Refactoring Reflected

Simon Thompson, University of Kent

‘M {

Huiqing Li Colin Runciman Thomas Arts

4N
Daniel Horpacsi Judit KGszegi Nik Sultana

Reuben Rowe Hugo Ferée Chris Brown

Andreas Reuleaux

Claus Reinke

Pablo Lamela

Gyorgy Orosz Melinda Toth Stephen Adams (@) Jane Street

Why should | use
your refactoring tool?

It’s just renaming ...

what’s all the fuss?

Will you
integrate with this
editor or IDE?

What’s the ideal

language supporting What do you
refactoring? mean when you say
“refactoring”?
What's so wrong with ,
duplicated code? Why haven'’t you
implemented this
refactoring?
| don’t need a
refactoring tool ...
... | have types!
Why have you
f g Why should | trust

messed up the layout

e e a refactoring tool

on my cade?

What do you
mean when you say

“refactoring™?

3 EEm

188

189

196

-
=

src/EqSolve. hs

195
1956
197

198

2@ -187,11 +187,12 @@ splitOorConvert (m, r, c) sol =

Nothing -> Nothing

solvelEIrtAux :: Eq a => Eq b => [([[Ratioral]], [a], [b])] -> Maybe [(>o, Integer)]
+sulvelEIntAux [= Nolhing
solvel FTrtAux (h:t) =
case splitCrConvert h r5o0l o”
cust (Left nh) -> sclvelEIntAux (nub {t +- nh))
ust (Right s) > Just s
- Nothing -> Nothing
. Nothing -> solvelEIrtAux t
where
rSol - solvelE h

View

e

ul updales

visil

)

@gils iy hanacx

e M _swy

» Sheda Terry/Sclence Phota Library

What does “refactoring” mean?

Minor edits or wholesale changes
Something local or of global scope
Just a general change in the software ...

... or something that changes its
structure, but not its functionality?

Something chosen by a programmer ...

... or chosen by an algorithm!?

Expression-level refactorings

HIINT MANUAL
by Nell Mitchell

HLInt Is a tool for suggesting possible Improvements to -iaskell coce. These suggestions Incude Ideas such as using alternative functions, simglifying code
end spofting redundancies This document is structured as ‘ollows:

1. lnstalling and ruoning HLint

2. FAQ
3. Customizing the hints

Acknowledgements

This program has cnly been made possitle by the presence of the haskell-src-exis package, and many improvaments have been made dy Niklas Broberg
in response to faature requests. Additionally, many people have provided help and patches, including Lennart Augustsson, Malcadm Wallace, Henk-Jan van

Tuyl, Gwern Branwen, Alex Ott, Andy Stewart, Roman Leshchinskiy and others.

Cleaning up Erlang Code is a Dirty Job
but Somebody’s Gotta Do It

Thanassis Avgerinos Konstantinos Sagonas
School of Electrical and Computer Engineering, School of Electrical and Computer Engineering,
National Technical University of Athens, Greece National Technical University of Athens, Greece

ethan@softlab.ntua.gr kostis@cs.ntua.gr

Expression-level refactorings

HIINT MANUAL
by Neil Mitchell

HLInt Is a tool for suggesting possible Improvements to -iaskell coce. These suggestions Incude Ideas such as using alternative functions, simglifying code
2nd spoiting redundancies This document is structured as ‘ollows:

1. lostalling and ruoning HLint

2. FAQ
3. Customizing the hints

Acknowledgements
This program has cnly been made possitle by the presence of the haskell-src-exis package, and many improvaments have been made oy Niklas Broberg

in response to faature requests. Additionally, many people have provided help and patches, including Lennart Augustsson, Malcadm Wallace, Henk-Jan van
Tuyl, Gwern Branwen, Alex Ott, Andy Stewart, Roman Lesrchinskiy and others.

Sample.hs:5:7: Warning: Use and
Found

foldrl (&&)

Why not
and

Note: removes error on []

What sort of refactoring interests us?

Changes beyond the purely local, which can be effected easily.

What sort of refactoring interests us?

Changes beyond the purely local, which can be effected easily.
Renaming a function / module / type / structure.

Changing a naming scheme: camel_case to camelCase, ...

Generalising a function ... extracting a definition.

Function extraction

Extension and reuse

loop_a() ->
receilve
stop -> ok;
{msg, _Msg, 0} -> loop_a(Q);
{msg, Msg, N} ->
10:format("ping!~n"),
timer:sleep(500),
b ! {msg, Msg, N - 1},
loop_a()
end.

in Erlang

Function extraction

Extension and reuse

loop_a() ->
receilve
stop -> ok;
{msg, _Msg, 0} -> loop_a(Q);
{msg, Msg, N} ->
10:format("ping!~n"),
timer:sleep(500),
b ! {msg, Msg, N - 1},
loop_a()
end.

in Erlang

Let’s turn this into a function

Function extraction in Erlang

Extension and reuse

loop_a() ->
receilve
stop -> ok;
{msg, _Msg, @} -> loop_aQ);
{msg, Msg, N} ->
body(Msg,N),

loop_a()
end.

body(Msg,N) ->
10:format("ping!~n"),
timer:sleep(500),
b ! {msg, Msg, N - 1},

Function extraction in Erlang

Extension and reuse

loop_a() ->
receilve
stop -> ok;
{msg, _Msg, @} -> loop_aQ);
{msg, Msg, N} ->
body(Msg,N),

loop_a()
end.

body(Msg,N) ->
10:format("ping!~n"),
timer:sleep(500),
b ! {msg, Msg, N - 1}.

What sort of refactoring interests us?

Changing a type representation.
Changing a library API.

Module restructuring: e.g. removing inclusion loops.

Why should | use
your refactoring tool?

Refactoring

Transformation

Refactoring

Transformation

Refactoring

Transformation + Pre-condition

How to refactor?

By hand ... using an editor

Flexible ... but error-prone.

Infeasible in the large.
Tool-supported

Handles transformation and analysis.
Scalable to large-code bases: module-aware.

Integrated with tests, macros, ...

-rodu’el foa) .
—export([foo)1,foo/0]).

fcol) -~ spawnl|foo, fog, .fool).

fcolX! -= io:format(X).

el foa).
-) '([‘ww/ xl/.’\]"
B v foo, fog, (fool)
{ 1 e (X)

text

AST

text

AST

Analyse

AAST

text

AST

Analyse

AAST

Transform

AAST

text

AST

AAST

AAST

text

Traversals, strategies and visitors

Multi-purpose

Collect and analyse info.

Effect a transformation.
Separation of concerns

Point-wise operation ...

... and tree traversal

Traversals, strategies and visitors

Multi-purpose

Collect and analyse info.

Effect a transformation.
Separation of concerns

Point-wise operation ...

... and tree traversal

Traversals, strategies and visitors

Multi-purpose

Collect and analyse info.

Effect a transformation.
Separation of concerns

Point-wise operation ...

... and tree traversal

Traversals, strategies and visitors

Multi-purpose

Collect and analyse info.

Effect a transformation.
Separation of concerns

Point-wise operation ...

... and tree traversal

Haskell

Strongly typed

Lazy

Pure + Monads
Complex type system
Layout sensitive

Haskell Erlang

Strongly typed Weakly typed
Lazy Strict
Pure + Monads Some side-effects

Complex type system Concurrency
Layout sensitive Macros and idioms

Haskell

Strongly typed

Lazy

Pure + Monads
Complex type system
Layout sensitive

Erlang

Weakly typed
Strict

Some side-effects
Concurrency
Macros and idioms

OCaml

Strongly typed

Strict

Refs etc and i/o.
Modules + interfaces
Scoping/modules

Haskell

Strongly typed

Lazy

Pure + Monads
Complex type system
Layout sensitive

HaRe

Haskell 98

GHC Haskell API ...
... Alan Zimmerman
Basic refactorings,
clones, type-based, ...
Strategic prog

Erlang

Weakly typed
Strict

Some side-effects
Concurrency
Macros and idioms

OCaml

Strongly typed

Strict

Refs etc and i/o.
Modules + interfaces
Scoping/modules

Haskell

Strongly typed

Lazy

Pure + Monads
Complex type system
Layout sensitive

HaRe

Haskell 98

GHC Haskell API ...
... Alan Zimmerman
Basic refactorings,
clones, type-based, ...
Strategic prog

Erlang

Weakly typed
Strict

Some side-effects
Concurrency
Macros and idioms

Wrangler

Full Erlang
Erlang, syntax_tools
HaRe + module, API

+ DSL,
Naive strategic prog

OCaml

Strongly typed

Strict

Refs etc and i/o.
Modules + interfaces
Scoping/modules

Haskell

Strongly typed

Lazy

Pure + Monads
Complex type system
Layout sensitive

HaRe

Haskell 98

GHC Haskell API ...
... Alan Zimmerman
Basic refactorings,
clones, type-based, ...
Strategic prog

Erlang

Weakly typed
Strict

Some side-effects
Concurrency
Macros and idioms

Wrangler

Full Erlang
Erlang, syntax_tools
HaRe + module, API

+ DSL,
Naive strategic prog

OCaml

Strongly typed

Strict

Refs etc and i/o.
Modules + interfaces
Scoping/modules

Rotor

(O)Caml

OCaml compiler

So far: renaming +
dependency theory.
Derived visitors

Wrangler in a nutshell

Automate the simple things,and ...

... provide decision support tools otherwise.
Embed in common IDEs: emacs, eclipse, ...
Handle full language, multiple modules, tests, ...
Faithful to layout and comments.

Build in Erlang and apply the tool to itself.

Wrangler

Basic refactorings: structural, macro,

process and test-framework related

Wrangler

c
o=
O >
o O
o E
o Y
Q

c 2
0O
@,

Basic refactorings: structural, macro,
process and test-framework related

Wrangler

and removal
Module structure
Improvement

C
O
)
@)
O,
)
)
O
)
C
O
@,

Basic refactorings: structural, macro,
process and test-framework related

Wrangler

API: define new
refactorings

and removal
Module structure
Improvement

C
O
)
@)
O,
)
)
O
)
C
O
@,

Basic refactorings: structural, macro,
process and test-framework related

Wrangler

DSL for composite
refactorings

API: define new
refactorings

and removal
Module structure
Improvement

C
O
)
@)
O,
)
)
O
)
C
O
@,

Basic refactorings: structural, macro,
process and test-framework related

& Aquamacs File Edit Cptions Tools Erlang Window Help

e 0o
Naw Open Recen: Save B
a *seratch® B west_camel_caseerl

-module(test _camel_case).

-export([thisIsAFunction/2,

this_is_a_function/2,
thisIsAnotherFunction/

thisIsAFunction(X, Y)
this_is_a_function{X, Y).

this_is_a_function(X, Y) ->

thisIsAnotherFunction(X, Y).

khisIsAnotherFunction(X, Y) >

X+Y.

-1--- test_camel_case.erd All (13,0)

(Erlanc EXT Flymaks)

G Y P D MW T «

G ©:15) 09:32 5= Q

Refactor @l Rename Variable Name AC AWR Y
-) woital Th .dac o fatintosh HU
Inspecor g Rename Func: on Name ACAWRF R E R
Undo AT AW Rename Module Name ACAWRM ot
- Generalise Funct on Definition AC AG WA al il " g | ymenthanpon
Similar Cade Deraction > Move Function to Another Modue AC AWM ‘
function Cxtraction ACAWN F T —r—y
Modiita Struchure ¥ Introduce New Variable AC AWN V 2
AP’ Migration > Inline Variahle AC AW 1 =
Fold Expression Against Function AC AWF F SSRGS - oD
Skeletons » Tuple Furction Arguments ACAWT N
Customnize Wrangler Unfold Functicn Application ACAWU feais March 201201 { "0'Reilly
Version Introduce a Macro ACAWNM | AR
Fold Against Macro Defin tion ACAWF M FRSSRIRERMRESLE | 7P book shared
lefactorings for QuickCheck ¥ —
gs for Qui o pesicnpar
Frocess Refactorings (Eeta) B :
Ncrmalise Record EXPTESS‘O" P2 2013 1CT drafe ""— REF
Fa-tition Exported Functions orkproginar ,
ger_fsm S:ate Data to Record T AN
Swzp Function Arguments
qcn composwte refac Refacs > Specialise A Function
. . p Remove An Import Attricute
My gen_re’ac Re. - < Remove An Argument
My gen_composite_refac Refacs B Keysearch To Kevfind
Apply Adhac Refactoring Apply To Remrote Call
Apply Comgosite Refactoring Add To Export imrcy

Add/Remuve Menu ltems

Wrangler started.

i

4

"g“’? ' J

Add An Import Attribute

Analyses needed ...

Static semantics
Types
Modules

Side-effects

Analyses needed ...

Static semantics Atoms
Types Process structure
Modules Macros

Side-effects Conventions and frameworks

S0, why use a tool?

We can do things it would take too long to do without a tool.
We can be less risk-averse: e.g. in doing generalisation.
Exploratory: try and undo if we wish.

95% > 0%: hit most cases ... fix the last 5% “by hand”.

Secarch-Based Refactoring:
Metrics Are Not Enough

Chris Simons! ™ Jeremy Singer?, and David R. White?
" veps Automation s highly

2 unlikely to replace the
School of Co » . s
*human in the loop

hnologies,
, UK

ow G12 8RZ, UK
.uk

Abstract. Search-based Software Engineering (SBSE) techniques have
been applied extensively to refactor software, often based on metrics that
describe the object-oriented structure of an application. Recent work
shows that in some cases applyving popular SBSE tools to open-source
software does not necessarily lead to an improved version of the software
as assessed by some subjective criteria. Through a survey of professionals,

SSBSE 2OI5'

Refactorkrl

FEATURES ACADEMIC RESULTS DOWNLOADS

- -

mtl:. - ;,rusn?hnr:h.p n_q-lirmi.m._rmrdh 1T _0Q0eT
J v'a dish. 'ng
| < R ¥
,__ ffi-;sia_lna,; file e

L 2 ‘. ®

. meesia-bag les) S mesia regsby
T ol N ®

" «mlzm S < mhesla sup mnesia kpolnt._ sup
far cri_parse . . ordsers + aoplicacion gon_cves mincsia_kcIme _suo

B TSSO mer
. -
e — .
roe = \\\\:\ SUPSIVISOr

Welcome to RefactarErl

RefactorLr is an open-source static source code analyser ard transfermer tecl for Cranc, ceveloped by the Department of Precqramming Languages and Compiless at the

Facu'ty of Informatics, Edtves Lorand Unversity, Budapest, Hungary.

mnesa

PY

It's just renaming ...
what’s all the fuss?

What is in a name?

Resolving names requires not just the static structure ...
... but also types (polymorphism, overloading) and modules.
Beyond the wits of regexps.

Leverage other infrastructure or the compiler.

Types sneak in ...

f x = (xxx + 42) + (x + 42)

f xy=(xxx +vy) + (x +y)

Types sneak in ...

f x = (xxx + 42) + (x + 42)

f xy=(xxx +vy) + (x +y)

funny = length ([[Truell]l ++ []) +
length ([Truel ++ [1)

funny xs = length ([[Truel] ++ xs) +
length ([True]l ++ xs)

... as do different sorts of atoms

—-module(foo).
—export([foo/1,foo/0]).

foo() —> spawn(foo, foo, [foo]).

foo(X) — io:format("~w", [X]).

And some peculiarities

f1(P) —>
recelive
{ok, X} -> P!thanks;
{error,_} — Pl!grr
end,
P!{value, X}.

And some peculiarities

f1(P) —
recelve
{ok, X} -> P!thanks;
{error, _} —> Pl!grr
end,
P!{value, X}.

f2(P) —>
recelive
{ok, X} —> P!thanks;
{error,X} —> P!grr
end,
P!{value, X}.

OCaml nested scopes

src/foo.ml: Foo.f— g

let £
let £

src/bar.ml:

open Foo

OCaml nested scopes

src/foo.ml: Foo.f— g

let £
let g

. g ...

src/bar.ml:

open Foo

OCaml nested scopes

src/foo.ml: Foo.f— g

let g = ...
let £ = ...
let £ = ...

src/bar.ml:

open Foo

OCaml nested scopes

src/foo.ml: Foo.f— g

let g = ...
let £ = ...
let g = ...

. g ...

src/bar.ml:

open Foo

OCaml module signatures

src/foo.ml: Foo.f — g
let £ = .
src/bar.ml: Bar.f — g

include Foo

OCaml module signatures

src/foo.ml: Foo.f — g
let £ = .
src/bar.ml: Bar.f — g

include Foo

src/bar.mli:

include S5ig.sS

src/sig.ml:

module type S = sig val £ : ... end

OCaml module signatures

src/foo.ml: Foo.f — g
let £ = .
src/bar.ml: Bar . f +— g

include Foo

src/bar.mli:

include S5ig.sS

src/sig.ml: Sig. 5. f = g
module type S = sig val £ : ... end

OCaml module signatures

src/foo.ml: Foo.f — g
let £ = .
src/bar . .ml: Bar . f — g

include Foo

src/bar.mli:

include S5ig.sS

src/sig.ml: Sig. 5. f = g
module type S = sig val £ : ... end

src/baz.ml:

module M : 5ig.S5 = struct let £ = ... end

OCaml module signatures

src/foo.ml: Foo.f — g
let g = ...
src/bar.ml: Bar . f — g

include Foo

src/bar.mli:

include 5ig.S

src/sig.ml: Sig. 5. f = g
module type S = sig val g : ... end

src/baz.ml:

module M : 5ig.S5 = struct let g = ... end

There is more ...

Punning
Module (type) aliases

Using structures to
define signatures

Functors

A theory of refactoring
dependencies

Towards Large-scale Refactoring for OCaml

REUBEN N S. ROWE. Umiversty of iens. UK
SIMON J THUMPSON, Unovers 1y of Kent, 1R

Rebacturing & the process o clucoging the way a mogram works without cheang, ng, it ovecall beharicur, The
B tional programining possfgon wesents s o wnd e Jhoallsmae s to refoc iz Tor e ©C sl Danawgs
o partcular the expressiveness of its secde e systern makes this a lizhly non-tovid Dk The use of PEX
prprocs s, other las puage stonaios, and Riosyneamic build svieens complicoies manees further

A begin 1o addrecs the qwest om of Bow 1o relicar kioge OCaml programs by locking ar a partios e
reaton - g—value Sinding rena g —and implanenting a pealtype oo’ b cory it m Cor ol Ronow s
developed in OUa dsell and combines several featires Bo momage the complex es of vefacbonn g CCaml
cede Fosby il defenes a eich, serarchizel way o0 scenlityieg barfiegs whak distirguishe belween dncturss
anc functore and their asso it d sroduly types, and is abdy 1o reder diretly 1o furesse pasamewre Secondly it
waker use cUthe meamtly developed sivitors ey o porem gewre vanals of absteact synkis tves
I ulw t in"-bn-—ﬂ s 3 notes uv"-l-‘ru ey Betweem o we al -u’in!; vels lmin-s-. 1o e o« ml‘nh-d n
& moduar Lashion. We svaduate RoToR asing a snapshat of Jane Street's 2ore library 20d s dependonoes
cortpeising some w)v sowece fTks aczoss 80 librures and 1 st suiee of around 3000 renpskt ga

‘We propuse hat the Sotivn of Jeoendersey is o powrd cow low selintosim g, catine (om0 redxtoring
‘precocion’. Depencencies may actually e mumal in that all mwa be arplied cogether Tar each on:
i b daally 1o be oo and e as e Reative apeviliontias s ol oelicionings Meoves, e s dining
dependency grapes cm he sorn o s wiact [aemostic) rpeomntdion

CCS Tomeeow o Saftw are and s engimeering <+ Sollware notations and ooly; Solware maimte-
wanee teale, « Theary nfr.'-m'-nl.\tmn — Semantics and veawning Ahsheaction, Pagrem condtoets
Funstioes! comtracts:

Additicne) Kev Words amo Phrases Befactoring, Benewing, Dapmdeccies, Sinding $irustuce, OCar]
AUM Referemce Larmak

Rewbten N S Rowe and Simon ~ Thospsos. 2015, Towands Lo ge scale Refectering foe CCaml, Proc. ACY
Progeoa. Lasg. L L March 2018), poapes. Boced/adaierp 10,0148 me i s

I INTRODUCTION
Refactoring is a neccsary and angotny srocess in both the developm ot and maintenance of
any cadebase Towler et ol 159 Indioidee | refactormg stes are oten conceptually very smiple
(e.g remame this furctioe from foo %o bar, swap the ocder of patametzrs « and y L However applying
thein i practice can e cotnplen mvolving g sepeated bul sublly vy Jsanges acioss the
entire codebise, Moreover refactarings are, by and “arge, contaxt sensitive, meaning that even
powerful low-tech utiliies (e 3 grep and sed) are calv eTective up to 2 point

Take as an cxomple the renaming of o fansciion, which (s the refwszring that we focas on o
this paper, As well as renaming the fasction at its definitor peing, every €20 of the functon

Acthory aXircncex Rowixen N5 Home, Usiveesly of Bert Canlertury. Kea! CTI2TNZ UK casronadRersacuk Smen
J Trampsac Univesty of Kori t';muh-r, Vere T2 TNV 1IN ciiskoert arnk

Perraodom to malee cig 1 or hard coptax of ol or part of e work for perszaal or dacaren ae & graniac withom %
proveded that copics are ot made or diskitwcd [poclil or cormncrcad scvmlage and tht copocs boar this netax mad the
full citticm o the fiont page. Copyrigim for comporentx of this work oamed by oihew thua the solion(d) mat be howred
Arstrcting v b ersdf s penmn e d 17 2cps atheronss, oo pepdleh to posi o sarvars or o radidmouie % Bsis reqiines
prio spocil: o issdun asdior m fee. Reqaest permoosimen (oo ge s sior s oo

#2138 Copyright held by the owne rath o) Bbleation rghts booned tethe Aarciatica for Compa: e Macsdinery
WGV IBSART S 150

hilps vdstory' W] inmnnmn amann

Poovolisgs ol the ACM ou Frugas mny Leogpuapes Yl 0 NG L Astice . Pallionin dals Mack 2908

Of b”’l d1NS [ar —

| don’t need a
refactoring tool ...
... | have types!

How We Refactor, and How We Know It

Emerson Murphy-Hill Chris Parnin Andrew P. Black
Portland State University Georgia Institute of Technology Portland State University
emerson@cs.pdx.edu chris.parnin@gatech.edu black@cs.pdx.edu

Abstract

Much of what we know about how programmers refactor in

the wild is based on studies o '

projects. Researchers have U 9 O Cy f
these studies in other coni P to o O
tions on which they are bc

search on a sound scientifi d b h d
ing four data sets spannin o n e y a n
240 000 tool-assisted refactorings, ,

and 3400 version control commits. Using these data, we
cast doubt on several previously stated assumptions about
how programmers refactor, while validating others. For ex-
ample, we find that programmers frequently do not indicate
refactoring activity in commit logs, which contradicts as-
sumptions made by several previous researchers. In con-
trast, we were able to confirm the assumption that program-
mers do frequently intersperse refactoring with other pro-
gram changes. By confirming assumptions and replicating
studies made by other researchers, we can have greater con-
fidence that those researchers’ conclusions are generaliz-
able.

|CSE 2009'

a single research method: WeiBlgerber and Diehl’s study of
3 open source projects [18]. Their research method was to

apply a tool to the version history of each project to de-
fomt Lial Teeend mnfiosbntn o ek -~ RENAME METHOD and

refa Cto rl N g S vel refactorings, such

EXTRACT METHOD,
ode changes. One of
on which refactoring
ges also took place.
ds on the relative fre-
quency of high-level and mid-to-low-level refactorings. If
the latter are scarce, we can infer that refactorings and
changes to the projects’ functionality are usually interleaved
at a fine granularity. However, if mid-to-low-level refactor-

ings are common, then we cannot draw this inference from
WeiBgerber and Diehl’s data alone.

In general, validating conclusions drawn from an indi-
vidual study involves both replicating the study in wider
contexts and exploring factors that previous authors may
not have explored. In this paper we use both of these meth-
ods to confirm —and cast doubt on — several conclusions
that have been published in the refactoring literature.

fetchRawInputs runlnfo
preprocessinputs

- SOFFTWARE PROJECT MAINTENANCE IS WHERE HASKELL

portld, runld)
connectioDatabase rsaClontig .db.dbHost
runDbAction mongoPipe handleErr getRunkeys runld
runDbAction mongoPipe getRawinputs reportlid keys
oPipe

Posted by - 31 December, 2016

https://www.fpcomplete.com/blog/2016/|2/software-project-maintenance-is-where-haskell-shines

alan_zimm 17 points

As someone unfamiliar with the codebase I wanted to make major changes to the GHC abstract syntax tree, to
support API Annotations.

GHC is a big codebase.

I found that it was a straightforward process to change the data type and then fix the compilation errors. Even in the
dark bowels of the beast, such as the typechecker.

I think the style of the codebase helps a lot in this case, with lots of explicit pattern matching so that it is immediately
obvious when something needs to be changed.

https://www.reddit.com/r/haskell/comments/65d510/experience_reports_on_refactoring haskell code/

But is it really as simple as that ... ?

Changes in bindings — e.g. name capture — can give code that
compiles and type checks, but gives different results.

Are you really prepared to fix 1,000 type error messages!?

Maybe just be risk averse ...

lan Jeffries @light_industry - Jan 28 v
Very bad Haskell code can be worse than bad Python code (if it does pretty
much everything in 10 and uses very general types like HashMap Text Text
everywhere), but this hopefully isn't super common.

Q 3 (o O s ™

Andreas Kallberg @Anka?13 - Jan 29 v
Haskell is also very easy and safe to refactor. So even if you have a very bad
code-base, you could fairly mechanically and safely transform it until you have
better code.

For example, you could newtype a specific case and then update functions until
it typechecks.

Q 2 [O &7

Alex Nedelcu @alexelcu - Jan 29 v
| don't think marketing Haskell as "very easy/safe to refactor” is smart b/c as a
matter of fact there are code bases for which this isn't easy or safe. | hope there
are b/c otherwise it means Haskell isn't used for real world projects and AFAIK
that ain't true.

O Tl QO 2 &

Replace lists with “Hughes lists™

explode :: [a] —> [a]
explode lst = concat (map (\x —> replicate (length 1lst) x) 1lst)

Replace lists with “Hughes lists™

explode :: [a] — [a]
explode lst = concat (map (\x —> replicate (length 1lst) x) 1lst)

explode :: DList a —> DList a
explode lst =
DL.concat
(DL.map
(\x —> DL.replicate (length (DL.toList 1lst)) x) 1st)

From Monad to Applicative

moduleDef :: LParser Module

moduleDef = do
reserved "module"
modName <- identifier

reserved "where"
imports <— layout importDef (return ()) decls <- layout decl (return ())

cnames <— get
return $ Module modName imports decls cnames

From Monad to Applicative

moduleDef :: LParser Module

moduleDef = do
reserved "module"
modName <- identifier

reserved "where"
imports <— layout importDef (return ()) decls <- layout decl (return ())

cnames <— get
return $ Module modName imports decls cnames

modu leDef :: LParser Module

moduleDef = Module
<$> (reserved "module" x> identifier <x reserved "where")

<x> layout importDef (return ())
<x> layout decl (return ())
<x> get

From List to Vector

map :: (a —> b) —> [a] —> [b]

app :: [a]l] — [a]l — [al

filter :: (a —> Bool) —> [a] — [a]
take :: Int — [a] — [a]

From List to Vector

map :: (a —> b) —> [a] —> [b]

app :: [a]l] — [a]l — [al

filter :: (a —> Bool) —> [a] — [a]
take :: Int — [a] — [a]

vmap :: (a —> b) —> (Vec n a) —> (Vec n b)

vapp :: (Vec n a) —> (Vec m a) —> (Vec n+m a)

vfilter :: (a —> Bool) —> (Vec n a) —> (Vecs n a)
vtake :: (n :: Int) —> (Vec m a) —> (Vec (min n m) a)

vtake :: (n :: Int) —> (Vec m a) —> (Vecs n a)

Types vs refactorings?

The more precise the typings, the more fragile the structure.

Difficulty of getting it right first time: Vec vs Vecs vs ...

vmap :: (a —> b) —> (Vec n a) —> (Vec n b)

vapp :: (Vec n a) —> (Vec m a) —> (Vec n+m a)

vfilter :: (a -> Bool) —> (Vec n a) —> (Vecs n a)
vtake :: (n :: Int) —> (Vec m a) —> (Vec (min n m) a)
vtake :: (n :: Int) —> (Vec m a) —> (Vecs n a)

What's so wrong with
duplicated code?

Duplicate code considered harmful

It's a bad smell ...
increases chance of bug propagation,
increases size of the code,
increases compile time, and,
increases the cost of maintenance.

But ... it's not always a problem.

What is similar code?

(X+3)+4 4+ (5-(3*X))

What is similar code?

X+Y

v W,

~ AN

(X+3)+4 44 (5-(3*X))

What is similar code?

X+Y
(X+3)+4 44 (5-(3*X))

The anti-unification gives the (most specific)

common generalisation.

What is similar code?

X+Y
(X+3)+4 44 (5-(3*X))

£f(Z2,W) -> X+Y.

The anti-unification gives the (most specific)

common generalisation.

What is similar code?

X+Y
£(X+3,4) £(4,5-(3*X))

£f(Z2,W) -> X+Y.

The anti-unification gives the (most specific)

common generalisation.

What makes a clone (in Erlang)?

Thresholds
Number of expressions
Number of tokens
Number of variables introduced

Similarity = min;=|_n(size(Gen)/size(Ei))

What makes a clone (in Erlang)?

Thresholds ... and their defaults
Number of expressions = 5
Number of tokens = 20
Number of variables introduced < 4

Similarity = min;i=|.n(size(Gen)/size(E;)) = 0.8

Clone detection and removal

Find a clone, name it and its parameters, and eliminate.

What could go wrong!?

What could go wrong!

Naming can’t be automated, nor the order of eliminating.

Bottom-up or top-down!

Widows and orphans, sub-clones, premature generalisation, ...

What could go wrong!

new_fun(FilterName, Newvar_1l) -> _
Filterkey = ?SMM_CREATE_FILTER_CHECK(F1ilterName),
%%Add rulests to filter

RuleSetNameA = "a",
RuleSetNameB = "b",
RuleSetNameC = "c",
RuleSetNameD = "d",

... 16 Tines which handle the rules sets are elided ...
%%BREMOVE rulesets
Newvar_1l,

{RuleSetNameA, RuleSetNameB, RuleSetNameC, RuleSetNameD, FilterKey}.

Widows and orphans, sub-clones, premature generalisation, ...

new_fun(FilterName, Filterkey) ->
%%Add rulests to filter
RuleSetNameA "a"

RuleSetNameB = "b",
RuleSetNameC = "c",
RuleSetNameD = "d",

... 16 1ines which handle the rules sets are elided ...
%%Remove rulesets

{RuleSetNameA, RuleSetNameB, RuleSetNameC, RuleSetNameD}.

What could go wrong!

Naming can’t be automated, nor the order of eliminating.

Bottom-up or top-down!

Widows and orphans, sub-clones, premature generalisation, ...

Bring in the experts

With a domain expert ...
can choose in the right order,
name the clones and their parameters, ...
And the domain expert can learn in the process ...

e.g. test code example from Ericsson.

Why haven't you
implemented this
refactoring?

How We Refactor, and How We Know It

Emerson Murphy-Hill Chris Parnin Andrew P. Black
Portland State University Georgia Institute of Technology Portland State University
emerson@cs.pdx.edu chris.parnin@gatech.edu black@cs.pdx.edu

Abstract

Much of what we know about how programmers refactor in
the wild is based on studies that examine just a few software
projects. Researchers have rarely taken the time to replicate
these studies in other contexts or to examine the assump-
tions on which they are based. To help put refactoring re-
search on a sound scientific basis, we draw conclusions us-
ing four data sets spanning more than 13 000 developers,
240 000 tool-assisted refactorings, 2500 developer hours,
and 3400 version control commits. Using these data, we
cast doubt on several previously stated assumptions about
how programmers refactor, while validating others. For ex-
ample, we find that programmers frequently do not indicate
refactoring activity in commit logs, which contradicts as-
sumptions made by several previous researchers. In con-
trast, we were able to confirm the assumption that program-
mers do frequently intersperse refactoring with other pro-
gram changes. By confirming assumptions and replicating
studies made by other researchers, we can have greater con-

fidence that those researchers’ conclusions are generaliz-
able.

|CSE 2009'

a single research method: WeiBlgerber and Diehl’s study of
3 open source projects [18]. Their research method was to
apply a tool to the version history of each project to de-
tect high-level refactorings such as RENAME METHOD and
MOVE CLASS. Low- and medium-level refactorings, such
as RENAME LOCAL VARIABLE and EXTRACT METHOD,
were classified as non-refactoring code changes. One of
their findings was that, on every day on which refactoring
took place, non-refactoring code changes also took place.
What we can learn from this depends on the relative fre-
quency of high-level and mid-to-low-level refactorings. If
the latter are scarce, we can infer that refactorings and
changes to the projects’ functionality are usually interleaved
at a fine granularity. However, if mid-to-low-level refactor-

ings are common, then we cannot draw this inference from
WeiBgerber and Diehl’s data alone.

In general, validating conclusions drawn from an indi-
vidual study involves both replicating the study in wider
contexts and exploring factors that previous authors may
not have explored. In this paper we use both of these meth-
ods to confirm —and cast doubt on — several conclusions
that have been published in the refactoring literature.

How We Refactor, and How We Know It

Emerson Murphy-Hill Chris Parnin Andrew P. Black
Portland State University Georgia Institute of Technology Portland State University
emerson@cs.pdx.edu chris.parnin@gatech.edu black@cs.pdx.edu

Abstract

Much of what we know aboi

thewildisbasedonstudieslSome 40% Of refaCtorings

projects. Researchers have 1
these studies in other conte

tions on which they are ba: Pe rfo rmed USi ng tOOIS

search on a sound scientific

e o data s e are done in batches.

and 3400 version control ¢ ;

cast doubt on several previously stated assumptions about
how programmers refactor, while validating others. For ex-
ample, we find that programmers frequently do not indicate
refactoring activity in commit logs, which contradicts as-
sumptions made by several previous researchers. In con-
trast, we were able to confirm the assumption that program-
mers do frequently intersperse refactoring with other pro-
gram changes. By confirming assumptions and replicating
studies made by other researchers, we can have greater con-

fidence that those researchers’ conclusions are generaliz-
able.

|CSE 2009'

a single research method: WeiBgerber and Diehl’s study of
3 open source projects [18]. Their research method was to
of each project to de-
ENAME METHOD and
evel refactorings, such

EXTRACT METHOD,
code changes. One of
y on which refactoring
anges also took place.
ds on the relative fre-
-level refactorings. If
the latter are scarce, we can infer that refactorings and
changes to the projects’ functionality are usually interleaved
at a fine granularity. However, if mid-to-low-level refactor-

ings are common, then we cannot draw this inference from
WeiBgerber and Diehl’s data alone.

In general, validating conclusions drawn from an indi-
vidual study involves both replicating the study in wider
contexts and exploring factors that previous authors may
not have explored. In this paper we use both of these meth-
ods to confirm —and cast doubt on — several conclusions
that have been published in the refactoring literature.

API: templates and rules ... in Erlang

?RULE(Template, NewCode, Cond)

The old code, the new code and the pre-condition.

API: templates and rules ... in Erlang

?RULE(Template, NewCode, Cond)

The old code, the new code and the pre-condition.

rule({M,F,A}, N) ->
?RULEC?T("F@(Args@@) ™),
begin
NewArgs@@=delete(N, Args@@),
?TO_AST("F@(NewArgs@@)")
end,
refac_api:fun_define_info(F@) == {M,F,A}).

delete(N, List) -> .. delete Nth elem of List ..

Clone removal

€9 emacs@HL-LT o[- O[3

File Edit Options Buffers Tools Help

DEEx 0B Y BREXY

loop_a() -> -~
receive
stop -> ok;
{msg, Msg,0} -> loop a():
{msg, M=g,N} ->
io:format ("ping!~n"),
timer:sleep (500),
b!{msg,M=g, N+1}[]
1oop al()

end.
loop b() ->
receive
stop -> ok;
{msg, Msg,0} -> loop b(): i
{msg, M=g,N} ->
io:format ("pong'!~n"),
timer:sleep (500), =
a'!{msg,M=sg,N+1},
loop b()
end. |
——-\—-—— pingpong.erl Bot L46 Git:master (Erlang EXT)-——————-——---m——— e —

c:/cygwin/home/hl/demo/pingpong.exl:44.13-46.27:
c:/cygwin/home/hl/demo/pingpong.ex1:55.13-57.27:
The generalised expression would be:

m

new_fun(Msg, N, NewVar 1, NewVar 2) ->
io:format (NewVar_1),
timer:sleep (500),
NewvVar 2 ! {msg,Msg, N + 1}.

-1**- *erl-output* 40% L11 B B T B -

Clone removal

@ emacs@HL-LT

File Edit Options Buffers Tools Help

Lo B | mESm]

loop_al) >
receive
stop -> ok;
{msg, Msg,0} -> loop a():
{msg,M=g,N} ->
io:format ("ping!~n"),
timer:sleep (500),
b!{msg,M=g,N+1}[]
i1oop a()
end.
loop b() ->
receive
stop -> ok;
{msg, Msg,0} -> loop b():
{msg,M=g,N} ->
io:format ("pong!~n"),
timer:sleep (500),
a!{msqg,M=sg,N+1},
loop b()
end.
—--\-—— pingpong.erl Bot L46 Git

c:/cygwin/home/hl/demo/pingpong.erl:
c:/cygwin/home/hl/demo/pingpong.erl:
The generalised expression would be:

DeEExBE s DB RE XD

:master

Rename function
Rename variables
Reorder variables

Add to export list

m

Fold* against the def.

(Exrlang EXT)

44.13-46.27:
55.13-57.27:

new_ fun (Msg, N, NewVar_ 1, NewVar 2) -> =
io:format (NewVar_1), B
timer:sleep (500),
NewVar 2 ! {msg,Msg,N + 1}.

-1**- +*erl-output* 40% L11 R T N ittt ———— -

Clone removal in the DSL

Transaction as a whole ... non-transactional components OK.

Not just an APl: 7transaction etc. modify interpretation of what
they enclose ...

?transaction(
[?1nteractive(RENAME FUNCTION)
?refac_(RENAME ALL VARIABLES OF THE FORM NewVar*)
repeat_interactive(SWAP ARGUMENTS)
?1f_then(EXPORT IF NOT ALREADY)
’non_transaction(FOLD INSTANCES OF THE CLONE)

D.

]1 APT #1

!

\—

ASKELL

TOOLS

build failing | hackage vi.0.1.2 | strcaage Be-11 1.0.1.2 | stnckage nightly Aot auailsbls

The goal of this project is to create developer toals for the functional programming language Haske!l. Currently this project
is about refactoring Haskell programs. We have a couple of refactorings working, with support for using them in your
editor, or programmatically from command line.

Available in Atom.

2emo We have a live online demo that you can try

Installation instructions

¢ The package is available from hackage and stackage
¢ stack install haskell-tools-daeron haskell-tools-cli --resolve~=nightly- current-date]

« When we are not yet on the |atest GHC, the only way 10 install the 'atest version is to clone this repcsitory and stack
install it. See the stackage nightly badge above.

User manuals

Jse in editor. Atom, Sublime (Coming scen...)

Official ‘'mplemented refactorings: The detailed description of the officialy refactorings supported by Haskell-tools
Refactor,

nt-refact: A command-line refactorer tool for standalone use.

naskel -tools-demo: An interactive weh-based demo tool far Haskell Tools.

It’s better to
implement libraries, APIs

and DSLs than individual
refactorings

Will you
integrate with this
editor or IDE?

Can we integrate with every editor/IDE?

IDE

Emacs

Vim

Eclipse

IntelliJ

Sublime 2

Sublime 3

Atom

Visual Studio Code

Plugin

built-in + distel + edts

built-in + vim-erlang suite

erlide

Erlang plugin

built-in + Sublime-Erlang

built-in + Erl + Erl-AutoCompletion
language-erlang + autocomplete-erlang

vscode_erlang, erlang-vscode

Thanks to Csaba Hoch: this table from his CODE BEAM 2018 talk.

Can we integrate with every editor/IDE!?

Hard work!
Keep it simple! Command-line tooling.
Some support from Language Server Protocol?
Support from Open Source collaborators
Shout out for
Richard Carlsson of Klarna for Wrangler contributions

Alan Zimmerman for porting HaRe to GHC API

Why have you
messed up the layout
of my program?

Appearance must be right

my_funny_list() ->
[foo
,bar
,baz
,wombat

]

Appearance must be right

{vl,v2,v3}

my_funny_list() ->
[foo
,bar
,baz
,wombat

]

Appearance must be right

{vl,v2,v3}
my_funny_list() ->
[foo
,bar
,baz fF$gxy
,wombat

]

Appearance must be right

{vl,v2,v3}
my_funny_list() -> data HerType T EZ?
- e | Baz
,bar
,baz f%$gxy
,wombat

]

Preserving appearance

Preserve precisely parts not touched.

Pretty print ... or use lexical details.

Preserving appearance isn’t built in

Compilers throw away some / all layout info, comments, ...
Need to build infrastructure to hide layout manipulations.
Learn layout for synthesised code from existing codebase?

Scrap Your Reprinter by Orchard et al

ull giffgaff 4G 17:36 2 65% mm)

ﬁ’ Home Y 2
Yaron Minsky @yminsky - 3h

=" Just flipped a big codebase over to

P doing automatic formatting
(indentation, line-breaking, whether to
put ;;'s after a toplevel declaration, etc).

There are some regressions in
readability, but there is something

freeing about it. Nothing like not
needing to make choices...

Qa4 (8 ¥ 40 ¥

Don Stewart @donsbot : 3h

We have data showing how much faster
code review is when format is removed
from the equation. It's a clear win at
scale.

Q3 4 w6 0

|.é‘ : y

“but there is
something freeing about it.
Nothing like not needing to

make choices ...”

Why should | trust

a refactoring tool
on my code’

>
COUNTERPOINT /4

Trust Must Be Earned

Friedrich Steimann

Refactoring Tools Are
Trustworthy Enough

John Brant Creating bug-free refactoring tools is a real challenge.
However, tool developers will have to meet this

Refactoring tools don't have to guarantee correctness to be challenge for their tools to be truly accepted.

useful. Sometimes imperfect tools can be particularly helpful.

IEEE SOFTWARE

A COMMON DEFINITION of refactor-
ing is “a behavior-preserving transfor-
mation that improves the overall code
quality.” Code quality is subjective, and
a particular refactoring in a sequence
of refactorings often might temporar-
ily make the code worse. So, the code-
quality-improvement part of the defi-
nition is often omitted, which leaves
that refactorings are simply behavior-
preserving transformations.

From that definition, the most impor-
tant part of tool-supported refactorings
appears to be correctness in behavior
preservation. However, from a develop-
er’s viewpoint, the most important part
is the refactoring’s usefulness: can it help
developers get their job done better and
faster? Although absolute correctness is a
great feature to have, it’s neither a neces-
sary nor sufficient condition for develop-
ers to use an automated refactoring tool.

Consider an imperfect refactoring
tool. If a developer needs to perform a
refactoring that the tool provides, he or
she has two options. The developer can
either use the tool and fix the bugs it in-
troduced or perform manual refactor-
ing and fix the bugs the manual changes
introduced. If the time spent using the
tool and fixing the bugs is less than the
time doing it manually, the tool is use-
ful. Furthermore, if the tool supports
preview and undo, it can be more use-

PUBLISHED BY THE IEEE COMPUTER SOCIETY

ful. With previewing, the developer can
double-check that the changes look cor-
rect before they’re saved; with undo, the
developer can quickly revert the changes
if they introduced any bugs.

Often, even a buggy refactoring tool
is more useful than an automated refac-
toring tool that never introduces bugs.
For example, automated tools often can’t
check all the preconditions for a refactor-
ing. The preconditions might be undecid-
able, or no efficient algorithm exists for
checking them. In this case, the buggy
tool might check as much as it can and
proceed with the refactoring, whereas
the correct version sees that it can’t
check everything it needs and aborts
the refactoring, leaving the developer to
perform it manually. Depending on the
buggy tool’s defect rate and the develop-
er’s abilities, the buggy tool might intro-
duce fewer errors than the correct tool
paired with manual refactoring.

Even when a refactoring can be im-
plemented without bugs, it can be ben-
eficial to relax some preconditions to
allow non-behavior-preserving transfor-
mations. For example, after implement-
ing Extract Method in the Smalltalk
Refactoring Browser, my colleagues and
I received an email requesting that we
allow the extracted method to override

continued on page 82

WHEN I ASK people about the progress
of their programming projects, I often
get answers like “I got it to work—now
I need to do some refactoring!” What
they mean is that they managed to tweak
their code so that it appears to do what
it’s supposed to do, but knowing the pro-
cess, they realize all too well that its re-
sult won’t pass even the lightest code re-
view. In the following refactoring phase,
whether it’s manual or tool supported,
minor or even larger behavior changes go
unnoticed, are tolerated, or are even wel-
comed (because refactoring the code has
revealed logical errors). I assume that this
conception of refactoring is by far the
most common, and I have no objections
to it (other than, perhaps, that I would
question such a software process per se).

Now imagine a scenario in which
code has undergone extensive (and ex-
pensive) certification. If this code is
touched in multiple locations, chances
are that the entire certification must be
repeated. Pervasive changes typically
become necessary if the functional re-
quirements change and the code’s cur-
rent design can’t accommodate the new
requirements in a form that would al-
low isolated certification of the changed
code. If, however, we had refactoring
tools that have been certified to preserve
behavior, we might be able to refactor
the code so that the necessary functional

2015 IEEE

changes remain local and don’t require
global recertification of the software.
Unfortunately, we don’t have such tools.

There’s also a third perspective—
the one I care about most. As an engi-
neer, and even more so as a researcher,
I want to do things that are state-of-the-
art. Where the state-of-the-art leaves
something to be desired, I want to push
it further. If that’s impossible, I want
to know why, and I want people to un-
derstand why so that they can adjust
their expectations. Refactoring-tool us-
ers will more easily accept limitations if
these limitations are inherent in the na-
ture of the matter and aren’t engineering
shortcomings.

What we have today is the common
sentiment that “if only the tool people
had enough resources, they would fix
the refactoring bugs,” suggesting that
no fundamental obstacles to fixing them
exist. This of course has the corollary
that the bugs aren’t troubling enough to
be fixed (because otherwise, the neces-
sary resources would be made available).
For this corollary, two explanations are
common: “Hardly anyone uses refactor-
ing tools anyway, so who cares about
the bugs?” and “The bugs aren’t a real
problem; my compiler and test suite will
catch them as I go.” I reject both expla-

continued on page 82

NOVEMBER/DECEMBER 2015

IEEE SOFTWARE

81

I[EEE Software, Nov/Dec 2015

FOC

: REFACTORING

Challenges to

and Solut

ions

for Refactoring

Adoption

An Industrial Perspective

Tushar Sharma and Girish Suryanar:
Services Private Limited

ayana, Siemens Technology and

Ganesh Samarthyam, independent consultant and corporate trainer

Several practical challenges

must be overcome to

facilitate industry’s adoption of refactoring. Results
from a Siemens Corporate Development Center India
survey highlight common challenges to refactoring
adoption. The development center is devising and
implementing ways to meet these challenges.

INDUSTRIAL SOFTWARE systems
typically have complex, evolving
code bases that must be maintained

for many years. It’s important to en-
sure that such systems’ design and
code don’t decay or accumulate tech-
nical debt.! Software suffering from
technical debt requires significant ef-
fort to maintain and extend.

A key approach to managing
technical debt is refactoring. Wil-
liam Opdyke defined refactoring
as “behavior-preserving program
transformation.” Martin Fowler’s
seminal work increased refactoring’s
popularity and extended its acade-
mic and industrial reach.®> Modern
software development methods such

a4 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY

as Extreme Programming (“refactor
mercilessly”)* have adopted refactor-
ing as an essential element.
However, our experience assess-
ing industrial software design® and
training software architects and de-
velopers at Siemens Corporate De-
velopment Center India (CT DC IN)
has revealed numerous challenges to
refactoring adoption in an industrial
context. So, we surveyed CT DC IN
software architects to understand
these challenges. Although we knew
many of the problems facing refac-
toring adoption, our survey gave us
insight into how these challenges
ranked within CT DC IN. Drawing
on this insight, we outline solutions
to the challenges and briefly describe
key CT DC IN initiatives to encour-
age refactoring adoption. We hope
our survey findings and refactoring-
centric initiatives help move the soft-
ware industry toward wider, more
effective refactoring adoption.

CT DC IN is a core software de-
velopment center for Siemens prod-
ucts. Its software systems pertain
to different Siemens sectors (Indus-
try, Healthcare, Infrastructure &
Cities, and Energy), address diverse
domains, are built on different plat-
forms, and are in various develop-
ment and maintenance stages.

CT DC IN, which has increas-
ingly focused on improving its soft-
ware’s internal quality, wanted to
understand the organization’s status
quo regarding technical debt, code
and design smells, and refactoring.
Furthermore, recent internal de-
sign assessments and training ses-
sions revealed challenges to refactor-
ing adoption. To better understand
these deterrents—and thereby adopt
appropriate measures to address
them—we conducted our survey.

I[EEE Software, Nov/Dec 2015

Breaking code

Cannot justify the time spent
Unpredictable impact
Difficult to review

Inadequate tools

FOCUS: REFACTORING

Challenges to
and Solutions
for Refactoring
Adoption

An Industrial Perspective

Tushar Sharma and Girish Suryanarayana, Siemens Technology and
Services Private Limited

Ganesh Samarthyam, independent consultant and corporate trainer

Several practical challenges must be overcome to
facilitate industry’s adoption of refactoring. Results
from a Siemens Corporate Development Center India
survey highlight common challenges to refactoring
adoption. The development center is devising and
implementing ways to meet these challenges.

INDUSTRIAL SOFTWARE systems A key approach to managing
typically have complex, evolving technical debt is refactoring. Wil-
code bases that must be maintained liam Opdyke defined refactoring
for many years. It’s important to en- as “behavior-preserving program
sure that such systems’ design and transformation.”” Martin Fowler’s
code don’t decay or accumulate tech- seminal work increased refactoring’s
nical debt.! Software suffering from popularity and extended its acade-
technical debt requires significant ef- mic and industrial reach.’ Modern
fort to maintain and extend. software development methods such

a4 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY

as Extreme Programming (“refactor
mercilessly”)* have adopted refactor-
ing as an essential element.
However, our experience assess-
ing industrial software design® and
training software architects and de-
velopers at Siemens Corporate De-
velopment Center India (CT DC IN)
has revealed numerous challenges to
refactoring adoption in an industrial
context. So, we surveyed CT DC IN
software architects to understand
these challenges. Although we knew
many of the problems facing refac-
toring adoption, our survey gave us
insight into how these challenges
ranked within CT DC IN. Drawing
on this insight, we outline solutions
to the challenges and briefly describe
key CT DC IN initiatives to encour-
age refactoring adoption. We hope
our survey findings and refactoring-
centric initiatives help move the soft-
ware industry toward wider, more
effective refactoring adoption.

CT DC IN is a core software de-
velopment center for Siemens prod-
ucts. Its software systems pertain
to different Siemens sectors (Indus-
try, Healthcare, Infrastructure &
Cities, and Energy), address diverse
domains, are built on different plat-
forms, and are in various develop-
ment and maintenance stages.

CT DC IN, which has increas-
ingly focused on improving its soft-
ware’s internal quality, wanted to
understand the organization’s status
quo regarding technical debt, code
and design smells, and refactoring.
Furthermore, recent internal de-
sign assessments and training ses-
sions revealed challenges to refactor-
ing adoption. To better understand
these deterrents—and thereby adopt
appropriate measures to address
them—we conducted our survey.

I[EEE Software, Nov/Dec 2015

Breaking code

Difficult to review

Building trust more widely

Open Source ... confidence in the code ... other committers.

Openness of the system ...
... You can check the changes that a refactoring makes,

... and for the DSL can see which refactorings performed.
GHC vs Haskell standards vs other Haskell implementations.

Editor and IDE integration

Preserving meaning

Do these two programs mean the same thing?

Difficult to examine and compare the meanings directly ...

... so we look at other ways of trying to answer this.

Different scopes

main module

“all” modules

“all” functions

Different contexts

All tests for the project.

Refactorings need to be test-framework aware
Naming conventions: foo and foo_test ...
Macro use, etc.

The makefile for the project.

Using these versions of these libraries ... which we don’t control.

Assuring meaning preservation

test verify

instances of
the refactoring

the refactoring
itself

Assuring meaning preservation

test verify
instances of Rename foo to bar in
the refactoring this project.

the refactoring
itself

Assuring meaning preservation

test verify
instances of Rename foo to bar in
the refactoring this project.
the refactoring Renaming for all names,
itself functions and projects.

test verify

instances of J J
the refactoring

the refactoring
el vV | Y

Testing

test verify

instances of J
the refactoring

the refactoring
itself

Testing new vs old (with Huiqing Li)
Compare the results of and function| (unmodified) ...
... using existing unit tests, and randomly-generated inputs

... could compare ASTs as well as behaviour (in former case).

module?2 module?2
4 4
function | function|
C C
function?2 function?
C C
\ _

test verify

instances of
the refactoring

the refactoring
itself J

Fully random

Generate random modules,
... generate random refactoring commands,

... and check = with random inputs. (w/ Drienyovszky, Horpacsi).

moduleR moduleR
4)
function | function |
C) C)
function?2 function?
C) C)

Verification

test verify

instances of
the refactoring

the refactoring
itself J

Tool verification (with Nik Sultana)
Vp. (@p) — (T'p) ~p

Deep embeddings of small languages:
... potentially name-capturing A-calculus
... PCF with unit and sum types.
Isabelle/HOL: LCF-style secure proof checking.

Formalisation of meta-theory: variable binding, free / bound
variables, capture, fresh variables, typing rules, etc ...

... principally to support pre-conditions.

Shallow embedding

test verify

instances of J
the refactoring

the refactoring
itself

Automatically verify instances of refactorings

Prove the equivalence of the particular pair of functions / systems
using an SMT solver ...

... SMT solvers linked to Haskell by Data.SBV (Levent Erkok).

Manifestly clear what is being checked.

The approach delegates trust to the SMT solver ...

... can choose other solvers, and examine counter-examples.

DEMUR work with Colin Runciman

Example

module Before where

h :: Integer->Integer->Integer
hxy=gy+1t @@y

g ::. Integer->Integer

g X =3* + f x

f :: Integer->Integer

f x X + 1

Example: renaming

module Before where

h :: Integer->Integer->Integer
hxy=gy+1t @@y

g ::. Integer->Integer

g X =3* + f x

f :: Integer->Integer

f x X + 1

module After where

h :: Integer->Integer->Integer
hxy=ky+f (ky)

kK :: Integer->Integer

k Xx = 3*x + f X

f :: Integer->Integer

f x =x +1

{-# LANGUAGE ScopedTypeVariables #-}
module RefacProof where

import Data.SBV

{-# LANGUAGE ScopedTypeVariables #-}

module RefacProof where

import Data.SBV

h :: Integer->Integer->Integer
hxy=gy+1t @y
g :: Integer->Integer

g x =3+ f X

{-# LANGUAGE ScopedTypeVariables #-}
module RefacProof where

import Data.SBV

h :: Integer->Integer->Integer n' :: Integer->Integer->Integer
hxy=gy+f(y h" xy=ky+f (ky)

g ::. Integer->Integer kK :: Integer->Integer

g x =3*+ f x K X = 3*x + f X

import Data.SBV

{-# LANGUAGE ScopedTypeVariables #-}

module RefacProof where

h :: Integer->Integer->Integer
hxy=gy+1t @y
g :: Integer->Integer

g x =3** + f X

n' :: Integer->Integer->Integer

" xy=ky+ f (ky)
k :: Integer->Integer

k X = 3*K + f X

-- f can be treated as an uninterpreted symbol

f = uninterpret "f"
-- Properties

propertyk
propertyh

prove $ \(x::SInteger) -> g x .== k x
prove $ \(x::SInteger) (y::SInteger) -> h x y

== h’

Xy

h :: Integer->Integer->Integer n' :: Integer->Integer->Integer
hxy=gy+f gy h" xy=ky+f (ky)

g .. Integer->Integer k :: Integer->Integer

g x =3* + f x K Xx = 3*x + f X

-- f can be treated as an uninterpreted symbol

f = uninterpret "f"

-- Properties
propertyk = prove $ \(x::SInteger) -> g x .== k X
propertyh = prove $ \(x::SInteger) (y::SInteger) -> h x vy

== h’

Xy

*RefacZ2> propertyk
Q.E.D.
*RefacZ2> propertyh
Q.E.D.

h :: Integer->Integer->Integer

hxy=gy+f (gy
where
gz = z*z

g ::. Integer->Integer

g x=3*+f x

h :: Integer->Integer->Integer h' :: Integer->Integer->Integer

hxy=gy+f (gy) h" xy=ky+ f (ky)
where where
g z = z*z g z = z*z

g .. Integer->Integer k :: Integer->Integer

g X =3*% +f x kK x = 3*x + f X

h :: Integer->Integer->Integer h' :: Integer->Integer->Integer
hxy=gy+f (gy) h" xy=ky+ f (ky)
where where
g z = z*z g z = z*z
g .. Integer->Integer k :: Integer->Integer
g X =3*% +f x kK x = 3*x + f X

f = uninterpret "f"

prove $ \(x::SInteger) -> g x .== k x
prove $ \(x::SInteger) (y::SInteger) -> h xy .==h' xvy

propertyk
propertyh

h :: Integer->Integer->Integer

hxy=gy+f(y)
where

gz = z*z
g ::. Integer->Integer

g x=3*+f x

h' :: Integer->Integer->Integer
h"xy=ky+ f (ky)

where

gz = 2z*z

k :: Integer->Integer

k X = 3* + f x

f = uninterpret "f"
propertyk = prove $ \(x::SInteger) -> g X
propertyh =

prove $ \(x::SInteger) (y::SInteger) -> h x vy

== K X
== h" XYy

Q.E.D.

s@ =0 ::
sl =-1 ::

*RefacZ2> propertyk

*RefacZ2> propertyh
Falsifiable. Counter-example:
SInteger
SInteger

Trustworthy refactoring project

Fully formally verified refactorings for a certified language and
compiler: CakeML ...

... plus a tool for OCaml providing high-assurance refactorings,
through proof, SMT solving and testing.

test verify

instances of J J
the refactoring

the refactoring
el vV | Y

Trust is a

Joaiach STy
: Sl S : Pt K
e -' . s N
2 N _ AT g
- @ s £ 7]
. i | B g]
£ N [

) 7 A
: Pl i e - it
2 Lrrti i . :
k :

What'’s the ideal
language supporting
refactoring?

What'’s the ideal language for refactoring?

Changes are first class.

No layout choice: you have to
conform to layout rules.

No macros, reflection, ...
Compiler stability

Integration with a semantically-
aware change management tool.

Theory of patches, ...

Why should | use
your refactoring tool?

It’s just renaming ...

what’s all the fuss?

Will you
integrate with this
editor or IDE?

What’s the ideal

language supporting What do you
refactoring? mean when you say
“refactoring”?
What's so wrong with ,
duplicated code? Why haven'’t you
implemented this
refactoring?
| don’t need a
refactoring tool ...
... | have types!
Why have you
f g Why should | trust

messed up the layout

e e a refactoring tool

on my cade?

“but there is
ing freeing al

https://github.com/alanz/HaRe
https://www.cs.kent.ac.uk/projects/wrangler

https://gitlab.com/trustworthy-refactoring/
refactorer

