= {ppm, m ≥ 1}

approx (Succ n) (pretty ′ t1 ++ pretty ′ t2 ++ . . . ++ pretty ′ tm ++ csm)
where (t1, cs1) = parse (’L’ : cs ′)

(t2, cs2) = parse cs1

...
(tm, csm) = parse csm−1

= {parse, where, note that if m = 1 then csm = cs ′}

approx (Succ n) (pretty ′ L ++ pretty ′ t2 ++ . . . ++ pretty ′ tm ++ csm)
where (t2, cs2) = parse cs ′

...
(tm, csm) = parse csm−1

= {pretty ′, ++}

approx (Succ n) (’L’ : pretty ′ t2 ++ . . . ++ pretty ′ tm ++ csm)
where (t2, cs2) = parse cs ′

...
(tm, csm) = parse csm−1

= {approx}

’L’ : approx n (pretty ′ t2 ++ . . . ++ pretty ′ tm ++ csm)
where (t2, cs2) = parse cs ′

...
(tm, csm) = parse csm−1

=
{
ppm−1, m ≥ 1

}
’L’ : approx n (ppm−1 cs ′)

v {Inductive hypothesis, monotonicity}

’L’ : approx n (id cs ′)

= {id , approx}

approx (Succ n) (’L’ : cs ′)

Last case, head cs = ’B’, i.e. cs = ’B’ : cs ′ for some cs ′ :: String :

approx (Succ n) (ppm (’B’ : cs ′))

= {ppm, m ≥ 1}
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approx (Succ n) (pretty ′ t1 ++ pretty ′ t2 ++ . . . ++ pretty ′ tm ++ csm)
where (t1, cs1) = parse (’B’ : cs ′)

(t2, cs2) = parse cs1

...
(tm, csm) = parse csm−1

= {parse, where}

approx (Succ n) (pretty ′ (B l r) ++ pretty ′ t2 ++ . . . ++ pretty ′ tm ++ csm)
where (l , ls) = parse cs ′

(r , rs) = parse ls
(t2, cs2) = parse rs

...
(tm, csm) = parse csm−1

= {pretty ′, ++, ++ associative}

approx (Succ n)
(’B’ : pretty ′ l ++ pretty ′ r ++ pretty ′ t2 ++ . . . ++ pretty ′ tm ++ csm)
where (l , ls) = parse cs ′

(r , rs) = parse ls
(t2, cs2) = parse rs

...
(tm, csm) = parse csm−1

= {approx}

’B’ : approx n
(pretty ′ l ++ pretty ′ r ++ pretty ′ t2 ++ . . . ++ pretty ′ tm ++ csm)

where (l , ls) = parse cs ′

(r , rs) = parse ls
(t2, cs2) = parse rs

...
(tm, csm) = parse csm−1

=
{
ppm+1

}
’B’ : approx n (ppm+1 cs ′)

v {Inductive hypothesis, monotonicity}

’B’ : approx n (id cs ′)

= {id , approx}

approx (Succ n) (’B’ : cs ′)

Hence we have yet again proved (2), this time using the approximation
lemma.
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Parse after Pretty. Let us now turn to (1’). We want to verify that
parse ◦ pretty = strictify :: (T , String) → (T , String) holds. This can be
done using the approximation lemma as given in equivalence (3). To ease
the presentation we will use the following helper function:

approxP :: Nat → (T , a) → (T , a)
approxP n (t , a) = (approx n t , a)

Using this function we can formulate the approximation lemma as

p1 = p2 iff ∀n ∈ Natfin . approxP n p1 = approxP n p2 (15)

for arbitrary pairs p1 , p2 :: (T , ψ), where ψ is an arbitrary type. In our case
ψ = String , p1 = (parse ◦pretty) p and p2 = strictify p for an arbitrary pair
p :: (T , String).

The proof proceeds by induction over n as usual; and as usual we first have
to observe that parse ◦pretty and strictify are both distinct from ⊥. The case
n = Zero is trivial. Now assume that we have proved approxP n ((parse ◦
pretty) p) = approxP n (strictify p) for some n ∈ Natfin and all p ::
(T , String). (All p since we can change the order of the universal quan-
tifiers like we did to arrive at inequality (14).) We prove the corresponding
statement for Succ n by case analysis on p.

First case, p = ⊥:

approxP (Succ n) ((parse ◦ pretty) ⊥)

= {◦, pretty , parse}
approxP (Succ n) ⊥ :: (T ,String)

= {strictify}
approxP (Succ n) (strictify ⊥) :: (T ,String)

Second case, p = (⊥, cs) for an arbitrary cs :: String :

approxP (Succ n) ((parse ◦ pretty) (⊥, cs))

= {◦, pretty , pretty ′, ++, parse}
approxP (Succ n) ⊥ :: (T ,String)

= {seq}
approxP (Succ n) (⊥ ‘seq ‘ (t ′, tTotal ‘seq ‘ cs))

where (t ′, tTotal) = strictify ′ ⊥
= {strictify}

approxP (Succ n) (strictify (⊥, cs))
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Third case, p = (L, cs) for an arbitrary cs :: String :

approxP (Succ n) ((parse ◦ pretty) (L, cs))

= {◦, pretty , pretty ′, ++, parse}
approxP (Succ n) (L, cs)

= {seq}
approxP (Succ n) (L, () ‘seq ‘ cs)

= {where}
approxP (Succ n) (t ′, tTotal ‘seq ‘ cs)

where (t ′, tTotal) = (L, ())

= {strictify ′}
approxP (Succ n) (t ′, tTotal ‘seq ‘ cs)

where (t ′, tTotal) = strictify ′ L

= {seq}
approxP (Succ n) (L ‘seq ‘ (t ′, tTotal ‘seq ‘ cs))

where (t ′, tTotal) = strictify ′ L

= {strictify}
approxP (Succ n) (strictify (L, cs))

Last case, p = (B l r , cs) for arbitrary subtrees l , r :: T and an arbitrary
cs :: String :

approxP (Succ n) ((parse ◦ pretty) (B l r , cs))

= {◦, pretty , pretty ′, ++, ++ associative}
approxP (Succ n) (parse (’B’ : pretty ′ l ++ pretty ′ r ++ cs))

= {parse, pretty , ◦}
approxP (Succ n) (B l ′ r ′, cs ′′)

where (l ′, cs ′) = (parse ◦ pretty) (l , pretty ′ r ++ cs)
(r ′, cs ′′) = parse cs ′

= {approxP , approx}
(B (approx n l ′) (approx n r ′), cs ′′)

where (l ′, cs ′) = (parse ◦ pretty) (l , pretty ′ r ++ cs)
(r ′, cs ′′) = parse cs ′

= {Push approx n through the pairs, turning it into approxP n}
(B l ′ r ′, cs ′′)

where (l ′, cs ′) = approxP n ((parse ◦ pretty) (l , pretty ′ r ++ cs))
(r ′, cs ′′) = approxP n (parse cs ′)
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= {Inductive hypothesis}

(B l ′ r ′, cs ′′)
where (l ′, cs ′) = approxP n (strictify (l , pretty ′ r ++ cs))

(r ′, cs ′′) = approxP n (parse cs ′)

= {strictify}

(B l ′ r ′, cs ′′)
where (l ′, cs ′) = approxP n (l ‘seq ‘ (t ′, tTotal ‘seq ‘ pretty ′ r ++ cs))

(t ′, tTotal) = strictify ′ l
(r ′, cs ′′) = approxP n (parse cs ′)

The proof proceeds by case analysis on l . First case, l = ⊥:

(B l ′ r ′, cs ′′)
where (l ′, cs ′) = approxP n (⊥ ‘seq ‘

(t ′, tTotal ‘seq ‘ pretty ′ r ++ cs))
(t ′, tTotal) = strictify ′ ⊥
(r ′, cs ′′) = approxP n (parse cs ′)

= {seq , approxP}

(B l ′ r ′, cs ′′)
where (l ′, cs ′) = ⊥

(r ′, cs ′′) = approxP n (parse cs ′)

= {Pattern matching, where}

(B ⊥ r ′, cs ′′)
where (r ′, cs ′′) = approxP n (parse ⊥)

= {parse, approxP , pattern matching, where}

(B ⊥ ⊥,⊥) :: (T ,String)

= {approx}

(B (approx n ⊥) (approx n ⊥),⊥) :: (T ,String)

= {approx , approxP}

approxP (Succ n) (B ⊥ ⊥,⊥) :: (T ,String)

= {seq , where}

approxP (Succ n) (t ′, tTotal ‘seq ‘ cs)
where (t ′, tTotal) = (B ⊥ (⊥ ‘seq ‘ r ′),⊥ ‘seq ‘ rTotal)

(r ′, rTotal) = strictify ′ r

= {where, pattern matching, strictify ′}
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approxP (Succ n) (t ′, tTotal ‘seq ‘ cs)
where (t ′, tTotal) = (B l ′ (lTotal ‘seq ‘ r ′), lTotal ‘seq ‘ rTotal)

(l ′, lTotal) = strictify ′ ⊥
(r ′, rTotal) = strictify ′ r

= {strictify ′}

approxP (Succ n) (t ′, tTotal ‘seq ‘ cs)
where (t ′, tTotal) = strictify ′ (B ⊥ r)

= {seq}

approxP (Succ n) (B ⊥ r ‘seq ‘ (t ′, tTotal ‘seq ‘ cs))
where (t ′, tTotal) = strictify ′ (B ⊥ r)

= {strictify}

approxP (Succ n) (strictify (B ⊥ r , cs))

Second case, l = L:

(B l ′ r ′, cs ′′)
where (l ′, cs ′) = approxP n (L ‘seq ‘

(t ′, tTotal ‘seq ‘ pretty ′ r ++ cs))
(t ′, tTotal) = strictify ′ L
(r ′, cs ′′) = approxP n (parse cs ′)

= {seq , strictify ′, where}

(B l ′ r ′, cs ′′)
where (l ′, cs ′) = approxP n (L, () ‘seq ‘ pretty ′ r ++ cs)

(r ′, cs ′′) = approxP n (parse cs ′)

= {seq , approxP , where}

(B (approx n L) r ′, cs ′′)
where (r ′, cs ′′) = approxP n (parse (pretty ′ r ++ cs))

= {pretty , ◦}

(B (approx n L) r ′, cs ′′)
where (r ′, cs ′′) = approxP n ((parse ◦ pretty) (r , cs))

= {Inductive hypothesis}

(B (approx n L) r ′, cs ′′)
where (r ′, cs ′′) = approxP n (strictify (r , cs))

= {approxP and approx are strict in the second argument}

(B (approx n L) (approx n r ′), cs ′′)
where (r ′, cs ′′) = strictify (r , cs)

= {approx , approxP}
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approxP (Succ n) (B L r ′, cs ′′)
where (r ′, cs ′′) = strictify (r , cs)

= {strictify , simple case analysis on r , pattern matching}
approxP (Succ n) (B L r ′, cs ′′)

where (r ′, cs ′′) = (r ‘seq ‘ t ′, r ‘seq ‘ tTotal ‘seq ‘ cs)
(t ′, tTotal) = strictify ′ r

= {where}
approxP (Succ n) (B L (r ‘seq ‘ t ′), r ‘seq ‘ tTotal ‘seq ‘ cs)

where (t ′, tTotal) = strictify ′ r

= {Rename variables}
approxP (Succ n) (B L (r ‘seq ‘ r ′), r ‘seq ‘ rTotal ‘seq ‘ cs)

where (r ′, rTotal) = strictify ′ r

= {seq , r = ⊥ implies that r ′ = rTotal = ⊥}
approxP (Succ n) (B L r ′, rTotal ‘seq ‘ cs)

where (r ′, rTotal) = strictify ′ r

= {where, seq}
approxP (Succ n) (t ′, tTotal ‘seq ‘ cs)

where (t ′, tTotal) = (B L (() ‘seq ‘ r ′), () ‘seq ‘ rTotal)
(r ′, rTotal) = strictify ′ r

= {where, strictify ′}
approxP (Succ n) (t ′, tTotal ‘seq ‘ cs)

where (t ′, tTotal) = (B l ′ (lTotal ‘seq ‘ r ′), lTotal ‘seq ‘ rTotal)
(l ′, lTotal) = strictify ′ L
(r ′, rTotal) = strictify ′ r

= {seq , strictify ′}
approxP (Succ n) (B L r ‘seq ‘ (t ′, tTotal ‘seq ‘ cs))

where (t ′, tTotal) = strictify ′ (B L r)

= {strictify}
approxP (Succ n) (strictify (B L r , cs))

Last case, l = B l1 r1 for arbitrary subtrees l1, r1 :: T :

(B l ′ r ′, cs ′′)
where
(l ′, cs ′) = approxP n (B l1 r1 ‘seq ‘ (t ′, tTotal ‘seq ‘ pretty ′ r ++ cs))
(t ′, tTotal) = strictify ′ (B l1 r1)
(r ′, cs ′′) = approxP n (parse cs ′)

= {seq , strictify ′, where}
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(B l ′ r ′, cs ′′)
where
(l ′, cs ′) = approxP n (B l ′1 (lTotal ‘seq ‘ r ′1),

(lTotal ‘seq ‘ rTotal) ‘seq ‘ pretty ′ r ++ cs)
(l ′1, lTotal) = strictify ′ l1
(r ′1, rTotal) = strictify ′ r1

(r ′, cs ′′) = approxP n (parse cs ′)

= {approxP , where}

(B (approx n (B l ′1 (lTotal ‘seq ‘ r ′1))) r ′, cs ′′)
where
(l ′1, lTotal) = strictify ′ l1
(r ′1, rTotal) = strictify ′ r1

(r ′, cs ′′) = approxP n
(parse ((lTotal ‘seq ‘ rTotal) ‘seq ‘ pretty ′ r ++ cs))

Now we have two cases, depending on whether lTotal ‘seq ‘ rTotal , i.e. snd
(strictify ′ l1) ‘seq ‘ snd (strictify ′ r1), equals ⊥ or not.

First case, lTotal ‘seq ‘ rTotal = ⊥:

(B (approx n (B l ′1 (lTotal ‘seq ‘ r ′1))) r ′, cs ′′)
where (l ′1, lTotal) = strictify ′ l1

(r ′1, rTotal) = strictify ′ r1

(r ′, cs ′′) = approxP n (parse (⊥ ‘seq ‘ pretty ′ r ++ cs))

= {seq , parse, approxP}

(B (approx n (B l ′1 (lTotal ‘seq ‘ r ′1))) r ′, cs ′′)
where (l ′1, lTotal) = strictify ′ l1

(r ′1, rTotal) = strictify ′ r1

(r ′, cs ′′) = ⊥

= {Pattern matching, where}

(B (approx n (B l ′1 (lTotal ‘seq ‘ r ′1))) ⊥,⊥)
where (l ′1, lTotal) = strictify ′ l1

(r ′1, rTotal) = strictify ′ r1

= {approx}

(B (approx n (B l ′1 (lTotal ‘seq ‘ r ′1))) (approx n ⊥),⊥)
where (l ′1, lTotal) = strictify ′ l1

(r ′1, rTotal) = strictify ′ r1

= {approxP}

approxP (Succ n) (B (B l ′1 (lTotal ‘seq ‘ r ′1)) ⊥,⊥)
where (l ′1, lTotal) = strictify ′ l1

(r ′1, rTotal) = strictify ′ r1
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= {Rename variables}
approxP (Succ n) (B (B l ′1 (lTotal ′ ‘seq ‘ r ′1)) ⊥,⊥)

where (l ′1, lTotal ′) = strictify ′ l1
(r ′1, rTotal ′) = strictify ′ r1

= {seq , lTotal ‘seq ‘ rTotal = ⊥, where}
approxP (Succ n)

(B (B l ′1 (lTotal ′ ‘seq ‘ r ′1)) ((lTotal ′ ‘seq ‘ rTotal ′) ‘seq ‘ r ′),
((lTotal ′ ‘seq ‘ rTotal ′) ‘seq ‘ rTotal) ‘seq ‘ cs)

where (l ′1, lTotal ′) = strictify ′ l1
(r ′1, rTotal ′) = strictify ′ r1

(r ′, rTotal) = strictify ′ r

The rest of this case is identical to the final steps of the next case.
Second case, lTotal ‘seq ‘ rTotal = () 6= ⊥:

(B (approx n (B l ′1 (lTotal ‘seq ‘ r ′1))) r ′, cs ′′)
where (l ′1, lTotal) = strictify ′ l1

(r ′1, rTotal) = strictify ′ r1

(r ′, cs ′′) = approxP n (parse (() ‘seq ‘ pretty ′ r ++ cs))

= {seq , pretty , ◦}
(B (approx n (B l ′1 (lTotal ‘seq ‘ r ′1))) r ′, cs ′′)

where (l ′1, lTotal) = strictify ′ l1
(r ′1, rTotal) = strictify ′ r1

(r ′, cs ′′) = approxP n ((parse ◦ pretty) (r , cs))

= {Inductive hypothesis}
(B (approx n (B l ′1 (lTotal ‘seq ‘ r ′1))) r ′, cs ′′)

where (l ′1, lTotal) = strictify ′ l1
(r ′1, rTotal) = strictify ′ r1

(r ′, cs ′′) = approxP n (strictify (r , cs))

= {Push approxP n through the pair, turning it into approx n}
(B (approx n (B l ′1 (lTotal ‘seq ‘ r ′1))) (approx n r ′), cs ′′)

where (l ′1, lTotal) = strictify ′ l1
(r ′1, rTotal) = strictify ′ r1

(r ′, cs ′′) = strictify (r , cs)

= {approx , approxP}
approxP (Succ n) (B (B l ′1 (lTotal ‘seq ‘ r ′1)) r ′, cs ′′)

where (l ′1, lTotal) = strictify ′ l1
(r ′1, rTotal) = strictify ′ r1

(r ′, cs ′′) = strictify (r , cs)

= {strictify , simple case analysis on r , pattern matching}
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approxP (Succ n) (B (B l ′1 (lTotal ‘seq ‘ r ′1)) r ′, cs ′′)
where (l ′1, lTotal) = strictify ′ l1

(r ′1, rTotal) = strictify ′ r1

(r ′, cs ′′) = (r ‘seq ‘ t ′, r ‘seq ‘ tTotal ‘seq ‘ cs)
(t ′, tTotal) = strictify ′ r

= {where}

approxP (Succ n) (B (B l ′1 (lTotal ‘seq ‘ r ′1)) (r ‘seq ‘ t ′),
r ‘seq ‘ tTotal ‘seq ‘ cs)

where (l ′1, lTotal) = strictify ′ l1
(r ′1, rTotal) = strictify ′ r1

(t ′, tTotal) = strictify ′ r

= {Rename variables}

approxP (Succ n) (B (B l ′1 (lTotal ′ ‘seq ‘ r ′1)) (r ‘seq ‘ r ′),
r ‘seq ‘ rTotal ‘seq ‘ cs)

where (l ′1, lTotal ′) = strictify ′ l1
(r ′1, rTotal ′) = strictify ′ r1

(r ′, rTotal) = strictify ′ r

= {seq , r = ⊥ implies that r ′ = rTotal = ⊥}

approxP (Succ n) (B (B l ′1 (lTotal ′ ‘seq ‘ r ′1)) r ′, rTotal ‘seq ‘ cs)
where (l ′1, lTotal ′) = strictify ′ l1

(r ′1, rTotal ′) = strictify ′ r1

(r ′, rTotal) = strictify ′ r

= {seq , lTotal ′ ‘seq ‘ rTotal ′ 6= ⊥, seq associative}

approxP (Succ n)
(B (B l ′1 (lTotal ′ ‘seq ‘ r ′1)) ((lTotal ′ ‘seq ‘ rTotal ′) ‘seq ‘ r ′),
((lTotal ′ ‘seq ‘ rTotal ′) ‘seq ‘ rTotal) ‘seq ‘ cs)

where (l ′1, lTotal ′) = strictify ′ l1
(r ′1, rTotal ′) = strictify ′ r1

(r ′, rTotal) = strictify ′ r

= {where}

approxP (Succ n) (B l ′ (lTotal ‘seq ‘ r ′), (lTotal ‘seq ‘ rTotal) ‘seq ‘ cs)
where (l ′, lTotal) = (B l ′1 (lTotal ′ ‘seq ‘ r ′1), lTotal ′ ‘seq ‘ rTotal ′)

(l ′1, lTotal ′) = strictify ′ l1
(r ′1, rTotal ′) = strictify ′ r1

(r ′, rTotal) = strictify ′ r

= {strictify ′}

approxP (Succ n) (B l ′ (lTotal ‘seq ‘ r ′), (lTotal ‘seq ‘ rTotal) ‘seq ‘ cs)
where (l ′, lTotal) = strictify ′ (B l1 r1)

(r ′, rTotal) = strictify ′ r
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= {where}

approxP (Succ n) (t ′, tTotal ‘seq ‘ cs)
where (t ′, tTotal) = (B l ′ (lTotal ‘seq ‘ r ′), lTotal ‘seq ‘ rTotal)

(l ′, lTotal) = strictify ′ (B l1 r1)
(r ′, rTotal) = strictify ′ r

= {strictify ′}

approxP (Succ n) (t ′, tTotal ‘seq ‘ cs)
where (t ′, tTotal) = strictify ′ (B (B l1 r1) r)

= {seq}

approxP (Succ n) (L ‘seq ‘ (B (B l1 r1) r , tTotal ‘seq ‘ cs))
where (t ′, tTotal) = strictify ′ (B (B l1 r1) r)

= {strictify}

approxP (Succ n) (strictify (B (B l1 r1) r , cs))

Thus we have, yet again, proved (1’).

9 Discussion and Future Work

In this paper we have investigated how different verification methods can
handle partial and infinite values in a simple case study about data conver-
sion. We have used random testing, fixpoint induction and the approximation
lemma.

Testing Using isBottom and approx for testing in the presence of partial
and infinite values is not fool proof but works well in practice. The approach
is not that original; testing using isBottom and take is (indirectly) men-
tioned already in the original QuickCheck paper [CH00]. However, testing
using approx has probably not been done before. Furthermore, the func-
tionality of =̂ and v̂ has not been provided by any (widespread) library.
(Our implementation can be downloaded from the first author’s web page
[Dan05].)

Comparing Proof Methods The two methods used for proving the prop-
erties (1’) and (2) have different qualities. Fixpoint induction required us to
rewrite both the functions and the properties. Furthermore one property
did not hold for the base case, so it had to be rewritten (7’), and proving
the base case required some tedious but straightforward work. On the other
hand, once the initial work had been completed the “actual proofs” were
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comparatively short. The corresponding “actual proofs” were longer when
using the approximation lemma. The reason for this is probably that the
approximation lemma requires that the function approx is “pushed” inside
the expressions to make it possible to apply the inductive hypothesis. For
fixpoint induction that is not necessary. For instance, when proving (1’) us-
ing the approximation lemma we had to go one level further down in the tree
when performing case analysis, than in the corresponding proof using fixpoint
induction. This was in order to be able to use the inductive hypothesis.

Nevertheless, the “actual proofs” are not really what is important. They
mostly consist of performing a case analysis, evaluating both sides of the
(in-) equality being proved as far as possible and then, if the proof is not
finished yet, choosing a new expression to perform case analysis on. The most
important part is really finding the right inductive hypothesis. (Choosing
the right expression for case analysis is also important, but easier.) Finding
the right inductive hypothesis was easier when using fixpoint induction than
when using the approximation lemma. Take the proofs of (2), for instance.
When using fixpoint induction almost no thought was needed to come up with
the inductive hypothesis, whereas when using the approximation lemma we
had to come up with the complex hypothesis based on property (12), the one
involving ppm. The reason was the same as above; approx has to be in the
right position. It is of course possible that easier proofs exist.

Other Proof Methods It is also possible that there are other proof meth-
ods which work better than the ones used here. Coinduction and fusion, two
other methods mentioned in Gibbons’ and Hutton’s tutorial [GH05], might
belong to that category. We have proved (1’) using coinduction. That proof
required a complex generalisation along the lines of (12). We have also tried
to prove (1’) by using fusion. Due to the nature of the programs the stan-
dard fusion method seems inapplicable; a monadic variant is a better fit. The
programs can be transformed into monadic forms (which of course carries ex-
tra proof obligations). Using fold fusion directly fails, but the more general
method based on universal properties seems to work. The proof requires
some rather complicated-looking lemmas which we have not verified, though.
Hence this proof method seems to be the most complicated one to use for this
particular case study. Furthermore the aim when using fusion is typically to
derive the definition of (in this case) strictify from the definitions of parse
and pretty , and the proof required some “eureka” steps which we doubt that
we would have thought of if we had not known exactly what we aimed for.

The alert reader may have noticed that we almost proved (2) already
in Sect. 4. We proved that the property was satisfied for all partial, finite
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input strings using strong induction. However, as may easily be verified, the
predicate used was chain-complete. Hence, since every infinite string is the
least upper bound of some chain of finite strings the property has to be true
also for the infinite strings. Still, taking into account the lemma that we
omitted, this proof is slightly more complicated than the one using fixpoint
induction.

Why bother? Above we have compared different proof techniques in the
case where we allow infinite and partial input. Let us now reflect on whether
one should consider anything but finite, total values. The proofs of (1’)
valid for all inputs were considerably longer than the ones for (1) limited to
finite and total input, especially if one takes into account all work involved
in rewriting the properties and programs. On the other hand, the proof of
(2) using fixpoint induction was arguably easier than the one using ordinary
(strong) induction. Still, it is not hard to see why people often ignore partial
and infinite input.

However, as argued in Sect. 1 we often need to reason about infinite
values. Furthermore, in reality, bottoms do occur; error is used, cases are
left out from case expressions, and sometimes functions do not reach a weak
head normal form even if they are applied to total input (for instance we
have reverse [1 . . ] = ⊥). Another reason for including partial values is that
in our setting of equational reasoning it is easier to use a known identity if the
identity is valid without a precondition stating that the input has to be total.
Of course, proving the identity without this precondition is only meaningful
if the extra work involved is less than the accumulated work needed to verify
the precondition each time the identity is used. In some cases this extra work
may not amount to very much, though. Even if we were to ignore bottoms,
we would still sometimes need to handle infinite values, so we would have to
use methods like those used in this text. In this case the marginal cost for
also including bottoms would be small.

Future Work Another approach is to settle for approximate results by e.g.
assuming that λx → ⊥ is ⊥ when reasoning about programs. These results
would be practically useful; we might get some overly conservative results if
we happened to evaluate seq (λx → ⊥), but nothing worse would happen.
On the other hand, many of the caveats mentioned in Sect. 3 would vanish.
Furthermore most people tend to ignore these issues when doing ordinary
programming, so in a sense an approximate semantics is already in use. The
details of an approximate semantics for Haskell still need to be worked out,
though. We believe that an approach like this will make it easier to scale up
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the methods used in this text to larger programs.
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[LPJ03] Ralf Lämmel and Simon Peyton Jones. Scrap your boilerplate: A
practical design pattern for generic programming. ACM SIGPLAN
Notices, 38(3):26–37, March 2003.

[PJ01] Simon Peyton Jones. Engineering Theories of Software Construc-
tion, volume 180 of NATO Science Series: Computer & Sys-
tems Sciences, chapter Tackling the Awkward Squad: monadic in-
put/output, concurrency, exceptions, and foreign-language calls in
Haskell, pages 47–96. IOS Press, 2001. Updated version available
online at http://research.microsoft.com/~simonpj/.

[PJ03] Simon Peyton Jones, editor. Haskell 98 Language and Libraries,
The Revised Report. Cambridge University Press, 2003.

[San96] D. Sands. Total correctness by local improvement in the transfor-
mation of functional programs. ACM Transactions on Programming
Languages and Systems (TOPLAS), 18(2):175–234, March 1996.

[Sch88] David A. Schmidt. Denotational Semantics: A Methodology for
Language Development. W.C. Brown, Dubuque, Iowa, 1988.

A QuickCheck Generators

The QuickCheck generators used in this text are defined as follows:

tree :: Gen T
tree = frequency [(6, liftM2 B tree tree),

(2, return L),
(1, return ⊥)]
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string :: Gen String
string = frequency [(1, bottomString),

(1, finiteString),
(1, infiniteString),
(3, treeString)]

where
bottomString = liftM2 approx arbitrary infiniteString
finiteString = liftM2 (take ◦ abs) arbitrary infiniteString
infiniteString = liftM2 (:) char infiniteString
treeString = tree >>= return ◦ pretty ′

char :: Gen Char
char = frequency [(10, return ’B’),

(10, return ’L’),
(1, return ’?’),
(1, return ⊥)]

pair :: Gen (T , String)
pair = frequency [(50, liftM2 (, ) tree string),

(1, return ⊥)]

A straightforward Arbitrary instance for Nat (yielding only total, finite val-
ues) is also required.

The generator tree is defined so that the generated trees have a probability
of 1

2
of being finite, and the finite trees have an expected depth of 2.2 We

do not generate any total, infinite trees. The reason is that some of the tests
above do not terminate for such trees, as shown in Sect. 5.

To get a good mix of finite and infinite partial strings the string generator
is split up into four cases. The last case ensures that some strings that
actually represent trees are also included. It would not be a problem to
include total, infinite strings, but we do not want to complicate the definitions
above too much, so they are also omitted.

Finally the pair generator constructs pairs using tree and string , forcing
some pairs to be ⊥.

By using collect we have observed that the actual distributions of gener-
ated values correspond to our expectations.

2Assuming that QuickCheck uses a random number generator that yields independent
values from a uniform distribution.
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Fast and Loose Reasoning is Morally Correct∗

Nils Anders Danielsson Jeremy Gibbons John Hughes

Abstract

We justify reasoning about non-total (partial) functional languages
using methods seemingly only valid for total ones.

Two languages are defined, one total and one partial, with identical
syntax. The semantics of the partial language includes partial and
infinite values and lifted types, including lifted function spaces. A
partial equivalence relation is then defined, the domain of which is the
total subset of the partial language. It is proved that if two closed
terms have the same semantics in the total language, then they have
related semantics in the partial language.

1 Introduction

It is often claimed that functional programs are much easier to reason about
than their imperative counterparts. Functional languages satisfy many pleas-
ing equational laws, such as

curry ◦ uncurry = id , (1)

(fst x, snd x) = x and (2)

fst (x, y) = x, (3)

and many others inspired by category theory. Such laws can be used to per-
form very pleasant proofs of program equality, and are indeed the foundation
of an entire school of program transformation and derivation [Bir87, Mee86,
Mal90, BdBH+91, Jeu90]. There is just one problem. In real programming
languages such as Haskell [PJ03] and ML [MTHM97], they do not hold.

The reason these laws fail is the presence of the undefined value ⊥, and
the fact that, in Haskell, ⊥, λx.⊥ and (⊥,⊥) are all different (violating the

∗This work is partially funded by the Swedish Foundation for Strategic Research as
part of the research programme “Cover — Combining Verification Methods in Software
Development,” and by the Royal Swedish Academy of Sciences.
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first two laws above), while in ML, ⊥, (x,⊥) and (⊥, y) are always the same
(violating the third).

The fact that these laws are invalid does not prevent functional program-
mers from using them when developing programs, whether formally or infor-
mally. Squiggolers happily derive programs from specifications using them,
and then transcribe the programs into Haskell in order to run them, confi-
dent that the programs will correctly implement the specification. Countless
functional programmers happily curry or uncurry functions, confident that
at worst they are changing definedness a little in obscure cases. Yet is this
confidence justified? Reckless use of invalid laws can lead to patently ab-
surd conclusions: for example, in ML, since (x,⊥) = (y,⊥) for any x and
y, we can use the third law above to conclude that x = y, for any x and y.
How do we know that, when transforming programs using laws of this sort,
we do not, for example, transform a correctly terminating program into an
infinitely looping one?

This is the question we address in this paper. We call the unjustified
reasoning with laws of this sort “fast and loose”, and we show, under some
mild and unsurprising conditions, that its conclusions are “morally correct”.
In particular, it is impossible to transform a terminating program into a
looping one. Our results justify the hand reasoning that functional program-
mers already perform, and can be applied in proof checkers and automated
provers to justify ignoring ⊥-cases much of the time, thus simplifying proofs
considerably.

In the next section we give an example showing how it can be burdensome
to keep track of all preconditions when one is only interested in finite and
total values, but is reasoning about a program written in a partial language.
Section 3 is devoted to defining the language that we focus on, its syntax
and two different semantics; one set-theoretic and one domain-theoretic. Sec-
tion 4 briefly discusses partial equivalence relations (PERs), and Section 5
introduces a PER on the domain-theoretic semantics. This PER is used to
model totality. In Section 6 a partial surjective homomorphism from the set-
theoretic semantics to the quotient of the domain-theoretic semantics given
by the PER is exhibited, and in Section 7 we use this homomorphism to prove
our main result; fast and loose reasoning is morally correct. We go back to
our earlier example and show how it fits in with the theory in Section 8.
We also exhibit another example where reasoning directly about the partial
language may be preferable (Section 9). Section 10 recasts the theory for a
strict language, Section 11 discusses related work, and Section 12 concludes
with a discussion of the results and possible future extensions of the theory.

Most proofs needed for the development below are only sketched; full
proofs (around 80 pages) are available from Danielsson’s web page [Dan05].
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2 Propagating preconditions

Let us begin with an example. All code uses Haskell-like syntax, but some
of it should be interpreted as being written in a total language.

First, let us say that we need to prove that the function map (λx.y+x) ◦
reverse :: [Nat ] → [Nat ] has a left inverse reverse ◦map (λx.x− y), perhaps
as an intermediate step in some larger proof. (For a related example, see e.g.
[Gib96].) In a total language we would do it more or less like this:

(reverse ◦map (λx.x− y)) ◦ (map (λx.y + x) ◦ reverse)

= {map f ◦map g = map (f ◦ g), ◦ associative}
reverse ◦map ((λx.x− y) ◦ (λx.y + x)) ◦ reverse

= {(λx.x− y) ◦ (λx.y + x) = id}
reverse ◦map id ◦ reverse

= {map id = id}
reverse ◦ id ◦ reverse

= {id ◦ f = f , ◦ associative}
reverse ◦ reverse

= {reverse ◦ reverse = id}
id .

Note the lemmas used for the proof, especially

(λx.x− y) ◦ (λx.y + x) = id (4)

and

reverse ◦ reverse = id . (5)

Consider now the task of repeating this proof in the context of some
language based on partial functions, such as Haskell. To be concrete, let us
assume that the natural number data type Nat is defined in the usual way,

data Nat = Zero | Succ Nat . (6)

Note that this type contains many properly partial values that do not corre-
spond to any natural number, and also a total but infinite value. Let us also
assume that (+) and (−) are defined by

(+) = fold Succ (7)
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and

(−) = fold pred , (8)

where fold :: (a → a) → a → Nat → a is the fold over natural numbers
(fold s z n replaces all occurrences of Succ in n with s, and Zero with z),
and pred :: Nat → Nat is the predecessor function with pred Zero = Zero.
The other functions and types are all standard [PJ03], which e.g. means that
the list type also contains properly partial and infinite values.

Given these definitions the property proved above is no longer true. The
proof breaks down in various places. More to the point, both lemmas (4)
and (5) fail, and they fail due to both properly partial values,

(Succ Zero + Succ ⊥)− Succ Zero = ⊥ 6= Succ ⊥, (9)

reverse (reverse (Zero : ⊥)) = ⊥ 6= Zero : ⊥, (10)

and infinite ones,

(fix Succ + Zero)− fix Succ = ⊥ 6= Zero, (11)

reverse (reverse (repeat Zero)) = ⊥ 6= repeat Zero. (12)

(Here fix is the fixpoint combinator, i.e. fix Succ is the “infinite” lazy natural
number. The application repeat x yields an infinite list containing only x.)
Note that (4) would also have failed if we had used a fixed-precision integer
type with overflow control. In fact id ◦ f = f also fails since we have lifted
function spaces and id ◦⊥ = λx.⊥ 6= ⊥, but that does not affect this example
since reverse 6= ⊥.

These problems are not surprising, they are the price you pay for partial-
ity. Values that are properly partial and/or infinite have different properties
than their total, finite counterparts. A reasonable solution is to restrict our-
selves to total, finite values. Let us see what the proof looks like then. We
have to η-expand our property, and assume that xs :: [Nat ] is a total, finite
list and that y :: Nat is a total, finite natural number. (Note the terminology
used here: if a list is said to be total, then all elements in the list are assumed
to be total as well, and similarly for finite lists. The concepts of totality and
finiteness are discussed in more detail in Sections 5.3 and 8, respectively.)
We get

((reverse ◦map (λx.x− y)) ◦ (map (λx.y + x) ◦ reverse)) xs

= {map f ◦map g = map (f ◦ g), definition of ◦}
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reverse (map ((λx.x− y) ◦ (λx.y + x)) (reverse xs))

=


• map f xs = map g xs if xs is total and f x = g x for all total x,
• reverse xs is total, finite if xs is,
• ((λx.x− y) ◦ (λx.y + x)) x = id x for total x and total, finite y


reverse (map id (reverse xs))

= {map id = id}
reverse (id (reverse xs))

= {definition of id}
reverse (reverse xs)

= {reverse (reverse xs) = xs for total, finite xs}
xs .

All steps are more or less identical, using similar lemmas, except for the
second step, where two new lemmas are required. How come that step be-
comes so unwieldy? The problem seems to be that, although we know that
((λx.x − y) ◦ (λx.y + x)) = id given total input, and also that xs only con-
tains total natural numbers, we have to propagate this precondition through
reverse and map.

One way of looking at the problem is that the type system used is too
weak. If there were a type for total, finite natural numbers, and similarly
for lists, then the propagation would be handled by the types of reverse and
map. The imaginary total language used for the first proof effectively has
such a type system.

Note that the two versions of the program are written using identical
syntax, and the semantic rules for the total language and the partial language
are probably more or less identical when only total, finite (or even infinite)
values are considered. Does not this imply that we can get the second result
above, with all preconditions, by using the first proof? The answer is more or
less yes, and proving this is what many of the sections below will be devoted
to. In Section 8 we come back to this example and spell out in full detail
what “more or less” means in this case.

3 Language

Now we will define the main language discussed in the text. It is a strongly
typed, monomorphic functional language with recursive (polynomial) types
and their corresponding fold and unfold operators. Having only folds and
unfolds is not a serious limitation; it is e.g. easy to implement primitive
recursion over lists or natural numbers inside the language.
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Since we want our results to be applicable to reasoning about Haskell
programs we include the explicit strictness operator seq, which forces us to
have lifted function spaces in the domain-theoretic semantics given below.
The semantics of seq is defined in Figure 6. We discuss the most important
differences between Haskell and this language in Section 12.

The term syntax of the language, L1, is inductively defined as

t ::= x | t1 t2 |λx.t
| seq | ?
| (,) | fst | snd

| inl | inr | case
| inF | outF | foldF | unfoldF .

(13)

The pairing function (,) can be used in a distfix style, as in (t1, t2). The type
syntax is defined by

σ, τ, γ ::= σ → τ |σ × τ |σ + τ | 1 |µF | νF (14)

and

F, G ::= Id |Kσ |F ×G |F +G. (15)

The letters F and G range over functors; Id is the identity functor and Kσ

is the constant functor with Kσ τ = σ (informally). The functor indices on
in, out, fold and unfold are sometimes omitted below. The types µF and νF
are inductive and coinductive types, respectively. As an example µ(K1 + Id)
is the type of finite natural numbers, and ν(K1 + Id) is the type of natural
numbers extended with infinity. The type constructor → is sometimes used
right associatively, without explicit parentheses.

In order to discuss general recursion we define the language L2 to be L1

extended with

t ::= . . . | fix. (16)

However, whenever fix is not explicitly mentioned, the language discussed is
L1 (or one of the restrictions of L1 introduced below).

We only consider well-typed terms according to the typing rules in Fig-
ure 1. To ease the presentation we also introduce some syntactic sugar for
terms and types, see Figures 2 and 3.

Two different denotational semantics are defined for these languages,
one domain-theoretic (J·K, modelled on languages like Haskell) and one set-
theoretic (〈〈·〉〉, modelled on total languages). The semantic domains for all
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Γ(x) = σ

Γ ` x : σ
Γ ` t1 : σ → τ Γ ` t2 : σ

Γ ` t1 t2 : τ

Γ[x 7→ σ] ` t : τ

Γ ` λx.t : σ → τ

Γ ` seq : σ → τ → τ Γ ` fix : (σ → σ) → σ
Γ ` ? : 1 Γ ` (,) : σ → τ → (σ × τ)
Γ ` fst : (σ × τ) → σ Γ ` snd : (σ × τ) → τ
Γ ` inl : σ → (σ + τ) Γ ` inr : τ → (σ + τ)
Γ ` case : (σ + τ) → (σ → γ) → (τ → γ) → γ
Γ ` inF : F µF → µF Γ ` outF : νF → F νF
Γ ` foldF : (F σ → σ) → µF → σ Γ ` unfoldF : (σ → F σ) → σ → νF

Figure 1: Typing rules for L1 and L2.

◦ 7→ λf g x.f (g x)

Id 7→ λf x.f x

Kσ 7→ λf x.x

F ×G 7→ λf x.seq x (F f (fst x), G f (snd x))

F +G 7→ λf x.case x (inl ◦ F f) (inr ◦G f)

Figure 2: Syntactic sugar for terms.

Id σ 7→ σ

Kτ σ 7→ τ

(F ×G) σ 7→ F σ ×G σ

(F +G) σ 7→ F σ +G σ

Figure 3: Syntactic sugar for types.
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types are defined in Figure 4. We define the semantics of recursive types
by appealing to category-theoretic work [BdM96, FM91]. For instance, the
set-theoretic semantic domain of µF is the codomain of the initial object in
F -Alg(SET). Here SET is the category of sets and total functions, and F -
Alg(SET) is the category of F -algebras (in SET) and homomorphisms between
them. The initial object (which is known to exist given our limitations on F )
is a function inF : F µF → µF (note the codomain). Initiality implies that
for any function f : F A→ A there is a unique function foldF f : µF → A,
satisfying the universal property

∀h : µF → A. h = foldF f ⇔ h ◦ inF = f ◦ F h. (17)

This is how 〈〈fold〉〉 is defined. To define 〈〈unfold〉〉 we go via the final object
in F -Coalg(SET) (the category of F -coalgebras) instead. The semantics of
all terms are given in Figure 6.

The domain-theoretic semantics lives in the category CPO of pointed
complete partial orders (CPOs) and continuous functions. To define JµF K
the category CPO⊥ of CPOs and strict continuous functions is also used. We
want all types in the domain-theoretic semantics to be lifted (like in Haskell).
To model this we lift all functors using L(·), which is defined in Figure 5.

If we were to define JfoldK using the same method as for 〈〈fold〉〉, then that
would restrict its arguments to be strict functions. An explicit fixpoint is used
instead. The construction still satisfies the universal property associated with
fold if all functions involved are strict. For symmetry we also define JunfoldK
using an explicit fixpoint; that does not affect its universality property.

We have been a little sloppy above; we have not defined the action of the
functor Kσ on objects. When working in SET we let Kσ A = 〈〈σ〉〉, and in
CPO and CPO⊥ we let Kσ A = JσK. Otherwise the functors have their usual
meanings.

Note that inF is only defined at type F µF → µF , and outF only at
νF → F νF . However, inF has an inverse which we (ambiguously) denote
by outF , and similarly for outF . We have not included these inverses in
the term language, but that is not a fundamental limitation since outF ∈
JµF → F µF K and inF ∈ JF νF → νF K are given by Jfold (F inF )K and
Junfold (F outF )K, respectively (and similarly for 〈〈·〉〉).

The semantics of fix is, as usual, given by a least fixpoint construction.
We cannot perform such a construction in SET, so the set-theoretic semantics
(which is supposed to model a total language anyway) is only given for L1;
〈〈fix〉〉 is not defined.

Some notes about the notation used: When t is closed we sometimes use
JtK as a shorthand for JtK ρ, and similarly for 〈〈·〉〉. On the semantic side ·⊥ is
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Jσ → τK = 〈JσK → JτK〉⊥ 〈〈σ → τ〉〉 = 〈〈σ〉〉 → 〈〈τ〉〉
Jσ × τK = (JσK× JτK)⊥ 〈〈σ × τ〉〉 = 〈〈σ〉〉 × 〈〈τ〉〉
Jσ + τK = (JσK + JτK)⊥ 〈〈σ + τ〉〉 = 〈〈σ〉〉+ 〈〈τ〉〉

J1K = 1⊥ 〈〈1〉〉 = 1

JµF K = The codomain of the initial object in L(F )-Alg(CPO⊥).

〈〈µF 〉〉 = The codomain of the initial object in F -Alg(SET).

JνF K = The domain of the final object in L(F )-Coalg(CPO).

〈〈νF 〉〉 = The domain of the final object in F -Coalg(SET).

Figure 4: Semantic domains for types.

L(Id) = Id

L(Kσ) = Kσ

L(F ×G) = (L(F )× L(G))⊥
L(F +G) = (L(F ) + L(G))⊥

Figure 5: Lifting of functors.

the lifting operator, and 〈· → ·〉 is the continuous function space constructor.
Furthermore × is cartesian product, and + is separated sum; A+B contains
elements of the form inl(a) with a ∈ A and inr(b) with b ∈ B. The one-point
CPO/set is denoted by 1, with ? as the only element. Since we use lifted
function spaces, we use special notation for lifted function application,

f@x =

{
⊥, f = ⊥,
f x, otherwise.

(18)

Many functions used on the meta-level are not lifted, though, so @ is not
used very much below. Finally note that we are a little sloppy below, in
that we do not write out liftings explicitly; we write (x, y) for a non-bottom
element of (A×B)⊥, for instance.
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JxK ρ = ρ(x) 〈〈x〉〉 ρ = ρ(x)

Jt1t2K ρ = (Jt1K ρ) @ (Jt2K ρ) 〈〈t1t2〉〉 ρ = (〈〈t1〉〉 ρ) (〈〈t2〉〉 ρ)
Jλx.tK ρ = λv. JtK ρ[x 7→ v] 〈〈λx.t〉〉 ρ = λv. 〈〈t〉〉 ρ[x 7→ v]

JseqK = λv1 v2.

{
⊥, v1 = ⊥
v2, otherwise

〈〈seq〉〉 = λv1 v2.v2

JfixK = λf.

∞⊔
i=0

f i@⊥ 〈〈fix〉〉 is not defined.

J?K = ? 〈〈?〉〉 = ?

J(,)K = λv1 v2.(v1, v2) 〈〈(,)〉〉 = λv1 v2.(v1, v2)

JfstK = λv.

{
⊥, v = ⊥
v1, v = (v1, v2)

〈〈fst〉〉 = λ(v1, v2).v1

JsndK = λv.

{
⊥, v = ⊥
v2, v = (v1, v2)

〈〈snd〉〉 = λ(v1, v2).v2

JinlK = λv.inl(v) 〈〈inl〉〉 = λv.inr(v)

JinrK = λv.inl(v) 〈〈inr〉〉 = λv.inr(v)

JcaseK = λv f1 f2.


⊥, v=⊥
f1@v1, v= inl(v1)
f2@v2, v= inr(v2)

〈〈case〉〉 = λv f1 f2.

{
f1 v1, v= inl(v1)
f2 v2, v= inr(v2)

JinF K =
{

The initial object in L(F )-Alg(CPO⊥), viewed as a morphism
in CPO.

〈〈inF 〉〉 =
{

The initial object in F -Alg(SET), viewed as a morphism in
SET.

JoutF K =
{

The final object in L(F )-Coalg(CPO), viewed as a morphism
in CPO.

〈〈outF 〉〉 =
{

The final object in F -Coalg(SET), viewed as a morphism in
SET.

JfoldF K = λf. JfixK (λg.f ◦ JF K g ◦ JoutK)

〈〈foldF 〉〉 = λf.

{
The unique morphism in F -Alg(SET) from 〈〈in〉〉 to f ,
viewed as a morphism in SET.

JunfoldF K = λf. JfixK (λg. JinK ◦ JF K g ◦ f)

〈〈unfoldF 〉〉 = λf.

{
The unique morphism in F -Coalg(SET) from f to 〈〈out〉〉,
viewed as a morphism in SET.

Figure 6: Semantics of well-typed terms, for some context ρ mapping vari-
ables to semantic values.
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4 Partial equivalence relations

In what follows we will use partial equivalence relations, or PERs for short.
A PER on a set S is a symmetric and transitive binary relation on S. For

a PER R on S, and some x ∈ S with xRx, define the equivalence class of x
as

[x]R = { y y ∈ S, xRy } . (19)

(The index R is omitted below.) Note that the equivalence classes partition
dom(R) = { x ∈ S xRx }, the domain of R. Let [R] denote the set of
equivalence classes of R.

For convenience we will use the notation {c} for an arbitrary element x ∈
c, where c is an equivalence class of some PER R ⊆ S2. This definition is of
course ambiguous, but the ambiguity disappears in many contexts. Given the
PER defined in Section 5 we have that [inl({c})] denotes the same equivalence
class no matter which element in c is chosen, for instance.

5 Moral equality

We will now inductively define a family of PERs ∼σ⊆ JσK2 on the domain-
theoretic semantic domains. (The index σ will sometimes be omitted.) The
intention is that if σ does not contain function spaces, then we should have
x ∼σ y iff x and y are total, equal values. For functions we will have f ∼ g
iff f and g map (total) related values to related values. If two values x and
y are related by ∼, then we say that they are morally equal.

Given this family of PERs we can relate the set-theoretic semantic values
with the total values of the domain-theoretic semantics, see Sections 6 and 7.

5.1 Non-recursive types

The PER ∼ is a logical relation, i.e. we have the following definition for
function spaces,

f ∼σ→τ g ⇔ f 6= ⊥ ∧ g 6= ⊥ ∧
∀x, y ∈ JσK . x ∼σ y ⇒ f@x ∼τ g@y.

(20)

We need to ensure that f and g are non-bottom since some of the PERs will
turn out to have ⊥ ∈ dom(∼).

Pairs are related if corresponding components are related,

x ∼σ×τ y ⇔ ∃x1, y1 ∈ JσK , x2, y2 ∈ JτK .
x = (x1, x2) ∧ y = (y1, y2) ∧ x1 ∼σ y1 ∧ x2 ∼τ y2.

(21)
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Similarly, sums are related if they are of the same kind with related compo-
nents,

x ∼σ+τ y ⇔ (∃x′, y′ ∈ JσK . x = inl(x′) ∧ y = inl(y′) ∧ x′ ∼σ y
′)

∨ (∃x′, y′ ∈ JτK . x = inr(x′) ∧ y = inr(y′) ∧ x′ ∼τ y
′) .

(22)

The value ? of the unit type is related to itself and ⊥ is not related to
anything,

x ∼1 y ⇔ x = y = ?. (23)

It is easy to check that what we have so far yields a PER.

5.2 Recursive types

The definition for recursive types is trickier. Consider lists. When should a
list be related to another? Given the intentions above it seems reasonable
for xs to be related to ys whenever they have the same, total list structure
(spine), and elements at corresponding positions are recursively related. In
other words, something like

xs ∼µ(K1+(Kσ×Id)) ys ⇔
(xs = in inl(?) ∧ ys = in inl(?))

∨
(
∃x,y ∈ JσK , xs ′, ys ′ ∈ Jµ(K1 + (Kσ × Id))K .

xs = in inr((x, xs ′)) ∧ ys = in inr((y, ys ′))

∧ x ∼σ y ∧ xs ′ ∼µ(K1+(Kσ×Id)) ys ′
)
.

(24)

There is one problem with this definition; it is recursive, so it is not entirely
clear what it means.

We formalise the intuition embodied in (24) by defining an operator O(F )
for each functor F ,

O(F ) : ℘
(
JµF K2) → ℘

(
JµF K2)

O(F )(X) = { (in a, in b) (a, b) ∈ O′F (F )(X) }
(25)

(where ℘(X) is the power set of X). The helper O′F (G) is defined by

O′F (G) : ℘
(
JµF K2) → ℘

(
JG µF K2)

O′F (Id)(X) = X

O′F (Kσ)(X) = { (x, y) x, y ∈ JσK , x ∼ y }

O′F (F1 × F2)(X) =

{
((a1, b1), (a2, b2))

(a1, a2) ∈ O′F (F1)(X),
(b1, b2) ∈ O′F (F2)(X)

}
O′F (F1 + F2)(X) = { (inl(x′) , inl(y′)) (x′, y′) ∈ O′F (F1)(X) }∪

{ (inr(x′) , inr(y′)) (x′, y′) ∈ O′F (F2)(X) } .

(26)
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The operators are defined for inductive types. However, replacing µF with
νF in the definitions is enough to yield operators suitable for coinductive
types.

Now, note that O(F ) is a monotone operator on the complete lattice
℘
(
JµF K2). This implies that it has both least and greatest fixpoints [Pri02],

which leads to the following definitions,

x ∼µF y ⇔ (x, y) ∈ µO(F ) and (27)

x ∼νF y ⇔ (x, y) ∈ νO(F ) . (28)

These definitions may not be entirely transparent. If we go back to the list
example and expand the definition of O(K1 + (Kσ × Id)) we get

O(K1 + (Kσ × Id))(X) =

{ (in inl(?) , in inl(?)) }∪{
(in inr((x, xs)) ,
in inr((y, ys)))

x, y ∈ JσK , x ∼ y, (xs , ys) ∈ X
}
.

(29)

The least and greatest fixpoints of this operator correspond to our original
aims for ∼µ(K1+(Kσ×Id)) and ∼ν(K1+(Kσ×Id)).

It is still possible to show that what we have defined is actually a PER,
but it takes a little more work. First note the two proof principles given by
the definitions above: induction,

∀X ⊆ JµF K2 . O(F )(X) ⊆ X ⇒ µO(F ) ⊆ X, (30)

and coinduction,

∀X ⊆ JνF K2 . X ⊆ O(F )(X) ⇒ X ⊆ νO(F ) . (31)

Many proofs needed for this text proceed according to the following scheme,
named IIICI below (Induction-Induction-Induction-Coinduction-Induction):

• First induction over the type structure.

• For inductive types, induction according to (30) and then induction
over the functor structure.

• For coinductive types, coinduction according to (31) and then induction
over the functor structure.

Using this scheme we have proved that ∼ is a PER.

61



5.3 Properties

We can prove that ∼ satisfies a number of properties. Before we leave the
subject of recursive types, we note that

in x ∼µF in y ⇔ x ∼F µF y (32)

and

x ∼νF y ⇔ out x ∼F νF out y (33)

hold, as well as the symmetric statements where µF is replaced by νF and
vice versa. This is proved using a method similar to IIICI, but not quite
identical.

Another method similar to IIICI can be used to verify that ∼ satisfies
one of our initial goals: if σ does not contain function spaces, then x ∼σ y
iff x, y ∈ dom(∼σ) and x = y. In fact, the goal was that x and y should be
related iff they were equal, total values. That is easily arranged, though. We
define the set of total values of type τ to be dom(∼τ ). This should correspond
to basic intuition about totality for non-strict functional languages. Note
that sometimes a definition of totality is used where f ∈ Jσ → τK is total iff
f x = ⊥ implies that x = ⊥. That definition is not suitable for non-strict
languages where most semantic domains are not flat. As a simple example,
consider JfstK; we have JfstK ∈ dom(∼), so JfstK is total according to our
definition, but JfstK (⊥,⊥) = ⊥.

It can be proved by induction over the type structure that ∼σ is monotone
when seen as a function ∼σ: JσK2 → 1⊥. We also have (by induction over
the type structure) that ⊥ /∈ dom(∼σ) for almost all types σ. The only
exceptions are given by the grammar

χ ::= νId |µKχ | νKχ. (34)

Note that JχK = { ⊥ } for all these types. The (near-complete) absence of
bottoms in dom(∼) gives us an easy way of showing that related values are
not always equal: JseqK ∼ Jλx.λy.yK (at most types) but JseqK 6= Jλx.λy.yK.
Since this example breaks down when seq is used at type χ → σ → σ, let
L′1 denote the language consisting of all terms from L1 which do not contain
such uses of seq.

By using induction over the term structure instead of the type structure,
and then follow the rest of IIICI, one can prove that the fundamental theorem
of logical relations holds for any term t in L′1: if ρ(x) ∼ ρ′(x) for all free
variables x in a term t, then

JtK ρ ∼ JtK ρ′. (35)
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The fundamental theorem is important because it implies that JtK ∈ dom(∼σ)
for all closed terms t : σ in L′1. Note, however, that JfixK /∈ dom(∼) (at most
types) since Jλx.xK ∈ dom(∼) and Jfix (λx.x)K = ⊥.

6 Partial surjective homomorphism

With the PER defined we can now prove that there is a partial surjective
homomorphism [Fri75] from 〈〈·〉〉 to dom(∼). This means that there is a
partial, surjective function jσ : 〈〈σ〉〉 →̃ [∼σ] for each type σ, which for function
types satisfies

jτ1→τ2 f (jτ1 x) = jτ2 (f x) (36)

whenever f ∈ dom(jτ1→τ2) and x ∈ dom(jτ1). (Here →̃ is the partial function
space constructor and dom(f) denotes the domain of the partial function f .)

However, we need one restriction on the types allowed: for reasons de-
tailed below we must avoid types σ with 〈〈σ〉〉 = ∅. This can be accomplished
by restricting ourselves to types that syntactically contain 1, such as 1×µId
or ν (Id + K1) (proof by induction over type structure). Note that none of
the types χ introduced in Section 5 contain 1. Hence, let us define a further
(final) restricted language L′′1: t ∈ L′′1 iff each subterm of t (including t itself)
has a type that syntactically contains 1.

One can easily extend j to a partial functor

from the category which has types σ as objects and total functions between
the corresponding set-theoretic domains 〈〈σ〉〉 as morphisms

to the category which has types σ as objects and quotients of continuous
functions between the corresponding domain-theoretic domains JσK as
morphisms.

The object part of the functor is the identity. The morphism part is given
by j.

The functions jσ : 〈〈σ〉〉 →̃ [∼σ] are simultaneously proved to be well-
defined and surjective by induction over the type structure plus some other
techniques mentioned further down. The following basic cases are easy,

jσ×τ : 〈〈σ × τ〉〉 →̃ [∼σ×τ ]

jσ×τ (x, y) = [({jσ x} , {jτ y})] ,
(37)

jσ+τ : 〈〈σ + τ〉〉 →̃ [∼σ+τ ]

jσ+τ inl(x) = [inl({jσ x})]
jσ+τ inr(y) = [inr({jτ y})] , and

(38)
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j1 : 〈〈1〉〉 →̃ [∼1]

j1 ? = [?] .
(39)

Note the use of {·} to ease the description of these functions.
It turns out to be hard to come up with a total definition of j for func-

tion spaces; this is why our definition of j is partial. To define the function
jτ1→τ2 : 〈〈τ1 → τ2〉〉 →̃ [∼τ1→τ2 ] we employ a technique originating from Fried-
man [Fri75]: if possible, let jτ1→τ2 f be the element g ∈ [∼τ1→τ2 ] satisfying

∀x ∈ dom(jτ1) . g (jτ1 x) = jτ2 (f x). (40)

If a g exists, then it can be shown to be unique (using surjectivity of jτ1).
If no such g exists, then let jτ1→τ2 f be undefined. To show that jτ1→τ2 is
surjective we need the assumption 〈〈τ2〉〉 6= ∅ mentioned above.1 Note that
this definition makes it easy to prove that j is homomorphic.

For inductive types we use the following definition of jµF ,

jµF : 〈〈µF 〉〉 →̃ [∼µF ]

jµF x = [in {JF,F (out x)}] ,
(41)

where

JF,G : 〈〈G µF 〉〉 →̃ [∼G µF ]

JF,Id x = jµF x

JF,Kσ x = jσ x

JF,G1×G2 (x, y) = [({JF,G1 x} , {JF,G2 y})]
JF,G1+G2 inl(x) = [inl({JF,G1 x})]
JF,G1+G2 inr(y) = [inr({JF,G2 y})] .

(42)

Note the recursive invocation of jµF above. For this to be well-defined we
extend the induction used to prove that j is well-defined and surjective to
lexicographic induction on first the type and then the size of values of induc-
tive type. This size can be defined using the fold operator in the category
SET.

Finally we define j for coinductive types. Since some coinductive values
are infinite we cannot use simple recursion like for inductive types. Instead
we define a total helper function using unfold from the category CPO directly,

j′νF : 〈〈〈νF 〉〉⊥ → JνF K〉
j′νF = unfold

(
J ′F,F ◦ out

)
,

(43)

1Hence our restrictions on L′′
1 are slightly stronger than necessary.
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and then wrap up the result whenever possible,

jνF : 〈〈νF 〉〉 →̃ [∼νF ]

jνF x =

{
[j′νF x] , j′νF x ∈ dom(∼νF )

undefined, otherwise.

(44)

Above we use J ′F,G, defined by

J ′F,G : 〈〈〈G νF 〉〉⊥ → L(G) 〈〈νF 〉〉⊥〉
J ′F,G ⊥ = ⊥
J ′F,Id x = x

J ′F,Kσ
x =

{
{jσ x} , x ∈ dom(jσ)

⊥, otherwise

J ′F,G1×G2
(x, y) = (J ′F,G1

x, J ′F,G2
y)

J ′F,G1+G2
inl(x) = inl

(
J ′F,G1

x
)

J ′F,G1+G2
inr(y) = inr

(
J ′F,G2

y
)
.

(45)

It is straightforward to check that this is a sound definition. Checking sur-
jectivity requires more work. A somewhat subtle application of the generic
approximation lemma [HG01] does the trick, though.

Given the definition of jσ→τ we easily get that j id = [id ] and, whenever
jτ→γ f and jσ→τ g are defined, we have

jσ→γ (f ◦ g) = jτ→γ f ◦ jσ→τ g (46)

(where [f ] ◦ [g] = [f ◦ g]). Hence, as claimed, j is a partial functor between
the categories mentioned above.

7 Main theorem

Now we get to our main theorem. Assume that t is a term in L′′1 with contexts
ρ and ρ′ satisfying

ρ(x) ∈ dom(∼) ∧ j ρ′(x) = [ρ(x)] (47)

for all variables x free in t. Then we have that j (〈〈t〉〉 ρ′) is well-defined and

j (〈〈t〉〉 ρ′) = [JtK ρ] . (48)
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This result can be proved by induction over the structure of t, induction over
the size of values of inductive type and coinduction for coinductive types.
The case where t is an application relies heavily on j being homomorphic.

As a corollary to the main theorem we get, for any two terms t1, t2 : σ in
L′′1 with two pairs of contexts ρ1, ρ

′
1 and ρ2, ρ

′
2 both satisfying the conditions

of (47) (for t1 and t2, respectively), that

〈〈t1〉〉 ρ′1 = 〈〈t2〉〉 ρ′2 ⇒ Jt1K ρ1 ∼ Jt2K ρ2. (49)

In other words, if we can prove that two terms are equal in the world of sets,
then they are morally equal in the world of domains. When formalised like
this the reasoning performed using set-theoretic methods, “fast and loose”
reasoning, is not loose any more.

8 Review of example

After having introduced the main theoretic body, let us now revisit the ex-
ample from Section 2.

We verified that revMap = reverse ◦ map (λx.x − y) is the left inverse
of mapRev = map (λx.y + x) ◦ reverse in a total setting. Let us express
this result using the language introduced in Section 3. The types of the
functions become ListNat → ListNat , where ListNat is the inductive type
µ(K1+(KNat × Id)) of lists of natural numbers, and Nat is the inductive type
µ(K1 + Id). Note also that the functions reverse and map can be expressed
using folds, so the terms belong to L1. Finally note that all types used
contain 1, so the terms belong to L′′1, and we can make full use of the theory.

Our earlier proof in effect showed that

〈〈revMap ◦mapRev〉〉 [y 7→ y′] = 〈〈id〉〉 (50)

for an arbitrary y′ ∈ 〈〈Nat〉〉, which by (49) implies that

JrevMap ◦mapRevK [y 7→ y′′] ∼ListNat→ListNat JidK (51)

whenever y′′ ∈ dom(∼Nat) and [y′′] = j y′ for some y′ ∈ 〈〈Nat〉〉. By the fun-
damental theorem (35) and the main theorem (48) we have that JtK satisfies
the conditions for y′′ for any closed term t ∈ L′′1 of type Nat . This includes
all total, finite natural numbers.

It remains to interpret ∼ListNat→ListNat . Denote the left hand side of (51)
by f . Since f 6= ⊥ and id 6= ⊥ the equation implies that f@xs ∼ListNat

ys whenever xs ∼ListNat ys . By using the fact (mentioned in Section 5.3)
that xs ∼ListNat ys iff xs ∈ dom(∼ListNat) and xs = ys we can restate the
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equation as f@xs = xs whenever xs ∈ dom(∼ListNat). Hence we have arrived
at the statement proved by the more elaborate proof in Section 2, if xs ∈
dom(∼ListNat) means the same as “xs is total and finite”.

We defined totality to mean “related according to ∼” in Section 5.3, so
by definition xs is total. We have not defined finiteness, though. However,
with any reasonable definition we can be certain that x ∈ dom(∼σ) is finite
if σ does not contain function spaces or coinductive types; in the absence of
such types we can define a function sizeσ ∈ dom(∼σ) → N which has the
property that size x′ < size x whenever x′ is a structurally smaller part of
x, such as with x = inl(x′) or x = in (x′, x′′). In fact, we used a similar
function in order to justify the definition of jµF (41).

9 Partial reasoning is sometimes preferable

This section discusses an example of a different kind from the one given
in Section 2; an example where partial reasoning (i.e. reasoning using the
domain-theoretic semantics directly) seems to be more efficient than total
reasoning.

We define two functions sums and diffs , both of type ListNat → ListNat ,
with the inductive types ListNat and Nat defined just like in Section 8. The
function sums takes a list of numbers and calculates their running sum, and
diffs performs the left inverse operation, along the lines of

sums [3, 1, 4, 1, 5] = [3, 4, 8, 9, 14] and (52)

diffs [3, 4, 8, 9, 14] = [3, 1, 4, 1, 5]. (53)

(Using standard syntactic sugar for lists and natural numbers.) The aim is
to prove that

〈〈diffs ◦ sums〉〉 = id . (54)

We do that in Section 9.1. Alternatively we can implement the functions in
L2 and prove that

Jdiffs ◦ sumsK xs = xs (55)

for all total, finite lists xs ∈ JListNatK containing total, finite natural num-
bers. That is done in Section 9.2. We then compare the experiences in
Section 9.3.
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9.1 Using total reasoning

First let us implement the functions in L′′1. To make the development easier
to follow we use some syntax borrowed from Haskell. We also use the function
foldr , modelled on its Haskell namesake:

foldr : (σ → (τ → τ)) → τ → µ(K1 + (Kσ × Id)) → τ

foldr f x = foldK1+(Kσ×Id) (λy.case y (λ .x) (λp.f (fst p) (snd p))) .
(56)

The following is a simple, albeit inefficient, recursive implementation of
sums :

sums : ListNat → ListNat

sums = foldr add [ ],
(57)

where

add : Nat → ListNat → ListNat

add x ys = x : map (λy.x+ y) ys .
(58)

Here (+) and (−) (used below) are implemented as folds, in a manner anal-
ogous to (7) and (8) in Section 2. The function map can be implemented
using foldr ,

map : (σ → τ) → µ(K1 + (Kσ × Id)) → µ(K1 + (Kτ × Id))

map f = foldr (λx ys .f x : ys) [ ].
(59)

The definition of diffs uses similar techniques:

diffs : ListNat → ListNat

diffs = foldr sub [ ],
(60)

where

sub : Nat → ListNat → ListNat

sub x ys = x : toHead (λy.y − x) ys .
(61)

The helper function toHead applies a function to the first element of a non-
empty list, and leaves empty lists unchanged:

toHead : (Nat → Nat) → ListNat → ListNat

toHead f (y : ys) = f y : ys

toHead f [ ] = [ ].

(62)
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Now let us prove (54). We can use fold fusion [BdM96],

g ◦ foldr f e = foldr f ′ e′

⇐ ∀x, y. g (f x y) = f ′ x (g y) ∧ g e = e′.
(63)

(For simplicity we do not write out the semantic brackets 〈〈·〉〉, or any con-
texts.) We have

diffs ◦ sums = id

⇔ {definition of sums , id = foldr (:) [ ]}
diffs ◦ foldr add [ ] = foldr (:) [ ]

⇐ {fold fusion}
diffs [ ] = [ ] ∧
∀x, ys . diffs (add x ys) = x : diffs ys .

The first conjunct is trivial; for the second we have

diffs (add x ys)

= {definition of add}
diffs (x : map (λy.x+ y) ys)

= {definition of diffs , semantics of foldr}
sub x (diffs (map (λy.x+ y) ys))

= {definition of sub}
x : toHead (λy.y − x) (diffs (map (λy.x+ y) ys))

= {lemma (see below), definition of ◦}
x : toHead (λy.y − x) (toHead (λy.x+ y) (diffs ys))

= {toHead f ◦ toHead g = toHead (f ◦ g), definition of ◦}
x : toHead ((λy.y − x) ◦ (λy.x+ y)) (diffs ys)

= {(λy.y − x) ◦ (λy.x+ y) = id}
x : toHead id (diffs ys)

= {toHead id = id}
x : id (diffs ys)

= {definition of id}
x : diffs ys .

To prove the lemma

diffs ◦map (λy.x+ y) = toHead (λy.x+ y) ◦ diffs (64)
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we use fold-map fusion [BdM96],

foldr f e ◦map g = foldr (f ◦ g) e. (65)

We have

diffs ◦map (λy.x+ y)

= {definition of diffs}
foldr sub [ ] ◦map (λy.x+ y)

= {fold-map fusion}
foldr (sub ◦ (λy.x+ y)) [ ]

= {fold fusion, see below}
toHead (λy.x+ y) ◦ foldr sub [ ]

= {definition of diffs}
toHead (λy.x+ y) ◦ diffs .

To finish up we have to verify that the preconditions for fold fusion are
satisfied above,

toHead (λy.x+ y) [ ] = [ ] (66)

and

∀y, ys . toHead (λy.x+ y) (sub y ys) =

(sub ◦ (λy.x+ y)) y (toHead (λy.x+ y) ys).
(67)

The first one is yet again trivial; for the second one we have

toHead (λy.x+ y) (sub y ys)

= {definition of sub}
toHead (λy.x+ y) (y : toHead (λz.z − y) ys)

= {definition of toHead}
x+ y : toHead (λz.z − y) ys

= {λz.z − y = (λz.z − (x+ y)) ◦ (λy.x+ y)}
x+ y : toHead ((λz.z − (x+ y)) ◦ (λy.x+ y)) ys

= {toHead f ◦ toHead g = toHead (f ◦ g) , definition of ◦}
x+ y : toHead (λz.z − (x+ y)) (toHead (λy.x+ y) ys)

= {definition of sub}
sub (x+ y) (toHead (λy.x+ y) ys)

= {definition of ◦}
(sub ◦ (λy.x+ y)) y (toHead (λy.x+ y) ys).
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9.2 Using partial reasoning

Let us now see what we can accomplish when we are not restricted to the lim-
itations of a total language. Yet again we borrow some syntax from Haskell;
most notably we do not use fix directly, but define functions using recursive
equations instead.

The definitions above used structural recursion. The programs below
instead use structural corecursion, as captured by the function unfoldr , which
is based on the standard unfold for lists as given by the Haskell Report [PJ03]:

unfoldr : (τ → (1 + (σ × τ))) → τ → µ(K1 + (Kσ × Id))

unfoldr f b = case (f b) (λ .[ ]) (λp.fst p : unfoldr f (snd p)).
(68)

Note that we cannot use unfold here, since it has the wrong type. We can
write unfoldr with the aid of fix, though. In total languages inductive and
coinductive types cannot easily be mixed; we do not have the same problem
in partial languages.

The corecursive definition of sums ,

sums : ListNat → ListNat

sums xs = unfoldr next (0, xs),
(69)

with helper next ,

next : (Nat × ListNat) → (1 + (Nat × (Nat × ListNat)))

next (e, [ ]) = inl ?

next (e, x : xs) = inr (e+ x, (e+ x, xs)),

(70)

should be just as easy to follow as the recursive one, if not easier. Here we
have used the same definitions of (+) and (−) as above, and 0 is shorthand
for in (inl ?). The definition of diffs ,

diffs : ListNat → ListNat

diffs xs = unfoldr step (0, xs),
(71)

with step,

step : (Nat × ListNat) → (1 + (Nat × (Nat × ListNat))

step (e, [ ]) = inl ?

step (e, x : xs) = inr (x− e, (x, xs)),

(72)

is arguably more natural than the previous one.
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Now we can prove (55) for all total lists containing total, finite natural
numbers; we do not need to restrict ourselves to finite lists. To do that we
use the approximation lemma [HG01],

xs = ys ⇔ ∀n ∈ N. approx n xs = approx n ys , (73)

where the function approx is defined by

approx : N → Jµ(K1 + (Kσ × Id))K → Jµ(K1 + (Kσ × Id))K
approx 0 = ⊥
approx (n+ 1) [ ] = [ ]

approx (n+ 1) (x : xs) = x : approx n xs .

(74)

Note that this definition takes place on the meta-level, since the natural
numbers N do not correspond to any type in our language. (Note also that,
just as above, we do not write out semantic brackets J·K or contexts.)

We have the following:

∀ total xs containing total, finite numbers.

(diffs ◦ sums) xs = xs

⇔ {approximation lemma}
∀ total xs containing total, finite numbers.

∀n ∈ N. approx n ((diffs ◦ sums) xs) = approx n xs

⇔ {predicate logic}
∀n ∈ N. ∀ total xs containing total, finite numbers.

approx n ((diffs ◦ sums) xs) = approx n xs

⇔ {definition of diffs , sums and ◦}
∀n ∈ N. ∀ total xs containing total, finite numbers.

approx n (unfoldr step (0, unfoldr next (0, xs))) = approx n xs

⇐ {generalise, 0 is total and finite}
∀n ∈ N. ∀ total xs containing total, finite numbers.

∀ total and finite y.

approx n (unfoldr step (y, unfoldr next (y, xs))) = approx n xs .

We proceed by induction on the natural number n. The n = 0 case is
trivial. For n = k + 1 we have two cases, xs = [ ] and xs = z : zs (with z
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being a total, finite natural number etc.). The first case is easy,

approx (k + 1) (unfoldr step (y, unfoldr next (y, [ ])))

= {definition of unfoldr and next}
approx (k + 1) (unfoldr step (y, [ ]))

= {definition of unfoldr and step}
approx (k + 1) [ ],

whereas the second one requires a little more work:

approx (k + 1) (unfoldr step (y, unfoldr next (y, z : zs)))

= {definition of unfoldr and next}
approx (k + 1) (unfoldr step (y, y + z : unfoldr next (y + z, zs)))

= {definition of unfoldr and step}
approx (k + 1) ((y+z)−y : unfoldr step (y+z, unfoldr next (y+z, zs)))

= {(y + z)− y = z for z, y total and finite}
approx (k + 1) (z : unfoldr step (y + z, unfoldr next (y + z, zs)))

= {definition of approx}
z : approx k (unfoldr step (y + z, unfoldr next (y + z, zs)))

= {inductive hypothesis, y + z is total and finite}
z : approx k zs

= {definition of approx}
approx (k + 1) (z : zs).

9.3 Discussion

The last proof above, based on reasoning using domain-theoretic methods, is
clearly more concise than the previous one (even if we take into account that
we were somewhat more detailed in the first one). It also proves a stronger
result since it is not limited to finite lists.

When we compare to the example in Section 2 we see that we were fortu-
nate not to have to explicitly propagate any preconditions through functions
in the domain-theoretic proof here. Notice especially the third step in the
last case above. The variables y and z were assumed to be finite and total,
and hence the lemma (y + z)− y = z could immediately be applied.

There is of course the possibility that the set-theoretic implementation
and proof are unnecessarily complex. Note for instance that the domain-
theoretic variants work equally well in the set-theoretic world, if we go for
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coinductive instead of inductive lists, and replace the approximation lemma
with the take lemma [HG01]. Using such techniques in a sense leads to more
robust results, since they never require preconditions of the kind above to be
propagated manually.

However, since inductive and coinductive types are not easily mixed we
cannot always go this way. If we e.g. want to process the result of sums using
a fold, we cannot use coinductive lists. In general we cannot use hylomor-
phisms [MFP91], unfolds followed by folds, in a total setting. If we want or
need to use a hylomorphism, then we have to use a partial language.

10 Strict languages

We can treat strict languages using the framework developed so far; at least
the somewhat odd language introduced below. For simplicity we reuse the
previously given set-theoretic semantics, and also all of the domain-theoretic
semantics, except for one rule, the one for application.

More explicitly, we define the domain-theoretic, strict semantics J·K⊥ by

JσK⊥ = JσK (75)

for all types. For terms we let application be strict,

Jt1t2K⊥ ρ =

{
(Jt1K⊥ ρ) @ (Jt2K⊥ ρ) , Jt2K⊥ ρ 6= ⊥,
⊥, otherwise.

(76)

Abstractions are treated just as before,

Jλx.tK⊥ ρ = λv. JtK⊥ ρ[x 7→ v] , (77)

and whenever t is not an application or abstraction we let

JtK⊥ ρ = JtK ρ. (78)

We then define a syntactic translation ∗ on L1 with the intention of prov-
ing that JtK⊥ ρ = Jt∗K ρ. The translation is as follows,

t∗ =


seq t2

∗ (t1
∗ t2

∗), t = t1 t2,

λx.t1
∗, t = λx.t1,

t, otherwise,

(79)

and the desired property follows easily by induction over the structure of
terms. It is also easy to prove that 〈〈t〉〉 ρ = 〈〈t∗〉〉 ρ.

Given these properties we can easily prove the variants of the main the-
orem (48) and its corollary (49) that result from replacing J·K with J·K⊥.
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11 Related work

The notion of totality used above is very similar to that used by Scott [Sco76].
Aczel’s interpretation of Martin-Löf type theory [Acz77] is also based on
similar ideas, but types are modelled as predicates instead of PERs. That
work has been extended by e.g. Smith [Smi84], who interprets a polymorphic
variant of Martin-Löf type theory in an untyped language which shares many
properties with our language L2; he does not consider coinductive types or
seq, though. Beeson [Bee82] considers a variant of Martin-Löf type theory
with W -types. W -types can be used to model strictly positive inductive
and coinductive types [Dyb97, AAG]. Modelling coinductive types can also
be done in other ways [Hal87], and the standard trick of coding non-strict
evaluation using function spaces (force and delay) should also be applicable.
Furthermore it seems as if Per Martin-Löf, in unpublished work, considered
lifted function spaces in a setting similar to [Smi84].

The method we use to relate the various semantic models is basically that
of Friedman [Fri75]; his method is more abstract, but defined for a language
with only base types, natural numbers and functions.

There is a vast body of text written on the subject of Aczel interpreta-
tions, PER models of types, and so on, and some results may be known as
folklore without having been published. This text can be seen as a summary
of some results, most of them previously known in one form or another, that
we consider important for reasoning about functional programs. Furthermore
we apply the ideas to the problem of reasoning about programs, instead of
using them only to interpret one theory in another. Others have made similar
attempts, e.g. [Dyb85].

12 Discussion and future work

We have justified reasoning about functional languages containing partial
and infinite values and lifted types, including lifted functions, using total
methods.

It should be clear from the examples above that using total methods can
sometimes be cheaper than partial ones, and sometimes more expensive. We
have not performed any quantitative measurements, so we cannot judge the
relative frequency of these two outcomes. One reasonable conclusion is that
it would be good if total and partial methods could be mixed without large
overheads. We have not experimented with that, but can still make some
remarks.

First it should be noted that ∼ is not a congruence. We can still use an
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established fact like x ∼ y by translating the statement into a form using
preconditions and equality, like we did in Section 8. This translation is easy,
but may result in many nontrivial preconditions, perhaps more preconditions
than partial reasoning would lead to. When this is not the case it seems as
if using total reasoning in some leafs of a proof, and then partial reasoning
on the top-level, should work out nicely.

Another observation is that, even if some term t is written in a partial
style (using fix), we may still have JtK ∈ dom(∼). As an example this would
be the case if we implemented foldr (see Section 9.1) using fix instead of fold.
Hence, if we explicitly prove that JtK ∈ dom(∼) we can then use t in a total
setting. This proof may be expensive, but enables us to use total reasoning
on the top-level, with partial reasoning in some of the leafs.

Now on to other issues. An obvious question is whether one can extend
the results to more advanced languages incorporating polymorphism or type
constructors. Adding polymorphism would give us an easy way to transform
free theorems [Rey83, Wad89] from the set-theoretic side (well, perhaps not
set-theoretic [Rey84]) to the domain-theoretic one. It should be interesting to
compare those results to other work involving free theorems and seq [JV04].

However, the main motivation for going to a more advanced type system is
that we want the results to be applicable to Haskell; matching more features
of Haskell’s type system is of course important for that goal. Still, the current
results should be sufficient to reason about monomorphic Haskell programs.
There is one important caveat to this statement, though. Haskell uses the
sums-of-products style of data type definitions. When simulating such defi-
nitions using binary type constructors extra bottoms are introduced. As an
example, Jµ(K1 + Id)K contains the different values in inl(⊥) and in inl(?);
the Haskell data type Nat from Section 2 does not contain an analogue of
in inl(⊥), since the constructor Zero is nullary. One solution to this problem
is to restrict the types used on the Haskell side to analogues of those available
in L′′1. It may also be possible to provide a syntactic translation, using seq,
similarly to our treatment of strict languages in Section 10. Finally there
is of course the hard way out; reworking the theory using sums-of-products
style data types.

Acknowledgements

Thanks to Thierry Coquand and Peter Dybjer for pointing out related work
and giving us feedback. Thanks also to Koen Claessen, Jörgen Gustavsson,
Patrik Jansson, Ulf Norell, K. V. S. Prasad, David Sands and Josef Sven-
ningsson for participating in discussions and/or giving feedback, and once

76



more to Patrik for proof-reading various drafts.

References

[AAG] Michael Abbott, Thorsten Altenkirch, and Neil Ghani. Contain-
ers – constructing strictly positive types. To appear in Theoret-
ical Computer Science.

[Acz77] Peter Aczel. The strength of Martin-Löf’s intuitionistic type the-
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