------------------------------------------------------------------------
-- A correct implementation of tree sort
------------------------------------------------------------------------

{-# OPTIONS --without-K #-}

-- The algorithm and the treatment of ordering information is taken
-- from Conor McBride's talk "Pivotal pragmatism".

-- The module is parametrised by a total relation.

open import Prelude hiding (id; _∘_; _≤_; lower)

module Tree-sort.Full
  {A : Set}
  (le : A  A  Set)
  (total :  x y  le x y  le y x)
  where

open import Bag-equivalence using () renaming (Any to AnyL)
open import Equality.Propositional

import Bijection
open Bijection equality-with-J using (_↔_)
import Function-universe
open Function-universe equality-with-J hiding (Kind; module Kind)

------------------------------------------------------------------------
-- Extending the order with new minimum and maximum elements

-- A extended with a new minimum and maximum.

data Extended : Set where
  min max : Extended
  [_]     : (x : A)  Extended

infix 4 _≤_

_≤_ : Extended  Extended  Set
min    y     = 
[ x ]  [ y ] = le x y
x      max   = 
_      _     = 

-- A pair of ordering constraints (written as a record type to aid
-- type inference).

infix 4 _,_

record _≤[_]≤_ (l : Extended) (x : A) (u : Extended) : Set where
  constructor _,_
  field
    lower : l  [ x ]
    upper : [ x ]  u

------------------------------------------------------------------------
-- Ordered lists

data Ordered-list (l u : Extended) : Set where
  nil  : (l≤u : l  u)  Ordered-list l u
  cons : (x : A) (xs : Ordered-list [ x ] u) (l≤x : l  [ x ]) 
         Ordered-list l u

-- Conversion to ordinary lists.

to-list :  {l u}  Ordered-list l u  List A
to-list (nil l≤u)       = []
to-list (cons x xs l≤x) = x  to-list xs

------------------------------------------------------------------------
-- Unbalanced binary search trees

infix 5 node

syntax node x lx xu = lx -[ x ]- xu

data Search-tree (l u : Extended) : Set where
  leaf : (l≤u : l  u)  Search-tree l u
  node : (x : A) (lx : Search-tree l [ x ]) (xu : Search-tree [ x ] u) 
         Search-tree l u

-- Any.

AnyT :  {l u}  (A  Set)  Search-tree l u  Set
AnyT P (leaf _)     = 
AnyT P (node x l r) = AnyT P l  P x  AnyT P r

------------------------------------------------------------------------
-- An ad-hoc universe consisting of lists, ordered lists and search
-- trees

-- The purpose of this universe is to allow overloading of Any, _∈_
-- and _≈-bag_.

-- Codes.

data Kind : Set where
  list ordered-list search-tree : Kind

-- Index type.
--
-- Note that Agda infers values of type ⊤ automatically.

Index : Kind  Set
Index list = 
Index _    = Extended

-- Interpretation.

⟦_⟧ : (k : Kind)  (Index k  Index k  Set)
 list          _ _ = List A
 ordered-list  l u = Ordered-list l u
 search-tree   l u = Search-tree l u

-- Any.

Any :  {k l u}  (A  Set)  ( k  l u  Set)
Any {list}         = AnyL
Any {ordered-list} = λ P  AnyL P  to-list
Any {search-tree}  = AnyT

-- Membership.

infix 4 _∈_

_∈_ :  {k l u}  A   k  l u  Set
x  xs = Any  y  x  y) xs

-- Bag equivalence.

infix 4 _≈-bag_

_≈-bag_ :  {k₁ k₂ l₁ u₁ l₂ u₂}   k₁  l₁ u₁   k₂  l₂ u₂  Set
xs ≈-bag ys =  z  z  xs  z  ys

------------------------------------------------------------------------
-- Singleton trees

singleton :  {l u} (x : A)  l ≤[ x ]≤ u  Search-tree l u
singleton x (l≤x , x≤u) = leaf l≤x -[ x ]- leaf x≤u

-- Any lemma for singleton.

Any-singleton :  (P : A  Set) {l u x} (l≤x≤u : l ≤[ x ]≤ u) 
                Any P (singleton x l≤x≤u)  P x
Any-singleton P {x = x} l≤x≤u =
  Any P (singleton x l≤x≤u)  ↔⟨⟩
    P x                  ↔⟨ ⊎-left-identity 
  P x                      ↔⟨ ⊎-right-identity 
  P x                        

------------------------------------------------------------------------
-- Insertion into a search tree

insert :  {l u} (x : A)  Search-tree l u  l ≤[ x ]≤ u 
         Search-tree l u
insert x (leaf _)        l≤x≤u       = singleton x l≤x≤u
insert x (ly -[ y ]- yu) (l≤x , x≤u) with total x y
... | inj₁ x≤y = insert x ly (l≤x , x≤y) -[ y ]- yu
... | inj₂ y≤x = ly -[ y ]- insert x yu (y≤x , x≤u)

-- Any lemma for insert.

Any-insert :  (P : A  Set) {l u} x t (l≤x≤u : l ≤[ x ]≤ u) 
             Any P (insert x t l≤x≤u)  P x  Any P t
Any-insert P {l} {u} x (leaf l≤u) l≤x≤u =
  Any P (singleton x l≤x≤u)               ↔⟨ Any-singleton P l≤x≤u 
  P x                                     ↔⟨ inverse ⊎-right-identity 
  P x                                   ↔⟨⟩
  P x  Any P (leaf {l = l} {u = u} l≤u)  
Any-insert P x (ly -[ y ]- yu) (l≤x , x≤u) with total x y
... | inj₁ x≤y =
  Any P (insert x ly (l≤x , x≤y))  P y  Any P yu  ↔⟨ Any-insert P x ly (l≤x , x≤y) ⊎-cong id 
  (P x  Any P ly)  P y  Any P yu                 ↔⟨ inverse ⊎-assoc 
  P x  Any P ly  P y  Any P yu                   
... | inj₂ y≤x =
  Any P ly  P y  Any P (insert x yu (y≤x , x≤u))  ↔⟨ id ⊎-cong id ⊎-cong Any-insert P x yu (y≤x , x≤u) 
  Any P ly  P y  P x  Any P yu                   ↔⟨ lemma _ _ _ _ 
  P x  Any P ly  P y  Any P yu                   
  where

  -- The following lemma is easy to prove automatically (for
  -- instance by using a ring solver).

  lemma : (A B C D : Set)  A  B  C  D  C  A  B  D
  lemma A B C D =
    A  B  C  D      ↔⟨ id ⊎-cong ⊎-assoc 
    A  (B  C)  D    ↔⟨ id ⊎-cong ⊎-comm ⊎-cong id 
    A  (C  B)  D    ↔⟨ ⊎-assoc 
    (A  C  B)  D    ↔⟨ ⊎-assoc ⊎-cong id 
    ((A  C)  B)  D  ↔⟨ (⊎-comm ⊎-cong id) ⊎-cong id 
    ((C  A)  B)  D  ↔⟨ inverse ⊎-assoc ⊎-cong id 
    (C  A  B)  D    ↔⟨ inverse ⊎-assoc 
    C  (A  B)  D    ↔⟨ id ⊎-cong inverse ⊎-assoc 
    C  A  B  D      

------------------------------------------------------------------------
-- Turning an unordered list into a search tree

to-search-tree : List A  Search-tree min max
to-search-tree = foldr  x t  insert x t _) (leaf _)

-- No elements are added or removed.

to-search-tree-lemma :  xs  to-search-tree xs ≈-bag xs
to-search-tree-lemma [] = λ z 
  z  leaf {l = min} {u = max} _  ↔⟨⟩
  z  []                          
to-search-tree-lemma (x  xs) = λ z 
  z  insert x (to-search-tree xs) _  ↔⟨ Any-insert  x  z  x) _ _ _ 
  z  x  z  to-search-tree xs       ↔⟨ id ⊎-cong to-search-tree-lemma xs z 
  z  x  xs                          

------------------------------------------------------------------------
-- Appending two ordered lists with an extra element in between

infixr 5 append

syntax append x lx xu = lx -⁅ x ⁆- xu

append :  {l u} (x : A) 
         Ordered-list l [ x ]  Ordered-list [ x ] u  Ordered-list l u
nil l≤x       -⁅ x ⁆- xu = cons x xu l≤x
cons y yx l≤y -⁅ x ⁆- xu = cons y (yx -⁅ x ⁆- xu) l≤y

-- Any lemma for append.

Any-append :  (P : A  Set) {l u} x
             (lx : Ordered-list l [ x ]) (xu : Ordered-list [ x ] u) 
             Any P (lx -⁅ x ⁆- xu)  Any P lx  P x  Any P xu
Any-append P x (nil l≤x) xu =
  P x  Any P xu      ↔⟨ inverse ⊎-left-identity 
    P x  Any P xu  
Any-append P x (cons y yx l≤y) xu =
  P y  Any P (append x yx xu)       ↔⟨ id ⊎-cong Any-append P x yx xu 
  P y  Any P yx  P x  Any P xu    ↔⟨ ⊎-assoc 
  (P y  Any P yx)  P x  Any P xu  

------------------------------------------------------------------------
-- Inorder flattening of a tree

flatten :  {l u}  Search-tree l u  Ordered-list l u
flatten (leaf l≤u)    = nil l≤u
flatten (l -[ x ]- r) = flatten l -⁅ x ⁆- flatten r

-- Flatten does not add or remove any elements.

flatten-lemma :  {l u} (t : Search-tree l u)  flatten t ≈-bag t
flatten-lemma {l} {u} (leaf l≤u) = λ z 
  z  nil  {l = l} {u = u} l≤u  ↔⟨⟩
  z  leaf {l = l} {u = u} l≤u  
flatten-lemma (l -[ x ]- r) = λ z 
  z  flatten l -⁅ x ⁆- flatten r        ↔⟨ Any-append  x  z  x) _ _ _ 
  z  flatten l  z  x  z  flatten r  ↔⟨ flatten-lemma l z ⊎-cong id ⊎-cong flatten-lemma r z 
  z  l  z  x  z  r                  ↔⟨⟩
  z  l -[ x ]- r                        

------------------------------------------------------------------------
-- Sorting

-- Sorts a list.

tree-sort : List A  Ordered-list min max
tree-sort = flatten  to-search-tree

-- The result is a permutation of the input.

tree-sort-permutes :  xs  tree-sort xs ≈-bag xs
tree-sort-permutes xs = λ z 
  z  tree-sort xs                 ↔⟨⟩
  z  flatten (to-search-tree xs)  ↔⟨ flatten-lemma (to-search-tree xs) _ 
  z  to-search-tree xs            ↔⟨ to-search-tree-lemma xs _ 
  z  xs